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Abstract

The advent of language models (LMs) in genomics necessitates benchmarks that1

can assess models’ capabilities and limitations. In contrast to protein models, DNA2

LMs can be used to study non-coding regions of the genome and must account for3

unique challenges, especially interactions across long sequence lengths. However,4

existing benchmarks for DNA LMs are defined over short sequence datasets and5

can involve tasks that are often not considered to be biologically meaningful.6

Here, we present the Genomics Long-Range Benchmark (LRB), which focuses on7

biologically meaningful tasks and supports long-range contexts. We complement8

our benchmark with fine-tuning recipes that meaningfully improve performance9

and affect model evaluation. We evaluate DNA LMs across nine compiled tasks10

and observe that DNA LMs achieve competitive performance relative to supervised11

baselines on several tasks (e.g., genome annotation), but there remains a significant12

gap in domains, such as variant effect and gene expression prediction. Additionally,13

we introduce a visualization tool to examine model performance split by various14

genomic properties. Lastly, we present methods for context-length extrapolation of15

transformer-based models that enable studying the effect of context length on DNA16

LM performance. The Genomics LRB is publicly available on Hugging Face.17

1 Introduction18

Pre-training models on a large corpus of unlabeled data and subsequently fine-tuning to solve19

downstream tasks has demonstrated widespread success across domains, such as natural language20

processing [2, 77] and computer vision [57, 65]. More recently this paradigm has shown promise21

in biological applications, enabled by the wealth of unlabeled data coming from next-generation22

sequencing technologies. A prominent example are protein language models (LMs), which have23

been used to predict the effects of coding mutations on protein function [47], generate viable protein24

sequences conditioned on functional properties [49], and accurately predict protein structure from25
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amino acid sequences [48]. The development of these models has been made possible by benchmarks,26

such as CASP [42], TAPE [66], PEER [87], and ProteinGym [56].27

Genomics represents a potential new frontier for LMs in biology. The common pre-training tasks28

in language modeling (i.e., filling in missing tokens based on input context) inherently train LMs29

to model evolutionary forces, such as conservation and co-evolution, and the statistical patterns30

that these models learn can map to genomic motif identification, which is useful in accurate gene31

annotation. Indeed, significant progress has been made, with various LMs tailored to DNA sequences32

[8, 9, 18, 34, 54, 55, 67, 92]. However, modeling genomic data presents unique challenges compared33

to proteomics. When modeling DNA, we have to account for non-coding regions and contend with34

interactions that can be orders of magnitude larger [26]. To guide the principled development of35

new DNA LMs, there is a need for robust benchmarks that accurately reflect these nuances. While36

several benchmarks have been proposed, these existing works contain important limitations. The37

vast majority of tasks proposed across existing benchmarks only consider short input contexts (less38

than 2k base pairs) [18, 27, 50, 92], disregarding long-range interactions that are highly impactful39

in genomics. Additionally, tasks in some benchmarks may be overly simplistic, failing to reflect40

real-world use cases, e.g., some benchmarks have used synthetic data to construct negative sets [18].41

To bridge these gaps, we propose the Genomics Long-Range Benchmark (LRB), a compilation42

of biologically meaningful tasks in human genomics. Our benchmark deliberately incorporates43

tasks hypothesized to span both short and long genomic contexts. Allowing users to select arbitrary44

sequence length inputs for any given dataset enables us for the first time to understand empirically45

the importance of long-range inputs for our proposed tasks. We also include available genomic46

annotations and provide a visualization tool that allows users to analyze results in more detail. We47

demonstrate the benefit of full model fine-tuning compared to previous approaches that keep backbone48

DNA LM weights frozen during downstream training. Finally, we introduce methods for extending49

the context size of existing DNA LMs, which allows us quantify the benefits of long-range context on50

DNA LM performance. To summarize, we make the following contributions:51

1. Release the Genomics Long-Range Benchmark, composed of biologically meaningful tasks52

that cover both short- and long-range genomic scales. We provide evaluation results for a selection53

of prominent DNA LMs in both zero-shot and fine-tuning settings along with comparisons against54

reference baselines. We find that on genomic annotation tasks DNA LMs perform competitively with55

existing supervised models, but on the long-range prediction tasks of gene expression and zero-shot56

mutation effect prediction there persists a large gap.57

2. Develop and analyze improved fine-tuning methods that better reflect real-world usage in58

downstream tasks, finding that full model weight fine-tuning significantly improves performance.59

3. Introduce an analysis and visualization tool to examine models’ performance across different60

genomic properties. This tool enables deeper analyses that reveal more nuanced evidence that DNA61

LMs lag behind a well-regarded and long-range supervised baseline, Enformer [6], in modeling62

long-range interactions. The visualization tool is available here.63

4. Conduct context-length extension for the Nucleotide Transformer LM to probe the impact of64

increasing context length on performance on our benchmark.65

2 Background66

2.1 Language Modeling for DNA67

Supervised machine learning methods have been successfully applied to genomics [3, 6, 19, 89, 91].68

However, these models depend on large amounts of labeled data and tend to be task-specific. LMs69

have recently gained traction in the genomics domain: the abundance of unlabeled sequences supports70

robust model pre-training and the widely-used pre-training objectives of next token prediction (NTP)71

or masked language modeling (MLM) directly lend themselves to models identifying genomic motifs72

and evolutionary patterns, e.g., conservation. Some notable recent works include DNABERT [34, 92],73
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GPN [8, 9], Nucleotide Transformer (NT) [18], GENA-LM [24], HyenaDNA [54], Evo [55] and74

Caduceus [67]. A more thorough review of recent DNA LMs is deferred to Appendix A.2.75

2.2 DNA LM Evaluation76

The goal of DNA LMs is to learn meaningful representations that can be used to improve performance77

on downstream tasks. Existing DNA benchmarks, which include the Nucleotide Transformer tasks78

(NT [18]), Genomic Benchmark (GB [27]), Genome Understanding Evaluation (GUE [92]), and79

Benchmark for DNA LMs (BEND [50]), have been crucial for establishing baseline model capabilities.80

(see Appendix A.3 for a more complete description of existing works). However, these benchmarks81

contain several important shortcomings: they do not focus on long-range sequences, they can contain82

synthetic examples, and their evaluations do not take full advantage of pre-trained models.83

3 The Genomics Long-Range Benchmark84

Table 1: Comparison to existing benchmarks.

Long
range

Human
centric

Biologically
meaningful

NT [18] ✖ ✖ ✖
GB [27] ✖ ✖ ✖
GUE [92] ✖ ✖ ✔
BEND [50] ✖ ✔ ✔

Genomics LRB ✔ ✔ ✔

Below we describe the nine tasks that we com-85

piled from various human genome data sources86

that comprise our proposed Genomics Long-87

Range Benchmark (LRB). Our suite consists88

of tasks that are hypothesized to require only89

short-range contexts as well as those thought to90

need longer sequences for accurate prediction.91

By enabling users to download data at arbitrary92

length scales (the first benchmark to support this93

feature), these hypotheses can be rigorously tested. Our tasks span various applications that are94

of interest to practitioners, namely variant effect prediction, gene expression prediction, regulatory95

element detection, and chromatin factor identification; see Table 2. Below, for each task, we provide96

details on the biological relevance that motivated its inclusion, a formal task definition, and rationale97

for hypothesized long-range dependencies (where applicable). We defer additional details, e.g., data98

source and processing, train / test splits, and metric definition, to Appendix B.99

Table 2: Overview of the tasks contained in the Genomics Long-Range Benchmark.

Type # Outputs # Train / Test % Pos. Label
Variant Effect Prediction

Causal eQTL SNP Classification 1 89k / 9k 50.0
Pathogenic OMIM SNP Classification 1 - / 2.3M 0.02
Pathogenic ClinVar SNP Classification 1 39k / 1k 56.1

Gene Expression Prediction
Bulk RNA-seq Seq-wise Regression 218 23k / 1k -
CAGE profile Binned Regression 50 / bin 34k / 2k -

Regulatory Element Detection
Promoter Seq-wise Classification 1 953k / 96k 4.7
Enhancer Seq-wise Classification 1 1.9M / 192k 52.5

Chromatin Feature Identification
Histone Mark Prediction Seq-wise Classification 20 2.2M / 227k 7.0
Chromatin Accessibility Seq-wise Classification 20 2.2M / 227k 4.4

3.1 Variant Effect Prediction100

3.1.1 Causal eQTL101

Biological Relevance Predicting the effects of genetic variants, particularly expression quantitative102

trait loci (eQTLs), is essential for understanding the molecular basis of several diseases. eQTLs are103
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genomic loci that are associated with variations in mRNA expression levels among individuals. By104

linking genetic variants to causal changes in mRNA expression, researchers can uncover how certain105

variants contribute to disease development [17].106

Task Definition The task is formulated as a binary classification problem to distinguish eQTLs from107

GTEx [17] from a set of matched negatives identified in Avsec et al. [6]. Inputs are sequences centered108

around candidate single nucleotide polymorphisms (SNPs) each assigned a causal probability by109

fine-mapping using the “Sum of Single Effects" (SuSiE) model [83]. Following Avsec et al. [6],110

variants with causal probability greater than 0.9 are labeled as positive and variants with causal111

probability less than 0.01 are labeled as negative.112

Long-Range The regulation of gene expression is modulated by distal, cis-regulatory elements,113

called enhancers, that can be more than several hundred thousand base pairs (bps) away from a target114

gene [26]. Variants that impact gene expression are often located at such distal elements, and thus, to115

predict such variants, models should have long context windows [6].116

3.1.2 Pathogenic OMIM117

Biological relevance Predicting the effects of regulatory variants on pathogenicity is crucial for118

understanding disease mechanisms [51]. Elements that regulate gene expression are often located119

in non-coding regions, and variants in these areas can disrupt normal cellular function, leading to120

disease. Accurate predictions can identify biomarkers and therapeutic targets, enhancing personalized121

medicine and genetic risk assessment.122

Task Definition The task is formulated as a binary classification problem where inputs are DNA123

sequences centered around a SNP and outputs are binary labels. The dataset was constructed following124

Benegas et al. [8], where the negative class corresponds to a common (mean allele frequency > 5%)125

SNP in gnomAD [14] and the positive class corresponds to a pathogenic SNP, defined as a SNP in a126

regulatory region having an implication in a Mendelian disorder in the Online Mendelian Inheritance127

in Man database [72].128

Long-Range Regulatory elements like enhancers and silencers can exist far from the genes they129

regulate [26]. Variants in these regulatory elements can lead to aberrant gene expression patterns and130

ultimately disease, but identifying such regulatory variants is difficult since regulatory elements can131

modulate the expression of proximal or distal genes. Models that can capture interactions between132

possibly distal regulatory elements and their target genes while still being able to capture the proximal133

interactions are essential to identifying non-coding pathogenic variants.134

3.1.3 Pathogenic ClinVar135

Biological Relevance A coding variant refers to a genetic alteration that occurs within the protein-136

coding regions of the genome, also known as exons. Such alterations can impact protein structure,137

function, stability, and interactions with other molecules, ultimately influencing cellular processes and138

potentially contributing to the development of genetic diseases [46]. Predicting variant pathogenic-139

ity is crucial for guiding research into disease mechanisms and personalized treatment strategies,140

enhancing our ability to understand and manage genetic disorders effectively.141

Task Definition This task is formulated as a binary classification problem where inputs are sequences142

centered around SNPs. The dataset was constructed following Benegas et al. [8], where the negative143

class corresponds to a common (minor allele frequency > 5%) SNP in gnomAD [14] and the positive144

class to pathogenic SNPs identified in ClinVar [44].145

3.2 Gene Expression Prediction146

3.2.1 Bulk RNA-seq147

Biological Relevance Gene expression involves the process by which information encoded in a148

gene directs the synthesis of a functional gene product, typically a protein, through transcription and149
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translation. Transcriptional regulation determines the amount of mRNA produced, which is then150

translated into proteins. Developing a model that can predict RNA expression levels solely from151

sequence data is crucial for advancing our understanding of gene regulation, elucidating disease152

mechanisms, and identifying functional sequence variants.153

Task Definition This task is described as a multi-variable, sequence-wise regression task. Data154

was constructed following Zhou et al. [90] such that inputs are DNA sequences centered around155

the transcription start site (TSS) of each gene where the TSS was identified using a combination156

of annotations from GENCODE [30] and CAGE data from FANTOM5 [25]. Outputs are RPKM157

normalized RNA expression counts for each gene obtained from Consortium [17] that were log(1+x)158

normalized and standardized. For each gene, there are 218 different counts corresponding to the RNA159

expression level in different tissue types.160

Long-Range RNA gene expression is regulated by non-coding elements, such as enhancers and161

silencers, which can be located hundreds of kilo-bps away from the gene [26], indicating the possible162

presence of long-range interactions in transcription regulation.163

3.2.2 Cap Analysis Gene Expression (CAGE) Profile164

Biological Relevance CAGE provides accurate high-throughput measurements of RNA expression165

by mapping TSSs at a nucleotide-level resolution [75]. This is vital for detailed mapping of TSSs,166

understanding gene regulation mechanisms, and obtaining quantitative expression data to study gene167

activity comprehensively.168

Task Definition This task is described as a multi-variable, binned nucleotide-wise regression task.169

The data was constructed following the approach outlined in Basenji [37]. Inputs are DNA sequences170

and the outputs are log(1 + x) normalized CAGE expression counts from FANTOM5 [25] given171

for each 128 bp bin of the input sequence. For each bin in a sequence, there are 50 different values172

corresponding to expression amounts across 50 human cell / tissue types.173

Long-Range The production of RNA via transcription as measured by CAGE is regulated by174

non-coding elements that can be located hundreds of kilo-bps away from the gene, indicating the175

presence of long-range interactions in transcription regulation [26].176

3.3 Cis-Regulatory Element Detection177

Biological Relevance Cis-regulatory elements, such as promoters and enhancers, control the spatial178

and temporal expression of genes [4]. These elements are essential for understanding gene regulation179

mechanisms and how genetic variations can lead to differences in gene expression.180

Task Definition This task is described as a binary classification problem. Data from Search Candidate181

Regulatory Elements by ENCODE (SCREEN [79]) was processed according to our approach outlined182

in Appendix B.3. Inputs are sequences sampled from across the entire human genome and outputs183

are binary values, where a positive label is assigned to a sequence if the center 200 bps of the input184

sequence overlap by at least 50% with an annotated enhancer or promoter. This task is composed of185

two sub-tasks: (1) predicting the presence of promoters and (2) predicting the presence of enhancers.186

3.4 Chromatin Feature Identification187

Biological Relevance Predicting chromatin features, such as histone marks and DNA accessibility, is188

crucial for understanding gene regulation, as these features indicate chromatin state and are essential189

for transcription activation [91].190

Task Definition This task is a multi-label binary classification problem constructed following Zhou191

& Troyanskaya [89], where sequences were sampled from the human genome as inputs and outputs192

correspond to binary labels for different chromatin profiles. The task contains two sub-tasks: one193

for predicting histone marks and another for predicting chromatin accessibility. For histone marks,194

each of the 20 binary values represents a different histone mark in a specific cell type. For DNA195
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accessibility, each of the 20 binary values corresponds to a different tissue/cell type. A value is196

labeled as positive if the center 200 bps of the input sequence overlaps by at least 50% with a peak197

region measured by ChIP-seq (histone marks) or DNase-seq (DNA accessibility) obtained from198

ENCODE and the Roadmap Epigenomics consortium [10, 79].199

3.5 Improved Evaluation with Full Fine-tuning200

To evaluate DNA LMs we perform fine-tuning, i.e., we train a model in a supervised manner on a201

downstream task. Our fine-tuning strategy involves extracting embeddings from each model which202

are then input to a task-specific prediction head (see Appendix D for details). In previous benchmarks,203

authors fine-tuned models by freezing the embeddings [50]. We perform a systematic study of204

fine-tuning strategies and discover that this strategy significantly hurts DNA LM performance. We205

therefore provide a recipe for full-parameter fine-tuning and show that it significantly improves206

performance across many tasks, enabling us to evaluate models more fairly than in previous works207

and setting new best-practices for DNA LMs (independent of our benchmark).208

3.6 Additional Novel Features of the LRB209

In addition to our careful curation of tasks and improved fine-tuning methodology, we highlight two210

more novel aspects of the LRB.211

Visualization Tool We provide benchmark users with a visualization tool in the form of an interactive212

jupyter [41] notebook. To create this tool we collected additional genomic annotation datasets from213

SCREEN, GENCODE, RepeatMasker [30, 73, 79] and aligned them to our benchmark task datasets;214

see Appendix B.5 for details and screenshots. Our tool enables a deeper level of analysis compared215

to what other benchmarks afford. For example, users can view models’ performance in aggregate, by216

specific annotations, and also by distance to TSSs.217

Arbitrary Sequence Length Our benchmark allows users to download arbitrary sequence lengths218

for any given tasks. This enables the probing of the effect of sequence length and lets users evaluate219

their LMs on the same context size on which they performed pre-training, mitigating any confounding220

from sequence length generalization effects.221

3.7 Selected Baselines222

To contextualize the performance of DNA LMs, we curate a set of task-specific expert methods that223

are comprised of well-regarded supervised models.224

Combined annotation dependent depletion (CADD) [69] is a SVM developed for detecting225

deleterious DNA variants trained on predicted neutral variants and simulated deleterious variants. We226

use this method as an expert baseline for our zero-shot variant effect prediction tasks.227

Enformer [6] is composed of both convolutional and transformer layers and trained in a supervised228

multi-task manner on various biological tasks using a context length of up to 196k bps. We use229

Enformer as the expert method for fine-tuning versions of variant effect prediction, gene expression230

prediction, and regulatory element detection tasks.231

DeepSEA [91] is a convolutional network trained to predict chromatin profile data, such as transcrip-232

tion factor binding, histone marks, and DNA accessibility. As our chromatin feature tasks are derived233

from DeepSEA, we use it as the expert method for these tasks.234

4 Context Length Extension235

Motivated by the long-range sequences present in the LRB, we explore methods for extending236

the context size of existing models. To that end, we focus on the Nucleotide Transformer model237

(NTv2 [18]), which originally has a context size of 12k bp and uses rotary positional embeddings238

(RoPE [74]). However, processing longer sequences with LMs like NTv2, which use the transformer239
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architecture [82], faces two main challenges. First, transformers rely on the attention mechanism,240

which scales quadratically in sequence length. Second, LMs struggle with generalizing to sequence241

lengths beyond those seen during pre-training, known as length extrapolation [5, 23, 36, 62].242

Methodology To address the compute constraints, we use a memory-efficient attention implementa-243

tion, computing attention scores sequentially and in chunks of
√
L, reducing memory usage from244

O(L2) to O(
√
L), where L denotes sequence length [64]. To solve the length generalization issue, we245

apply the ’NTK-aware’ method presented in Peng et al. [60]. This method re-scales the frequencies in246

RoPE embeddings to handle longer sequences by converting length extrapolation into interpolation.247

For more details on these approaches, see Appendix C.248

5 Results249

5.1 Experimental Setup250

We evaluate several prominent DNA LMs on our benchmark: the Nucleotide Transformer v2 (NTv2)251

series [18], DNABERT-1 [34] and 2 [92], and the HyenaDNA series [54], representing a range of252

pre-training datasets and objectives, architectures, and model sizes. For fine-tuning, we use an MLP253

as the prediction head and train both the DNA LM and MLP weights (see Appendix D for full details).254

For classification tasks with highly imbalanced labels (see Table 2), we use area under precision-recall255

curve (AUPRC) as opposed to receiver operator curve (AUROC) as the metric.256

Fine-tuning Models are trained using either mean-squared error loss for regression tasks or cross-257

entropy loss for classification tasks. For each task, we perform five-fold cross-validation (CV) using258

different random seeds, where we create different train / validation splits, select the best-performing259

model using early stopping on validation loss, and evaluate it on the held-out test set. We report the260

mean ± standard deviation performance across folds as final metrics.261

Zero-Shot Prediction We also evaluate the zero-shot performance on our three variant effect262

prediction tasks to account for the fact that, in practice, determining pathogenicity or causality of263

variants is difficult, which often results in smaller datasets not suitable for fine-tuning. Given the264

extreme class imbalance in the Pathogenic OMIM dataset, we only perform zero-shot evaluation for265

this task and do not report fine-tuning results.266

5.2 Main DNA LM Results267

In Tables 3 and 4, we present the top performing DNA LMs (full results in Appendix E).268

Table 3: Benchmarking performance of DNA LMs and baselines on variant effect prediction tasks.
Models were evaluated using both fine-tuning and zero-shot. Best LM values are bolded and in
green if LM beats baseline. ∗Extended NTv2 was fine-tuned with 60k bp sequences due to compute
constraints.

Model Name Context
(bps)

Causal eQTL
(AUROC)

Pathogenic ClinVar
(AUROC)

Pathogenic OMIM
(AUPRC)

Fine-tune Zero-shot Fine-tune Zero-shot Zero-shot
DNABERT-2 10k 0.72 ± 0.008 0.50 0.74 ± 0.013 0.50 0.002
NTv2 500M 12k 0.72 ± 0.003 0.51 0.78 ± 0.009 0.68 0.003

Extended 96k∗ 0.74 ± 0.004 0.51 0.75 ± 0.018 0.53 0.002
HyenaDNA 32k 0.72 ± 0.002 0.52 0.66 ± 0.012 0.50 0.002

Baseline 0.76 ± 0.002
(Enformer)

0.56
(CADD)

0.65 ± 0.031
(Enformer)

0.97
(CADD)

0.253
(CADD)

Variant Effect Prediction For zero-shot evaluation, we observe that DNA LMs are outperformed by269

the CADD baseline on all variant effect prediction tasks. Additionally, for zero-shot Causal eQTL,270

we find that all models struggle, with near-random performance. Predicting pathogenicity, is the271
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Table 4: Benchmarking performance of DNA LMs and baselines on gene expression, regulatory
element, and chromatin features tasks. Models were evaluated in only a fine-tuned setting for this set
of tasks. Best LM values are bolded and in green if LM beats baseline.

Context
(bps)

Bulk RNA
(R2)

CAGE
(R2)

Promoter
(AUPRC)

Enhancer
(AUROC)

Histone
Marks

(AUPRC)

DNA
Accessibility

(AUPRC)

Fine-tune Fine-tune Fine-tune Fine-tune Fine-tune Fine-tune
DNABERT-2 10k 0.51 ± 0.050 - 0.71 ± 0.112 0.81 ± 0.022 0.24 ± 0.091 0.15 ± 0.064
NTv2 500M 12k 0.57 ± 0.016 0.39 ± 0.011 0.79 ± 0.006 0.82 ± 0.002 0.38 ± 0.003 0.3 ± 0.007

Extended 96k 0.56 ± 0.037 0.36 ± 0.011 0.78 ± 0.003 0.82 ± 0.005 0.38 ± 0.004 0.3 ± 0.006
HyenaDNA 32k 0.47 ± 0.010 0.22 ± 0.007 0.72 ± 0.007 0.82 ± 0.002 0.22 ± 0.003 0.084 ± 0.001

Baseline 0.80 ± 0.010
(Enformer)

0.49 ± 0.000
(Enformer)

0.86 ± 0.006
(Enformer)

0.92 ± 0.002
(Enformer)

0.35
(DeepSea)

0.44
(DeepSea)

(a) Fine-tuned Causal eQTL predic-
tion; by protein coding annotation.

(b) Bulk RNA prediction; by 5′

UTR annotation
(c) Enhancer Annotation; by simple
repeat annotation.

Figure 1: Results split by genomic annotations.

clearest example where DNA LMs fall short of CADD, which has nearly 2x better performance in272

ClinVar and about 100x in OMIM. When fine-tuning, we find that DNA LM performance on both273

variant tasks greatly improves, matching or surpassing the strong Enformer baseline.274

Gene Expression Prediction While NTv2 is the best performing DNA LM for Bulk RNA and275

CAGE tasks, the baseline Enformer outperforms LMs by a wide margin.276

Regulatory Element Detection DNA LMs are able to accurately predict the presence of regulatory277

elements, especially considering the class-imbalance present in promoter detection, with NTv2278

performing best among DNA LMs. However, there remains a gap to the supervised Enformer model.279

Chromatin Feature Identification For both histone mark and DNA accessibility, NTv2 is the best280

performing DNA LM, even exceeding the supervised baseline on the former task, and demonstrating281

significantly better performance than the other DNA LMs.282

5.3 Analyzing Results by Genomic Annotations283

We developed an analysis and visualization tool to examine models performance across different284

genomic properties and annotations. Using our tool we are able to perform deeper analyses and285

extract insights about the performance of each model, which are inaccessible to users of existing286

benchmarks. We detail some examples in Figure 1.287

Causal eQTL Prediction (Fine-tune) By stratifying SNPs into protein-coding and non-coding288

regions in Figure 1a, we find a potential failure mode for both DNA LMs and supervised models.289

Non-coding variants presumably entail regulatory and possibly longer-range interactions, and all290

models perform worse in these regions.291

Bulk RNA Expression Prediction In Figure 1b, we see that the performance of DNA LMs292

and Enformer drops precipitously when focusing on non-5′ regions that likely entail longer-range293
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interactions. However, we also observe that the context-extended NTv2 outperforms Enformer on294

this region, implying that the majority of the performance gap between DNA LMs and the Enformer295

baseline lies in modeling variants in the 5′ regions.296

Enhancer Detection In Figure 1c, we observe that most models, including Enformer, suffer a297

performance hit when identifying enhancers within simple repeat regions, likely due to the difficulty298

of detecting enhancers within repetitive regions of the genome.299

5.4 Length Extension300

Figure 2: Fine-tuned Causal eQTL vari-
ant task; by distance to nearest TSS.

To create the context extended model, we conduct addi-301

tional training (∼5B tokens) on the pre-training dataset302

using the methodology described in Section 4 (and in Ap-303

pendix D.5). For certain long-range tasks, the additional304

context extension pre-training improves performance. For305

example, for Causal eQTL prediction (with fine-tuning)306

in Figure 2 we see that the context extended NTv2 has307

the best DNA LM performance and that this trend is more308

pronounced when stratifying by SNP distance to TSS.309

5.5 Effect of Fine-tuning Methodology310

In Table 5, we demonstrate the importance of our proposed fine-tuning. For two of the DNA LMs311

(see additional results in Appendix E.2), we show how full fine-tuning, as opposed to freezing LM312

weights and only training a prediction head, a common practice in existing benchmarks such as313

BEND [50], drastically improves model performance almost uniformly across tasks. We also believe314

our methodology is more in line with how practitioners would use DNA LMs in real-world settings.

Table 5: Difference in performance of DNA LM fine-tuning strategies. Percent increase in perfor-
mance of full fine-tuning vs. freezing LM weights and only training prediction heads.

Causal eQTL
(AUCROC)

Pathogenic
ClinVar

(AUROC)

Bulk
RNA
(R2)

CAGE
(R2)

Promoter
(AUPRC)

Enhancer
(AUROC)

Histone
Marks

(AUCPRC)

DNA
Accessibility

(AUPRC)

NTv2 500M +0.49 +4.27 +18.29 +42.14 -1.45 +0.90 +22.46 +47.96
HyenaDNA +0.35 +11.58 +107.48 +102.91 +5.09 +5.39 +14.43 -22.67

315

6 Discussion and Conclusion316

In this work, we introduced the Genomics LRB. Our benchmark is the first to truly evaluate long-range317

capabilities. We provided initial results for several prominent DNA LMs, with more in-depth analysis318

than previous benchmarks explored. Our results demonstrate the importance of fully fine-tuning319

models. Additionally, we identify several domains where a large performance gap needs to be bridged320

before DNA LMs can be reliably used and some failure modes of DNA LMs. Namely, zero-shot DNA321

LM variant effect prediction is not yet mature enough to replace widely-used tools, such as CADD.322

Similarly, for gene expression prediction, DNA LMs lag far behind supervised methods. In contrast,323

for annotation tasks, DNA LMs already demonstrate competitive performance relative to proven324

methods. These results demonstrate that future DNA LM efforts should focus on the more difficult325

tasks that entail long-range interactions, and we hope that our benchmark spurs such development.326

Future Work One potential limitation of our work is the lack of hyperparameter search for fine-327

tuning; a more extensive search would better differentiate models. Another limitation is the lack of328

experimentally verified enhancer-gene pairings, which would allow for a more complete examination329

of the long-range capabilities of models. In future iterations of our benchmark, we also plan to add330

more tissue-specific analyses, bp-level annotation tasks, and tasks covering multiple species.331
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A Extended Background647

A.1 Terminology648

The genome is a sequence of four nucleotides (Adenine, Cytosine, Thymine, and Guanine) organized649

into a double-stranded helical structure called deoxyribonucleic acid (DNA). This structure encodes650

the information required for the development, maintenance, and function of cells. Genetic information651

flows from DNA to messenger ribonucleic acid (mRNA) by a process called transcription, and mRNA652

is used as a blueprint to create proteins via a process called translation. Proteins are responsible for653

initiating and sustaining the cellular processes, while DNA encodes the information necessary for654

their production.655

The genome is organized into functional elements, including coding and non-coding regions. Coding656

regions comprise genes responsible for protein synthesis, while non-coding regions can play vital657

regulatory roles. Promoters, a type of regulatory region, are situated close to genes and serve as sites658

for transcription initiation. Enhancers, another regulatory element located farther from genes, modu-659

late gene expression by recruiting transcription factors, a type of protein that regulates transcription.660

Notably, a single gene can be regulated by multiple promoters and enhancers simultaneously.661

DNA does not exist solely as a linear molecule but is instead tightly packaged around histone proteins,662

forming a sphere of wound DNA called nucleosomes. These nucleosomes further assemble into663

chromatin, which constitutes the 23 pairs of chromosomes in humans. Chromatin can exist in an open664

(euchromatin) or closed (heterochromatin) state, influencing the ability of the underlying DNA to be665

transcribed. Chemical modifications to histones play significant roles in chromatin remodeling acting666

as signals that recruit proteins to either condense the chromatin structure (making it less accessible)667

or relax it (making it more accessible), thereby influencing gene activity.668

Mutations in the genome, including single nucleotide polymorphisms (SNPs), insertions, and deletions,669

can alter DNA sequences, potentially disrupting functional genomic elements or affecting the structure670

and function of proteins. Understanding the impact of these sequence variations on disease remains671

a central challenge in biology. Such mutations can lead to genetic disorders or contribute to the672

development of complex diseases.673

A.2 Recent DNA LMs674

DNABERT Arguably the first DNA LM, DNABERT proposed in Ji et al. [34] applies the BERT675

architecture from Devlin et al. [22], with a few modifications, to genomic sequences. The authors train676

on the human genome and use k-mer tokens generated with sliding windows. Input sequences were677

512 tokens, and the model was trained using the MLM objective, but with the restriction that masking678

was performed for contiguous tokens within a sequence. The downstream tasks focused on genome679

annotation, with promoter, transcription factor binding sites, and splice site classification. Of note,680

although DNABERT was pre-trained on human genome, it was fine-tuned on mouse downstream681

tasks as well, yielding competitive performance relative to supervised learning baselines.682

Nucleotide Transformer Following the success of model scaling in other domains, Dalla-Torre683

et al. [18] explore scaling DNA foundation models in introducing the Nucleotide Transformer. They684

explore various model sizes – ranging from 500 million parameters to 2.5 billion, in their first685

generation release, and 50 million to 500 million parameters in their subsequent version 2 – and686

various pre-training data setups, including human reference genome, 3,000 diverse human genomes,687

and 850 multi-species reference genomes. They utilize non-overlapping 6-mer tokenization and a688

BERT-style architecture trained with an MLM objective. Other notable differences between the first689

and second version is that in version 2 input context size was scaled from 1,000 tokens to 2,000 and690

positional embeddings used in version 1 were learned whereas version 2 used rotary embeddings [74],691

which have been shown to better extend to longer contexts. This work also introduced the Nucleotide692

Transformer suite of tasks, described in more detail below.693
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DNABERT-2 Building on the initial success of DNABERT, Zhou et al. [92] present a model trained694

on multi-species genomes: 135 species, across 7 categories. They also change tokenization to byte-695

pair-encoding [43, 70], with a vocabulary size of 4,096, arguing that overlapping k-mer tokenization696

makes the MLM task ‘too easy’ by leaking information across tokens and that non-overlapping k-mer697

tokenization suffers from the drawback that minor changes to the input sequence, e.g., removing the698

first character, lead to drastically different tokenization outputs. They use input sequence lengths of699

128 tokens. Additionally, Zhou et al. [92] replace the learned positional embeddings from DNABERT700

with ALiBi [63]. DNABERT-2 was evaluated on a suite of downstream tasks introduced in Zhou701

et al. [92] known as the Genome Understanding Evaluation (GUE).702

HyenaDNA In contrast to the other language models reviewed above, the HyenaDNA model from703

Nguyen et al. [54] is a next token prediction, uni-directional model. Using character-level tokenization704

and the Hyena layers [61] as a backbone, Nguyen et al. [54] also propose a training recipe for scaling705

input context sizes up to 1 million bps. To evaluate their model they use a combination of downstream706

tasks, including the suite of tasks from Nucleotide Transformer [18], a set of mouse and human707

genome annotation tasks presented in Grešová et al. [27], the chromatin profiling tasks from DeepSea708

[89], and a species classification task, where the model takes in sequences of various species and709

needs to output the correct species label.710

Other DNA LMs While the models above represent those that we initially validate on our bench-711

mark, the field of DNA LMs is growing at a rapid pace and consists of several notable works that we712

briefly describe below.713

While not developed specifically as a DNA LM, the BigBird architecture proposed in Zaheer et al.714

[88] was applied to genomic sequences to demonstrate its usefulness in long context tasks. Using715

sparse attention to reduce computational complexity of transformer [82] blocks from quadratic to716

linear, BigBird is able to effectively scale up to longer contexts. In Fishman et al. [24], the authors717

present a family of foundation models, GENA-LM, aimed specifically at modeling longer DNA718

sequences. Pre-training with an MLM objective on human and multi-species genomes, they use BPE719

with a vocabulary size of 32,000. The backbone architectures are either BERT [22] or BigBird [88],720

allowing them to extend input lengths up to 36k bps.721

Focusing on plant genomes, Benegas et al. [9] pre-train a MLM model on unaligned reference722

genomes of the Arabidopsis thaliana species and seven related species within the Brassicales order.723

Using character-level tokenization they use input lengths of 512 bps with dilated convolutions to724

create their GPN model. With 25 layers, despite the relatively short training sequences, GPN can725

theoretically extend to sequence inputs of millions of bps.726

In the recent Mamba work [28], the authors pre-train various sized models that use the Mamba727

backbone on the human reference genome. Similar to HyenaDNA , the pre-training objective is next728

token prediction, tokenization is by nucleotide base, and input sequences are scaled up to 1 million729

bps. Building off this work, Schiff et al. [67] introduced Caduceus, a bi-directional Mamba-based730

model that contains reverse complement equivariance inductive biases, demonstrating state-of-the art731

performance on several tasks, including several Nucleotide Transformer tasks [18] and the Genomic732

Benchmark [27].733

A.3 Existing DNA Language Model Benchmarks734

Existing benchmarks vary in several aspects, including the species considered, the specific tasks735

of interest, the framing of these tasks, and the evaluation methodologies employed. These pro-736

posed benchmarks include the Nucleotide Transformer Benchmark [18], Genomic Benchmarks [27],737

Genome Understanding Evaluation (GUE, [92]), and Benchmarking DNA Language Models on738

Biologically Meaningful Tasks (BEND; Marin et al. [50]).739

Existing DNA benchmarks are primarily composed of classification tasks for sequence-wise predic-740

tions, ranging from cis-regulatory elements and splice sites to chromatin features and variant effects.741
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These benchmarks not only compile and build datasets but also carry out evaluations of DNA LMs742

using both fine-tuning methods, where pre-trained models are trained in a supervised manner on the743

downstream tasks, and zero-shot prediction, where models are evaluated in their pre-trained state744

without additional fine-tuning.745

Nucleotide Transformer Benchmark Dalla-Torre et al. [18] compile a set of 18 distinct genomic746

datasets framed as sequence-wise classification tasks. These tasks included 10 datasets related to747

epigenetic mark prediction in yeast genomes, three tasks predicting the presence of promoters in748

mouse and human genomes, two tasks predicting enhancer presence and activity levels in the human749

genome, and three tasks predicting splice sites in multiple diverse species. Sequence lengths in this750

benchmark ranged from 200 to 600 bps. Additionally, the authors evaluated a set of DNA LMs751

and a supervised genomic model, Enformer Avsec et al. [6], by fine-tuning these models on their752

benchmark using a robust 10-fold cross-validation protocol. Parameter-efficient fine-tuning methods753

with a classification head were used for Enformer, DNABERT, and NT models, while full fine-tuning754

with a classification head was applied to the HyenaDNA models. Limitations of this benchmark755

include the focus on short-range contexts, the inclusion of synthetic sequences as negative examples,756

and limited supervised baselines.757

Genomic Benchmarks Genomic Benchmarks [27] is a collection of datasets for genomic sequence758

classification, composed of existing datasets and novel ones scraped from publicly available databases.759

The benchmark includes nine tasks focusing on regulatory element prediction, such as promoters,760

enhancers, and open chromatin regions. These tasks cover human, mouse, roundworm, and fly761

genomes, with average sequence lengths ranging from 200 to 2,370 bps. The authors also provide762

code to train simple convolutional network that can be used as a baseline. Similar to the Nucleotide763

Transformer benchmark, this benchmark focuses on short-range tasks, does not present a robust set764

of baselines, and contains potentially less impactful tasks, e.g., distinguishing between human and765

worm genomic sequences.766

Genomic Understanding Evaluation (GUE) The authors of the DNABERT-2 [92] introduced767

the Genomic Understanding Evaluation (GUE) benchmark, which is divided into two groups by768

sequence length: GUE and GUE+. This benchmark comprises seven classification tasks, such as769

cis-regulatory element prediction and species classification, built from 28 datasets from multiple770

species. The inclusion of multiple species allows for the assessment of DNA LMs’ generalizability.771

The tasks are curated to be appropriately challenging, including measures such as class balancing,772

adversarial sample inclusion, and reduction of training sample volume. GUE features sequence773

lengths ranging from 70 to 1k bps, while GUE+ includes sequence lengths from 5k to 10k bps.774

GUE evaluated DNABERT1 and 2, NT, and HyenaDNA models on their benchmark. HyenaDNA775

models are fully fine-tuned while DNABERT and NT models are fine-tuned using parameter efficient776

methods. The GUE benchmark results are limited since they do not cover a robust set of baselines777

but rather only present the simple supervised convolutional network from the Genomic Benchamark778

[27]. Additionally, only binary or multi-class sequence-wise classification tasks are considered and779

tasks of biological importance, such as variant effect prediction and gene expression are not included.780

Benchmarking DNA LLMs on Biologically Meaningful Tasks (BEND) BEND [50] is a recently781

proposed benchmark focused on compiling tasks that capture the complexity and intricacies of782

real-world genomic analysis. The authors collected seven different datasets, all from the human783

genome, covering gene finding, enhancer annotation, chromatin accessibility, histone modification,784

CpG methylation, and two types of variant effect prediction. Unlike previous benchmarks that focused785

solely on sequence-wise classification tasks, BEND also includes the task “Gene finding", which786

tests nucleotide-resolution modeling. In five out of seven tasks the input length is 512 bps, as these787

tasks are considered short-range. “Gene finding" task use sequences up to 14k bps. Their “Enhancer788

annotation" task uses 100k bp sequences, but it only contains 285 input sequences. Notably, for tasks789

in BEND that overlap with our benchmark (such as variant effect prediction), BEND uses a fixed790

context length of 512 bp, thus not evaluating the importance of extended context and variant-gene791
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distal interactions on this type of task. Therefore, this benchmark is mostly limited to short-range792

tasks and does not include gene expression, an important and challenging task in genomics. This793

benchmark however makes progress in including a broader set of supervised methods as baselines.794

Unlike our work, models are only evaluated using partial fine-tuning, where backbone DNA LM795

weights are frozen for downstream task training.796

B Additional Details about Genomic Long Range Benchmark797

We note that our datasets do not contain any personally identifiable information or offensive content.798

Table 6 provides details describing the evaluation method used, dataset sizes, metric, and data sources.799

Additional details on task specific data curation and processing are described in the following800

subsections.801

Table 6: Additional information for Genomic LRB tasks, including number of samples in train and
test splits, metric, and data source.

Task Eval Test split Metric Data Source
Variant Effect Prediction

Causal eQTL Fine-tune & Zero-shot Chromosome 9, 10 AUROC GTEx (via [7])
Pathogenic OMIM Zero-shot - AUPRC OMIM, gnomAD (via [8])
Pathogenic ClinVAR Fine-tune & Zero-shot Chromosome 8 AUROC ClinVar, gnomAD (via [8])

Gene Expression Prediction
Bulk RNA Expression Fine-tune Chromosome 8 R2 GTEx, FANTOM5 (via [90])
CAGE Fine-tune Random R2 FANTOM5 (via [37])

Regulatory Element Detection
Promoter Fine-tune Chromosome 8, 9 AUPRC SCREEN
Enhancer Fine-tune Chromosome 8,9 AUROC SCREEN

Chromatin Feature Identification
Histone Marks Fine-tune Chromosome 8, 9 AUPRC ENCODE, Roadmap Epigenomics (via [89])
DNA Accessibility Fine-tune Chromosome 8, 9 AUPRC ENCODE, Roadmap Epigenomics (via [89])

B.1 Variant Effect Prediction802

B.1.1 Causal eQTL803

Data Processing Processed data in the form of vcf files for positive and negative variants across 49804

different tissue types were obtained from Avsec et al. [6]. Fine-mapped GTEx [17] eQTLs originate805

from Wang et al. [84], while the negative matched set of variants comes from Avsec et al. [6]. The806

statistical fine-mapping tool SuSiE [83] was used to label variants. Variants from the fine-mapped807

eQTL set were selected and given positive labels if their posterior inclusion probability was > 0.9,808

as assigned by SuSiE. Variants from the matched negative set were given negative labels if their809

posterior inclusion probability was < 0.01. DNA sequences were obtained from the human reference810

genome assembly GRCh38 [68].811

B.1.2 Pathogenic OMIM812

Data Processing Processed data was obtained from Benegas et al. [8] in the form of parquet files813

with columns for SNP location, reference and alternative alleles, and pathogenicity label. Positive814

labeled data originates from a curated set of pathogenic variants located in the Online Mendelian815

Inheritance in Man (OMIM) [72] catalog. The negative set is comprised of variants that are defined as816

common from gnomAD [14]. gnomAD version 3.1.2 was downloaded and filtered to variants with817

allele number of at least 25,000. Common variants were defined as those with minor allele frequency818

(MAF) > 5%. The input sequences were constructed by selecting the appropriate genomic region819

from the human reference genome assembly GRCh38 [68] and applying the changes specified by the820

given variants.821
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B.1.3 Pathogenic ClinVar822

Data Processing Processed data was obtained from Benegas et al. [9] in the form of parquet files823

with columns for SNP location, reference and alternative alleles, and pathogenicity label. Positive824

labels correspond to pathogenic variants originating from ClinVar [44] whose review status was825

described as having at least a single submitted record with a classification but without assertion826

criteria. The negative set are variants that are defined as common from gnomAD [14]. gnomAD827

version 3.1.2 was downloaded and filtered to variants with allele number of at least 25,000. Common828

variants were defined as those with MAF > 5%. Sequences were obtained from the human reference829

genome assembly GRCh38 [68].830

Short-Range The ClinVar dataset is mostly variants in coding regions, and since most human protein831

sequences have less than 1,000 amino acids predicting the impact of coding variants should require832

orders of magnitude smaller context windows than non-coding variants. Therefore, we consider this833

task as potentially short-range.834

B.2 Gene Expression Prediction835

B.2.1 Bulk RNA-seq836

Data Processing Processed data in the form csv files that contained gene TSS locations, strand, and837

RNA expression RPKM counts across 218 tissue types was obtained from ExPecto [90]. Expression838

data originates from GTEx [17], while representative TSS locations were determined in ExPecto.839

The authors of ExPecto determined representative TSS for Pol II transcribed genes based on quan-840

tification of CAGE reads from the FANTOM5 project [25]. The specific procedure they used is as841

follows, a CAGE peak was associated to a GENCODE [30] gene if it was withing 1000 bps from a842

GENCODE v24 annotated TSS. The most abundant CAGE peak for each gene was then selected843

as the representative TSS. When no CAGE peak could be assigned to a gene, the annotated gene844

start position was used as the representative TSS. We log(1 + x) normalized then standardized the845

RNA-seq counts before training models. Sequences centered around the TSS were obtained from the846

human reference genome assembly GRCh37 [15].847

B.2.2 Cap Analysis Gene Expression (CAGE) Profile848

Data Processing Processed data was obtained from Basenji2 [37], where input sequence locations849

were collected as bed files and CAGE counts as TensorFlow [1] records. Original data comes from850

the FANTOM5 project [25]. Data was processed to produce CAGE labels for non-overlapping 128 bp851

bins within a sequence of 114,688 bps. For each bin, there are 638 different predictions corresponding852

to the CAGE count in various cell, tissue, or treatment types (e.g., fibroblast, heart, or monocytes853

treated with Salmonella). This resulted in an output array of 896 bins × 638 tracks for a single854

sample. DNA sequences were obtained from the human reference genome assembly GRCh38 [68].855

The compute requirements to store and process this data make it more difficult and less accessible to856

users. To achieve a balance of user-friendliness while also maintaining a representative view of the857

data, we sub-sampled the number of tracks to 50 by using the following guidelines:858

1. Only select one cell line.859

2. Only keep mock treated and remove other treatments.860

3. Only select one donor.861

The 50 specific tracks which were selected can be found in Table 7 below. This maintains the number862

of sequences in the entire dataset but reduces the number of labels for each sequence from 638 to 50863

thus reducing storage requirements from ∼84GB to ∼7GB.864
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Table 7: The 50 CAGE tracks sub-sampled for the Genomic LRB from the original 638 tracks.

Track Index Description
0 CAGE:adipose tissue, adult, pool1
1 CAGE:bladder, adult, pool1
2 CAGE:brain, adult, pool1
3 CAGE:cervix, adult, pool1
4 CAGE:colon, adult, pool1
5 CAGE:esophagus, adult, pool1
6 CAGE:heart, adult, pool1
7 CAGE:kidney, adult, pool1
8 CAGE:liver, adult, pool1
9 CAGE:lung, adult, pool1
10 CAGE:ovary, adult, pool1
11 CAGE:placenta, adult, pool1
12 CAGE:prostate, adult, pool1
13 CAGE:skeletal muscle, adult, pool1
14 CAGE:small intestine, adult, pool1
15 CAGE:spleen, adult, pool1
16 CAGE:testis, adult, pool1
17 CAGE:thymus, adult, pool1
18 CAGE:thyroid, adult, pool1
19 CAGE:trachea, adult, pool1
20 CAGE:retina, adult, pool1
21 CAGE:temporal lobe, adult, pool1
22 CAGE:postcentral gyrus, adult, pool1
23 CAGE:pons, adult, pool1
24 CAGE:parietal lobe, adult, pool1
25 CAGE:paracentral gyrus, adult, pool1
26 CAGE:occipital pole, adult, pool1
27 CAGE:nucleus accumbens, adult, pool1
28 CAGE:medulla oblongata, adult, pool1
29 CAGE:insula, adult, pool1
30 CAGE:frontal lobe, adult, pool1
31 CAGE:dura mater, adult,
32 CAGE:corpus callosum, adult, pool1
33 CAGE:adenocarcinoma cell line:IM95m
34 CAGE:breast carcinoma cell line:MCF7
35 CAGE:diffuse large B-cell lymphoma cell line:CTB-1
36 CAGE:glioma cell line:GI-1
37 CAGE:liposarcoma cell line:SW 872
38 CAGE:Sebocyte,
39 CAGE:CD4+ T Cells,
40 CAGE:Natural Killer Cells,
41 CAGE:Neutrophils,
42 CAGE:Pericytes,
43 CAGE:Alveolar Epithelial Cells,
44 CAGE:Renal Mesangial Cells,
45 CAGE:Nucleus Pulposus Cell,
46 CAGE:Keratocytes,
47 CAGE:Mesenchymal Stem Cells - adipose,
48 CAGE:Mammary Epithelial Cell,
49 CAGE:Osteoblast,
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B.3 Cis-Regulatory Element Detection865

Data Processing Original data was sourced from Search Candidate cis-Regulatory Elements v3866

(SCREEN) registry by ENCODE [53]. The data is processed as follows, we break the human867

reference genome into 200 bp non-overlapping chunks. If the 200 bp chunk overlaps by at least 50%868

or more with a contiguous region from the set of annotated cis-regulatory elements (promoters or869

enhancers), we label them as positive, else the chunk is labeled as negative. The resulting dataset870

was composed of ∼15M negative samples and ∼50k positive promoter samples and ∼1M positive871

enhancer samples We randomly sub-sampled the negative set to 1M samples, and kept all positive872

samples, to make this dataset more manageable in size. DNA sequences were obtained from the873

human reference genome assembly GRCh38 [68].874

Short-Range Since this task involves predicting the presence of a regulatory element within a875

specific sequence, only local context is believed to be important. The activity of promoters and876

enhancers in different cell types is dictated by the presence of binding sites for specific proteins [4]877

and thus likely do not require long-distance interactions, as demonstrated by the high predictive value878

of models using less than 1k bp input sequences [7, 38].879

B.4 Chromatin Feature Identification880

Data Processing Processed data was obtained from DeepSea [89] in the form of 1k bp sequences881

and labels as txt files. Original chromatin profiling data comes from ENCODE and Roadmap882

Epigenomics [53, 10]. The authors of DeepSea processed the data by chunking the human genome883

into 200 bp bins where for each bin labels were determined for hundreds of different chromatin884

features. Only bins with at least one transcription factor binding event were considered for the dataset.885

If the bin overlapped with a peak region of the specific chromatin profile by more than half of the886

sequence, a positive label was assigned. DNA sequences were obtained from the human reference887

genome assembly GRCh37 [15]. To make the dataset more accessible, we randomly sub-sampled the888

chromatin profiles from 125 to 20 tracks for the histones dataset and from 104 to 20 tracks for the889

DNase dataset. The sub-sampled tracks for both datasets can be found in Table 8 and Table 9.890

Short-Range Chromatin features are not expected to be strongly influenced by long-range interac-891

tions. Most of the information affecting these chromatin features occurs locally and depends on the892

binding of different proteins [45]. This is also corroborated by the high predictive value of models893

using less than 1k bps input sequences [38, 89].894
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Table 8: 20 Histone tracks sub sampled for the Genomic LRB from the original 104 tracks with
histone mark and cell type information.

Track Index Histone Mark Cell Type
0 H2BK12ac H1-hESC
1 H3K4me1 NHEK
2 H3K4me2 NH-A
3 H3K9me1 K562
4 H4K20me1 NHEK
5 H2BK5ac H1-hESC
6 H3K4me3 NH-A
7 H4K8ac H1-hESC
8 H3K4me2 Monocytes-CD14+RO01746
9 H3K27me3 Osteoblasts

10 H3K36me3 Monocytes-CD14+RO01746
11 H3K23me2 H1-hESC
12 H3K27ac NHLF
13 H3K36me3 NHEK
14 H2BK20ac H1-hESC
15 H3K9ac NHLF
16 H3K36me3 Osteoblasts
17 H2BK120ac H1-hESC
18 H3K79me2 K562
19 H3K4me1 K562
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Table 9: 20 DNase tracks sub sampled for the Genomic LRB from the original 125 tracks with cell
type and treatment information.

Track Index Treatment Cell Type
0 None SAEC
1 None HRPEpiC
2 None SK-N-MC
3 None RWPE1
4 None Th2
5 None Adult_CD4_Th0
6 None HMEC
7 None NHEK
8 UT189 Urothelia
9 None pHTE

10 None Urothelia
11 None WERI-Rb-1
12 None Huh-7
13 None A549
14 None Th1
15 None HA-h
16 None RPTEC
17 None HMVEC-dBl-Ad
18 None HGF
19 None HMF
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B.5 Visualization Tool895

The annotations that we join to our task datasets come from the human reference genome assembly896

GRCh38 [68]. To obtain these annotation we follow the methodology reported in SegmentNT [20]897

for data curation. Annotations include genomic elements, such as enhancers, exon, intron, 5’ UTR,898

etc. The location of all gene elements and polyA signals were obtained from GENCODE (v44)899

[30] gene annotation. Promoter, enhancer, and CTCF-bound sites were retrieved from ENCODE’s900

SCREEN database [79]. Promoters and enhancers were split into tissue-invariant and tissue-specific901

annotations, following the tissue-invariant annotations from Meuleman et al. [52]. Briefly, if a902

promoter or enhancer overlapped at all with a region annotated as tissue-invariant, that promoter or903

enhancer was annotated as tissue-invariant. All other promoters and enhancers were tagged as tissue904

specific. Scripts from HISAT2 [39] were used to extract respective intron and splice site annotations.905

Annotations of repeat regions were collected from RepeatMasker [73].906

Annotations were merged into the dataset by aligning chromosome and regions (start / stop position)907

of annotations with the genomic locations associated with the compiled tasks in the Genomics LRB.908

That is, if the sequence positions in our dataset overlapped with regions in the annotation files, the909

sequence was tagged with the corresponding annotation. For example, for variant effect prediction910

tasks, the SNP location was used for the merge; for regulatory element detection tasks, the start and911

stop positions were used. Specifically, a sample in our dataset was associated with an annotation if912

the sample position was both greater than the starting position of the annotation and less than the913

ending position of the annotation.914

The UCSC liftover browser tool [32] was used to convert GRCh38 annotations to the GRCh37915

reference assembly locations to be associated with datasets relying on GRCh37 locations.916

With annotations merged into the datasets in our Genomics LRB, we develop a visualization tool917

that enables users to ‘slice’ results. Our tool is an interactive jupyter Kluyver et al. [41] notebook918

that enables toggling different models and has visualizations for aggregate results, results by distance919

to nearest TSS / enhancer, and results by annotation. In Figure 3, we provide selected screenshots920

from our visualisation tool demonstrating how a user can view results for each task, select different921

models, and split by various annotations.922

B.6 Arbitrary Sequence Length923

To enable users to download arbitrarily long sequence lengths, samples for each task are stored924

either as single positions in the genome (e.g., the SNP location for variant effect prediction or the925

TSS for bulk RNA expression) or as start and stop locations for tasks like regulatory element and926

chromatin feature prediction. In addition we store the human reference genome assemblies GRCH38927

[68] and GRCH37 [15]. The PyFaidx Python package [71] is used to create an indexed FASTA928

file object from the reference genomes for fast random access to any subsequence. With the user’s929

requested sequence length, we symmetrically extend sequence locations from our datasets and use930

these extended indices to extract the underlying DNA sequence from the indexed reference genomes.931

If the extended sequence indexes beyond a chromosome boundary, the sample is not returned.932
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(a) Screenshot of the visualization tool showing the ability to select different
tasks from the Genomics LRB.

(b) Screenshot of the visualization tool showing the ability to select different
models for comparison.

(c) Screenshot of the visualization tool showing the ability to select different
annotations by which to split results.

Figure 3: Sample screenshots from our interactive visualization tool.

C Context Length Extension933

Rotary Embeddings In attention-based modules, such as those used in transformer models [82], for934

a sequence of length L, the model takes embeddings in {x}Lj=1,xj ∈ Rd, where d is the dimension935

of the embeddings, and computes query, key, and value vectors at every mth and nth position in the936
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sequence:937

qm = fq(xm,m)

kn = fk(xn, n)

vn = fv(xn, n).

fq, fk, fv are query, key, and value transformations, respectively. For rotary embeddings (RoPE [74]),938

we can think of Rd as equivalent to the complex field Cd/2 and define fq and fk as:939

fq(xm,m) = eimΘWqxm

fk(xn, n) = einΘWkxn,

where Wq and Wk are linear transformations and Θ = diag(θ1, . . . , θd/2) is a diagonal matrix, with940

θj = b−2j/d and b = 10000.941

RoPE Position Interpolation In the concurrent works of Chen et al. [13] and kaiokendev [35], the942

method of position interpolation was introduced, whereby longer sequences of length L′ > L are943

accommodated by simply rescaling the position input to fq and fk, e.g., fq(xm,m L
L′ ).944

NTK-aware RoPE Interpolation An alternative interpolation scheme, attributed to bloc97 [11],945

is motivated by the hypothesis that position interpolation may lead to the loss of high frequency946

information. The approach that purportedly resolves this issue is related to the theory of Neural947

Tangent Kernels (NTK) by means of an analogy between RoPE and Fourier Features [76], and is thus948

named “NTK-aware” interpolation. This scheme is characterized by a rescaling applied not to the949

position but rather to the basis of rotation, as follows:950

θj = b′−2j/d

b′ = b ·
( L

L′

) d
d−2

In the experiments on context extension presented in the main text, we adopt this interpolation951

scheme.952

We note that the authors in Peng et al. [60] further tweak and build on NTK-aware interpolation to953

create their proposed interpolation scheme, which they title YaRN. However, the full YaRN approach,954

as presented in Peng et al. [60] requires several manually tuned hyperparameters, which were carefully955

selected for the decoder-only generative Llama-2 7 billion parameter model [80, 81]. We therefore956

adopted the simpler NTK-aware approach in our experiments.957

D Additional Experimental Details958

D.1 Evaluated DNA Language Models959

In Table 10, we list the DNA LMs included in the initial evaluation of our benchmark.

Table 10: Overview of DNA LMs evaluated in this study.

Pre-training Data Parameters Architecture Context (bps) Tokenization

NTv2 MLM Multi-Species 50M, 100M, 250M, 500M Transformer 12k 6-mer
DNABERT-1 MLM Human Reference 88.6M Transformer 512 bps 6-mer
DNABERT-2 MLM Multi-Species 116.6M Transformer 700 (train), up to 10k (eval) Byte Pair Encoding
HyenaDNA NTP Human Reference 1.6M, .6M, 3.9M,12.9M SSM 1k, 16k, 32k, 160k Single Base Pair

960

D.2 Zero-Shot Evaluation961

For masked DNA LMs, zero-shot scores are computed by masking the variant position in the962

sequence, performing inference on the masked sequence, and obtaining the probability distribution963
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at the variant position. A score is then calculated using the probabilities of the reference allele964

token and the alternative allele token. For auto-regressive DNA LMs, no masking is required due965

to their unidirectional nature. Instead, a forward pass is done with the reference sequence, and the966

probability distribution is extracted from the token immediately preceding the variant position. Scores967

are computed as the log probability ratio for the reference (ref) and alternative (alt) allele tokens:968

variant effect score = log
(Pref

Palt

)
Details about additional processing required for zero-shot prediction are given below.969

D.2.1 Causal eQTL970

The original dataset used for this tasks contains tissue information for each sequence. Given that971

zero-shot evaluate cannot account for tissue, we process variants appearing across multiple tissue972

types as follows: first, we find variants appearing in multiple tissues and determining a consensus973

label for a given variant across tissues using a 70% majority class agreement threshold. Variants974

appearing across multiple tissues whose majority class agreement was below this threshold were975

dropped. When computing metrics we only count variants appearing across tissues once.976

D.2.2 Pathogenic-OMIM977

Due to computational considerations and given that this data set totals ∼2.3M examples, we only978

considered a subset of the common variants for carrying out zero-shot prediction. Specifically, we979

sub-sampled 200k common variants and kept all 406 original pathogenic variants.980

D.3 Fine-tuning Evaluation981

To fine-tune models on our benchmark tasks, we first extracted model embeddings, in the case of982

DNA LMs this involves extracting the output of the last layer before the LM head, and in the case983

of Enformer, this involves extracting the model embeddings before the final supervised prediction984

head. Model embeddings were then processed in a task specific manner and subsequently fed into985

a task specific MLP, both of which are outlined below. We note that for Enformer, since it is a986

model that was originally trained in a multi-task supervised fashion and not intended to be fine-tuned,987

embeddings were frozen and only the prediction head was trained.988

D.3.1 Causal eQTL989

Embedding Extraction We extract model embeddings for both the reference and alternative se-990

quences and average embeddings across a window of size 1536 bps symmetrically around the SNP991

position. The mean embeddings for the reference and alternative are concatenated. Tissue information992

is converted to one-hot and additionally concatenated to the reference-alternative embedding vector.993

MLP Head MLP hidden dimensions are sized in an adaptive way such the hidden state size is994

equal to two times the base model’s embedding dimension. The MLP is composed of one linear995

layer with size 2 × embedding dimension, a softplus activation, another linear layer with size996

2× embedding dimension, a softplus activation, and a final linear layer for binary prediction.997

Hyperparameters The parameters used to fine-tune models on this task include batch size = 64,998

learning rate = 1e−5, ADAM [40] optimizer with β1= 0.9, β2 = 0.999, and ϵ = 1e−8, trained for 1999

epoch on the task’s training dataset. Validation is carried out every 70 parameter update steps.1000

D.3.2 Pathogenic ClinVar1001

Embedding Extraction We extract model embeddings for both the reference and alternative se-1002

quences and take a window mean of size 1536 bps symmetrically around the SNP position. The mean1003

embeddings for the reference and alternative are concatenated together.1004
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MLP Head MLP hidden dimensions are sized in an adaptive way such the hidden state size is equal1005

to two times the base model’s embedding dimension. The MLP is composed of one linear layer with1006

size 2× embedding dimension, a softplus activation, and a final linear layer for binary prediction.1007

Hyperparameters The parameters used to fine-tune models on this task include batch size = 64,1008

learning rate = 1e−5, ADAM optimizer with β1 = 0.9, β2 = 0.999, and ϵ = 1e−8, trained for 3 epochs1009

on the task’s training dataset. Validation is carried out every 40 parameter update steps.1010

D.3.3 Bulk RNA Expression1011

Embedding Extraction We extract model embeddings for the input sequence and take perform mean1012

pooling on a window centered on the TSS with 383 bps before the TSS and 256 bp after.1013

MLP Head MLP hidden dimensions are sized in an adaptive way such the hidden state size is equal1014

to two times the base model’s embedding dimension. The MLP is composed of one linear layer1015

with size 2× embedding dimension, a softplus activation, and a final linear layer for predicting 2181016

regression values.1017

Hyperparameters The parameters used to fine-tune models on this task include batch size = 64,1018

learning rate = 3e−5, ADAM optimizer with β1= 0.9, β2 = 0.999, and ϵ = 1e−8 trained for 3 epochs1019

on the task’s training dataset. Validation is carried out every 50 parameter update steps.1020

D.3.4 CAGE Prediction1021

Embedding Extraction Base model embeddings were extracted and fed into the task MLP predictor.1022

MLP Head MLP hidden dimensions are sized in an adaptive way such the hidden state size is equal1023

to two times the base model’s embedding dimension. The MLP is composed of one linear layer1024

with size 2× embedding dimension, a softplus activation, and a final linear layer for predicting 2181025

regression values.1026

Hyperparameters The parameters used to fine-tune models on this task include batch size = 64,1027

learning rate = 3e−5, adam optimizer with β1= 0.9, β2 = 0.999, and ϵ = 1e−8 trained for 1 epoch of1028

the training dataset. Validation is carried out every 50 parameter update steps.1029

D.3.5 Regulatory Elements1030

Due to computational considerations, we only fine-tuned models on a randomly sampled 100k subset1031

of the full ∼1-2M samples in the training set . Models were evaluated on the full test dataset. The1032

subset data is provided in our HuggingFace repository.1033

Embedding Extraction Given that the task is defined on predicting the presence of a regulatory1034

element in the center 200 bp of the sequence, we extract a central window of 200 bps from the1035

sequence of embeddings and perform mean pooling. This mean embedding is then passed as input to1036

the MLP predictor head.1037

MLP Head MLP hidden dimensions are sized in an adaptive way such the hidden state size is equal1038

to two times the base model’s embedding dimension. The MLP is composed of one linear layer with1039

size 2× embedding dimension, a softplus activation, and a final linear layer for predicting binary1040

values.1041

Hyperparameters The parameters used to fine-tune models on this task include batch size = 64,1042

learning rate = 3e−5, ADAM optimizer with β1= 0.9, β2 = 0.999, and ϵ = 1e−8 trained for 1 epoch of1043

the sampled training dataset for each task. Validation is carried out every 30 parameter update steps.1044

D.3.6 Chromatin Features1045

Due to computational considerations, we only fine-tuned models on a randomly sampled 100k subset1046

from the full ∼2M sample training set. Models were evaluated on the full test dataset. The subset1047

data is provided in our HuggingFace repository.1048
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Embedding Extraction Given that the task is defined on predicting the presence of a chromatin1049

feature in the center 200 bp of the sequence, we extract a central window of 200 bps from the1050

sequence of embeddings and perform mean pooling. This mean embedding is then passed as input to1051

the MLP predictor head.1052

MLP Head MLP hidden dimensions are sized in an adaptive way such the hidden state size is equal1053

to two times the base model’s embedding dimension. The MLP is composed of one linear layer with1054

size 2× embedding dimension, a softplus activation, and a final linear layer for predicting the 201055

binary labels.1056

Hyperparameters The parameters used to fine-tune models on this task include batch size = 64,1057

learning rate = 3e−5, adam optimizer with β1= 0.9, β2 = 0.999, and ϵ = 1e−8 trained for 1 epoch of1058

the training dataset. Validation is carried out every 30 parameter update steps.1059

D.4 Fine-tuning Ablation Details1060

For the fine-tuning ablation study, we compared training only the task MLP with DNA LM embed-1061

dings frozen against training all DNA LM weights in conjunction with the task MLP. All training1062

setup details regarding embedding extraction and hyperparameters were kept constant except for1063

learning rate which was adjusted to account for training larger networks when full fine-tuning. The1064

following learning rates for each task were used in the MLP only training:1065

• Variant effect prediction tasks: 1e−41066

• Bulk RNA: 2.5e−41067

• CAGE: 2e−41068

• Regulatory elements: 2.5e−41069

• Chromatin features: 2.5e−4.1070

D.5 Context Extension Implementation Details1071

To conduct context length extension of NTv2, we first used the 50M model due to computation1072

considerations. We started with the pre-trained NTv2 50M checkpoint from Dalla-Torre et al. [18],1073

pre-trained on 12k bp sequences, and extended the context length by factors of two to 24k, 48k,1074

and 96k bps using a second stage of masked language modeling on a multi-species dataset from1075

Dalla-Torre et al. [18]. After proving out this methodology for the 50M model, we conducted context1076

length extension for the 500M model at 96k bps.1077

Hyperparameters For the 50M NTv2 model we use the following hyperparameters: batch size =1078

1M tokens, full precision training, masking ratio = 0.15, masking probability = 0.8, random token1079

probability = 0.1. The ADAM optimizer with weight decay regularization was used with weight1080

decay = 0.01, β1 = 0.9, β2 = 0.999, ϵ = 1e−8, a modified square decay learning rate schedule, with1081

initial learning rate of 6e−5 and end learning rate of 8e−4 with 1000 warm up steps. Training was1082

conducted over ∼5 billion tokens totalling ∼5k parameter update steps.1083

All hyperparameters were kept constant for the NTv2 500M model, however due to limited memory1084

resources, mixed precision training was used.1085

E Additional Results1086

E.1 Full DNA LM Series Evaluations1087

In Tables 11 and 12 we display results for the full set of models evaluated on our benchmark.1088

DNABERT-2 was not fine-tuned on the CAGE task due to the incompatibility between the byte pair1089

tokenization this model employs and binned labels used in this task.1090
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Table 11: Benchmarking performance of DNA LMs and baselines on variant effect prediction tasks.
Models were evaluated in both fine-tuning and zero-shot settings. ∗Extended NTv2 500 M was
fine-tuned with 60k bp sequences due to compute constraints..

Model Name Context
(bp)

Causal eQTL
(AUROC)

Pathogenic ClinVar
(AUROC)

Pathogenic OMIM
(AUPRC)

Fine-tune Zero-shot Fine-tune Zero-shot Zero-shot
DNABERT 1 512 0.72 ± 0.003 0.51 0.67 ± 0.037 0.50 0.002
DNABERT 2 10k 0.72 ± 0.008 0.50 0.74 ± 0.013 0.50 0.002
NTv2 50M 12k 0.72 ± 0.005 0.51 0.75 ± 0.008 0.53 0.002
NTv2 100M 12k 0.73 ± 0.003 0.51 0.76 ± 0.009 0.56 0.002
NTv2 250M 12k 0.72 ± 0.003 0.51 0.78 ± 0.013 0.58 0.002
NTv2 500M 12k 0.72 ± 0.003 0.51 0.78 ± 0.009 0.68 0.003
HyenaDNA 1K 1k 0.71 ± 0.005 0.51 0.63 ± 0.027 0.49 0.002
HyenaDNA 16K 16k 0.71 ± 0.005 0.51 0.66 ± 0.016 0.49 0.002
HyenaDNA 32K 32k 0.72 ± 0.002 0.51 0.66 ± 0.012 0.50 0.002
HyenaDNA 160K 160k 0.71 ± 0.010 0.51 0.56 ± 0.073 0.49 0.002

Extended NTv2 50M 24K 24k 0.72 ± 0.004 0.51 0.75 ± 0.009 0.53 0.002
Extended NTv2 50M 48K 48k 0.73 ± 0.008 0.51 0.65 ± 0.059 0.52 0.002
Extended NTv2 50M 96K 96k 0.73 ± 0.006 0.51 0.74 ± 0.019 0.51 0.002
Extended NTv2 500M 96K∗ 96k 0.74 ± 0.004 0.51 0.75 ± 0.018 0.53 0.002

Baseline 0.76 ± 0.002
(Enformer)

0.56
(CADD)

0.65 ± 0.031
(Enformer)

0.97
(CADD)

0.205
(CADD)

Table 12: Benchmarking performance of DNA LMs and baselines on gene expression prediction,
regulatory element, and chromatin features prediction tasks. Models were evaluated in only a fine-
tuned setting for this set of tasks. DNABERT-2 was not fine-tuned on the CAGE task due to the
incompatibility of the byte pair tokenization with binned labels.

Context
(bp)

Bulk RNA
(R2)

CAGE
(R2)

Promoter
(AUPRC)

Enhancer
(AUROC)

Histone
Marks

(AUPRC)

DNA
Accessibility

(AUPRC)

Fine-tune Fine-tune Fine-tune Fine-tune Fine-tune Fine-tune
DNABERT-1 512 0.47 ± 0.007 0.14 ± 0.025 0.72 ± 0.009 0.80 ± 0.005 0.23 ± 0.003 0.18 ± 0.006
DNABERT-2 10k 0.51 ± 0.050 - 0.71 ± 0.112 0.81 ± 0.022 0.24 ± 0.091 0.15 ± 0.064
NTv2 50M 12k 0.52 ± 0.074 0.35 ± 0.030 0.75 ± 0.008 0.78 ± 0.041 0.34 ± 0.007 0.18 ± 0.005
NTv2 100M 12k 0.52 ± 0.081 0.3 ± 0.030 0.78 ± 0.008 0.82 ± 0.010 0.34 ± 0.007 0.22 ± 0.012
NTv2 250M 12k 0.57 ± 0.024 0.37 ± 0.008 0.8 ± 0.008 0.84 ± 0.002 0.37 ± 0.013 0.28 ± 0.006
NTv2 500M 12k 0.57 ± 0.016 0.39 ± 0.011 0.79 ± 0.006 0.82 ± 0.002 0.38 ± 0.003 0.3 ± 0.007
HyenaDNA 1K 1k 0.44 ± 0.014 0.11 ± 0.015 0.7 ± 0.006 0.80 ± 0.002 0.21 ± 0.001 0.13 ± 0.003
HyenaDNA 16K 16k 0.46 ± 0.008 0.17 ± 0.014 0.7 ± 0.007 0.80 ± 0.006 0.22 ± 0.002 0.091 ± 0.003
HyenaDNA 32K 32k 0.47 ± 0.010 0.22 ± 0.007 0.72 ± 0.007 0.82 ± 0.002 0.22 ± 0.003 0.084 ± 0.001
HyenaDNA 160K 160k 0.46 ± 0.006 0.19 ± 0.032 0.67 ± 0.009 0.74 ± 0.009 0.25 ± 0.004 0.11 ± 0.002

Extended NTv2 50M 24K 24k 0.53 ± 0.063 0.37 ± 0.010 0.75 ± 0.007 0.83 ± 0.002 0.35 ± 0.007 0.19 ± 0.006
ExtendedNTv2 50M 48K 48k 0.54 ± 0.038 0.36 ± 0.012 0.76 ± 0.008 0.82 ± 0.002 0.35 ± 0.007 0.19 ± 0.006
Extended NTv2 50M 96K 96k 0.54 ± 0.034 0.3 ± 0.019 0.76 ± 0.015 0.83 ± 0.001 0.35 ± 0.005 0.19 ± 0.007
Extended NTv2 500M 96K 96k 0.56 ± 0.037 0.36 ± 0.011 0.78 ± 0.003 0.82 ± 0.005 0.38 ± 0.004 0.3 ± 0.006

Baseline 0.80 ± 0.010
(Enformer)

0.49 ± 0.000
(Enformer)

0.86 ± 0.006
(Enformer)

0.92 ± 0.002
(Enformer)

0.35
(DeepSea)

0.44
(DeepSea)

E.2 Additional Fine-tuning Ablation1091

In Table 13, we display results for the the full NTv2 series and additional HyenaDNA models. We1092

find that the same pattern discussed in Section 5.5 holds for this larger set of models as well. Namely,1093

full fine-tuning almost uniformly improves model performance relative to partial fine-tuning, by1094

margins that can range up to > 100%. Tasks on which DNA LMs already perform competitively, e.g.,1095

regulatory element annotation, seem to benefit less from full-fine tuning, but even here we do see1096

gains.1097

E.3 Additional Results by Genomic Annotations1098

In Figure 4, we display additional results from splitting the tasks by genomic annotations.1099
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Table 13: Ablation study examining the difference in performance of DNA LM fine-tuning strategies.
Results shown correspond to the percent increase in performance of full fine-tuning with respect to
freezing LM weights and only training the MLP head.

Causal eQTL
(AUCROC)

Pathogenic
ClinVar

(AUROC)

Bulk
RNA
(R2)

CAGE
(R2)

Promoter
(AUPRC)

Enhancer
(AUROC)

Histone
Marks

(AUCPRC)

DNA
Accessibility

(AUPRC)

NTv2 50M +1.13 +9.30 +30.23 +71.60 +1.93 -2.05 +32.03 +33.43
NTv2 100M +0.98 +6.24 +13.70 +27.72 +2.16 +2.83 +32.70 +40.54
NTv2 250M +0.36 +3.57 +21.70 +40.41 +2.07 +3.71 +31.01 +54.44
NTv2 500M +0.49 +4.27 +18.29 +42.14 -1.45 +0.90 +22.46 +47.96

HyenaDNA 1K +0.95 +15.39 +16.50 +45.22 +7.13 +4.68 +23.61 +22.65
HyenaDNA 16K +0.21 +22.81 +75.53 +133.52 +16.08 +6.16 +42.83 -9.62
HyenaDNA 32K +0.35 +11.58 +107.48 +102.91 +5.09 +5.39 +14.43 -22.67

Enhancer Detection We find that DNA LMs have increased performance at identifying enhancers1100

in some repetitive elements, such as LINE1 transposons, as shown in Figure 4a. LINE1 elements are1101

commonly interspersed along the human genome, and individual LINE1 elements may have uncertain1102

regulatory effects, but DNA LMs appear to be able to call enhancers in LINE1 elements better than1103

in non-LINE1 regions. However, their performance still lags that of the Enformer baseline.1104

Zero-shot Pathogenic-ClinVar In Figure 4b, we observe that most models exhibit increased1105

performance within splice site acceptor regions, with the exception of Enformer, although Enformer1106

demonstrates high performance in both splits.

(a) Enhancer detection; split by enhancers located
within a LINE1 (transposon) annotation.

(b) Zero-shot Pathogenic ClinVar prediction; by splice
site acceptor annotation.

Figure 4: Additional results split by genomic annotations.

1107

F Hosting, Licensing, and Maintenance Plan1108

The Genomics Long Range Benchmark is hosted as a dataset repository on Hugging Face[86] at this1109

url. Users may view and download data by accessing the repository through their browser or can use1110

Hugging Face’s API to access and download the dataset programmatically, with a single line of code.1111

In addition to ease-of-use, Hugging Face repositories provide a reliable, stable way to store data.1112

Users may raise issues and submit pull requests via the Genomic LRB’s Hugging Face webpage1113

which will be addressed by the authors.1114

The Genomics LRB is licensed under the Creative Commons Attribution Non Commercial Share1115

Alike 4.0 license1116
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G Potential Societal Impacts1117

As our work introduces a benchmark, we do not believe it poses any inherent negative societal1118

impacts. In fact, our work will hopefully create a positive impact by accelerating the development of1119

useful DNA LMs that can bring about a deeper understanding of biology.1120

H Assets1121

In Table 14, we list the open source libraries and repositories used in this work, with their coresponding1122

licenses.

Table 14: Open source libraries (and corresponding licenses) used in this work.

Library License

Biopython [16] Biopython license
Haiku [31] Apache 2.0
HuggingFace [86] Apache 2.0
Jax [12] Apache 2.0
Jupyter [41] BSD 3-Clause
NumPy [29] NumPy license
Matplotlib [33] Matplotib license
Pandas [78] BSD 3-Clause “New" or “Revised"
Optax [21] Apache 2.0
PyFaidx [71] BSD-3-Clause
PyTorch [58] BSD-3 Clause
Scikit-Learn [59] BSD 3-Clause
Seaborn [85] BSD 3-Clause “New" or “Revised"
TensorFlow [1] Apache 2.0

1123

I Computational Resources1124

All research in this study was conducted using Cloud TPU’s provided by Google’s TPU Research1125

Cloud program. Specifically, a TPU-v4-64 slice was used for all context length extension pre-training.1126

Single TPU-v4 machines were used in parallel to conduct all benchmarking and evaluations including1127

fine-tuning, zero-shot, and inference experiments.1128
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https://github.com/biopython/biopython/blob/master/LICENSE.rst
https://numpy.org/doc/stable/license.html
https://matplotlib.org/stable/users/project/license.html


Checklist1129

1. For all authors...1130

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s1131

contributions and scope? [Yes] Contributions of the benchmark are outlined in Section 31132

and results are detailed in Section 5.1133

(b) Did you describe the limitations of your work? [Yes] Limitations discussed in Section 6.1134

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See1135

Appendix G.1136

(d) Have you read the ethics review guidelines and ensured that your paper conforms to1137

them? [Yes]1138

2. If you are including theoretical results...1139

(a) Did you state the full set of assumptions of all theoretical results? [N/A]1140

(b) Did you include complete proofs of all theoretical results? [N/A]1141

3. If you ran experiments (e.g. for benchmarks)...1142

(a) Did you include the code, data, and instructions needed to reproduce the main exper-1143

imental results (either in the supplemental material or as a URL)? [Yes] The link to1144

download the benchmark dataset is included in the abstract. The link to our visualiza-1145

tion tool is included in the contributions list at the end of Section 1.1146

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they1147

were chosen)? [Yes] Full experimental details are stated in Section 5 and Appendix D.1148

(c) Did you report error bars (e.g., with respect to the random seed after running ex-1149

periments multiple times)? [Yes] Error bars were attained from standard deviation1150

across five runs of cross validation with different random seeds used to split training /1151

validation sets.1152

(d) Did you include the total amount of compute and the type of resources used (e.g., type1153

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix I for details on1154

compute used in this work.1155

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...1156

(a) If your work uses existing assets, did you cite the creators? [Yes] See Table 14.1157

Additionally we cite all original data sources in Section 3 and Appendix B.1158

(b) Did you mention the license of the assets? [Yes] See Table 14.1159

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]1160

Link to benchmark datasets is included in the abstract.1161

(d) Did you discuss whether and how consent was obtained from people whose data you’re1162

using/curating? [N/A]1163

(e) Did you discuss whether the data you are using/curating contains personally identifiable1164

information or offensive content? [Yes] See Appendix B.1165

5. If you used crowdsourcing or conducted research with human subjects...1166

(a) Did you include the full text of instructions given to participants and screenshots, if1167

applicable? [N/A]1168

(b) Did you describe any potential participant risks, with links to Institutional Review1169

Board (IRB) approvals, if applicable? [N/A]1170

(c) Did you include the estimated hourly wage paid to participants and the total amount1171

spent on participant compensation? [N/A]1172
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