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ABSTRACT

Out-of-distribution (OOD) detection is an anomaly-handling mechanism, for
which classification systems should detect outliers with true labels outside
the label space, distinguishing them from normal in-distribution (ID) data.
Advanced works suggest that gradient information preserves sufficient cues
to indicate the confidence of being OOD. However, we discover previous
gradient-based detection methods suffer from limited effectiveness mainly due
to over-parameterization. As gradient-based OOD scores derive from the over-
parameterized weight space, a widely recognized cause for the suboptimal OOD
detection performance, there are also some gradient components which lack nec-
essary information, thereby impairing the performance in OOD detection. This
observation motivates us to propose gradient rectification (GradRect), using fisher
information matrix to correct gradients in directions that are uninformative to dis-
cern the distribution change. Moreover, we connect GradRect with classical the-
ories in identifying influential observations, verifying that model fine-tuning with
outlier exposure can further improve GradRect. We conduct extensive experi-
ments on various OOD detection setups, revealing the power of GradRect against
state-of-the-art counterparts.

1 INTRODUCTION

Deep classification systems often encounter out-of-distribution (OOD) data whose true labels are not
in the label space, and in such a situation classifiers cannot make right predictions as in-distribution
(ID) data. This kind of phenomenon can lead to devastating results for many high-risk decision
making applications (Li & Wechsler, 2005; Du et al., 2022; Shen et al., 2021). To address this issue,
OOD detection aims to detect OOD cases to avoid making wrong predictions (Hendrycks & Gimpel,
2016; Liu et al., 2020; Sun et al., 2022; Djurisic et al., 2022), which can remarkably improve the
reliability of deep learning in the open world (Wang et al., 2023).

OOD detection remains a challenging task, mainly owing to the calibration failures for modern deep
models (Guo et al., 2017; Lee et al., 2018)—a well-trained ID classifier can make arbitrary-high soft-
max confidence on OOD data, making it unreliable in OOD detection. Accordingly, post-hoc OOD
detection (Liu et al., 2020; Sun et al., 2022; Djurisic et al., 2022) aims at devising more accurate
OOD indicators, i.e. scoring functions, other than softmax confidence. Among them, gradient-based
scoring has received particular attentions (Huang et al., 2021; Igoe et al., 2022), which calculates
gradient magnitudes w.r.t. model parameters to detect OOD data. Generally, model parameters
should converge to local minimum for ID tasks with near-zero gradients after well training, while
not for OOD data. Hence, the gradient magnitudes should preserve sufficient information to separate
ID and OOD data, making gradient-based OOD detection a promising line of works.

Despite promising performance has been reported, these methods still exhibit certain limitations
in practical applications. Inspired by the concept that deep models are susceptible to over-
parameterization (Sun & Li, 2022; Djurisic et al., 2022), we clip GradNorm with varying percent-
ages of gradient based on magnitudes and report the results of some OOD datasets on common
CIFAR-100 and ImageNet benchmarks in Figure 1 (a) and (b). It is worth noting that on certain
OOD datasets, as the percentage of clipped components increases, the performance of GradNorm
has a slight improvement and then drop accordingly. This observation leads us to conjecture there
exist some uninformative components in gradient which are redundant and detrimental for OOD

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(c) (d)(b)(a)

Figure 1: Plots showing (a) the performance of GradNorm with different percentage of clipped
components on two OOD datasets (iNaturalist and SUN) of ImageNet-1k benchmark, (b) the per-
formance of GradNorm with different percentage of clipped components on two OOD datasets
(iSUN and Places365) of CIFAR-100 benchmark, (c) the performance of GradNorm and our method
GradRect on ImageNet-1k benchmark, (d) the performance of GradNorm and our method GradRect
on CIFAR-100 benchmark. (c) and (d) shows our GradRect achieves better and more stable perfor-
mance than GradNorm.

detection. Even though simply clipping gradient based on magnitude indeed enhances performance
on certain OOD datasets, this approach is impractical under common scenarios due to its case-
sensitivity and the requirement for additional, subtle parameter-tuning operations. It may inadver-
tently discard crucial information for distinguishing between ID and OOD data.

To address this deficiency, this paper proposes gradient rectification (GradRect), a novel gradient-
based scoring function which can rectify the original gradient information to more informative direc-
tions for OOD detection. GradRect rectifies original gradient based on the fisher information matrix

(FIM) (Amari et al., 2019), which quantifies the amount of information carried for each direction in
the gradient space. By multiplying gradient features with the inverse of the FIM, the adverse effects
of uninformative component will be eliminated and the rectified gradients will align to directions
that are more informative for OOD detection in the gradient space, leading to more effective and
stable results on OOD detection than previous methods.

Theoretically, FIM equals to the average Hessian matrix on ID tasks under mild assumptions when
using cross entropy loss as the objective for gradient calculation (Karakida et al., 2019). Then, the
expression of GradRect is the magnitude of the influence function given the particular input (Koh
& Liang, 2017), which estimates its effect on model predictions. Such a connection lead to two
benefits. (1) We can interpret GradRect from the perspective in identifying influential observations:
fitting OOD data has much larger influence on model parameters than ID ones, and thus influence
function (and GradRect, equivalently) can effectively discern ID and OOD data. (2) We can justify
that outlier exposure (Hendrycks et al., 2018), a particular fine-tuning approach, can further enhance
GradRect: making ID (OOD) data with small (large) loss values will shrink (enlarge) the observing
influence of ID (OOD) data, thus better separating GradRect and improving OOD detection.

We conduct experiments and establish superior performance on common OOD detection bench-
marks, including classical CIFAR (Krizhevsky et al., 2009) and challenging ImageNet (Deng et al.,
2009) benchmarks. Extensive evaluations show that our GradRect not only achieves superior per-
formance over advanced OOD detection methods, but also exhibits greater stability across diverse
tasks and backbones than previous gradient-based methods as shown in Figure 1 (c) and (d). More-
over, we perform ablation study among diverse backbone models and tasks, further demonstrating
the stability of our method. We summarize our key contributions into four folds as follows:

• We offer new insights to make gradient-based scoring function more reliable in OOD de-
tection and present the FIM as a useful tool to estimate the amount of information gradient
carried in each direction w.r.t. the parameter space.

• We propose GradRect, which corrects original gradients to more stable and reliable di-
rections through the FIM. Our proposed method compensates the drawbacks of instability
compared to previous gradient-based detection methods in literature. We hope our method
can draw further attention on exploiting gradients for OOD detection.

• Comprehensive experiments are carried out and show the superior performance of
GradRect on various OOD detection benchmarks. Extensive experiments demonstrate the
performance stability of GradRect on various model architectures and tasks.
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• Theoretical interpretation is provided from the lens of classic influence function, explaining
the basic mechanism behind GradRect. Inspired by this, we present that our GradRect can
be combined with fine-tuning procedures, which further enhance the performance.

2 PRELIMINARIES

We begin by introducing necessary notations. Denote X ✓ Rd the input space and Y = {1, 2, ..., C}

the label space, where d is the input dimension and C is the number of classes. Then, we discern
the ID joint distribution PXIYI

over X ⇥ Y and the OOD distribution PXO
over X . Therein, true

labels of OOD data (i.e., xO ⇠ PXO
) are not in Y , which are not predictable for the close-world

models. Additionally, we possess a predictor f✓ : X ! RC (i.e., logit outputs) parameterized by ✓,
typically trained on ID data that are i.i.d. drawn from PXIYI

to make correct predictions.

Out-of-distribution Detection. During test, we may encounter a mixed distribution PX of ID and
OOD, defined as PX = ↵PXI

+ (1 � ↵)PXO
with ↵ 2 (0, 1) a mixing parameter. We typically

employ the scoring function S : X ! R to detect OOD data from ID ones: if S(x) is larger than
a threshold ⌧ , we will take the corresponding x as an ID case; otherwise an OOD case. Then, the
question is how to find proper scoring functions for effective OOD detection.

Scoring Functions. We typically build the scoring functions upon our predictor f✓ . For example, as
a well-known baseline scoring function, maximum softmax prediction (MSP) (Hendrycks & Gimpel,
2016) takes the confidence of label predictions in discerning ID and OOD cases, namely,

sMSP(x;✓) = max
k

softmaxk f✓(x), (1)

where softmaxk denotes the k-th elements of softmax outputs. Although straightforward, later
works find that MSP often make mistakes in reality. Therefore, subsequent works focus on alleviat-
ing existing drawbacks for conventional MSP (Hendrycks & Gimpel, 2016) or proposing effective
designing criteria for new scoring strategies (Liang et al., 2018; Lee et al., 2018; Liu et al., 2020).

3 GRADIENT-BASED OOD DETECTION

As a promising designing criterion, many works (Liang et al., 2017; Huang et al., 2021) use gradi-
ent information, calculated by backward propagation, to design new scoring functions. Gradients
contain more information than outputs produced by forward propagation (Huang et al., 2021), po-
tentially making gradient-based methods a promising line of work towards effective OOD detection.

3.1 PREVIOUS METHOD: GRADNORM

As a seminal work in gradient-based OOD detection, the GradNorm (Huang et al., 2021) leverages
the gradient magnitudes in OOD scoring. It uses the Kullback-Leibler (KL) divergence between
the softmax outputs and the uniform distribution u = [1/C, 1/C, . . . , 1/C] 2 RC as the objective,
further calculating its gradients w.r.t. model parameters, namely,

sGN(x;✓) =
��@ KL(softmax(f✓(x))ku)

@ ✓

��
p
, (2)

where KL is the KL divergence. Intuitively, gradient magnitudes should be larger than that for OOD
data, for the reason where the models have trained to its minimum for ID cases, but not for OOD.

The GradNorm uses higher dimension features than conventional MSP as its inputs, thus containing
more information in discerning ID and OOD features and leading to the improved detection perfor-
mance. However, high dimension features also contain more components that are useless for OOD
detection, causing the unstable and less-than-optimal results of GradNorm across different tasks.
Therefore, we raise the following question: Can we rectify the gradient features to discard those

useless components to further improve gradient-based OOD detection?
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3.2 OUR METHOD: GRADRECT

To this end, we propose Gradient Rectification (GradRect), a novel gradient-based scoring strategy
that further rectifies gradient features to improve post-hoc OOD detection. Our key mechanism
relies on the Fisher information matrix (FIM) (Karakida et al., 2019), which is defined as follows.

Definition 1 (Fisher Information Matrix (FIM)) Considering the model f✓ and the data distri-

bution PXY , the fisher information matrix of f✓ w.r.t. PXY is defined by

IPXY (✓) = Ex,y⇠PXY

@l

@✓

@l

@✓

>
, (3)

where l := log softmaxy f✓(x) denotes the log-likelihood.

As we can see, FIM is the covariance matrix for the derivative of the log-likelihood function, each
element measures the amount of information within model parameters carried for the task defined
by PXY (Karakida et al., 2019). FIM is commonly used to assess the uncertainty associated with
each parameter estimates, where a small magnitude of FIM in a direction indicates the associated
components possesses higher sensitivity in the network, and thus the estimation is less precise.

Using FIM. When ID data are used to estimate FIM, i.e., PXY = PXIYI
, and the gradients of

Kullback-Leibler (KL) divergence between the softmax outputs and a uniform distribution u =
[1/C, 1/C, . . . , 1/C] 2 RC is adopted for OOD scoring, the directions in the gradient space with
large magnitudes of FIM are more sensitive and less reliable in gradient-based OOD detection.
Hence, it makes FIM an effective tool to indicate the misleading gradient information. To utilize
FIM for gradient rectification, we suggest using FIM inverse for gradient rectification, following

I
�1

PXIYI

(✓) ⇤
@ KL(softmax(f✓(x))ku)

@ ✓
. (4)

The intuition that motivates equation 4 is quite simple: since IPXIYI
(✓) is symmetric and positive

definite, we have IPXIYI
(✓) = U⇤U�1 via eigen decomposition (Brouwer & Eisenberg, 2018),

with U the orthogonal matrix that constructs the basis for the gradient space and ⇤ a diagonal ma-
trix whose diagonal elements indicate the basis variance. Accordingly, for each basis component
ui in U , a large �i (i-th diagonal element in ⇤) indicates the gradient direction following ui is
less informative and thus should be neglected. As I�1

PXIYI

(✓) = U⇤�1U�1, equation 4 first trans-
forms the gradient vector @ log softmaxf✓(x)/@✓ into the basis space by multiplying U�1, then
concentrating on those directions that are more informative by multiplying ⇤�1, finally recovering
to the original gradient space by multiplying U . Therefore, using inverse FIM can correct gradient
features, concentrating on gradient directions that are more informative for OOD detection.

Estimating FIM. FIM is defined by the correlation matrix for model gradients, where the expec-
tation w.r.t. PXY should be estimated in practice. Fortunately, based on the law of large num-
bers (Judd, 1985), one can simply derive a consistent and unbiased estimator for IPXIYI

(✓) when
having N i.i.d. input-output pairs (x1, y1), ..., (xN , yN ), leading to the empirical FIM following

ÎPXIYI
(✓) =

1

N

NX

i=1

@li
@✓

@li
@✓T . (5)

To compute ÎPXIYI
(✓) in practice, we mitigate biases and outliers by selecting training data with

their confidence scores above a certain threshold, considering these data are well trained and repre-
sentative. Moreover, similar to previous works (Huang et al., 2021), we do not compute the gradients
w.r.t. all model parameters, instead considering only the last fully connected layer to save computa-
tion costs. Note that ÎPXIYI

(✓) and its inverse can be calculated in advance, thus without introducing
much additional computational costs when calculating GradRect.

GradRect Scoring. We now define our gradient-based scoring function that harnesses gradient
rectification as in equation 4. Therein, we estimate FIM via equation 5 and gradient magnitude for
OOD scoring following equation 2. To sum up, our GradRect scoring function is given by

sGradRect(x;✓) = kÎ
�1

PXIYI

(✓) ⇤
@ KL(softmax(f✓(x))ku)

@ ✓
kp, (6)
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where we use the Lp norm for rectified gradients as the scoring function. Following (Huang et al.,
2021), we assume p = 2 by default. For other choices of p, please refer to Appendix. By rectifying
original gradient based on FIM, we improves the separation of ID and OOD data, as shown in
Figure 3, thereby enhancing the performance of OOD detection. The overall framework of GradRect
is summarized in Figure 2.

3.3 OUTLIER EXPOSURE CAN IMPROVE GRADRECT

We have demonstrated that GradRect can be used for post-hoc OOD detection given a well-trained
ID classification model, while further improvement with model fine-tuning is also of our interest.
Specifically, we study if we can suggest a specific model training scheme, of which the resultant
model can further improve GradRect in OOD detection.

Outlier Exposure. We find that conventional outlier exposure (OE) (Hendrycks et al., 2019), which
originally aims at maximizing the MSP score, can already be used to improve GradRect. Overall,
OE makes the model learn to discern ID and OOD data by using the OOD distribution PXO

during
training. Specifically, OE adopts the learning objective as follows:

E(x,y)⇠PXIYI

� log softmaxy f✓(x) + �Ex⇠PXO
� KL(softmax(f✓(x))ku), (7)

where � is the trade-off parameter. The first term in equation 7 makes the model produce high
softmax confidence for ID data while the second term makes the model produce low softmax confi-
dence for OOD data. Although simple, OE remains one of the most effective fine-tuning scheme to
improve OOD detection, while the studies for gradient-based OOD scoring are limited.

Influence Function and GradRect. The key to demonstrate OE can improve GradRect is the link
between influence function and GradRect. In the context of machine learning, the influence function
is used to estimate the effect of individual training examples on a model’s predictions. It quantifies
the influence of each training example on the model’s output, which is defined as the change of
parameters ✓ when a training data z = (x, y) is upweighted by some small ✏, following:

✓z,✏ = argmin
✓

E(xi,yi)⇠PXIYI

� log softmaxyi f✓(xi)

+✏(� log softmaxy f✓(x)).
(8)

The classical statistical theorems (Ling, 1984) have told us that the influence of upweighting z on
the parameter ✓ is given by:

@✓z,✏
@✏

|✏=0= �H
�1

PXIYI

(✓) ⇤
@ log softmaxy f✓(x)

@✓
, (9)

where HPXIYI
(✓) is the Hessian matrix. Moreover, under certain regularity conditions (Lehmann

& Casella, 2006), we further have HPXIYI
(✓) = IPXIYI

(✓), which is exactly the rectified gradient
defined in equation 4. Thus, our GradRect can also be interpreted from the perspective in identifying
those influential observations w.r.t. the KL loss and ID data. Therefore, our GradRect can effectively
distinguish between ID and OOD cases.

Outlier Exposure and Influence Function. Note that equation 7 exactly maximizes the influence
function defined by equation 8. When equation 7 is minimized, the first term will encourage ID data
to have less influence on model parameters, since the model after OE can work well on the ID clas-
sification task. By contrast, the second term will encourage OOD data to have more influence w.r.t.

the ID classification task, since OOD data with any label in Y are not fitted by the model and will
change the model parameters a lot. Therefore, after OE training, the model can distinguish between
the influence of ID and OOD cases, improving GradRect in OOD detection due to equation 9.

4 EXPERIMENTS

We describe the experiment details in Section 4.1 including baseline models, pre-training setups
and evaluation metrics. Then, in Section 4.2, we report the superior performance of our GradRect
against state-of-the-arts on both the CIFAR (Krizhevsky et al., 2009) and the ImageNet (Deng et al.,
2009) benchmarks. In Section 4.3, we further conduct extensive ablation studies and more analysis.
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Gradient

KL Loss

OOD Score

Inverse of FIM (Eq.5)

GradNorm (Eq.2)

Our Method
GradRect (Eq.6)

×

⋯ ⋯⋯ ⋯

⋯⋯ ⋯⋯

Distribution of gradient

Distribution of rectified gradient

⋯ ⋯⋯ ⋯Rectified gradient

ID data

OOD data

⋯ ⋯⋯ ⋯

Last FC layer Forward propagation
Backward propagation

Calculation of GradNorm score
Calculation of GradRect score

Pre-trained model

Figure 2: Illustration of our framework using GradRect for OOD detection. Our GradRect rectifies
the original gradient from the last fully connected (FC) layer based on FIM. After rectification, the
adverse effect of uninformative components in gradient is eliminated, resulting in stronger separa-
bility between ID and OOD data.

4.1 IMPLEMENTATION DETAILS

Baseline Methods. We compare our GradRect with advanced methods in OOD detection. We
mainly consider baseline methods which can be directly applied to the pre-trained model. We com-
pare GradRect with seven recent post-hoc OOD detection methods, namely MSP (Hendrycks &
Gimpel, 2016), ODIN (Liang et al., 2018), Mahalanobis (Lee et al., 2018), Energy (Liu et al.,
2020), DICE (Sun & Li, 2022), ReAct (Sun et al., 2021), and GradNorm (Huang et al., 2021).
As stated in 3.3, our method can combine with other fine-tuning methods to further improve the
performance. For fair comparison, we select six advanced methods which need retraining the model
to compare, including SSD+ (Sehwag et al., 2021), methods that use an auxiliary outlier dataset
but randomly select outliers during training, namely OE (Hendrycks et al., 2018), CSI (Tack et al.,
2020), SOFL (Mohseni et al., 2020), CCU (Meinke & Hein, 2019), and methods involving outlier
mining, namely NTOM (Chen et al., 2021) and POEM (Ming et al., 2022).

Pre-training Setups. We conduct experiments on the large-scale ImageNet (Deng et al., 2009) and
CIFAR (Krizhevsky et al., 2009) benchmarks. The large-scale ImageNet dataset is more challenging
than the traditional CIFAR benchmark, primarily due to the notably larger and more diverse image
space. For the ImageNet case, we select four testsets from subsets of iNaturalist (Van Horn et al.,
2018), SUN (Xu et al., 2015), Places365 (Zhou et al., 2017), and Texture (Cimpoi et al., 2014), which
are craft by (Huang & Li, 2021) with non-overlappping categories w.r.t. ImageNet. For the CIFAR
cases, we employ Texture (Cimpoi et al., 2014), SVHN (Netzer et al., 2011), Places365 (Zhou et al.,
2017), LSUN-Crop (Yu et al., 2015), LSUN-Resize (Yu et al., 2015), and iSUN (Xu et al., 2015).

In terms of models, we use the Google BiT-S (Kolesnikov et al., 2020) pretrained on ImageNet-
1k with ResNetv2-101 architecture (He et al., 2016) on the ImageNet case, and use a pretrained
DenseNet-101 architecture following the setting in Sun & Li (2022) on the CIFAR cases.

Evaluation Metrics. The OOD detection performance is evaluated via two common metrics, which
are both threshold-independent (Davis & Goadrich, 2006): the false positive rate of OOD data when
the true positive rate of ID data is at 95% (FPR95); and the area under the receiver operating

characteristic curve (AUROC), which is the probability of ID case having greater score than OOD,
depicting the relationship between true positive rate and false positive rate.

4.2 RESULTS

We present the main results on ImageNet and CIFAR benchmarks.
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Table 1: Comparison in OOD detection on the ImageNet benchmark. Baseline methods include
post-hoc methods. # (or ") indicates smaller (or larger) values are preferred. Bold font indicates the
best results in a column.

Method iNaturalist SUN Places Texture Average
FPR95 # AUROC " FPR95 # AUROC " FPR95 # AUROC " FPR95 # AUROC " FPR95 # AUROC "

MSP (Hendrycks & Gimpel, 2016) 63.69 87.59 79.89 78.34 81.44 76.76 82.73 74.45 76.96 79.29
ODIN (Liang et al., 2018) 62.69 89.36 71.67 83.92 76.27 80.67 81.31 76.30 72.99 82.56

Mahalanobis (Lee et al., 2018) 96.34 46.33 88.43 65.20 89.75 64.46 52.23 72.10 81.69 62.02
Energy (Liu et al., 2020) 64.91 88.48 65.33 85.32 73.02 81.37 80.87 75.79 71.03 82.74
ReAct (Sun et al., 2021) 49.97 89.80 65.30 87.40 73.12 85.34 80.82 70.53 67.30 83.27

GradNorm (Huang et al., 2021) 50.03 90.33 46.48 89.03 60.86 84.82 61.42 81.07 54.70 86.71

GradRect 38.56 92.53 46.35 89.55 58.44 84.82 44.96 88.62 47.08 88.88

4.2.1 IMAGENET BENCHMARK

The large-scale ImageNet benchmark can provide clues about model performance in real-world
applications due to its large semantic space with about 1k classes. In Table 1, we compare the
results of GradRect with advanced methods on ImageNet and report performance for each OOD test
dataset, as well as the average performance. GradRect achieves state-of-the-art performance on all
metrics, with 47.08% FPR95 and 88.88% AUROC. Compared to GradNorm (Huang et al., 2021),
GradRect improves the FPR95 by 7.62% and AUROC by 2.17%, demonstrating the effectiveness of
our method in large-scale applications.

Moreover, as visualized in Figure 3, by mitigating the influence of uninformative components in
gradient, our proposed GradRect score produces better distinguished distributions, validating the
effect of gradient rectification in OOD detection. It is worth noting that performance differences
exist among various OOD datasets. We believe that the reason behind this disparity lies in the
fact that for OOD datasets with distributions that are further away from the ID data, the gradient
information is less influenced by the quality of the model’s parameters .

It’s notable that there is the performance difference between various OOD datasets and we con-
sider the reason is that for those OOD datasets which have distribution more similar to ID data,
their gradient information is more affected by the quality of model’s parameters. Consequently, the
rectification can enhance performance more significantly.

4.2.2 CIFAR BENCHMARKS

Comparison with post-hoc methods. For both the CIFAR-10 and CIFAR-100 benchmarks, we
report the detection performance for the average of the six OOD datasets. As shown in Table 2, our
method GradRect can lead to more effective OOD detection performance than GradNorm and out-
performs most of the baselines considered. For example, on the CIFAR-100 benchmark, GradRect
improves the AUROC by 1.12% when compared to GradNorm and reduces the FPR95 by 7.52%
when compared to the previous best method DICE (Sun & Li, 2022), demonstrating the superiority
of our method on different OOD situations.

Comparison with fine-tuning methods. Considering the connection between influence function
and GradRect, methods that leverages auxiliary outlier data can further improve the performance of
GradRect as stated in Section 3.3. Therefore, we combine GradRect with the fine-tuning method in
POEM (Ming et al., 2022) and report results in Table 3. It is shown that GradRect can be significantly
improved via the combination with fine-tuning and outperforms previous fine-tuning approaches by
remarkable margins.

4.3 ABLATION STUDY

We now conduct ablation studies from various aspects to further improve our understandings.

Effect of alternative neural network architectures. To further investigate the effectiveness and
robustness of our method, we perform OOD detection on remaining two architectures, ResNet-50
and MobileNetV2, both of which are trained with ID data (ImageNet-1k) only. The results over
four datasets and the average of four are shown in Table 4. The accuracy on ID datasets, number
of parameters and improvement of GradRect compared to GradNorm (AUROC ") for ResNetv2-
101 is 75.19%, 44.5M and +2.17; for ResNet-50, it’s 76.13%, 26M and +0.99; for MobileNetV2,
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Table 2: Comparison in OOD detection on
the CIFAR benchmarks with post-hoc methods.
Bold font indicates the best results in a column.

Method CIFAR-10 CIFAR-100
FPR95 # AUROC " FPR95 # AUROC "

Post-hoc Approaches

MSP (Hendrycks & Gimpel, 2016) 48.73 92.46 80.13 74.36
ODIN (Liang et al., 2018) 24.57 93.71 58.14 84.49

Mahalanobis (Lee et al., 2018) 31.42 89.15 55.37 82.73
Energy (Liu et al., 2020) 26.55 94.57 68.45 81.19
ReAct (Sun et al., 2021) 26.45 94.95 62.27 84.47
DICE (Sun & Li, 2022) 20.83 95.24 49.72 87.23

GradNorm (Huang et al., 2021) 21.30 95.08 49.73 86.48
GradRect 19.78 95.41 42.20 87.60

Table 3: Comparison in OOD detection on the
CIFAR benchmarks with fine-tuning methods. †
denotes the method with fine-tuning. Bold font
indicates the best results in a column.

Method CIFAR-10 CIFAR-100
FPR95 # AUROC " FPR95 # AUROC "

Fine-tuning Approaches

SSD+ (Sehwag et al., 2021) 7.22 98.48 38.32 88.91
OE (Hendrycks et al., 2018) 9.66 98.34 19.54 94.93
SOFL (Mohseni et al., 2020) 5.41 98.98 19.32 96.32
CCU (Meinke & Hein, 2019) 8.78 98.41 19.27 95.02

NTOM (Chen et al., 2021) 4.38 99.08 19.96 96.29
POEM (Ming et al., 2022) 2.54 99.40 15.14 97.79

GradRect † 2.37 99.51 4.22 99.04

D
en
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ty

(b)GradRect

(a)GradNorm

D
en
si
ty

Figure 3: Plots showing the distribution of GradNorm and GradRect scores on ID (ImageNet) dataset
and four OOD datasets, which illustrates our GradRect applying rectification to gradient by FIM can
enhance the separation between ID and OOD data.

is 71.88%, 3.5M and +0.26. It is apparent that our score can gain comparable improvement on
various architectures. Additionally, the performance on different backbones is mainly influenced
by the model’s parameter quantity and accuracy. Before the model reaches the overfitting stage, the
gradient remains fluctuating and our method excels at mitigating the instability direction in gradient,
improving performance more effectively. However, as it approaches overfitting, gradient becomes
more uninformative and disordered, which is hard to rectify by a certain measurement. This explains
the performance difference between various architectures.

Effect of gradient of different parameters. In this ablation, we investigate several variants of
GradRect where the gradients are from different network layers. In line with GradNorm, we consider
gradients from four strategies (1) all parameters: all trainable parameters from all layers of the
network, (2) parameters from block n: all trainable parameters in the n-th block, (3) parameters
from the last layer: parameters from the last fully connected (FC) layer.

From the results in Table 5, we can get the similar conclusion as in GradNorm that the gradient
information from deeper layers can perform better on OOD detection than shallower layers, mainly
due to the reason that the gradients from deeper layers preserve more information of data thus can
be more effectively distinguish OOD data from ID data. It is noted that gradient from the last fully
connected layer yield the best performance and is computationally convenient in practice. Therefore,
we only leverage GradRect with gradient from the last FC layer in the experiments.

Effect of the proportion of rectified gradient. In this ablation, we investigate the impact of varying
the proportion of rectified gradient and present the corresponding results in Table 6. Remarkably, as
the proportion of the rectified component increases, a notable improvement in performance is ob-
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Table 4: Comparison of GradRect and advanced methods with different architectures on the Ima-
geNet benchmark. # (or ") indicates smaller (or larger) values are preferred. Bold font indicates the
best results in a column.

Structure Param. ID Acc. Method iNaturalist SUN Places Texture Average
FPR95 # AUROC " FPR95 # AUROC " FPR95 # AUROC " FPR95 # AUROC " FPR95 # AUROC "

ResNet-50 26M 76.13
Energy Liu et al. (2020) 55.72 89.95 59.26 85.89 64.92 82.86 53.72 85.99 58.41 86.17

GradNorm Huang et al. (2021) 44.10 89.37 44.10 90.38 56.50 85.67 51.10 88.78 48.95 88.55
GradRect 39.50 91.08 39.90 91.34 54.70 86.92 57.30 88.82 47.85 89.54

MobileNetV2 3.5M 71.88
Energy Liu et al. (2020) 59.50 88.91 62.65 84.50 69.37 81.19 58.05 85.03 62.39 84.91

GradNorm Huang et al. (2021) 35.90 91.81 45.50 90.30 57.70 86.13 38.90 91.98 44.50 90.05
GradRect 34.80 91.94 44.30 90.95 54.70 86.24 38.30 92.22 43.03 90.31

Table 5: Effect of gradient from different part
of parameters (ResNetv2-101 on ImageNet-1k).
The results show gradient norm derived from
deeper layers yield better performance.

Gradient Space FPR95 # AUROC "
Block1 72.95 77.02
Block2 70.46 79.51
Block3 67.93 80.85
Block4 61.86 86.46

All Params 67.89 82.37
Last Layer Params 47.08 88.88

Table 6: Effect of the proportion of rectified gra-
dient on ImageNet-1k benchmark. � denotes
the improvement. The result highlights the ef-
fectiveness of gradient rectification.

Proportion FPR95 # AUROC " � FPR95 # � AUROC "

No Rect. 54.70 86.71 - -
0.01 51.92 87.56 -2.78 +0.85
0.05 49.67 88.64 -5.03 +1.93
0.1 47.08 88.88 -7.62 +2.17
0.3 46.73 89.10 -7.97 +2.39
0.5 45.95 89.10 -8.75 +2.39
0.9 46.20 89.11 -8.5 +2.40
all 45.90 89.08 -8.8 +2.37

served. This progressive enhancement in performance serves as compelling evidence to substantiate
the effectiveness of gradient rectification in effectively discriminating between ID and OOD data.

Effect of rectified gradient in optimization. Our method also has relationship with natural gradi-
ent descent in optimization which can be seen as a type of 2nd-order optimization method. Through
multiplying gradient with FIM, natural gradient descent works by performing a local quadratic ap-
proximation to the objective around the current iterate and can make much more progress given a
limited iteration budget compared to traditional stochastic gradient descent Martens (2020). A toy
example of loss function is shown in Fig 4, from which we can observe gradient rectified by FIM
gains rapid exploration of low-curvature directions and thus faster convergence in optimization.

5 RELATED WORK

In this section, we briefly review the related works in OOD detection and influence function.

OOD Detection. In real-world deployment, neural network need to figure OOD data which have
non-overlapping label space with training data instead of giving wrong predictions, which gives rise
to the importance of OOD detection. The phenomenon of the overconfidence in OOD data in neural
network is first revealed in Nguyen et al. (2015). To solve this problem, a plethora of algorithms
designed for the detection of OOD data have been proposed.

Based on whether the model needs to be fine-tuned, existing algorithms can be roughly categorized
into two types, post-hoc methods and fine-tuning methods. The post-hoc methods aim to detect OOD
data without additional training procedures and could be directly applied to any pre-trained models.
A main stream of work in this category is to devise a scoring function based on the intermediate or
the final output of the model, such as OpenMax score Bendale & Boult (2015), Maximum Softmax
Probability Hendrycks & Gimpel (2016), ODIN score Liang et al. (2017), Energy score Liu et al.
(2020); Lin et al. (2021); Wang et al. (2021), Activation rectification (ReAct) Sun et al. (2021), and
ViM score Wang et al. (2022). Another line of work focus on exploiting feature space to discern
OOD data, including Mahalanobis distance-based score Lee et al. (2018), non-parametric KNN-
based score Sun et al. (2022). The concept of utilizing gradient information to assist OOD detection
is first introduced by ODIN score Liang et al. (2017). Their method involves a pre-processing
which adds perturbations derived from gradient to input data, increasing the distinction between the
softmax scores of ID data and OOD data and resulting in better performance. More recently, Huang
et al. Huang et al. (2021) proposed to design scoring function based on gradient norms, which
is motivated by the observation that ID and OOD data tend to exhibit different gradient patterns

9
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(b)Gradient on contour plot(a)Gradient on surface plot

Figure 4: The surface and the contour plots of a toy example of loss function, which shows the
difference between the gradient and the gradient after rectification of optimization. After rectified
by FIM, the gradient is deviating from the directions with large fisher information values, which can
be reflected in the optimization progress on the loss surface. With a fixed learning rate and update
schemes, the optimization of rectified gradient can achieve faster convergence Martens (2020).

when processed by a pre-trained model. The gradient-based approaches have significant untapped
potential that remains largely unexplored.

In terms of the fine-tuning methods, they typically leverage auxiliary outlier datasets for a retraining
process and apply specific regularization techniques to the model therein. For example, models are
encouraged to give less confidence predictions Hendrycks & Gimpel (2016); Lee et al. (2018) or
higher energies for auxiliary outlier data. Recent advances in this branch mainly include improving
the efficiency of leveraging auxiliary outlier data through outlier mining Chen et al. (2021); Ming
et al. (2022) and virtual outlier samples synthesizing Du et al. (2022); Lee et al. (2017). Note that,
the scope of this paper mainly focuses on post-hoc methods, superior over fine-tuning methods of
being easy to use and general applicability without modifying the training objective. The latter
property is especially desirable for the adoption of OOD detection methods in real-world production
environments, when the overhead cost of retraining can be prohibitive.

Influence Function. Influence function is a classic method from the robust statistics literature which
aims at estimating the effect of removing an individual training point on a model’s parameters and
corresponding predictions without the cost of retraining the model Hampel (1974); Cook (1977).
The main concept of influence function is to study the impact on models through the lens of their
training data. Prior work mainly study influence function on linear models and recently it gains
attention in machine learning and can be efficiently approximated based on second-order optimiza-
tion techniques Agarwal et al. (2016); Koh & Liang (2017). There is a wide range of application
for influence function, such as explaining predictions Koh & Liang (2017), investigating model
bias Brunet et al. (2019); Wang et al. (2019), detecting adversarial attacks Cohen et al. (2020) and
OOD generalization problem Ye et al. (2021).

6 CONCLUSION

OOD detection is a important but challenging problem. We have proposed a relatively simple post-
hoc OOD detection method based on rectified gradient. Specifically, we correct gradient to the
directions which are more informative based on fisher information to discern the distribution dif-
ference between ID and OOD data most. We conduct a variety of ablation tests and verify our
effectiveness. Additionally, we analyze the experimental results thus gain insights into the underly-
ing reasons behind the results.

Our method gives new state-of-the-art detection results on large-scale out-of-distribution settings
without requiring access to anything other than the training data itself. In the future, we will ex-
plore the usage scenarios of FIM for other scoring strategies and fine-tuning approaches in OOD
detection.
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