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Abstract

Recent Chinese word segmentation (CWS)
models have shown competitive performance
with pre-trained language models’ knowledge.
However, these models tend to learn the seg-
mentation knowledge through in-vocabulary
words rather than understanding the meaning
of the entire context. To address this issue, we
introduce a context-aware approach that incor-
porates unsupervised sentence representation
learning over different dropout masks into the
multi-criteria training framework. We demon-
strate that our approach reaches state-of-the-
art (SoTA) performance on F1 scores for six
of the nine CWS benchmark datasets and out-
of-vocabulary (OOV) recalls for eight of nine.
Further experiments discover that substantial
improvements can be brought with various sen-
tence representation objectives.

1 Introduction

Chinese word segmentation (CWS) is a fundamen-
tal step for Chinese natural language processing
(NLP) tasks. Researchers have publicized various
labeled datasets for evaluating CWS models. How-
ever, due to the varied properties among the CWS
datasets, different segmentation criteria exist in dif-
ferent datasets (Chen et al., 2017; Huang et al.,
2020a). A straightforward solution is to create a
model for each segmentation criterion (Tian et al.,
2020), but this constrains the model from learning
cross-dataset segmentation instances.

In order to facilitate the differentiation of various
segmentation criteria, researchers started to work
on building multi-criteria CWS (MCCWS) mod-
els. Common MCCWS models employ either a
single encoder with multiple decoders (Chen et al.,
2017; Huang et al., 2020b) or a single model with
extra special tokens (He et al., 2019; Huang et al.,
2020a; Ke et al., 2020; Qiu et al., 2020; Ke et al.,
2021). The former assigns distinct decoders to
different criteria, sharing other model parts. The
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Figure 1: Comparison of previous works and ours

latter uses special tokens at each input’s start, serv-
ing the same purpose as private decoders, for a
compact model that still differentiates segmenta-
tion criteria. However, both of the approaches tend
to overfit the in-domain majority criteria for each
dataset in use and therefore fail to provide correct
segmentations for the minority words, especially
the context-dependent ones. We show an example
in Figure 1.

In this paper, we present a context-aware ap-
proach to improve MCCWS. To enhance the
model’s understanding of context, inspired by
Gao et al. (2021), we leverage the randomness
of dropout (Srivastava et al., 2014) and introduce
an auxiliary task for minimizing the difference of
sentence representations under the multi-criteria
training framework. Our contributions lie in (1)
The proposed approach sets a new state-of-the-art
in the evaluations of F1-score and OOV recall on
several CWS datasets. (2) Various objective de-
signs for sentence representation learning can also
be effective for improving CWS.

2 Related work

After Xue (2003) first treated the CWS task as
a character tagging problem, most successive re-
searchers followed the approach and performed
well. Chen et al. (2017) incorporated multiple
CWS datasets by matching a specific decoder to



different criteria during training. Inspired by the
idea of a decoder for each criterion, Huang et al.
(2020b) used a pre-trained language model as their
encoder, further enhancing CWS performance. But
the cost of maintaining decoders increases when
the MCCWS model addresses more datasets. To
reduce the model parameters, He et al. (2019); Ke
et al. (2020); Qiu et al. (2020); Huang et al. (2020a);
Ke et al. (2021) utilized extra special tokens to rep-
resent criteria respectively, such that the MCCWS
model can interpret the extra special token as a hint
and segment text differently.

Learning sentence representation enhances the
pre-trained language model’s contextual under-
standing. In recent years, contrastive learning (Gao
et al., 2021; Chuang et al., 2022; Zhang et al., 2022)
has been the most popular method for learning sen-
tence representation without additional annotated
data. Maximizing the similarity of the hidden rep-
resentation of the same text masked by different
masks and minimizing the similarity of the hid-
den representation of different text help the model
further understand the text. Their model performs
better on natural language understanding (NLU)
tasks after training on the sentence representation
task. As a result, we use an extra special token as a
hint to control the criterion and add a sentence rep-
resentation task to produce the SoTA performance.

3 Methodology

3.1 Chinese Word Segmentation

Our model is based on pre-trained Chinese BERT
(Devlin et al., 2019). Suppose that we have M
datasets {Dk}Mk=1. Each input sentence s from a
dataset Dk transforms into a sequence as below:

s = [[CLS]; [CT]; s; [SEP]], (1)

where [CLS] and [SEP] are special tokens for the
pre-trained language model, and [CT] is the cri-
terion token for each dataset Dk. We denote the
hidden representation of each token in index i out-
put from BERT as hi. As a sequence labeling task,
the MCCWS model outputs a vector yi consisting
of each label’s probability to each input character
si. Each element in yi stands for the probability
of each label in the label set A = {B, M, E, S},
and B, M, E stands for the beginning, middle, and
end of a word, and S represents a word that only
has a single character. To accelerate the decoding
process and make our model simple, we replace the

CRF (Lafferty et al., 2001) layer with a linear layer
as our decoder. Our decoder can form as follows:

yi−2 = softmax(W d · hi + bd) ∈ R4,

∀i ∈ {2, ..., |s|+ 1},

where W d and bd are trainable parameters. We use
the cross-entropy function as our loss function to
force our model to predict the correct label on each
character.

Lws = − 1

|s|

|s|∑
i=1

1 · log yli, (2)

where yli represents the probability of the correct
label l given by our model.

3.2 Criterion Classification

To let our model distinguish the criteria accurately,
we refer to the approach proposed by Ke et al.
(2020) and train the criterion token with a clas-
sification task. These criterion tokens can also be
viewed as control tokens that manually prompt the
model to segment sentences using different criteria.
We can form the criterion classifier as follows:

c = softmax(W c · h1 + bc) ∈ RM . (3)

Both W c and bc are trainable parameters. M is
the number of datasets we used for training. The
function we used for training criterion classification
is cross-entropy loss and can be formed as:

Lc = −1 · log ck, (4)

where ck represents the probability given by our
model of the input dataset Dk.

3.3 Learning Sentence Representation

To make our model further understand the input
text, we add the sentence representation loss to our
training objective. Following the contrastive learn-
ing method proposed by Gao et al. (2021), we pass
every sequence s through the encoder with differ-
ent dropout masks. The two hidden representations
are a pair of positive samples. The pair of negative
samples are combined with two hidden represen-
tation vectors from different input sentences. We
pick up the two hidden representations of the same
input sequence i at index 0, which is the hidden rep-
resentation of [CLS] token, and denote them as h0i



MCCWS Models AS CIT CNC CTB6 MSR PKU SXU UD ZX Avg.4 Avg.6 Avg.9
Gong et al., 2019 95.22 96.22 - 97.62 97.78 96.15 97.25 - - 96.34 96.71 -
Huang et al., 2020a - - 97.19 97.56 98.29 96.85 97.56 97.69 96.46 - - -
Huang et al., 2020b 97.00 97.80 97.30 97.80 98.50 97.30 97.50 97.80 97.10 97.65 97.65 97.57
Qiu et al., 2020 96.44 96.91 - 96.99 98.05 96.41 97.61 - - 96.95 97.07 -
Ke et al., 2020 96.90 97.07 - 97.20 98.45 96.89 97.81 - - 97.33 97.39 -
Ke et al., 2021 97.04 98.12 97.25 97.87 98.02 96.76 97.51 83.84 88.48 97.49 97.55 -
Ours 96.81 98.16 97.41 97.93 98.39 96.94 97.82 98.30 97.12 97.58 97.68 97.65

Table 1: F1-score (in percentage) on all nine datasets. (We show the result of the significance test in Table 7.) Avg.4:
Average among AS, CIT, MSR, and PKU; Avg.6: Average among AS, CIT, CTB6, MSR, PKU, and SXU; Avg.9:
Average among all nine datasets; Ours: Our method

and h+0i. Then training our model by an objective
for (h0i, h+0i) with a batch of N pairs is:

Ls = − log
esim(h0i,h

+
0i)/τ∑N

j=1 e
sim(h0i,h

+
0j)/τ

, (5)

where τ is a hyperparameter of temperature and

sim(h0i, h
+
0i) is the cosine similarity hT

0ih
+
0i

||h0i||·||h+
0i||

.

3.4 Total Loss
Combining Equation(2), Equation(4), and Equa-
tion(5), we get the final training objective Ltotal:

Ltotal = Lws + α · Lc + (1− α) · Ls, (6)

where α is a hyperparameter to control how the
model weighs between criterion classification loss
and the sentence representation loss.

4 Experiment

4.1 Datasets
We perform our experiment on nine different CWS
datasets. AS, CIT, MSR, and PKU datasets are
from the SIGHAN2005 bakeoff (Emerson, 2005).
CNC is from the Chinese corpus. CTB6 (XUE
et al., 2005) is from the Chinese Penn Treebank.
SXU dataset is from the SIGHAN2008 bakeoff
(Jin and Chen, 2008). UD is from Zeman et al.
(2017). ZX (Zhang et al., 2014) corpus is seg-
mented from a novel called ZuXian. In Chinese
Word Segmentation, the F1 score is used to eval-
uate the performance. The OOV recall is used to
evaluate an MCCWS model’s generalization abil-
ity. We report our F1 score and OOV recall on
the test set according to the best checkpoint on the
development set.

4.2 Experimental Setting
We preprocess all nine datasets by replacing con-
secutive English letters and numbers with ’a and ’0’

respectively. The optimizer we used for finetuning
is AdamW (Loshchilov and Hutter). Furthermore,
their moving average coefficients are set to (0.9,
0.999). We set our learning rate to 2× 10−5 with
a linear warmup and a linear decay. The warmup
rate is 0.1 times the total training steps. Our model
is finetuned for 5 epochs. We use the gradient ac-
cumulation with step 2 on a batch size 16 which
approximates the effect of batch size 32. The value
of α in Equation (6) is 0.3, and τ in Equation (5)
is 0.1. We use the label smoothing technique on
the word segmentation decoder, and the smoothing
factor is set to 0.1. We refrain from using label
smoothing on the criteria classifier because we aim
for the model to precisely distinguish the differ-
ences between datasets. We run all our experiments
on Intel Xeon Silver 4216 CPU and an Nvidia RTX
3090 GPU.

4.3 Main Results

4.3.1 F1 score
Table 1 shows our F1 score on nine datasets. Our
method achieves SoTA on 6 out of 9 datasets. We
also report the average F1 score on 4 (denoted as
Avg.4) and 6 (denoted as Avg.6) to compare with
other methods that did not evaluate their model
on all nine datasets. The model that is most sim-
ilar to ours is proposed by Ke et al. (2020). By
adding a sentence representation task, our MCCWS
model’s performance on Avg.4 and Avg.6 can im-
prove 0.25% and 0.29%, respectively. Huang et al.,
2020b used a private structure and CRF decoder,
which means more parameters for each criterion.
However, with a simpler architecture, our model
performs better on Avg.6 and Avg.9.

4.3.2 OOV recall
Out-of-Vocabulary (OOV) recall is a critical evalu-
ation benchmark to measure an MCCWS model’s
ability to segment unseen words. Table 2 shows our



MCCWS Models AS CIT CNC CTB6 MSR PKU SXU UD ZX Avg.4 Avg.6 Avg.9
Gong et al., 2019 77.33 73.58 - 83.89 64.20 69.88 78.69 - - 71.248 74.595 -
Huang et al., 2020a - - 59.44 88.02 81.75 82.35 85.73 91.40 82.51 - - -
Qiu et al., 2020 76.39 86.91 - 87.00 78.92 78.91 85.08 - - 80.283 82.202 -
Ke et al., 2020 79.26 87.27 - 87.77 83.35 79.71 86.05 - - 82.398 83.902 -
Ke et al., 2021 80.89 90.66 61.90 89.21 83.03 80.90 85.98 93.59 87.33 83.870 85.112 83.721
Ours 81.27 91.83 66.28 91.95 89.20 83.77 88.00 93.54 88.23 86.518 87.670 86.007

Table 2: OOV recall (in percentage) on all nine CWS datasets. (We show the result of the significance test in Table
8.) Avg.4: Average among AS, CIT, MSR, and PKU; Avg.6: Average among AS, CIT, CTB6, MSR, PKU, and
SXU; Avg.9: Average among nine datasets; Ours: Our method

OOV recall on nine datasets. Our method achieves
SoTA on eight out of the nine datasets, showing
that our approach can better learn to segment se-
quences according to the context instead of relying
on the in-vocabulary information.

4.4 Ablation Study

To understand the influence of various loss func-
tions on the performance of the model, we first
remove the criterion classification loss. The F1
score drops slightly by 0.008% (See Table 3). This
result shows that the criterion classification task
helps the model distinguish the criteria, but an MC-
CWS model can learn most of the criteria differ-
ence by itself. Second, we exclude the sentence
representation loss. The F1 score drops 0.049%
(See Table 3), six times greater than the reduction
observed upon removing the criterion classification
task alone. The OOV recall drops dramatically
and shows our model can segment unseen words
by referring to the context. We can conclude that
learning semantic knowledge can further enhance
performance. Finally, we remove both additional
tasks; the F1 score drops even more (See Table 3).
Therefore, these two additional tasks both improve
performance. Notably, the sentence representation
task plays a pivotal role in this enhancement, so
we can conclude that learning semantic knowledge
can further enhance CWS performance.

Architecture Avg F1
score

Avg OOV
recall

Ours 97.653 86.007

w/o criterion classi-
fication

97.645
(-0.008)

85.826
(-0.181)

w/o sentence repre-
sentation

97.604
(-0.049)

85.349
(-0.658)

w/o both 97.592
(-0.061)

85.423
(-0.584)

Table 3: Ablation study. Where “w/o both” indicate
removing criteria classification and sentence representa-
tion tasks

To prove that learning semantic knowledge en-
hances our model’s segmentation ability, we tried
MSE, cosine embedding, and loss function pro-
posed by Zhang et al. (2022) to learn the sentence
representation (See Table 4). MSE loss and cosine
embedding loss are used to keep the two hidden
representations we get from [CLS] token with dif-
ferent dropout masks similar. Additionally, we use
the loss function revised by Zhang et al. (2022)
to obtain better sentence embedding. No matter
which method we use for learning sentence repre-
sentation leads to improvement. The F1 score and
OOV recall are better than without the sentence
representation task. Therefore, we prove that learn-
ing representation helps the model segment input
sentence better. In the end, our model and the gold
label also show the same result as our analysis, but
the model that is not trained by sentence represen-
tation task cannot deliver the correct result.

Architecture Avg F1 score Avg OOV
recall

Ours 97.653
(+0.049)

86.007
(+0.658)

MSE loss 97.635
(+0.031)

85.838
(+0.489)

Cosine Emb loss 97.644
(+0.040)

85.624
(+0.275)

Zhang et al., 2022 97.627
(+0.023)

85.707
(+0.358)

w/o sentence repre-
sentation 97.604 85.349

Table 4: Performance of learning the sentence represen-
tation with different loss functions. (More details can
find in Appendix B)

4.5 Case Study
We have selected a sentence from the MSR dataset
and present the respective segmentations offered
by different models in Table 5. The character se-
quence "证券登记结算公司" can be interpreted
either as a single word or as a combination of in-
dividual components, namely that "证券 / 登记



Source Sentence

Original (input text) 上海、深圳证券交易所及其下属证券登记结算公司

Prediction (ours) and Gold
上海 /、 /深圳证券交易所 /及其 /下属 /证券 /登记 /结算 /公司
(Interpreted by GPT-4 : Shanghai and Shenzhen Stock Exchanges and
their affiliated securities registration and clearing companies)

Prediction (w/o sentence
representation)

上海 / 、 / 深圳证券交易所 / 及其 / 下属 / 证券登记结算公司
(Interpreted by GPT-4 : Shanghai and Shenzhen Stock Exchanges and
an affiliated company that offers the services of securities registration
and clearing)

Table 5: The sentence is picked from the MSR dataset, and our model can deliver the correct segmentation. In
contrast, the CWS model that did not train by the sentence representation task segmented the sentence with a wrong
comprehension.

/ 结算 / 公司." While the character sequence re-
mains unsegmented, the sequence’s interpretation
is "a company that offers the services of securities
registration." In contrast, the segmented representa-
tion conveys the meaning of "securities registration
and clearing companies." Based on the contextual
cues, the semantic of the segmented representation
must include all companies related to securities reg-
istration and clearing. Therefore, the segmented
sequence is superior in meaning and interpretation.
In the end, our model and the gold label also show
the same result as our analysis, but the model that is
not trained by sentence representation task cannot
deliver the correct result.

5 Conclusion

In this paper, we introduce a novel training task
to CWS, achieving the SoTA F1 score and OOV
recall on several datasets. We then demonstrate
that learning sentence representation is more cru-
cial than adding criterion classification objective
function because our model can learn the criteria
differences during training in most cases. After
realizing each context, our model can also deliver
different results for a sequence of words with dif-
ferent contexts (More examples can be found in
Table 6). Finally, because our model is simple and
without any additional components, it can be eas-
ily utilized as a base model to finetune for specific
datasets when only a single criterion is required.
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Limitations

Several previous works did not release their code,
so we did not reproduce their experiment. Ke et al.,
2021; Huang et al., 2020a; Qiu et al., 2020; Huang
et al., 2020b also face the same problem. We re-
fer to previous comparison methods to compare
our results with previous works and surpass their
performance. Even though comparing the result
without reproducing other work’s experiments is
slightly unfair, we still inevitably do so in Table 1
and Table 2.
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A Segment Examples

We list another case in Table 6 to show that our
model can generate different segmentation results
according to the context.

B Loss for Learning Sentence
Representation

In this section, we list all the loss functions we used
for learning sentence representation. The MSE loss
is shown as:

LMSE =
1

N

N∑
i=1

(h0i − h+0i)
2. (7)

The cosine embedding loss is shown as:

Lcos =
1

N

N∑
i=1

(1− sim(h0i, h
+
0i)). (8)

N stands for the batch size. h0i and h+0i are the
hidden representation of the [CLS] token from
the same input text with different dropout masks.
sim(h0i, h

+
0i) represents the cosine similarity and

can be calculated as hT
0ih

+
0i

||h0i||·||h+
0i||

. These two loss
functions minimize the difference between the rep-
resentation of the input text with different dropout
masks and make the model realize these two input
texts have the same meaning.

The third loss function is based on contrastive
learning. It was proposed by Zhang et al. (2022) :

LArcCSE = − log
e
cos(θ

i,i+
+m)/τ

e
cos(θ

i,i+
+m)/τ

+
∑N

j=1,i ̸=j e
cos(θi,j)/τ

,

(9)

where m is viewed as a decision boundary between
a positive pair and a negative pair. θi,j is the angle
between two hidden representation hi and hj . θi,j
can be calculated as :

θi,j = arccos(
hTi hj

||hi|| · ||hj ||
) (10)

By adding a decision boundary, the model can dis-
tinguish positive pairs and negative pairs more pre-
cisely.

C Significance Test

We use the t-test to demonstrate that our model’s
performance surpasses the previous SoTA and
show the results in Table 7 and 8.
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Original Sentence Segmentation Results from Our Model
请小心使用,不要用坏了 请-小心-使用-,-不要-用坏-了

不要用坏了,别间厕所才可以正常使用 不要-用-坏-了-,-别-间-厕所-才-可以-正常-使用

Table 6: An example shows that our model can segment sentences according to the context. The hyphen ”-“ denotes
segmentation.

Experiments Seed AS CIT CNC CTB6 MSR PKU SXU UD ZX Avg.9

Ours

927 96.81 98.16 97.41 97.93 98.39 96.94 97.82 98.30 97.12 97.653
1564 96.74 98.17 97.44 97.89 98.34 96.97 97.79 98.31 97.09 97.637
7849 96.76 98.09 97.42 97.93 98.37 96.93 97.71 98.39 97.07 97.630
8453 96.72 98.09 97.45 97.98 98.45 96.99 97.74 98.30 97.04 97.639
9416 96.75 98.25 97.44 97.86 98.37 96.97 97.70 98.22 97.09 97.628
Avg 96.756 98.152 97.432 97.918 98.384 96.960 97.752 98.304 97.082 97.6374
Std 0.030 0.059 0.014 0.041 0.037 0.022 0.046 0.054 0.026 0.0088

Table 7: F1 score of 5 different trials. Seed: Random seed we used in the experiment. Avg.9: Average among nine
datasets. Avg: Average OOV recall among 5 trials. Std: Standard deviation among 5 trials. We use t-test to show
that our method can produce better results than previous SoTA statistically. (Based on the result of our trails, we
perform a one-tailed t-test with the hypothesis that our average F1 score ≤ the previous SoTA F1 score, and the
calculated t-value is approximately 15.279. With a significance level of α = 0.05 and degrees of freedom 4, the
critical value is 2.776. Since the t-value exceeds the critical value, we reject the null hypothesis and conclude that
our method is significantly better than the previous SoTA.)

Experiments Seed AS CIT CNC CTB6 MSR PKU SXU UD ZX Avg.9

Ours

927 81.27 91.83 66.28 91.95 89.20 83.77 88.00 93.54 88.23 86.007
1564 80.36 91.83 66.20 91.63 88.04 83.77 87.33 93.81 87.29 85.584
7849 80.44 91.61 65.95 91.51 88.24 83.75 87.03 94.35 87.38 85.584
8453 80.11 91.35 66.10 91.54 88.00 84.34 87.86 94.08 86.88 85.584
9416 80.42 92.37 66.32 91.34 88.41 83.36 87.15 93.34 87.96 85.630
Avg 80.520 91.798 66.170 91.594 88.378 83.798 87.474 93.824 87.547 85.6778
Std 0.393 0.336 0.133 0.201 0.437 0.313 0.387 0.363 0.485 0.1656

Table 8: OOV recall of 5 different trials. Seed: Random seed we used in the experiment. Avg.9: Average among
nine datasets. Avg: Average OOV recall among 5 trials. Std: Standard deviation among 5 trials. We use t-test to
show that our method can produce better results than previous SoTA statistically. (Based on the result of our trails,
we perform a one-tailed t-test with the hypothesis that our average OOV recall ≤ the previous SoTA OOV recall,
and the calculated t-value is approximately 23.638. With a significance level of α = 0.05 and degrees of freedom 4,
the critical value is 2.776. Since the t-value exceeds the critical value, we reject the null hypothesis, and conclude
that our method is significantly better than the previous SoTA.)


