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Abstract

Recent advancements in recurrent architectures, such as Mamba and RWKV,
have showcased strong language capabilities. Unlike transformer-based
models, these architectures encode all contextual information into a fixed-
size state, leading to great inference efficiency. However, this approach
can cause information interference, where different token data conflicts,
resulting in performance degradation and incoherent outputs beyond a
certain context length. To prevent this, most RNNs incorporate mechanisms
designed to “forget” earlier tokens. In this paper, we reveal that Mamba-
based models struggle to effectively forget earlier tokens even with built-in
forgetting mechanisms. We demonstrate that this issue stems from training
on contexts that are too short for the state size, enabling the model to
perform well without needing to learn how to forget. Then, we show that
the minimum training length required for the model to learn forgetting
scales linearly with the state size, and the maximum context length for
accurate retrieval of a 5-digit passkey scales exponentially with the state
size, indicating that the model retains some information beyond the point
where forgetting begins. These findings highlight a critical limitation in
current RNN architectures and provide valuable insights for improving
long-context modeling. Our work suggests that future RNN designs must
account for the interplay between state size, training length, and forgetting
mechanisms to achieve robust performance in long-context tasks.

1 Introduction

Transformer-based large language models (LLMs) (Achiam et al., 2023; Dubey et al., 2024)
have shown impressive capabilities in processing very long sequences (Gemini Team et al.,
2024; MiniMax et al., 2025). However, these models incorporate self-attention (Vaswani et al.,
2017) whose complexity scales quadratically with sequence length, making long-context
processing costly. In contrast, recurrent neural networks (RNNs) (Bengio et al., 1994) have
a fixed-size contextual memory. Thus, their per-token time and space complexities are
constant and they are much more efficient for long sequences. Despite this advantage, their
effectiveness in modeling long contexts remains underexplored. Most recent state-of-the-art
(SOTA) RNNs, such as Mamba-1 and Mamba-2 (Gu & Dao, 2023; Dao & Gu, 2024), GLA
(Yang et al., 2024a), and RWKV (Peng et al., 2024a) are trained on context lengths below
10K, and existing works have shown that their performance degrades sharply when the
context length exceeds the model’s training length1 (Ben-Kish et al., 2024; Zhang et al., 2024a;
Waleffe et al., 2024).

In this paper, we analyze the factors that cause the inability of Mamba-based models to
handle contexts longer than the training length. By inspecting memory retention strength
and modifying the forgetting mechanism, we discover that the performance drop is caused

∗Corresponding Authors.
1Throughout this paper, “training length” refers to the context length used during training.
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Figure 1: The LM loss of
Mamba-2 as a function
of token position. The
training length is 8K.

1K 4K 8K 16
K

Context Len.

0
25

50
75

10
0An

s. 
De

pt
h 

(%
)

(a) 130M

1K 4K 8K 16
K

Context Len.

0
25

50
75

10
0An

s. 
De

pt
h 

(%
)

(b) 370M

1K 4K 8K 16
K

Context Len.

0
25

50
75

10
0An

s. 
De

pt
h 

(%
)

(c) 780M

1K 4K 8K 16
K

Context Len.

0
25

50
75

10
0An

s. 
De

pt
h 

(%
)

(d) 1.3B

0.0

0.5

1.0

Figure 2: The accuracy of Mamba-2 on the passkey retrieval
task. “Ans. Depth” refers to the passkey position divided by the
context length.

by the inability to forget earlier tokens, although Mamba has a built-in forgetting mechanism.
Insufficient forgetting leads to interference between multiple token representations, causing
faulty memory recall and, ultimately, performance degradation in longer contexts. We
provide two lines of evidence for this discovery: (1) The first token’s retention strength is
very high throughout its training context window. (2) Artificially inducing forgetting via
interventions of the state’s update rule can mitigate this performance degradation.

We hypothesize that the inability to learn an effective forgetting mechanism is due to state
overparameterization—where the model’s state is excessively large, allowing it to minimize
language modeling loss without much forgetting. Two key pieces of evidence support this
hypothesis. (1) Initially, the model demonstrates robust forgetting, retaining only the last k
tokens and forgetting earlier ones. However, as training progresses, the model’s ability to
forget diminishes while its recall of contextual information improves, resembling overfitting.
This suggests that the model increasingly attempts to retain all available information within
the context. (2) We observe that forgetting occurs only when the training context length
exceeds the state’s capacity to retain all information, forcing the model to forget less relevant
details. Notably, larger states require longer training context lengths to effectively learn and
implement forgetting.

We next investigate the minimum training length required for Mamba-2 to effectively learn
forgetting and the maximum context length in which the model can recall information. First,
by varying model sizes and training lengths, we observe that the training length threshold
scales linearly with the state size, confirming that forgetting only occurs when the training
length exceeds the model’s state capacity. Second, while this threshold represents the point
at which the contextual information exceeds the state’s capacity, we demonstrate that the
model can still recall tokens beyond this context window. Evaluation on passkey retrieval
(Mohtashami & Jaggi, 2023)—a simple retrieval task—shows that the maximum context
length with perfect retrieval accuracy scales exponentially with state size. Notably, with
continued pre-training, Mamba-2 with 370M parameters achieves near-perfect retrieval on
a 256K context length, outperforming similarly sized transformer models. These findings
suggest that current training lengths for RNN models may be suboptimal and underscore
the potential of RNN-based architectures for modeling long-context sequences.

This paper is structured as follows. Section 2 describes the Mamba-2 architecture and
provides evaluation results showing its inability to generalize beyond its training length.
Section 3 provides arguments for the importance of forgetting and provides evidence
showing that the model has failed to learn a robust forgetting mechanism. Section 4 presents
a high-level explanation for why Mamba-2 has failed to learn how to forget. Finally, in
Section 5, experiments are conducted to verify the claims and provide important conclusions
for training long-context recurrent models.

The main findings of this paper can be summarized as follows:

The inability to forget. We discover that Mamba-2, and RWKV-6 (some SOTA RNNs) do
not know how to robustly forget earlier information to avoid memory overload. This causes
performance degradation for contexts longer than the training length.
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State overparameterization. We provide overparameterization as a plausible explanation
for the inability to forget and provide empirical evidence for this hypothesis.

Minimum training length of forgetting. In alignment with the state overparameterization
hypothesis, we empirically discover that for any state size, there exists a training length
threshold where the Mamba-2 learns forgetting if and only if the training length is above
that threshold. We also find that this relationship is linear.

2 Preliminaries

In this section, we first describe the Mamba-2 architecture and corresponding notations.
Then, we evaluate Mamba-2 on language modeling and passkey retrieval with context
lengths exceeding their training length to illustrate the consequence of the inability to forget.

Most experiments in this study focus on Mamba-2 (Dao & Gu, 2024) because it has shown
strong capabilities on several tasks and has publicly available checkpoints of multiple sizes,
allowing us to explore the relationship between state sizes and length limits. Moreover, it is
more widely studied than other RNNs, making it easier to use existing works as a reference.

2.1 Mamba-2

The Mamba-2 architecture consists of L layers, each consisting of H heads computed in
parallel. The layer’s output is the sum of the heads’ outputs. Let ut ∈ Rd, yt ∈ RP denote
the input and output vectors of the layer at t time step. The computation at t time step for
each head can be formulated as follows:

yt = Ctht ∈ R1×P (Query rule) (1)

ht = ht−1 αt︸︷︷︸
Decay

+Btxt︸ ︷︷ ︸
Insertion

∈ RN×P (Update rule) (2)

where Ct ∈ RP×N , Bt ∈ RN×1, xt ∈ R1×P, αt ∈ R are functions of ut, d, N, P are hyper-
parameters, denoting the hidden dimensionality, state dimension, and head dimension,
respectively, and ht is the t-th recurrent state. Eq 1 and 2 are called the “query rule” and
“update rule” because they determine how memory is queried from the recurrent state, and
how the state is updated.

The other variables are parameterized as follows:

Bt = Bt∆t ∈ RN×1 (3)
αt = exp(−∆t exp(A)) ∈ R (4)
∆t = Softplus(utW∆ + b∆) ∈ R (5)

where Bt ∈ RN×1 is a function of ut and A, b∆ ∈ R, W∆ ∈ Rd×1 are trainable model
parameters. Appendix A presents more details on the model. Notably, Mamba-2’s update
rule is similar to many existing RNNs (Peng et al., 2024a; Sun et al., 2023; Yang et al., 2024a).
Thus, some conclusions/insights may apply to other architectures. We leave such exhaustive
ablation studies for future work.

Importantly, ht is the contextual memory representation that stores information from all
tokens up to t. αt ∈ (0, 1) is the memory decay multiplier that controls the strength of
forgetting. Past information is completely forgotten when αt → 0 and completely retained
with αt → 1. In this paper, we refer to αt as the memory retention strength.

2.2 Length Generalization Failure of Mamba-2

Language Modeling Figure 1 shows the language modeling loss of Mamba-2 as a function
of token position. The result shows that Mamba-2 models suffer great performance degra-
dation when the context length is much longer than their training lengths. Furthermore, we
find that larger models have worse length generalization abilities.
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Passkey Retrieval Evaluation Language modeling may not reflect downstream capabili-
ties, thus, we also evaluate Mamba-2 recall ability on the passkey retrieval task (Mohtashami
& Jaggi, 2023; Zhang et al., 2024a). It is a widely-used simple synthetic task where a model
is prompted to recall a 5-digit passkey from a lengthy context.

The passkey retrieval result is reported in Figure 2. We find that Mamba-2 (except for the
smaller 130M checkpoint) has near-perfect retrieval accuracy within 8K tokens, but poor or
even zero accuracy on sequences longer than 16K, regardless of model sizes. This behavior
is unexpected because the update rule (Eq. 2) has a stable exponential memory decay (it
converges to a constant value if the variables are fixed). Therefore, we expect RNNs of such
form to have a good retrieval accuracy on the last k tokens, and tokens earlier than that are
forgotten. However, when the context is too long, Mamba-2 fails to even recall very recent
tokens. This implies that the limitation is not the inability to retain memory about the
answer, but the inability to forget irrelevant past tokens.

More experimental details and the results of some other recurrent architectures can be found
in Appendix B and D.

3 The Inability to Forget

In this section, we argue that Mamba-2’s length generalization failure can be attributed to
its inability to forget contextual information. We first provide arguments for the impor-
tance of forgetting. Then, we present empirical evidence to verify that the model has not
learned a robust forgetting mechanism. Furthermore, we show how the inability to forget is
manifested in the statistics of the recurrent state.

3.1 The Importance of Forgetting

The fact that the model fails to retrieve tokens at any position when the context length
exceeds a certain threshold has one critical implication: the existence of earlier tokens
damages the model’s ability to recall both earlier and more recent tokens. This is because
the model’s state ht at time step t can be formulated as a weighted sum of past information:

ht =
t

∑
i=1

αi:tBixi, αi:t =

(
t

∏
j=i

αj

)
∈ (0, 1) (6)

When we try to retrieve the memory inserted at time step s, we would query the state with
Ct = Bs, which returns:

yt = Ct

t

∑
i=1

αi:tBixi = αs:t(CtBs)xs + ∑
i ̸=t

αi:tCtBixi︸ ︷︷ ︸
Retrieval error

, (7)

When all Bi are mutually orthogonal, querying the memory with Ct = Bs returns a scaled
version of xs. However, as the context length increases, Bs cannot be mutually orthogonal,
in which case multiple memory entries interfere and cause retrieval errors. A small error
may not affect the final output because subsequent calculations may tolerate these errors.
However, if there are many preceding tokens, then this retrieval error can be too large.
To optimize retrieval accuracy, the model needs to produce a small enough decay αt to
diminish the inference from earlier tokens, which can be viewed as forgetting them.

3.2 Evidence for the Inability to Forget

Here, we provide empirical evidence that confirms that Mamba-2 has failed to learn how to
forget past information.

3.2.1 Evidence 1: High Retention of the First Token

Based on Eq. 6, we can view αi:t as the memory strength of the i-th token at t time step. The
retention strengths of earlier tokens are always smaller than those of more recent tokens.
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Figure 3: The reten-
tion strength of the first
token (α1:t) over time.
Each curve represents a
head.
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Figure 4: LM loss of
Mamba-2 370M at differ-
ent positions when induc-
ing forgetting (see Section
3.2.2).
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Figure 5: The mean and variance
of the first 8 heads in layer 38 of
Mamba-2 370M. It exhibits a clear
explosion when t is greater than the
training length.

We find that some heads have a very strong inclination toward retaining all information
within the training length. As an example, Figure 3 shows the cumulative decay of the
first token in the first eight heads of the 38th layer, and three of the heads have a memory
retention strength over 0.9972 at t=8K. Similar observations can be found in other heads and
in other layers as well. This implies that the model has not learned to forget information (by
producing a smaller αj), but it still has decent language modeling capabilities because the
information of 8K tokens is typically not enough to overload the memory.

3.2.2 Evidence 2: Inducing Forgetting Can Improve Length Generalization

Here, we demonstrate that artificially inducing more forgetting without training can improve
performance by reducing past memory interference.

Reduced Memory Retention and Insertion (RRI) This method assumes that αt and Bt
control the memory retention and insertion strength, respectively. We scale them with a
multiplier smaller than 1. The actual multipliers used are 0.9999 for αt and 0.75 for Bt, which
is chosen by validation using average loss on pre-training data with 32K context length.

Sliding Window We can utilize the fact that the state ht can be written as a weighted sum
(Eq. 6) to simulate a sliding window mechanism without re-processing from the start of
the window at every step. Let w ∈ N denote the window size and h(r)t ∈ RN×P denote
the hidden state when applying the model on the last w tokens at time step t. We can then
compute h(r)t exactly as the difference between two states:

h(r)t =
t

∑
i=t−r+1

αi:tBixi =
t

∑
i=1

αi:tBixi − αt−r+1:t

t−r

∑
i=1

αi:t−rBixi = ht − αt−r+1:tht−r (8)

During streaming generation, we only have to maintain (ht−1, ht−r, αt−r+1:t)
3, and advance

each of them in parallel. However, directly computing αt:t−r may suffer from instability due
to floating-point imprecision. Therefore, we maintain ∆t−r:t = ∑t

i=t−r ∆t instead, and re-
compute αt−r:t = exp (−∆t−r:t exp(A)) at every step, which incurs minimal computational
cost. This method can be applied to all RNNs that can be written as a weighted sum.

Result From Figure 4, one can see that the original model has the worst length generaliza-
tion abilities. LongMamba (a length extrapolation method) (Zhang, 2023) and our methods
for inducing forgetting can alleviate this generalization failure, although LongMamba and
RRI compromise short-context performance due to weaker memory insertion. This further
confirms the fact that memory over-retention is the culprit of this degradation.

2This is a cumulative product, so the decay at each time step is even closer to 1.
3We also have to cache the last r token IDs, but their size is negligible compared to ht−1 and ht−r
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Figure 7: The value of various components in the update rule (∆t,
Bt, and xt) on some heads with large retention values in the 38th
layer in Mamba-2 370M. The red dotted line indicates the training
length.

3.3 The Manifestation of Over-Retention

We also examine how the inability to forget is manifested in the state’s values. Since the
recurrent state’s dimensionality does not change over time, the sharp change of behavior
during length generalization must be a result of a change in the state’s distribution. For
reproducibility and better visualization, we use the “newlines” prompt (string with only
“\n”) and inspect the statistics of the recurrent states of every head in Mamba-2 370M4 and
find that the mean and variance of some heads change sharply when the context length
exceeds the training length. One example is shown in Figure 5. Appendix G reports the
statistics of every layer. The state at t = 20K of one head with exploding variance is shown
in Figure 6. From it, we discover that this variance explosion can be largely attributed to a
few outlier channels while most channels are relatively stable.

4 State Overparameterization

Here, we present a high-level explanation for why Mamba-2 over-retains memories: state
overparameterization. The state is excessively large for the training length, allowing the
model to achieve strong language modeling performance without learning how to forget
when the state is overloaded with memories.

To support this hypothesis, we present two pieces of evidence: (1) Mamba-2 starts with the
ability to forget, but slowly loses this ability as the amount of training data increases, which
coincides with behaviors of overfitting, and (2) for any state size, there is a training context
length threshold Tforget such that Mamba-2 learns to forget if and only if Ttrain > Tforget,
where Ttrain denotes the training context length.

4.1 Evidence 1: More Training ⇒ Less Forgetting

We pre-train Mamba-2 370M from scratch with Ttrain = 512 using the RedPajama (Computer,
2023) corpus and evaluate the intermediate checkpoints on passkey retrieval, as reported in
Figure 8. It shows that the model’s retrieval accuracy for contexts longer than the training
length slowly decreases as we increase the amount of training data. Meanwhile, the model’s
accuracy for contexts shorter than the training length increases. This indicates that the
model converges toward more retention and less forgetting. Since language modeling loss is
only computed for tokens within the training length, this behavior is induced by minimizing
loss. This reduced forgetting leads to conflicts between token representations, impairing
memory recall accuracy when an excessive number of tokens are inserted.

4Similar observation can be found with any model size.
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Figure 8: Passkey retrieval results of intermediate check-
points during the pre-training of Mamba-2 370M on 512
sequence length. Generalization failure only occurs in
the model beyond a certain amount of training data.
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retrieval (i.e., Trecall in Section
4.3) as a function of state size.

This behavior can be viewed as a kind of overfitting because the state’s distribution with
short contexts is not varied enough for the model to generalize to the distribution in longer
contexts. In other words, the state has too many parameters for the given training length.

4.2 Evidence 2: Forgetting is Learned ⇔ Sufficient Training Length

We empirically confirm that larger recurrent states require longer training contexts for the
model to learn to forget. This is because the model will only learn to forget when the amount
of contextual information exceeds the state capacity. This hypothesis implies the following
law:

Let NS and Ttrain denote the recurrent state size and training length, re-
spectively, there exists a threshold Tforget(NS) such that the model learns to
forget if and only if Ttrain > Tforget.

We empirically validate this by sweeping different training lengths for different state sizes,
and checking whether the model has successfully learned how to forget. Concretely, we train
multiple Mamba-2 with different state sizes and training lengths to find the relationship
between Tforget and NS. To determine whether the model has learned robust forgetting, we
feed prompts with 1M tokens to the model and check if the model’s loss exceeds 2× the
maximum loss within Ttrain tokens at any point. The loss is averaged over 128 prompts. The
result is reported in Section 5.1.

4.3 Maximum Recall Context Length

The fact that the amount of information in Tforget tokens exceeds the state’s capacity, does
not necessarily imply that the model fails to recall information beyond the last Tforget
tokens, especially when there is a clear distinction between the target information and other
contextual information. Therefore, we also search for the maximum context length from
which the model can accurately perform passkey retrieval. We refer to this context length
as the model’s maximum recall context length, denoted with Trecall. Similar to the previous
section, we train with different lengths for different state sizes and identify the maximum
context length where the model has an accuracy over 95% as Trecall. In this task, the noisy
context is repetitive, thus, the amount of contextual information is largely independent of the
context length. Therefore, ideally, the recall threshold should grow roughly exponentially
with the state size.5

5If we train Mamba-2 on passkey retrieval data, the model can theoretically handle infinitely long
contexts. Here, the model is only trained with the next token prediction objective, which means the
model will not ignore the irrelevant context, and the ability to retain information for extended time
emerges from language modeling.
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5 Experiments

We briefly describe the data and model configurations used to identify the forget threshold
Tforget and maximum recall context length Trecall. Due to limited space, more comprehensive
experimental details are reported in Appendix F.

Data We start from RedPajama-V2 (Computer, 2023), an open dataset with 30T tokens
from the Internet, and perform deduplication to ensure data quality and discard documents
that are too short.

Models We experiment with six model sizes to find the relationship between state capacity
and size. For each of them, we perform an extensive search with training lengths up to 256K
tokens. To save cost, we continue pre-training from three official checkpoints of Mamba-2
(130M, 370M, and 780M). They were pre-trained with 8K sequences. The other model
configurations (36M, 47M, and 85M) are trained from scratch.

5.1 The Existence of Forget Threshold

In Figure 10, we plot the language modeling perplexity as a function of token position for
Mamba-2 130M and 370M with different training lengths. We can see that for each model
size, there is a training length threshold, beyond which the model has much better length
extrapolation, which supports our arguments discussed in Section 4.2.

5.2 Forget Threshold as a Function of the State Size

Figure 11 shows the minimum training length needed for Mamba-2 to learn forgetting.
The rightmost data point in the plot corresponds to Mamba-2 370M. We have confirmed
that the 780M model (with a state size of 19.3M) also has poor length generalization at
training lengths below 128K, but do not have enough resources to train the model beyond
this length. The results establish a linear relationship Tforget = 5.172 · NS − 4.469 between
the length Ttrain = Tforget at which the model can learn robust forgetting and the state size
NS. The R2 value is over 0.999. This indicates that to train a Mamba-2 with robust length
generalization, one should use training lengths that grow linearly with the state size.

5.3 Maximum Recall Context Length as a Function of the State Size

The second plot of Figure 9 shows the recall threshold of Mamba-2 in passkey. The maximum
contexts length in which Mamba-2 can accurately retrieve 5-digit passkeys is exponential
concerning the state size, the function is Trecall = 4.756 · (1.365NS − 1)− 0.742, with an R2

value over 0.999. This is because the amount of information in the context does not increase
with its length. In other words, we are storing a constant amount of information while the
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number of combinations of the state grows exponentially with the number of elements. The
result is very promising because, to the best of our knowledge, no previous models with
less than 1B model parameters have near-perfect accuracy at this length in this task.

6 Related Works

RNN-Based Language Models This paper focuses on Mamba-2, a recurrent architecture
that can be viewed as a variant of gated linear attention (Yang et al., 2024a). Many recently
proposed RNNs can also be viewed as GLA variants. These include the RWKV series (Peng
et al., 2023; 2024a), the Mamba series (Gu & Dao, 2023; Dao & Gu, 2024), GLA (Yang et al.,
2024a), and many more (Zhang et al., 2024b; Yang et al., 2024b; De et al., 2024; Arora et al.,
2024b; Orvieto et al., 2023; Sun et al., 2023). Our methods may apply to these architectures
as well. Some recent/concurrent RNNs such as Gated DeltaNet (Yang et al., 2025), RWKV-7
(Peng et al., 2025), xLSTM (Beck et al., 2024), and Titans (Behrouz et al., 2024) have gone
beyond a gating-based memory decay mechanism and are out of the scope of this paper.

Length Generalization Most SOTA language models in the last few years have been
based on the transformer (Vaswani et al., 2017) architecture. These models, when using
certain variants of position encoding, can process arbitrarily long sequences. However,
they exhibit severe performance drops on tokens beyond the training length (Zhao et al.,
2024). To alleviate this shortcoming, many works have focused on modifying positional
encoding (Peng et al., 2024b; Zhu et al., 2024; Ding et al., 2024; Jin et al., 2024), some achieving
training-free length generalization to certain extents (Zhang et al., 2025).

Length Generalization of Mamba Some prior works investigated the performance of
Mamba as a function of context length (Park et al., 2024; Wen et al., 2025). Jelassi et al. (2024)
empirically showed a sharp performance drop beyond the training length for Mamba on a
copying task and also showed that Mamba struggles to copy from context unless its state
size grows linearly with the context length. Arora et al. (2024a) discussed the associative
recall abilities of transformer and some RNNs. Wang et al. (2025) is most related to our
work. They discussed the issue of over-smoothing introduced by the memory decay term.
In contrast, our paper explores a setting where recency may be preferred, but interference
from earlier tokens damages the recall accuracy of recent tokens.

Some concurrent works have explored extending Mamba’s context length by controlling the
discretization term (∆t in Eq. 2) (Ben-Kish et al., 2024), such as dividing it by a constant to
make it smaller (Zhang, 2023). This makes the memory decay factor (αt in Eq. 4) closer to 1,
which makes the state retain more contextual information. However, it also unnecessarily
diminishes the inserted information on all tokens. Similar to the above works, this study
explores the cause of Mamba-2’s inability to generalize beyond its training context length
and provides valuable insights into training Mamba-2 models that generalize better.

7 Conclusion

This paper demonstrates that while the Mamba architecture includes a memory decay
mechanism, it fails to effectively learn forgetting in practice. As a result, when the context
exceeds the training length, the model produces incoherent outputs. This issue arises
from training with contexts that are too short relative to the state size. Empirical results
show that robust forgetting is only learned when the training context length surpasses a
certain threshold, which increases linearly with the state size. Notably, the model is still
capable of recalling some contextual information beyond this threshold. These findings
offer valuable insights into the causes and consequences of the model’s inability to forget,
highlighting key limitations of the Mamba architecture. Nevertheless, the insights gained
from this study provide a promising foundation for improving Mamba’s performance in
long-context modeling, paving the way for more effective applications in tasks requiring
extended context lengths.
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A Mamba-2 Architecture

For completeness, we give a more detailed formulation of the Mamba-2 architecture here,
although we recommend the readers refer to the original paper (Dao & Gu, 2024) or a
detailed blog post by the authors6. The model accepts a sequence of T token IDs as input
I = [i1, · · · , iT ] ∈ Nt, where it ∈ {1, 2, · · · , V}, V denotes the vocabulary size. It performs
next token prediction by predicting the probability distribution over the vocabulary at each
time step, denoted as P ∈ RT×V . The model can be formulated as follows.

U(0) = Embedin(I) ∈ Rd×T

U(l) = Mamba(l)
(

Norm
[
U(l−1)

])
∈ Rd×T

P = Embedout

(
Norm

[
U(L)

])
∈ RV×T

where L denotes the number of layers, l ∈ {1, · · · , L} denotes the layer index, U(l) ∈ RT×d

represents the input of the l-th layer, U(0) represents the input of the first layer. Mamba(l)(·)
denotes the l-th Mamba layer, Embedin(·) and Embedout(·) denote the input and output
embedding layers, and Norm(·) denotes RMS normalization (Zhang & Sennrich, 2019). d
denotes the number of dimensions of each token embedding. Similar to many other models,
Mamba-2 ties the weight of the input and output embedding layers.

Each Mamba layer consists of H “heads” that are computed in parallel. The result of which
is summed together. Notably, the notations here are slightly different from Section 2 because
we simplified the notations in the main content to save space. The t-th token (t ∈ {1, · · · , T})
in a head is computed as follows:

yt = WoNorm
(

o⊤t ⊙ Wgateut

)
∈ Rd×1 (9)

ot = Ctht + D ⊙ xt ∈ R1×P (10)

ht = ht−1 exp(−∆t exp(A)) + ∆tBtxt ∈ RN×P (11)

Ct = σ(Conv(WCut))
⊤ ∈ R1×N (12)

Bt = σ(Conv(WBut)) ∈ RN×1 (13)

xt = σ(Conv(Wxut))
⊤ ∈ R1×P (14)

∆t = Softplus(W∆ut + b∆) ∈ R (15)

ut ∈ Rd×1 denotes the t-th input representation. In other words, for the l-th layer, we
have U(l) =

[
u(l)

1 , · · · , u(l)
T

]
, U(l+1) =

[
y(l)1 , · · · , y(l)T

]
, and u(l+1)

t = y(l)t . Conv(·) denotes a
channel-wise one-dimensional convolutional layer with a kernel size of 4, and σ(·) denotes
the SiLU activation function (Elfwing et al., 2018). The result of a matrix multiplied by a
scalar is the matrix with each element multiplied by that scalar.

Wgate, Wx ∈ Rd×P, Wo ∈ RP×d, WC, WB ∈ Rd×N , W∆ ∈ Rd×1, b∆, A ∈ R are trainable
parameters of the layer, and P, N are hyperparameters. The authors call P the head dimension
and N the state size. In practice, the weights of WB, WC are shared among different heads.

A.1 State Size

The authors of Mamba-2 always set P = 64, N = 128, and H = 2d/P. Thus, the state size
of each Mamba-2 layer is HPN = 2dN = 256d. In transformer-based models, when using
multi-headed attention, usually, the product of the number of heads H and head dimension
P equals the hidden dimension d. Therefore, the KV cache of a transformer-based model
is 2Td, which means that when using the same hidden dimension, the state of a Mamba-2
layer is equal in size to a KV cache of 128 tokens. Additionally, the number of Mamba-2

6https://tridao.me/blog/2024/mamba2-part1-model/
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Figure 12: The relationship between state size and model size of various RNN models in
this paper.

layers in a Mamba-2 model is usually twice the number of attention layers in a similar-sized
Transformer model. Thus, the state size of a Mamba-2 model is equal in size to a KV cache
of a vanilla Transformer model.

Compared to many other recurrent models (e.g., the RWKV series (Peng et al., 2023; 2024a),
GLA (Yang et al., 2024a), and RetNet (Sun et al., 2023)), Mamba-2 does not have a state-less
feed-forward network and has considerably more heads in each layer, making the state
size much larger than other recurrent models. Compared to Mamba-1 (Gu & Dao, 2023),
Mamba-1 uses N = 16, which means that the state size in Mamba-2 is 8 times larger than
the state in a Mamba-1 model of roughly the model parameter count. Figure 12 shows the
relationship between state size and model size of the RNN models in this study.

A.2 Short Convolution

The Conv(·) function in Mamba-2 is a one-dimensional convolutional layer applied to each
channel separately. For i-th channel, it can be formulated as follows.

yt,i =
k

∑
j=1

wj,ixt−j,i ∈ R, i = 1, · · · , nc

k denotes the kernel size (set to 4 by default). i denotes the channel index, nc denotes the
number of channels. yt,i ∈ R denotes the i-th channel of the output vector at t-th time step.
xt,i represents the i-th channel of the input vector at t-th time step. wj,i ∈ R denotes the j-th
value in the convolutional kernel for channel i.

This model component accepts the last 4 token embeddings at the input. Therefore, it
also has a state that contains information about the context, which we refer to as the
convolutional state. To be concrete, due to information propagation through the layers, the
short convolutional layer is a function of the last 4L tokens. For the 370M model size, this
length is 4 × 48 = 192. Therefore, we can reasonably assume that this component contains
much less contextual information relative to the recurrent state ht. Thus, we have largely
ignored this state in various discussions in this paper. However, we have also reported
the distribution of the input to this short convolutional layer over time in Figure 17, for
reference. As we can see, the convolutional state is relatively stable over time (compared to
the recurrent state).

B Passkey Retrieval Inference Parameters

Throughout the whole paper, we use greedy decoding, not just for reproducibility, but also
because our preliminary results show that other decoding parameters give noticeably worse
performance on passkey retrieval.
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We use 32-bit floating point precision for both model parameters and activations during
inference, to ensure that precision errors do not introduce noise to the result. We have
conducted some preliminary evaluations with BF16 and FP16 and found that there are no
noticeable differences with using FP16, but computing some activations, especially the ∆t
and αt with BF16 introduces an error around 1e-3. However, the explosion of channels in
the states is consistently observed despite this precision error.

B.1 Passkey Retrieval Prompt

The prompt that we use for the passkey retrieval task is as follows, using 34847 as the
passkey for example, which is adapted from existing works (Zhang et al., 2024a). We
also evaluate with slight variations to the template in preliminary experiments but do not
observe considerable differences in the results.

There is important info hidden inside a lot of irrelevant text.
Find it and memorize it.

The grass is green. The sky is blue. The sun is yellow. Here we
go. There and back again.
...
The grass is green. The sky is blue. The sun is yellow. Here we
go. There and back again.
The passkey is 34847. Remember it. 34847 is the passkey.
The grass is green. The sky is blue. The sun is yellow. Here we
go. There and back again.
...
The grass is green. The sky is blue. The sun is yellow. Here we
go. There and back again.

What is the passkey? The passkey is

We sweep different context lengths T ∈ {1K, 2K, ..., 256K}, and for each length T, we
generate n prompts with evenly distributed needle positions, i.e., the i-th needle (i ∈
{0, · · · , n − 1}) of a sample is inserted at position T × i/n − 1, from the beginning.

C Mamba-2 with Modified ∆t on passkey retrieval

Ben-Kish et al. (2024) and GitHub user jzhang287 propose to improve Mamba’s length
generalization by reducing the value of ∆t. Ben-Kish et al. (2024) propose a heuristic method
for identifying which head to modify and how to modify ∆t. However, their method
requires task-dependent tweaking, so we do not consider comparing against it. jzhang28
propose to simply multiply ∆t by a constant (they used 0.5). We apply this method and
sweep different ∆t for the best passkey retrieval performance, but got near-zero accuracy
across all passkey positions and context lengths.

D Passkey Retrieval Evaluation with Other Architectures

Here, we also evaluate RWKV-5, RWKV-6, and Mamba-1 (some popular and strong RNNs)
on the passkey retrieval task. The result is reported in Figure 13, 14, and 15. We can see that
length generalization failure is observed in Mamba-1, but it is less severe for RWKV-5 and
RWKV-6. We hypothesize that this difference is a result of architectural differences and that
the state size is smaller in RWKV-5 and RWKV-6 (see Figure 12.

7https://www.github.com/jzhang38/LongMamba
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Figure 13: The performance of RWKV-5 official checkpoints on the passkey retrieval task.
Each curve in (b) and (d) represents the accuracy of retrieving the needle when it is within
the last r tokens, with r ∈ {1K, 2K, 4K, 8K}.
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Figure 14: RWKV-6 1.6B result on the passkey retrieval task. The left plot shows the retrieval
accuracy of the needle when it appears in the last r = {1K, 2K, 4K, 8K} tokens.
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Figure 15: The performance of Mamba-1 official checkpoints on the Passkey task. We can
see a clear exhibition of the inability to forget, similar to Mamba-2.

E Pre-Trained Checkpoints

The pre-trained checkpoints used in our experiments are given in Table 1.

F More Experimental Details

Data Processing To ensure that the data contains as much long-term structure as possible,
we filter out sequences with less than 4K tokens. Buckman & Gelada (2024) have shown that
this is critical for training effective long-context models. Although we train on sequences
longer than 4K tokens, we do not use a higher length threshold because the above threshold
already removes about 97.6% of the data in the original corpus. To train on longer sequences,
we simply concatenate sequences and delimit them with a special EOS (End-of-Sequence)
token. During evaluation, we sample documents longer than 16K tokens and concatenate
them if they are not long enough.
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Model Checkpoint URLs

RWKV-5 https://huggingface.co/RWKV/
rwkv-5-world-all-pth

RWKV-6 https://huggingface.co/RWKV/v6-Finch-1B6-HF
https://huggingface.co/RWKV/v6-Finch-3B-HF

Mamba-1

https://huggingface.co/state-spaces/mamba-130m
https://huggingface.co/state-spaces/mamba-370m
https://huggingface.co/state-spaces/mamba-790m
https://huggingface.co/state-spaces/mamba-1.4b
https://huggingface.co/state-spaces/mamba-2.8b

Mamba-2

https://huggingface.co/state-spaces/mamba2-130m
https://huggingface.co/state-spaces/mamba2-370m
https://huggingface.co/state-spaces/mamba2-780m
https://huggingface.co/state-spaces/mamba2-1.3b
https://huggingface.co/state-spaces/mamba2-2.7b

Table 1: The pre-trained checkpoints used in our experiments.

Truncated Backpropagation Through Time In the vanilla Mamba-2, the states are initial-
ized to zeros for each data sample. Instead, we initialize the states as the final state of the
previous sequence. This is equivalent to concatenating multiple sequences, but stopping
the backpropagation of gradients at certain intervals. This technique has been shown to
help extend the context length of RNNs (Yang et al., 2024a) and alleviate the memory cost
of caching activations for computing gradients. We employ this technique to make the
distribution of the state’s initial value (e.g., the state before processing the first token h0)
more varied. Based on Yang et al. (2024a) and our preliminary tests, we use concatenate 12
sequences with this technique by default.

F.1 More Hyperparameters

We use the WSD LR scheduler (Hu et al., 2024) with 10% decay steps. This scheduler is
chosen because it is competitive with the commonly used cosine scheduler while allowing
simple resumption from intermediate checkpoints, saving large amounts of computational
resources. We report the result of the best checkpoint selection by validation on passkey
retrieval.

We perform a hyperparameter search on learning rates, sweeping {1e − 5, 2e − 5, 5e −
5, 1e − 4, 2e − 4, 5e − 4, 1e − 3}, selecting the best performing one by validation on passkey
retrieval8. Regarding the WSD scheduler, it warms up linearly for 1000 steps and decays
linearly with 50K steps. This setup is inspired by the authors of WSD (Hu et al., 2024).

Other hyperparameters are kept as similar to the original papers for Mamba-2 as possible.
That means we use 0.5M tokens per batch because we found this to give more stable results
for continual pre-training instead of the 1M batch size from the original paper. Training
is done mainly in BF16, with some activations in FP32 (in the same manner as the official
implementation). The optimizer is AdamW, with a 0.1 weight decay. Moreover, we use 1.0
gradient clipping.

All experiments are run on A800 80G, some are run with multiple nodes, and others with
multiple GPUs on a single node.

F.2 Model Configurations

For the models smaller than the 130M official checkpoint, we pre-train from scratch using
the configurations reported in Table 2. We try to follow the same depth-to-width ratio found

8While the loss of many checkpoints was highly similar, their performance in passkey retrieval can
differ a lot.
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Model size State size # Layers Hidden dim. # heads

Official checkpoints

780M 19.3M 48 1536 48
370M 12.9M 48 1024 32
130M 4.8M 24 768 24

Our checkpoints trained from scratch

84.6M 2.4M 12 768 24
47.0M 1.6M 12 512 16
36.4M 0.8M 6 512 16

Table 2: The configurations of the models used in finding the passkey retrieval memory
capacity as a function of the state size.

in the official checkpoints, although the ratio is not entirely consistent in those checkpoints.
Hyperparameters not mentioned are kept the same as the 130M checkpoint.

G State Statistics over Context Length

Here, we provide a more detailed result on the inspection of state distribution over time.

Figure 16 shows the distribution of hidden state ht of the recurrent mechanism described
in Eq. 2. Additionally, Bt, Ct, and xt in Mamba-2 are generated with a short channel-wise
convolutional layer with a kernel size of 4:

Bt = σ(Conv[utWB])

Ct = σ(Conv[utWC])

xt = σ(Conv[utWx])

where σ is the SiLU activation function. This function is also stateful because it operates on
the last 4 tokens, therefore, we also collect the statistics of this convolutional state and report
them in Figure 17. As we can see, the convolutional states are much more stable compared
to the recurrent states. This is because only the last 4 tokens contribute to this state which
avoids the explosion as a result of cumulative sum.

H Length Generalization of Other Architectures

We additionally evaluate HGRN-2 (Qin et al., 2024) and RWKV-6 (Peng et al., 2024a) on the
“newlines” prompt (string with only “\n”) and find that they also exhibit severe performance
degradation on the “newlines” prompt. The phenomenon is less severe in RWKV-6, which
concurs with our argument that with longer training length, the model will learn to more
robust forgetting mechanism, thus avoiding memory overload. Perhaps surprisingly, the
increase in perplexity happens considerably before the context length reaches the training
length for both models. We hypothesize that this is a result of the training distribution, and
that by continual training on data with more long-distance dependencies can alleviate this
degradation.

I The “newlines” Prompt

In this paper, we collect the statistics of the state computed on a “newlines” prompt, a
prompt where every token is the newline token (“\n”), as shown below.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n...

However, we again emphasize that similar state distribution and model behavior are
observed on prompts extracted from the pre-training corpus, the passkey retrieval task, or
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Figure 16: The mean and variance of the hidden state of each layer of Mamba-2 370M,
computed on the “newlines” prompt (string with only “\n”).

other randomly generated sequences. We have chosen the “newlines” prompt because the
samples from the pre-training corpus are too short, and this prompt produces the most
consistent and smooth layer statistics.
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Figure 17: The mean and variance of the convolutional states (the representation of the last
four tokens) of each layer in Mamba-2 370M, computed on the “newlines” prompt. We can
see that the mean and variance are visibly more stable than the recurrent state.
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