
Published as a conference paper at ICLR 2024

GENERATIVE LEARNING FOR FINANCIAL TIME SERIES
WITH IRREGULAR AND SCALE-INVARIANT PATTERNS
IN MEMORY OF PROF. DUAN LI

Hongbin Huang, Minghua Chen∗, and Xiao Qiao∗

School of Data Science, City University of Hong Kong
hongbin.huang@my.cityu.edu.hk,{minghua.chen,xiaoqiao}@cityu.edu.hk

ABSTRACT

Limited data availability poses a major obstacle in training deep learning models
for financial applications. Synthesizing financial time series to augment real-world
data is challenging due to the irregular and scale-invariant patterns uniquely
associated with financial time series - temporal dynamics that repeat with varying
duration and magnitude. Such dynamics cannot be captured by existing approaches
which often assume regularity and uniformity in the underlying data. We develop a
novel generative framework called FTS-Diffusion that consists of three modules
to model irregular and scale-invariant patterns. First, we present a scale-invariant
pattern recognition algorithm to extract recurring patterns that vary in duration
and magnitude. Second, we construct a diffusion-based generative network to
synthesize segments of patterns. Third, we model the temporal evolution of patterns
in order to aggregate the generated segments. Extensive experiments show that
FTS-Diffusion generates synthetic financial time series highly resembling observed
data, outperforming state-of-the-art alternatives. Two downstream experiments
demonstrate that augmenting real-world data with synthetic data generated by
FTS-Diffusion reduces the error of stock market prediction by up to 17.9%. To the
best of our knowledge, this is the first work on generating intricate time series with
irregular and scale-invariant patterns, addressing data limitation issues in finance.

1 INTRODUCTION

Researchers in financial economics have demonstrated intriguing potential for deep learning to solve
complex problems in financial settings (Qin et al., 2017; Xu & Cohen, 2018; Wu et al., 2020; Manzo
& Qiao, 2020; Huang & Li, 2021). However, a dearth of data and the low signal-to-noise ratio nature
of financial data pose major obstacles that hinder the further development of deep learning in finance.
Unlike the sciences, finance researchers cannot run experiments to obtain more data, so financial
time series are limited by their existing history. Additionally, price and return data are subject to high
levels of noise, making it even more challenging to extract useful information from a limited dataset.
Deep learning models trained on insufficient data are prone to overfitting and cannot be expected to
perform reliably on unseen data.

To alleviate data scarcity, data augmentation techniques can be employed. Generative models that
capture the properties of the underlying data-generating process would produce synthetic data that
resemble observed data. Recently, deep generative modeling, especially generative adversarial net-
works (GAN) (Goodfellow et al., 2014) and diffusion models (Ho et al., 2020), has made remarkable
progress in multiple domains including image synthesis, reinforcement learning, and anomaly detec-
tion1. They have also been applied to time series settings such as medical records, audio synthesis,
power systems, and networked systems2. Despite these advances, modeling financial time series
poses unique challenges that complicate the task and render existing models ineffective.

∗Corresponding authors: Minghua Chen and Xiao Qiao.
1Papers on images include Zhu et al. (2017), Turkoglu et al. (2019), Dhariwal & Nichol (2021), and Rombach

et al. (2022). Reinforcement learning works include Yu et al. (2017), Janner et al. (2022), and Eysenbach et al.
(2022). Anomaly detection studies include Zenati et al. (2018) and Akcay et al. (2019).

2Medical: Esteban et al. (2017), Che et al. (2017), and etc.Audio: Kong et al. (2021), Leng et al. (2022), and
etc. Power systems: Zhang et al. (2018) and Chen et al. (2018). Networked systems: Lin et al. (2020).

1



Published as a conference paper at ICLR 2024

(a) S&P 500

0 2 4
Seconds

0.5

0.0

0.5

1.0

SV
1 

(c
m

/m
V) ECG

(b) ECG

0 50 100 150
Hours

0

2500

5000

7500

So
la

r (
M

W
h)

Week1
Week2
Week3
Week4
Week5

(c) Solar Generation

0 50 100 150
Hours

30000

40000

Po
w

er
 (M

W
h)

Week1
Week2
Week3
Week4
Week5

(d) Power Consumption

Figure 1: Time-series data of (a) S&P 500 price (finance), (b) ECG (medical), (c) solar generation
(renewable energy), and (d) power consumption (smart grid). Unlike other time-series data with
explicit patterns, financial time series expresses complex patterns that are irregular and scale-invariant.

The time series studied in the extant literature of deep generative learning tend to exhibit some
regularity. Patterns identified in these data appear at fixed or predictable increments in calendar
time (e.g., heartbeats in ECG). Time series data that contain such regular patterns are amenable to
modeling, as they allow the extraction of highly correlated features from similar repeating patterns.
Although conceptually straightforward, identifying recurring patterns in financial time series proves
difficult due to a lack of regularity. Instead, financial time series appear to contain more subtle patterns
that repeat themselves with varying duration and magnitude, a quality we refer to as scale-invariance.
Irregularity and scale-invariance are hallmarks of financial time series that complicate their modeling
and the synthesis of additional data. We illustrate these two properties in Fig. 1 by comparing the
S&P 500 Index, a broad basket of U.S. stocks, to several regular series. The three regular series
exhibit clear and consistent patterns that align with calendar time. In contrast, we do not observe neat
patterns that adhere to a fixed frequency for the S&P 500. Instead, we can observe similar patterns
(red and green circles) that exhibit scale-invariance. These patterns keep their basic shape but are
shifted or stretched compared to each other3. The unique properties of financial time series make data
synthesis a significantly more challenging task compared to that of well-behaved data. Effective time
series data generation considering irregularity and scale-invariance remains largely an open problem.

To address this problem, we deconstruct financial time series generation into a three-prong process:
(i) pattern recognition to identify irregular and scale-invariant patterns, (ii) generation to synthesize
segments of patterns, and (iii) evolution to connect the generated segments into a complete time
series. We propose a new generative framework, FTS-Diffusion to accomplish the pattern recognition-
generation-evolution process. We find that FTS-Diffusion is capable of generating synthetic financial
time series that closely resemble observed data. We make the following contributions:

▷ We identify and define two properties of financial time series: irregularity and scale-invariance
(see Sec. 3). We present a novel FTS-Diffusion framework to model time series data exhibiting these
properties. To the best of our knowledge, this is the first framework capable of generating challenging
time series data that contain irregularity and scale-invariance. FTS-Diffusion may also be applied to
other domains with data exhibiting similar properties.

▷ The unique architecture of FTS-Diffusion is designed to handle irregularity and scale-invariance.
There are three modules. The pattern recognition module is based on a new scale-invariant subse-
quence clustering (SISC) algorithm (Sec. 4.1). By incorporating dynamic time warping (DTW), SISC
is able to accurately identify and separate irregular and scale-invariance patterns. The generation
module consists of a diffusion-based network to synthesize the scale-invariant segments conditional
on the patterns learned by SISC (Sec. 4.2). The evolution module is made up of a pattern transi-
tion network that produces the temporal evolution of consecutive patterns, capturing the dynamic
relationship among them (Sec. 4.3).

▷ We demonstrate the effectiveness of FTS-Diffusion in capturing real-world financial data and we
illustrate the value of the generated data for downstream applications (Sec. 5). Patterns identified
by FTS-Diffusion can be cross-verified with financial domain knowledge (Lo et al., 2000), and
experimental results from three real-world datasets show that FTS-Diffusion generates the most
realistic financial time series among several alternative models. We explore the usage of the generated
data for the downstream task of predicting stock prices. Augmenting limited real-world data with
synthetic samples from FTS-Diffusion reduces the predictive error by up to 17.9% across the datasets.

3For more details, Appendix A provides an in-depth discussion on the properties of financial time series.

2



Published as a conference paper at ICLR 2024

Repeating at a fixed frequency Repeating at irregular frequencies 

(a) Irregularity v.s. Regularity

Repeating with varying scales Repeating with specific scales
Pattern 1 match

match

(b) Scale-Invariance v.s. Scale-Dependence

Figure 2: (a) Irregular patterns with indeterminate recurrence intervals vs. regular patterns repeated
at a fixed frequency. (b) Scale-invariant patterns showing similarity after proper duration/magnitude
scaling vs. scale-dependent patterns showing similarity given specific duration or magnitude.

These results shed light on the capability of FTS-Diffusion to improve the accuracy and reliability of
deep learning models in financial applications. Codes are available in supplementary materials.

2 RELATED WORK

Advances in deep generative modeling have shown promise to generate time series data in various
problem domains, particularly using VAEs-, GANs-, and diffusion-based models. We discuss the
most relevant works in this section.

TimeVAE (Desai et al., 2021) presents a VAE-based framework to model the trend and seasonality in
time series. RCGAN (Esteban et al., 2017) and MV-GAN (Brophy, 2020) use GANs for learning
medical records. Several GAN variants are employed to model time series in power systems (Zhang
et al., 2018; Chen et al., 2018). TimeGAN (Yoon et al., 2019) develops a general framework to
embed time-series data into a latent space with an autoencoder network and subsequently learn the
latent representation with GANs. QuantGAN (Wiese et al., 2020) provides a GAN-based network to
capture long-range dependencies in financial time series under the volatility-innovation decomposition.
CSDI (Tashiro et al., 2021) proposes a score-based diffusion model primarily designed for imputation,
with an unconditional variant that can be also used for time series generation. DiffWave (Kong et al.,
2021) and BinauralGrad (Leng et al., 2022) generate waveform time series with diffusion models.

The above approaches can model time series with regular patterns but struggle with more complex
series characterized by irregularity and scale-invariance, central features in financial time series.
The identification of latent patterns in financial time series is challenging, and it is difficult for a
generative model without auxiliary information to distinguish between these diverse distributions. In
our study, we decompose the financial time series generation into a pattern recognition-generation-
evolution process, enabling better modeling of the irregular and scale-invariant properties. In addition,
diffusion probabilistic models have been shown to achieve better quality and training stability than the
classical GAN and VAE models (Dhariwal & Nichol, 2021; Wang et al., 2021). Hence, we design our
generative model leveraging the denoising diffusion probabilistic model (DDPM) (Ho et al., 2020).

3 PROBLEM STATEMENT

3.1 UNIQUE CHARACTERISTICS OF FINANCIAL TIME SERIES

The irregular and scale-invariant patterns in financial time series are difficult for existing models that
assume regularity and uniformity to capture. Fig. 2 illustrates these repeating temporal dynamics with
non-deterministic intervals and varying duration and magnitudes. The typical technique of dividing
time series into fixed-interval segments in existing approaches is likely to result in a snapshot of
either a fraction of a pattern or a mixture of multiple patterns.

We propose a novel framework to model irregular and scale-invariant time series. A time series
X = {x1, . . . ,xM} consists of M segments, xm = {xm,1, . . . , xm,tm}. The length of the entire
time series is T =

∑M
m=1 tm. xm is sampled from a conditional distribution f(·|p, α, β) dependent

on the pattern p ∈ P , whose duration is scaled by α and magnitude scaled by β. This way, xm

will be statistically similar to its underlying pattern p while allowing for adjustments in duration
and magnitude. To model the dynamics across patterns, we employ a Markov chain. Each tuple
(p, α, β) is a state, and the state transition probabilities Q(pj , αj , βj |pi, αi, βi) describe the stochastic

3



Published as a conference paper at ICLR 2024

𝜽SISC

Time Series 𝑿 Patterns 𝑃 Synthetic Subsequence 𝑥#

𝝓
Segmentation 𝑆

Pattern Recognition Module Pattern Generation Module

Synthetic Time Series 𝑋#

Next Pattern 𝒑
Duration 𝛼
Magnitude 𝛽

Sampling

Pattern Evolution Module

Figure 3: The architecture of our proposed FTS-Diffusion. The pattern recognition module identifies
the scale-invariant patterns within the entire financial time series using our proposed SISC algorithm.
Subsequently, the pattern generation module synthesizes the segments with a diffusion-based network
conditioned on the patterns. Finally, the pattern evolution module connects the generated segments to
construct a synthetic financial time series following the transition between consecutive patterns.

transition from one pattern to the next. Our setup is reminiscent of applications of the Markov
property in financial time series (Dueker, 1997; Bai & Wang, 2011; Somani et al., 2014). The novelty
in our approach is that we use a Markov model to capture the transition of three specific aspects of
the time series: pattern, duration, and magnitude, whereas existing work attempts to recover some
unspecified latent properties of a time series.

3.2 PROBLEM STATEMENT

We seek to operationalize the structure laid out in Sec. 3.1. When faced with a time series, we have
no knowledge of the segments {xm}Mm=1, the set of scale-invariant patterns P , or the scaling factors
α and β that transform a reference pattern into its more realistic counterpart. We also do not know
the transition probabilities Q(pj , αj , βj |pi, αi, βi). Our goal is to develop a data-driven framework
to accomplish the following:

• (Pattern Recognition) identify the patterns and learn the recurrent structures P , and group
segments into clusters according to their corresponding patterns p ∈ P;

• (Pattern Generation) learn the distribution f(·|p, α, β), ∀p ∈ P;

• (Pattern Evolution) learn the pattern transition probabilities Q(pj , αj , βj |pi, αi, βi).

The three components above allow us to generate financial time series by (i) determining the allocation
of patterns using the pattern transition probabilities, and (ii) generating each segment from the
corresponding pattern with the appropriate duration and magnitude scaling factors. Our three-pronged
framework dedicated to identifying and modeling the irregular and scale-invariant patterns observed
in financial time series is the first of its kind in the literature.

4 OUR PROPOSED FTS-DIFFUSION FRAMEWORK

In this section, we present our FTS-Diffusion framework. Fig. 3 provides an illustration. FTS-
Diffusion consists of three components: a pattern recognition module, a pattern generation module,
and a pattern evolution module. Next, we introduce each module and how they work together.

4.1 PATTERN RECOGNITION: IDENTIFYING IRREGULAR AND SCALE-INVARIANT PATTERNS

We propose a novel Scale-Invariant Subsequence Clustering (SISC) algorithm to partition the entire
financial time series into segments of variable lengths and group them into K distinct clusters. The
segments within the same cluster exhibit similar shapes after proper scaling in duration and magnitude.
The centroid of each cluster then represents a scale-invariant pattern in the financial time series.

The idea is similar to the traditional K-Means clustering (Hartigan & Wong, 1979), which primarily
clusters segments of identical length and thus falls short in our context due to its inability to handle

4



Published as a conference paper at ICLR 2024

compare 
𝐾 centroids…

𝑙!"# 𝑙!$%

…

𝒙! 𝒙" 𝒙# 𝒙$ segment here

argmin
!∈[!&'(,!&)*]

𝑑(𝑿𝒕:𝒕'𝒍, 𝒑)

candidate
lengths

(a) Pattern Recognition

E

D

Diffusion
noise 𝒙!" represent. 𝒙!#

segment 𝒙!

reconstruct. 𝒙"!fixed

varied

varied

(b) Pattern Generation

Markov chain

(𝑝!, 𝛼!, 𝛽!) (𝑝!"#, 𝛼!"#, 𝛽!"#)
… …

(c) Pattern Evolution

Figure 4: Key designs in each module of our FTS-Diffusion: (a) pattern recognition module: SISC
greedy segmentation; (b) pattern generation module: the pattern-conditioned diffusion network paired
with the scaling autoencoder; (c) pattern evolution module: Markov transition.

segments of varying lengths and magnitudes. Instead of separating the entire time series into equal-
length segments as is commonly done, we adaptively determine the optimal segment lengths through a
simple yet effective greedy segmentation strategy. Specifically, as illustrated in Fig. 4(a), we compare
the segments of candidate lengths l ∈ [lmin, lmax] with the cluster centroids within a normalized
space at each evaluated position t =

∑m−1
τ=0 tτ . The length l∗ that minimizes the distance to the

nearest centroid is considered the optimal segmentation for the current segment xm = Xt:t+l∗ , i.e.,

l∗ = argmin
l∈[lmin,lmax]

d(Xt:t+l,p), ∀p ∈ P. (1)

The first key component in our design is a distance metric d(·, ·) that is robust to varying lengths
and magnitudes and hence properly measures the difference between subsequences. Classical
metrics, such as Euclidean distance, fail to provide accurate measurements due to their limitations
in comparing variable-length sequences. In contrast, we employ dynamic time warping (DTW) to
calculate the minimum distance across all pointwise alignments between two segments:

DTW (x,y) := min
A∈A

⟨A,∆(x,y)⟩, (2)

where A denotes the alignment between two sequences in the set of all possible alignments A, and
∆(x, y) = [δ(xi, yj)]ij is the pointwise distance matrix between two normalized sequences x and y.
It well-suits our purpose to identify similarities in segments with similar shapes but varying duration
and magnitudes. With the DTW metric as d(·, ·), we apply the greedy segmentation strategy from the
start to the end of the time series. Upon completing the greedy segmentation across the entire time
series, we proceed with the standard K-means clustering process. Each segment is assigned to the
nearest centroid, then the centroids are updated based on current cluster assignments. This process
iterates until cluster assignments stabilize or a pre-determined number of iterations is reached.

The second key component in our design is the initialization of the cluster centroids. The random
initialization typically used in standard clustering methods often yields suboptimal results. To alleviate
this issue, we design a wise initialization for more informed initial centroids. Our initialization begins
by randomly selecting one segment from all available segments of a pre-specified length, which could
be either the minimum or maximum length in practice, to serve as the first centroid. Afterward, we
choose the subsequent centroids from the rest, with the selection weight being proportional to their
distances to the closest centroid within the chosen set. This means that segments located farther from
their nearest centroid have a higher probability of being the next choice. We repeat this process until
K centroids have been initialized. This method ensures a diverse set of centroids spreading across
the data space, promoting an efficient start of our SISC algorithm.

We highlight that our SISC algorithm is the first in the literature designed to identify scale-invariant
patterns. The computational complexity of SISC is O(TKlmax), which is linear to the length of the
entire time series. The pseudo-code of SISC and the selection of parameters, such as the range of
segment lengths and the number of clusters K, are detailed in Appendix B.1. The learned patterns are
cross-validated with the technical patterns in the financial literature (Lo et al., 2000) in Appendix B.2.
To better verify the effectiveness of our proposed SISC algorithm, we conduct a thorough investigation
using simulated time series data in Appendix B.3.

5



Published as a conference paper at ICLR 2024

4.2 PATTERN GENERATION: LEARNING PATTERN-CONDITIONED TEMPORAL DYNAMICS

We develop a pattern generation module, θ in Fig. 3, to synthesize the segments of patterns. The
goal is to generate new segments that mimic the temporal dynamics within the observed segments.
Considering the financial time series as a collection of scale-invariant patterns, the data-generating
process can be interpreted as capturing the distribution of the reference patterns and transforming
them with proper scales in duration and magnitude. Accordingly, we instantiate this data-generating
process using two dedicated networks for the two tasks, as discussed below.

The first network is the scaling autoencoder (AE) for learning the transformation between variable-
length segments x and fixed-length representations x0, after we capture the reference pattern repre-
sentation using the pattern-conditioned diffusion network. The encoder of the scaling AE stretches
the variable-length segments into fixed-length representations that align with the dimension of refer-
ence patterns. The decoder, on the other hand, is responsible for reconstructing the variable-length
segments from the fixed-length representations.

The second network is the pattern-conditioned diffusion network for simulating a diffusion-denoising
process - perturbing the pattern representations gradually by adding noise over N steps (diffusion) and
removing the noise to gradually recover the original representation (denoising). The diffusion process
is achieved by a pre-specified procedure of incrementally adding Gaussian noise step by step, while
the denoising process is approximated by a neural network that learns the removing noise at each step,
i.e., the denoising gradient. Approximating the stepwise denoising gradients is equivalent to learning
the mapping from a latent Gaussian space to the pattern space. Consequently, given a Gaussian
noise, we can generate a pattern representation. The continuous nature of the Gaussian space implies
that we can sample an infinite amount of Gaussian noise and produce corresponding new pattern
representations. We build our diffusion network based on the denoising diffusion probabilistic model
(DDPM) (Ho et al., 2020)4. In detail, we apply the following diffusion process at each step i to
corrupt the representation into noise:

q(xi|xi−1) = N (xi;
√
1− β(xi−1 − p), βI), (3)

where β represents the magnitude of the segments. Thereafter, we design a conditional denoising
process that recovers the target segments from a prior Gaussian noise conditioned on the reference
patterns over the reversed N steps:

pθ(x
i−1|xi) = N (xi−1;µθ(x

i, i,p), βI), (4)
where µθ is proportional to ϵθ representing the neural network that learns the denoising gradient
at each step (see Appendix C.1). Note that the superscript i denotes the step in the diffusion and
denoising process.

We jointly train the pattern-conditioned diffusion network and the scaling AE using the standard
supervised learning with the segments identified in Sec. 4.1 as training data. As depicted in Fig. 4(b),
the observed segments are encoded and perturbed to noise by the encoder in the scaling AE and the
diffusion process in the pattern-conditioned diffusion network. The generation process, marked with
dashed arrows, reverses this by denoising and decoding the segments from noise through the denoising
process in our diffusion network and the decoder in scaling AE. During this process, we must ensure
that (i) the diffusion and denoising gradients are consistent at each step, and (ii) the reconstruction
successfully reproduces the observed segments. Therefore, the objective contains the reconstruction
loss between the observed and reconstructed segments for the scaling AE and the unweighted variant
of the variational lower bound (ELBO) (Ho et al., 2020) for the pattern-conditioned diffusion network:

L(θ) = Exm [∥xm − x̂m∥22] + Ex0
m,i,ϵ[∥ϵi − ϵθ(x

i
m, i,p)∥22], (5)

where ϵi is the noise added in the corresponding diffusion process at step i.

During the generation phase, new segments can be created by exclusively applying the denoising
process in the pattern-conditioned diffusion network and the decoder in the scaling AE.

4.3 PATTERN EVOLUTION: LEARNING THE TRANSITION BETWEEN CONSECUTIVE PATTERNS

As mentioned in Sec. 3.1, we model the transition states (encompassing patterns, lengths, and
magnitudes) between consecutive generated segments using a Markov chain. Once the transition

4We present the preliminary of DDPM and our network structures in Appendix C.1 and C.2, respectively.

6



Published as a conference paper at ICLR 2024

states are determined, we obtain an evolution series of patterns, somehow addressing the irregularity
in the financial time series. This ensures that the consecutive generated segments maintain the
essential temporal correlations observed in real-world financial data. To capture the Markov-chain
modeled temporal dynamics across patterns, we introduce a pattern evolution network ϕ, with the
network structure in AppendixD.1, to learn the temporal evolution of the states between consecutive
segments5. More specifically, the network learns the probability of the next pattern along with its
corresponding length and magnitude, given the current state (because of the Markov property):

(p̂m+1, α̂m+1, β̂m+1) = ϕ(pm, αm, βm), (6)

where (p̂m+1, α̂m+1, β̂m+1) denotes the next pattern and its scales in length and magnitude.

The pattern evolution network is trained to optimize the following objective:

L(ϕ) = Exm
[ℓCE(pm+1, p̂m+1) + ∥αm+1 − α̂m+1∥22 + ∥βm+1 − β̂m+1∥22], (7)

where ℓCE(·, ·) represents the cross-entropy.

4.4 PUTTING EVERYTHING TOGETHER: SYNTHESIZING ENTIRE FINANCIAL TIME SERIES

We regard patterns as the basic building blocks of generation. Accordingly, FTS-Diffusion produces
synthetic time series on a pattern-by-pattern basis.

Given an initial segment sampled from the historical data, it generates the successive segments by
employing the pattern generation module and the pattern evolution module iteratively, as outlined
in Algorithm 2 in Appendix D.2. At each position m, the pattern evolution network predicts the
next pattern pm+1, its length-scaling factor αm+1, and magnitude-scaling factor βm+1. With these
states, the pattern generation module generates the next segment xm+1. The synthetic time series
then grows as more segments are generated and appended. This procedure is repeated until the entire
time series reaches the desired total length.

5 NUMERICAL EXPERIMENTS

We conduct numerical experiments to evaluate the performance of our FTS-Diffusion compared with
alternatives, i.e., whether the generated data resemble real data and are useful for downstream tasks.

5.1 DATA AND EXPERIMENTAL SETTING

0.05 0.00 0.05
Returns

0

25

50

De
ns

ity Real
Gaussian

2.5 0.0 2.5
Theoretical

5

0

5

Sa
m

pl
e

1e 2

0 50
Days

0.0

0.5

1.0

Au
to

co
rr.

0.05 0.00 0.05
Returns

0

20

40

De
ns

ity Generated
Gaussian

2.5 0.0 2.5
Theoretical

5

0

5

Sa
m

pl
e

1e 2

0 50
Days

0.0

0.5

1.0

Au
to

co
rr.

Figure 5: Stylized facts of real and generated S&P
500 over 10 years: the heavy-tailed distribution
(fat tails compared to the Gaussian in density and
QQ-plot, the first two columns) and decaying auto-
correlations in absolute return (the last column).

We run experiments on three different types
of financial assets with varying characteristics:
the Standard and Poor’s 500 index (S&P 500),
the stock price of Google (GOOG), and the
corn futures traded on the Chicago Board of
Trade (ZC=F). Detailed data settings are given
in Appendix E.1. In finance, it is known that
the raw asset prices follow a non-stationary
random walk and are not well-behaved for
statistical models. Instead, the returns, i.e.,
closing price changes in consecutive time in-
tervals, remain relatively constant statistical
properties (such as mean and variance) over
time. Thus, we compare the return series
generated by FTS-Diffusion to those by repre-
sentative baselines: RCGAN (Esteban et al.,
2017), TimeGAN (Yoon et al., 2019), and
CSDI (Tashiro et al., 2021), whose details are in Appendix E.2.

5We do not estimate transitions using traditional Markov models. Our NN-based approach avoids unwieldy
transition matrices, generalizes well to unseen scenarios, and handles non-linear dependencies adeptly.

7



Published as a conference paper at ICLR 2024

Table 1: Generated return distributions compared to observed data. The KS and AD statistics are
floored/capped at 0/1 and 0.01/0.25, respectively. A higher value indicates better goodness of fit.
Variation in the test statistic across multiple runs is shown with a +/- range.

S&P500 GOOG ZC=F
Model KS AD KS AD KS AD

RCGAN .189±.006 .073±.004 .185±.006 .068±.004 .179±.006 .065±.005

TimeGAN .293±.004 .115±.006 .288±.007 .108±.005 .287±.007 .103±.005

CSDI (Generative) .168±.003 .069±.002 .156±.004 .067±.003 .157±.003 .065±.003

FTS-Diffusion .327±.003 .128±.003 .324±.004 .119±.002 .325±.003 .121±.003

5.2 PROPERTIES OF THE SYNTHETIC TIME SERIES

The synthetic financial time series should inherit the stylized facts (Cont, 2001; Barberis & Shleifer,
2003) of asset returns, and resemble the distribution of observed data to a high degree of fidelity.

Stylized facts of financial time series. The empirical properties of financial time series have
been studied extensively in the literature, which is often referred to as stylized facts (Cont, 2001;
Barberis & Shleifer, 2003). The empirical studies reveal that asset returns have heavy tails, and the
autocorrelation of absolute returns decays slowly over time. We assess whether the synthetic time
series adhere to these stylized facts in Fig. 5. Indeed, the synthetic series exhibit significant heavy
tails in their distribution and gradual decay in the autocorrelation of absolute returns, conforming to
the aforementioned stylized facts. These results suggest that our approach is capable of generating
synthetic financial time series that preserve the essential properties of observed data.

Distribution comparison. We also evaluate the discrepancy between the distribution of the synthetic
time series and that of observed data, using the Kolmogorov–Smirnov (KS) test and the Ander-
son–Darling (AD) test as evaluation metrics. These tests estimate the goodness of fit between the
synthesized distribution and the distribution of actual returns. For both tests, a larger test statistic
indicates a higher degree of similarity between the distributions. The KS test is more sensitive to
differences in the center of the distribution, whereas the AD test is more aware of the tails of the
distribution. Table 1 demonstrates that our FTS-Diffusion learns a quantitatively closer distribution
to the observed data, compared to other baselines. This result further confirms the efficacy of our
approach in generating financial time series that resemble the observed data. More quantitative results
using other metrics are included in Appendix E.3.

5.3 DOWNSTREAM PREDICTION ANALYSIS OF THE SYNTHETIC TIME SERIES

We expand “Training on Synthetic, Test on Real” (Esteban et al., 2017; Jordon et al., 2018) and design
two new settings to evaluate the usefulness of the synthetic data for downstream tasks. Specifically,
we focus on the task of prediction and implement an LSTM-based downstream predictive model.
This structure is a prevalent choice in the literature (Yoon et al., 2019; Jeon et al., 2022; Remlinger
et al., 2022). The downstream model is employed to predict the next data point in the series, using the
64 previous historical values as input (see Appendix E.4 for the additional five-day ahead prediction).
We compute the mean absolute percentage error (MAPE) averaged over multiple runs.

Training on Mixture, Test on Real (TMTR). In this setting, we train the downstream predictive
model on a dataset that combines observed and synthetic data in different proportions. For instance, a
dataset with a mixing proportion of (30%, 70%) would be composed of 30% of data sampled from
the observed data and 70% of data synthesized by the generative model. We test the predictive model
on the test set sampled from the observed data which had not been seen by the generative model.
If the synthetic data resemble the observed data, the predictive power of the downstream model
trained on datasets with different mixing proportions should remain similar. Fig. 6(a) shows the
results of the TMTR experiment for the one-day forecast on the three assets. The predictive accuracy
is remarkably consistent across all mixing proportions, when synthetic data are generated using
FTS-Diffusion. In comparison, the predictive accuracy deteriorates (large MAPEs) as the proportion
of observed data decreases, when synthetic data are generated using RCGAN, TimeGAN, or CSDI.

8



Published as a conference paper at ICLR 2024

0 25 50 75
Syn. Proportion (%)

0.05

0.10

S&
P 

50
0 FTS-Diffusion

TimeGAN
RCGAN
CSDI

0 25 50 75
Syn. Proportion (%)

0.05

0.10

GO
O

G

FTS-Diffusion
TimeGAN
RCGAN
CSDI

0 25 50 75
Syn. Proportion (%)

0.050

0.075

0.100

ZC
=

F

FTS-Diffusion
TimeGAN
RCGAN
CSDI

(a) TMTR

10000 20000
Augmented Size

0.05

0.10

S&
P5

00

FTS-Diffusion

10000 20000
Augmented Size

0.05

0.10 RCGAN

10000 20000
Augmented Size

0.05

0.10 TimeGAN

10000 20000
Augmented Size

0.05

0.10 CSDI

10000 20000
Augmented Size

0.05

0.10

GO
OG

10000 20000
Augmented Size

0.05

0.10

10000 20000
Augmented Size

0.05

0.10

10000 20000
Augmented Size

0.05

0.10

10000 20000
Augmented Size

0.05

0.10

ZC
=F

10000 20000
Augmented Size

0.05

0.10

10000 20000
Augmented Size

0.05

0.10

10000 20000
Augmented Size

0.05

0.10

(b) TATR

Figure 6: Prediction errors of the downstream model trained under the TMTR and TATR settings.
Our FTS-diffusion maintains a comparable level of prediction accuracy across all mixing proportions
of synthetic data and reduces the prediction errors by augmenting the observed dataset. Solid lines
and shaded bands in each subfigure represent the average error and the 95% confidence interval over
multiple runs, respectively. Dashed lines in each TATR test mark the initial prediction errors.

Thus, FTS-Diffusion is capable of generating synthetic time series sufficiently similar to actual data
to uphold the performance of a downstream prediction task, whereas other models cannot.

Training on Augmentation, Test on Real (TATR). We initialize the training set with limited observed
data. We then iteratively append additional synthetic data and evaluate the resulting performance
of the downstream predictive model for a one-day ahead forecast. The results in Fig. 6(b) show a
clear downward trend in the prediction error as more synthetic data from FTS-Diffusion is added to
the training set. Appending 100 years of synthetic data reduces the MAPE by 17.9%, 15.3%, and
17.4% on the three assets, respectively. In contrast, the prediction error either increases or largely
remains the same when synthetic data are generated by other baselines. These results indicate that
FTS-Diffusion can effectively alleviate the problem of data shortage by augmenting the training set
with sufficient synthetic samples. Supplementary experiments are provided in Appendix E.

6 CONCLUDING REMARK

We present FTS-Diffusion, a generative framework, for synthesizing financial time series with
irregular and scale-invariant patterns. We break down the challenging financial time series generation
into a pattern recognition-generation-evolution scheme. To facilitate this process, we design three
dedicated modules: (i) a pattern recognition module leveraging our proposed SISC algorithm carefully
designed to identify these patterns, (ii) a pattern generation module using a diffusion-based network
to synthesize the segments of patterns, and (iii) a pattern evolution network to assemble generated
segments with proper temporal evolution between consecutive patterns. Experimental results confirm
the effectiveness of FTS-Diffusion in synthesizing financial time series that resemble observed data
in distribution and their usefulness for downstream tasks. To the best of our knowledge, this is the
first work in generating intricate yet crucial time series that encompass irregular and scale-invariant
patterns, holding the potential for diverse applications across domains beyond finance.

This work offers a new perspective on complex (financial) time series generation from its irregular
and scale-invariant properties. A promising direction for future research would be to extend our work
to more challenging problem settings, e.g., the multivariate modeling that encompasses interactive
dependencies across multiple time series. Our approach can handle potential distribution shifts arising
from changes in the number of patterns, and an extension may be able to address shifts in transitions
between patterns. One could also strengthen the theoretical and empirical guarantee of the generation
quality. We leave these ideas for future research.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

The authors wish to dedicate this work to the memory of Prof. Duan Li, whose insights and guidance
have been instrumental to the early stage of this work.

This work is supported in part by General Research Funds from Research Grants Council, Hong
Kong (Project No. 11200223, 21500422, and 11500823), an InnoHK initiative, The Government of
the HKSAR, Laboratory for AI-Powered Financial Technologies, and a Shenzhen-Hong Kong-Macau
Science & Technology Project (Category C, Project No. SGDX20220530111203026). The authors
would also like to thank Mark Huang, Blair Hull, Ray Iwanowski, Alexander James, Carrie Wang, Qi
Wu, Hao Pan, and the anonymous reviewers for their helpful comments.

REFERENCES

Samet Akcay, Amir Atapour-Abarghouei, and Toby P Breckon. Ganomaly: Semi-supervised anomaly
detection via adversarial training. In Computer Vision–ACCV 2018: 14th Asian Conference on
Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers, Part III 14, pp.
622–637. Springer, 2019.

Jushan Bai and Peng Wang. Conditional markov chain and its application in economic time series
analysis. Journal of applied econometrics, 26(5):715–734, 2011.

Nicholas Barberis and Andrei Shleifer. Style investing. Journal of financial Economics, 68(2):
161–199, 2003.

Eoin Brophy. Synthesis of dependent multichannel ecg using generative adversarial networks. In
Proceedings of the 29th ACM international conference on information & knowledge management,
pp. 3229–3232, 2020.

Zhengping Che, Yu Cheng, Shuangfei Zhai, Zhaonan Sun, and Yan Liu. Boosting deep learning
risk prediction with generative adversarial networks for electronic health records. In 2017 IEEE
International Conference on Data Mining (ICDM), pp. 787–792. IEEE, 2017.

Yize Chen, Yishen Wang, Daniel Kirschen, and Baosen Zhang. Model-free renewable scenario
generation using generative adversarial networks. IEEE Transactions on Power Systems, 33(3):
3265–3275, 2018.

Rama Cont. Empirical properties of asset returns: stylized facts and statistical issues. Quantitative
finance, 1(2):223, 2001.

Abhyuday Desai, Cynthia Freeman, Zuhui Wang, and Ian Beaver. Timevae: A variational auto-
encoder for multivariate time series generation. arXiv preprint arXiv:2111.08095, 2021.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34:8780–8794, 2021.

Michael J Dueker. Markov switching in garch processes and mean-reverting stock-market volatility.
Journal of Business & Economic Statistics, 15(1):26–34, 1997.

Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued (medical) time series
generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633, 2017.

Benjamin Eysenbach, Alexander Khazatsky, Sergey Levine, and Russ R Salakhutdinov. Mismatched
no more: Joint model-policy optimization for model-based rl. Advances in Neural Information
Processing Systems, 35:23230–23243, 2022.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algorithm. Journal
of the royal statistical society. series c (applied statistics), 28(1):100–108, 1979.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

10



Published as a conference paper at ICLR 2024

Xin Huang and Duan Li. A two-level reinforcement learning algorithm for ambiguous mean-variance
portfolio selection problem. In Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence, pp. 4527–4533, 2021.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 9902–9915. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.press/v162/janner22a.html.

Jinsung Jeon, Jeonghak Kim, Haryong Song, Seunghyeon Cho, and Noseong Park. Gt-gan: General
purpose time series synthesis with generative adversarial networks. Advances in Neural Information
Processing Systems, 35:36999–37010, 2022.

James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. PATE-GAN: Generating synthetic data
with differential privacy guarantees. In International conference on learning representations, 2018.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=a-xFK8Ymz5J.

Yichong Leng, Zehua Chen, Junliang Guo, Haohe Liu, Jiawei Chen, Xu Tan, Danilo Mandic, Lei
He, Xiangyang Li, Tao Qin, et al. Binauralgrad: A two-stage conditional diffusion probabilistic
model for binaural audio synthesis. Advances in Neural Information Processing Systems, 35:
23689–23700, 2022.

Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. Using gans for sharing networked
time series data: Challenges, initial promise, and open questions. In Proceedings of the ACM
Internet Measurement Conference, pp. 464–483, 2020.

Andrew W Lo, Harry Mamaysky, and Jiang Wang. Foundations of technical analysis: Computational
algorithms, statistical inference, and empirical implementation. The journal of finance, 55(4):
1705–1765, 2000.

Gerardo Manzo and Xiao Qiao. Deep learning credit risk modeling. Forthcoming Journal of Fixed
Income, 2020.

Yao Qin, Dongjin Song, Haifeng Cheng, Wei Cheng, Guofei Jiang, and Garrison W Cottrell. A
dual-stage attention-based recurrent neural network for time series prediction. In Proceedings of
the 26th International Joint Conference on Artificial Intelligence, pp. 2627–2633, 2017.

Carl Remlinger, Joseph Mikael, and Romuald Elie. Conditional loss and deep euler scheme for time
series generation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
8098–8105, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022.

Poonam Somani, Shreyas Talele, and Suraj Sawant. Stock market prediction using hidden markov
model. In 2014 IEEE 7th joint international information technology and artificial intelligence
conference, pp. 89–92. IEEE, 2014.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based diffu-
sion models for probabilistic time series imputation. Advances in Neural Information Processing
Systems, 34:24804–24816, 2021.

Robert L Thorndike. Who belongs in the family? Psychometrika, 18(4):267–276, 1953.

Mehmet Ozgur Turkoglu, William Thong, Luuk Spreeuwers, and Berkay Kicanaoglu. A layer-based
sequential framework for scene generation with gans. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pp. 8901–8908, 2019.

11

https://proceedings.mlr.press/v162/janner22a.html
https://openreview.net/forum?id=a-xFK8Ymz5J


Published as a conference paper at ICLR 2024

Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, and Can Yang. Deep generative learning via
schrödinger bridge. In International Conference on Machine Learning, pp. 10794–10804. PMLR,
2021.

Magnus Wiese, Robert Knobloch, Ralf Korn, and Peter Kretschmer. Quant gans: Deep generation of
financial time series. Quantitative Finance, 20(9):1419–1440, 2020.

Hanwei Wu, Ather Gattami, and Markus Flierl. Conditional mutual information-based contrastive
loss for financial time series forecasting. In Proceedings of the First ACM International Conference
on AI in Finance, pp. 1–7, 2020.

Yumo Xu and Shay B Cohen. Stock movement prediction from tweets and historical prices. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 1970–1979, 2018.

Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative adversarial networks.
In Proceedings of the 33rd International Conference on Neural Information Processing Systems,
pp. 5508–5518, 2019.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets
with policy gradient. In Proceedings of the AAAI conference on artificial intelligence, volume 31,
2017.

Houssam Zenati, Manon Romain, Chuan-Sheng Foo, Bruno Lecouat, and Vijay Chandrasekhar.
Adversarially learned anomaly detection. In 2018 IEEE International conference on data mining
(ICDM), pp. 727–736. IEEE, 2018.

Chi Zhang, Sanmukh R Kuppannagari, Rajgopal Kannan, and Viktor K Prasanna. Generative
adversarial network for synthetic time series data generation in smart grids. In 2018 IEEE
International Conference on Communications, Control, and Computing Technologies for Smart
Grids (SmartGridComm), pp. 1–6. IEEE, 2018.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223–2232, 2017.

12



Published as a conference paper at ICLR 2024

A FURTHER COMPARISON OF FINANCIAL TIME SERIES AND OTHER
REGULAR SERIES

As discussed in Sec. 1, financial time series exhibit a more complex distribution than other time
series. In particular, the inherent patterns in financial time series are irregular and scale-invariant.
We have thoroughly discussed the scale-invariance in Sec. 1 and 4. To better illustrate the irregular
property of financial time series, we display the distributions of financial time series and other time
series sampled at different frequencies by ridge plots as Figure 7. Financial time series clearly exhibit
distinct distributions for each month in 2022, as well as for each year spanning from 2017 to 2021. In
contrast, other time series show similar distributions regardless of different sampling frequencies.
The results exemplify that the distributions of the subsequences in financial time series tend to be
diverse over time, reflecting the irregular property.

3500 4000 4500 5000

Distribution of S&P500 Price in 2022

1
2
3
4
5
6
7
8
9

10
11
12

(a) S&P500 Monthly
1 0 1 2

Distribution of 5 ECG Records (20s)

1
2
3
4
5

(b) ECG 20s
0 2500 5000 7500

Distribution of Solar Generation in 5 Weeks

1
2
3
4
5

(c) Solar Weekly
0 20000 40000

Distribution of Power Consumption in 5 Weeks

1
2
3
4
5

(d) Power Weekly

2000 3000 4000 5000

Distribution of S&P500 Price 2017-2021

2017
2018
2019
2020
2021

(e) S&P500 Yearly
1 0 1 2

Distribution of 5 ECG Records (60s)

1
2
3
4
5

(f) ECG 60s
0 5000 10000

Distribution of Solar Generation in 5 Months

1
2
3
4
5

(g) Solar Monthly
0 20000 40000

Distribution of Power Consumption in 5 Months

1
2
3
4
5

(h) Power Monthly

Figure 7: Distributions of time series sampled with different frequencies: (a,e) S&P500 (finance),
(b,f) ECG (medical), (c,g) solar generation (renewable), and (d,h) power consumption (smart grid).
Financial time series, such as S&P 500, exhibit different distributions sampled at different frequencies.
Whereas, the distributions of other time series are similar regardless of the sampling frequency,
respectively.

B MORE INFORMATION ABOUT OUR PATTERN RECOGNITION MODULE

B.1 SUPPLEMENTARY TECHNICAL DETAILS OF OUR SISC ALGORITHM

The pseudo-code of our SISC algorithm is presented as Algorithm 1. As introduced in Sec. 4.1,
SISC is performed with two main stages, (i) initializing the cluster centroids (Cluster Initialization
in Algorithm 1) and (ii) segmenting and clustering the subsequences into K clusters using a greedy
strategy (Greedy Segmentation and Clustering in Algorithm 1).

In numerical experiments in Sec. 5, leveraging domain knowledge in finance, we set the minimum
and maximum segment lengths as 10 and 21, respectively, focusing on the atom-like short-term
patterns commonly observed (Lo et al., 2000). Applying the elbow method (Thorndike, 1953), we
empirically determine the K’s for three financial assets, which are 14, 11, and 11, respectively.

B.2 VERIFICATION OF LEARNED PATTERNS WITH PREDEFINED COUNTERPARTS IN FINANCE

Employing the pattern recognition module, we successfully learn patterns in financial time series in a
data-driven manner. The majority of the learned patterns are consistent with predefined ones with
particular shapes and formulaic definitions from technical analysis (Lo et al., 2000). Table 2 presents
the consistent patterns along with their terminologies from technical analysis. The learned pattern,
as shown in the first row and second column of Table 2, completely coincides with the classical
Inverse Head-and-Shoulders (IHS) via visual observation. Despite some sight noise, the other learned
patterns exhibit similar shapes to the predefined ones. Surprisingly, the learned patterns are sensitive

13



Published as a conference paper at ICLR 2024

Algorithm 1 SISC Algorithm
Require: Time series X , pre-determined number of clusters K, minimum and maximum subse-

quence length lmin,lmax, maximum iterations max iters
1: P ← ∅
2: Prepare candidate centroids {Xt:t+lmax}

T−lmax
t=0

3: Randomly select the first centroid p0 from the candidates
4: P.append(p0)
5: while P.size < K do ▷ Cluster Initialization
6: Compute the distance to the nearest chosen centroid for each remaining candidate
7: Set the probability of each candidate proportional to the above distance
8: Randomly select the next centroid pk with the above probability
9: P.append(pk)

10: end while
11: iter ← 0
12: while iter < max iters do ▷ Greedy Segmentation and clustering
13: S ← ∅
14: t← 0
15: while t < T do
16: l∗ ← argminl∈[lmin,lmax] DTW (Xt:t+l,p),∀p ∈ P
17: S.append(l∗)
18: t← t+ l∗

19: end while
20: iter ← iter + 1
21: Update P
22: end while
23: Return P,S

to minor changes in temporal dynamics. For instance, the Descending Rectangle (DR), the last one
in the second column, is slightly different in its trend. Our pattern recognition module is capable
of distinguishing such slight differences. This cross-verification indicates that the unsupervised
algorithm is able to identify genuine recurring patterns and significantly raises the level of confidence
in our data-driven approach.

Moreover, we have revealed some intriguing findings. Our pattern recognition module focuses on
identifying the irregular and scale-invariant patterns in the financial time series, while technical
analysis defines the patterns as trading signals to forecast future trends. Therefore, if the future trend
predicted by technical analysis is exactly highly correlated with the predefined patterns, it is possible
for them to emerge together in our clustering. In other words, our learned patterns may incorporate
the future trend into the corresponding predefined patterns from technical analysis. As an example,
the Rectangle Top (RTOP), the last one in the first column indicates a decreasing future trend in
technical analysis, and our result covers such a declining curve. This provides new insights into
technical analysis, by revealing patterns that combine the trading signal with future trends.

However, not all learned patterns match predefined patterns. We are faced with the dilemma of
whether to include these unmatched patterns in data generation. As we will show later, downstream
experiments reveal the benefit of including unmatched patterns. While there is a long tradition of
technical analysis, the predefined patterns rely on human identification. The unmatched patterns are
likely capturing important components of financial data, yet too nuanced for humans to see.

B.3 INVESTIGATION WITH SIMULATED TIME SERIES DATA

In this investigation, we explore the capabilities of our pattern recognition module in detail, in
particular for the proposed SISC algorithm. To effectively demonstrate its functionality, we conduct a
series of experiments using various simulated time series data that we have manually created. These
simulated data comprise multiple scale-invariant patterns that we define, exhibiting varying lengths
and magnitudes. The key advantage of these simulated data is that we have full control over the
data-generating process. This control allows us to know the ground truth against which we can

14



Published as a conference paper at ICLR 2024

Table 2: Patterns learned by FTS-Diffusion are consistent with predefined ones from technical
analysis (Lo et al., 2000).

Terminology Standard Learned Terminology Standard Learned

Head&Shoulders (HS) Inverse Head&Shoulders (IHS)

Triangle Tops (TTOP) Triangle Bottoms (TBOT)

Double Tops (DTOP) Double Bottoms (DBOT)

Ascending Rectangle (AR) Descending Rectangle (DR)

Rectangle Top (RTOP)

compare and evaluate the model performance. Therefore, this setup enables us to rigorously evaluate
the module under a variety of controlled scenarios.

More specifically, we construct three distinct simulated time series, each being designed with different
configurations of recurring scale-invariant patterns. These configurations are as follows: (i) one
pattern only, and (ii) multiple patterns. For each configuration, we establish the corresponding
standard pattern(s). Subsequently, each pattern is transformed into diverse segments that maintain
similar shapes but exhibit varying lengths and magnitudes. This transformation involves stretching
the pattern to variable lengths and magnitudes as well as integrating a certain degree of noise. These
segments are then combined together to form an entire time series with a length of 10000 data points,
following a pre-specified transition between consecutive patterns. Consequently, we keep hold of full
control over the simulated time series, including the ground-truth patterns, the number of patterns,
the segmentations, and the transition states.

We assess the performances of our SISC algorithm on these simulated data from two primary
perspectives, whether it accurately learns the cluster centroids that represent the identified patterns
and whether it learns the correct segmentation relative to the ground truth. These also constitute the
key objectives of our pattern recognition module. The ground truth centroid of each cluster is the
barycenter of segments transformed from the same corresponding pattern. To quantitatively measure
the discrepancy between each centroid csisc learned by SISC and the ground truth creal, we design a
per-unit DTW error as DTW (creal, csisc)/L over a normalized space, where L denotes the length of
ground truth centroids. In this context, the normalized space implies that the magnitude of each point
in the centroid is rescaled to fall within the range of [0,1]. This metric describes the average deviation
per unit length between the learned centroid and the ground truth, as measured in the time-warped
space. A lower value suggests a higher degree of similarity between the learned centroid and the
ground truth. The upper bound of this metric is 1, which represents complete dissimilarity between
the learned and true centroids. For evaluating the segmentation, we utilize the Jaccard similarity
coefficient, also known as the Intersection over Union (IoU), to compare the segmentation ssisc
learned by SISC and the ground truth sreal. It is defined as, |sreal ∩ ssisc|/|sreal ∪ ssisc|, the size
of the intersection divided by the size of the union of the sample sets, which is floored and capped at
0 and 1, respectively. A higher statistic means a greater similarity between the learned segmentation
and the ground truth, indicating a more accurate segmentation by the SISC algorithm. Next, we will
present the experimental results for each simulated time series.

One pattern only. This setup is designed to verify the ability of our SISC algorithm to correctly
identify and segment a single pattern from the simulated time series. In this scenario, the simulated
data has only one simple pattern, depicted as the standard pattern in Fig.8(b). This standard pattern is
manipulated into devise segments, each with distinct lengths and magnitudes following pre-specified
transitions between consecutive segments. These segments are then merged to construct a complete
time series, as illustrated in Fig.8(a). After performing SISC on this simulated time series, the ground
truth centroid of these segments (Fig.8(c)) and the counterpart learned by SISC (Fig.8(d)) show a
significant degree of similarity, achieving a very low per-unit DTW error of 0.009. Furthermore,
the Jaccard similarity coefficient of the resulting segmentation is 0.938, suggesting that 93.8% of
the points in the simulated time series are correctly segmented. These results verify that our SISC
algorithm successfully identifies the target pattern and correctly segments the simulated time series
containing one pattern only.

15



Published as a conference paper at ICLR 2024

Simulated time series

(a) Simulated time series

Standard

(b) Standard pattern

Ground-truth

(c) Ground-truth

SISC

(d) Learned by SISC

Figure 8: Investigation of SISC: one-pattern scenario. (a) Simulated time series containing one
scale-invariant pattern only; (b) predefined standard pattern; (c) ground-truth centroid; (d) centroid
learned by SISC.

Multiple patterns. Our focus on this configuration is to further validate the effectiveness of our
SISC algorithm in learning the simulated time series that involves four patterns in Fig. 9. The
data-generating process is the same as that in the one-pattern scenario but produces a variety of
segments corresponding to multiple patterns. The learned centroids by SISC are comparable to
the ground truth, with an average per-unit DTW error of 0.01 over four patterns. Meanwhile, the
learned segmentation achieves a Jaccard similarity coefficient of 0.784. This score indicates that
a significant majority of data points are well placed into the correct intervals. The points that are
incorrectly segmented are predominantly located on the boundaries of the segments. Importantly,
these boundary misclassifications do not significantly impact the general shape of the corresponding
segments. Therefore, despite these minor discrepancies at the segment boundaries, our SISC algorithm
demonstrates its robustness when applied to simulated data consisting of multiple patterns.

We believe this investigation offers valuable insights into the pattern recognition module, particularly
our proposed SISC algorithm, and confirms its potential applicability and reliability in more complex
real-world scenarios.

C MORE INFORMATION ABOUT OUR PATTERN GENERATION MODULE

C.1 PRELIMINARY OF DENOISING DIFFUSION PROBABILISTIC MODEL

Diffusion models incorporate a forward diffusion process q(xi|xi−1) that gradually corrupts the
target data by adding noise over N steps and a backward denoising process pθ(xi−1|xi) that learns
the reverse procedure to recover the target data, where i ∼ U(1, 2, ..., N) denotes the i-th diffusion
step. The diffusion process is typically pre-specified:

q(x1:N |x0) :=

N∏
i=1

q(xi|xi−1), (8)

q(xi|xi−1) := N (xi;
√
1− σixi−1, σiI). (9)

The denoising process is approximated with a neural network as follows:

pθ(x
0:N ) := p(xN )

N∏
i=1

pθ(x
i−1|xi), (10)

pθ(x
i−1|xi) := N (xi−1|µθ(x

i, i), σiI), (11)

where the neural network θ learns the noise gradient between steps and σi is a predefined parameter.

16



Published as a conference paper at ICLR 2024

Simulated time series

(a) Simulated time series

Standard p1

Standard p2

Standard p3

Standard p4

(b) Standard pattern

Ground-truth p1

Ground-truth p2

Ground-truth p3

Ground-truth p4

(c) Ground-truth

SISC p1

SISC p2

SISC p3

SISC p4

(d) Learned by SISC

Figure 9: Investigation of SISC: multiple-patterns scenario. (a) Simulated time series containing
multiple scale-invariant patterns; (b) predefined standard patterns; (c) ground-truth centroids; (d)
centroids learned by SISC.

The denoising diffusion probabilistic model (DDPM) (Ho et al., 2020) introduces a nice property that
enables us to sample xi at an arbitrary step i during the diffusion process, using the reparameterization
trick. Let υi = 1− σi and ῡi =

∏i
j=1 υ

i, the resulting closed form is:

q(xi|x0) = N (xi;
√
ῡix0, (1− ῡi)I). (12)

Using the same property, we can also obtain:

µθ(x
i, i) =

1√
υi

(xi − 1− υi

√
1− ῡ

i
ϵθ(x

i, i)). (13)

Therefore, (Ho et al., 2020) demonstrated that training diffusion models with the following simplified
objective empirically yields better results:

L = Ei∼[1,N ],x0,ϵi [∥ϵi − ϵθ(x
i, i)∥2]. (14)

17



Published as a conference paper at ICLR 2024

C.2 IMPLEMENTATION DETAILS OF OUR PATTERN-CONDITIONED DIFFUSION NETWORK AND
SCALING AUTOENCODER

Our pattern-conditioned diffusion network utilizes six residual temporal convolutional (TCN) blocks
to capture the internal temporal dynamics within pattern segments. Each block mainly comprises
two temporal convolution layers. Time embeddings for each diffusion step are constructed with a
fully-connected layer positioned at the top of each block. We set the number of diffusion steps to
N = 100.

Our scaling AE can be implemented with two layers of LSTMs or GRUs.

We jointly train these two networks following the procedure in Sec. 4.2 using the Adam optimizer
with a learning rate of 5e− 04. We set the batch size to 32. The hyper-parameters are determined
empirically following the common techniques in the literature.

D MORE INFORMATION ABOUT OUR PATTERN EVOLUTION MODULE

D.1 IMPLEMENTATION DETAILS OF THE PATTERN EVOLUTION NETWORK

In practice, we treat the modeling of the next pattern p as a multi-category classification, while
the learning of the length-scaling factor α and the magnitude-scaling factor β as regression. Note
that treating the estimation of the length as a classification task is also feasible. Hence, our pattern
evolution network models the Markov transition of state (p, α, β) between consecutive segments
by a fully-connected neural network with three corresponding outputs. We train this network using
the Adam optimizer with a learning rate of 4e − 04 over 1000 epochs. The hyper-parameters are
determined empirically.

D.2 PSEUDO-CODE OF THE SAMPLING PROCESS

We provide the pseudo-code of the sampling process in our FTS-Diffusion as Algorithm 2. We
commence the creation of a new synthetic time series by initializing the first segment, which is
sampled from the observed data. After the initialization, subsequent segments are produced iteratively
through the following procedure. In each iteration, the transition states of the next segment are first
predicted using the pattern evolution module ϕ. With these states, the next segment is generated by
the pattern generation module θ. This newly generated segment is then appended to the synthetic
time series. This iterative process is repeated until the synthetic time series reaches the desired length.

Algorithm 2 Data synthesizing procedure incorporating the pattern generation module and pattern
evolution module.
Require: Pattern generation module θ, pattern evolution module ϕ, latent patterns P , terminal series

length T

1: X̂ ← ∅
2: Initialize x0 ∈X
3: X̂.append(x0)
4: m← 0
5: while len(X̂) < T do
6: pm, αm, βm ← TransitionStates(xm)
7: (pm+1, αm+1, βm+1)← ϕ(pm, αm, βm)
8: xm+1 ← θ(pm+1, αm+1, βm+1)

9: X̂.append(xm+1)
10: m← m+ 1
11: end while
12: Return X̂

18



Published as a conference paper at ICLR 2024

E SUPPLEMENTARY DETAILS ON EXPERIMENTS

E.1 DATA SETTINGS

As introduced in the main paper, we conduct our experiments on three assets: the Standard and Poor’s
500 index (S&P 500), the stock price of Google (GOOG), and the corn futures traded on the Chicago
Board of Trade (ZC=F). The S&P 500 data covers the period from 1980-01-01 to 2020-01-01. The
data for GOOG spans from 2005-01-01 to 2020-01-01. And the ZC=F data ranges from 2001-01-01
to 2020-01-01.

We employ an 80/20 train-test split strategy, using the first 80% for training and the remaining 20% for
testing. Importantly, neither FTS-Diffusion nor downstream models in our subsequential experiments
have seen the test sets during the training phase, and all of our evaluation is on an out-of-sample
basis.

E.2 IMPLEMENTATION DETAILS OF BASELINES

RCGAN. In our experiment, we apply the conditional version of RCGAN (Esteban et al., 2017),
with time information (e.g., date) as the input conditions.

TimeGAN. TimeGAN (Yoon et al., 2019) first learns an embedding of the target data with an
autoencoder network and then models the latent distribution with a GANs network. Consequently,
the synthetic time series can be constructed by using the decoder to expand the generator output into
the original data space. In the original paper, TimeGAN takes multi-dimensional prices (including
the volume and high, low, opening, closing, and adjusted closing prices) as inputs. However, our
experimental settings focus on univariate time series. For a fair comparison, we implement the
TimeGAN following the original paper but with a one-dimensional input of the return rate of daily
closing prices.

CSDI. CSDI (Tashiro et al., 2021) is proposed for time series imputation. As indicated in its original
paper, the unconditional variant of CSDI can be utilized for time series generation. Thus, we
implement the unconditional variant of CSDI for financial time series generation.

All of the baselines are designed to synthesize the identical-interval samples. Thus, we partition the
entire financial time series into equal-length subsequences using the classical segmentation approach.
The length of each subsequence is set as 21, aligning with the setting of maximum length in our
FTS-Diffusion.

E.3 QUANTITATIVE ANALYSIS USING ADDITIONAL METRICS

In addition to the Kolmogorov–Smirnov (KS) test and the Anderson–Darling (AD) test employed
in our primary experiments, there exist numerous other effective tests to evaluate the ’goodness
of fit’ between the distributions of different time series. Here, we include two more widely-used
metrics: the nonparametric Epps-Singleton (ES) test and the Wasserstein Distance (W). The ES test,
frequently used in the field of econometrics, is sometimes preferable to the KS test in instances that
do not assume a continuous distribution. A larger ES statistic represents a higher similarity between
the distributions of the two samples. The Wasserstein distance measures the minimum amount of
probability mass that needs to be moved between two probability distributions. A smaller distance
indicates a closer match between the distributions. Table 3 presents a comparison of generated returns
using these metrics. According to these distribution tests, our FTS-Diffusion outperforms other
baselines as well.

Moreover, we incorporate several fundamental metrics prevailing in finance, including the Sharpe
ratio (SR), Sortino ratio (SoR), and Calmar ratio (CR). The Sharpe ratio measures the average return
earned in excess of the risk-free rate per unit of volatility, which helps investors understand the
return of an asset compared to its risk. The Sortino ratio, akin to the Sharpe ratio but with a focus
on downside risk, evaluates the excess return against its downside deviation. The Calmar Ratio
compares the average compounded rate of return to the maximum drawdown risk, offering insight
into the potential losses an asset might experience. These summary statistics represent fundamental
characteristics of financial asset returns. If the synthetic time series closely resemble the observed
data, these ratios of the synthetic data would align closely with those of the real data. In other

19



Published as a conference paper at ICLR 2024

Table 3: Generated return distributions compared to observed data using more metrics. Variation in
the test statistic across multiple runs is shown with a +/- range.

S&P500 GOOG ZC=F

Model ES ↑ W ↓ ES ↑ W ↓ ES ↑ W ↓

RCGAN .004 ±.0007 .009 ±.0005 .005 ±.0006 .009 ±.0005 .004 ±.0006 .009 ±.0005
TimeGAN .006 ±.0005 .005 ±.0004 .005 ±.0006 .005 ±.0004 .005 ±.0005 .005 ±.0005

CSDI .004 ±.0003 .005 ±.0003 .004 ±.0004 .006 ±.0003 .005 ±.0003 .006 ±.0003
FTS-Diffusion .008 ±.0003 .003 ±.0005 .007 ±.0003 .003 ±.0005 .008 ±.0003 .003 ±.0004

words, the discrepancies in these statistics between the actual returns of the financial asset and
their comparable generated counterparts should be relatively minor. We denote these discrepancies
between the actual assets and synthetic data as ∆SR, ∆SoR, and ∆CR, respectively. For instance,
∆SR is calculated as the absolute difference between the Sharpe ratio of the actual data and that of the
synthetic data, i.e., ∆SR = |SharpeRatio(actual)− SharpeRatio(synthetic)|. Table 4 presents
the results of differences in these metrics between the actual data and the generated synthetic data.
The synthetic data generated by our FTS-Diffusion yield the lowest deviation, thereby exhibiting
the most comparable statistics of the fundamental metrics closely aligned with those of the actual
data. This provides further evidence to support that our FTS-Diffusion replicates the fundamental
characteristics of the actual financial assets.

Table 4: Difference in Sharpe ratio, Sortino ratio, and Calmar ratio between the generated returns
and the actual returns of the corresponding financial assets.

S&P500 GOOG ZC=F

Model ∆SR ∆SoR ∆CR ∆SR ∆SoR ∆CR ∆SR ∆SoR ∆CR

RCGAN 0.141 0.214 15.659 0.149 0.252 22.784 0.178 0.316 30.372
TimeGAN 0.111 0.189 12.775 0.177 0.249 22.067 0.136 0.203 26.450

CSDI 0.133 0.186 17.424 0.178 0.273 24.611 0.152 0.241 31.188
FTS-Diffusion 0.019 0.034 0.294 0.020 0.037 0.302 0.069 0.092 0.614

E.4 SUPPLEMENTARY DOWNSTREAM EXPERIMENTS

For comparative purposes, we utilized a naive prediction approach as a benchmark. This method
simply uses the values from the previous day to make its predictions. In this context, the mean
absolute percentage errors (MAPEs) for the three datasets are 0.046, 0.053, and 0.057, respectively.
These results serve as a baseline for evaluating the performance of more sophisticated forecasting
models.

In Sec. 5.3, we have demonstrated the effectiveness of the synthetic time series generated by our
FTS-Diffusion in the downstream experiments focused on one-day ahead prediction. To further
substantiate our approach, we extend our evaluation to a more complex task of multiple-day ahead
prediction. For this extended evaluation, we employ the same LSTM-based neural networks as the
downstream prediction model. Fig. 10 shows the results of the TMTR and TATR experiments for
five-day forecasts of S&P 500. Our FTS-Diffusion successfully maintains its performance, proving
its robustness and versatility.

E.5 DIFFERENT SETTINGS OF TRAIN/TEST SPLIT AND ROLLING WINDOW

Throughout the main body of our paper, we have evaluated our FTS-Diffusion using an 80/20 train/test
split strategy. To ensure the robustness of our model and to further investigate its performance under
different circumstances, we extend our evaluation to include 70/30 and 60/40 train/test split strategies.
In addition to the train/test split strategies, we further probe the robustness of our model by utilizing
rolling windows of different sizes for testing, particularly sizes 32 and 48. This allows us to verify
that the downstream model maintains stable performance when trained on different temporal slices of
synthetic data.

20



Published as a conference paper at ICLR 2024

0 20 40 60 80
Synthetic Proportion (%)

0.02

0.04

0.06

0.08

0.10

M
AP

E

S&P 500
FTS-Diffusion
TimeGAN
RCGAN
CSDI

(a) TMTR

10000 20000
Augmented Size

0.05

0.10

S&
P5

00

FTS-Diffusion

10000 20000
Augmented Size

0.05

0.10 RCGAN

10000 20000
Augmented Size

0.05

0.10 TimeGAN

10000 20000
Augmented Size

0.05

0.10 CSDI

(b) TATR

Figure 10: Prediction errors of the downstream model for five-day ahead prediction trained under
the TMTR and TATR settings. Our FTS-Diffusion successfully maintains its performance as in the
one-day head prediction.

The outcomes of these extended downstream experiments, which utilize additional train/test split
strategies and diverse rolling window sizes, are presented in Fig. 11. As more synthetic data generated
by our FTS-Diffusion method are incorporated into the dataset, prediction errors are observed to
decrease. This result demonstrates that augmenting the training dataset with synthetic data produced
by our FTS-Diffusion method indeed bolsters the training process and the subsequent performance of
downstream models. Such outcomes underscore the versatility and robustness of our FTS-Diffusion
approach across various operational contexts.

10000 20000
Augmented Size

0.05

0.10 70-30 Split

10000 20000
Augmented Size

0.05

0.10 60-40 Split

10000 20000
Augmented Size

0.05

0.10 Rolling Window 32

10000 20000
Augmented Size

0.05

0.10 Rolling Window 48

Figure 11: Prediction errors of the downstream model trained on the augmented dataset with synthetic
data generated by our FTS-Diffusion under TATR using different train/test split strategies and rolling
windows.

These results demonstrate that our approach maintains its capability to generalize across different
train/test splits.

E.6 CONPLEXITY AND RUNTIME ANALYSIS

We conduct an analysis comparing the computational complexity and runtimes of our approach against
those of the baselines, with the results provided in Table 5. In this context, the term ’computational
complexity’ refers to the number of parameters in the neural networks. The ’runtimes’ contain
the times taken for training the model (training runtime) and generating the synthetic time series
(inference runtime). Due to its multi-module nature, our FTS-Diffusion has a higher complexity. This
represents a trade-off between high fidelity and complexity. Our model achieves superior generation
quality at the expense of somewhat increased complexity.

Table 5: Comparison of computation complexity and runtime.
Model Number of Parameters Training Runtime Inference Runtime

RCGAN 31190 23 min. 1.72 sec.
TimeGAN 65302 49 min. 1.86 sec.

CSDI 143284 97 min. 2.61 sec.
FTS-Diffusion 171209 131 min. 4.27 sec.

21


	Introduction
	Related Work
	Problem Statement
	Unique Characteristics of Financial Time Series
	Problem Statement

	Our Proposed FTS-Diffusion Framework
	Pattern Recognition: Identifying Irregular and Scale-Invariant Patterns
	Pattern Generation: Learning Pattern-Conditioned Temporal Dynamics
	Pattern Evolution: Learning the Transition between Consecutive Patterns
	Putting Everything Together: Synthesizing Entire Financial Time Series

	Numerical Experiments
	Data and Experimental Setting
	Properties of the Synthetic Time Series
	Downstream Prediction Analysis of the Synthetic Time Series

	Concluding Remark
	Further Comparison of Financial Time Series and Other Regular Series
	More Information about Our Pattern Recognition Module
	Supplementary Technical Details of Our SISC Algorithm
	Verification of Learned Patterns with Predefined Counterparts in Finance
	Investigation with Simulated Time Series Data

	More Information about Our Pattern Generation Module
	Preliminary of Denoising Diffusion Probabilistic Model
	Implementation Details of Our Pattern-Conditioned Diffusion Network and Scaling Autoencoder

	More Information about Our Pattern Evolution Module
	Implementation Details of the Pattern Evolution Network
	Pseudo-code of the Sampling Process

	Supplementary Details on Experiments
	Data Settings
	Implementation Details of Baselines
	Quantitative Analysis using Additional Metrics
	Supplementary Downstream Experiments
	Different Settings of Train/Test Split and Rolling Window
	Conplexity and Runtime Analysis


