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Abstract

Deploying large language models (LLMs) to001
real scenarios for domain-specific question an-002
swering (QA) is a key thrust for LLM applica-003
tions, which poses numerous challenges, es-004
pecially in ensuring that responses are both005
accommodating to user requirements and ap-006
propriately leveraging domain-specific knowl-007
edge. They are the two major difficulties for008
LLM application as vanilla fine-tuning falls009
short of addressing. Combining these require-010
ments, we conceive of them as the require-011
ment for the model’s preference to be harmo-012
niously aligned with humans’. Thus, we intro-013
duce Knowledgeable Preference AlignmenT014
(KnowPAT), which constructs two kinds of015
preference sets to tackle the two issues. Be-016
sides, we design a new alignment objective to017
align the LLM preference with different hu-018
man preferences uniformly, aiming to optimize019
LLM performance in real-world, domain-020
specific QA settings. Adequate experiments021
and comprehensive comparisons with 15 base-022
line methods illustrate that our KnowPAT is023
a superior pipeline for real-scenario domain-024
specific QA with LLMs. Our code is available025
at this anonymous github link.026

1 Introduction027

In contemporary digital commerce platforms, the028

deployment of automated and intelligent question-029

answering (QA) services is a pivotal task to aug-030

ment service quality. These services are designed031

to furnish answers to domain-specific customer032

queries. Building such a domain-specific QA sys-033

tem, while highly sought after, remains a daunting034

challenge in practical scenarios.035

Domain-specific QA necessitates a comprehen-036

sive understanding of a specific domain to answer037

specialized questions. However, traditional deep038

learning models (Devlin et al., 2019; Raffel et al.,039

2020) still have insufficient domain-specific exper-040

tise. This makes the domain knowledge graph041
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Figure 1: A simple case of intelligent service for cloud
products. Such a simple example is meant to illustrate
the importance of selective use of retrieved knowledge
as MAC is a terminology in computer networking rather
than a kind of computer or lipstick in the user context.

(KG) (Liang et al., 2022) a pivotal tool for the stor- 042

age and querying of domain knowledge. KGs can 043

store human knowledge in the triple form, offering 044

a unified, maintainable, and extensible representa- 045

tion of the knowledge from heterogeneous sources. 046

The utility of KGs has already been demonstrated 047

across various application scenarios such as E- 048

commerce (Zhu et al., 2021), and health care (Li 049

et al., 2020). Within the context of QA, incorpo- 050

rating KGs as an external knowledge source rep- 051

resents a promising approach, which is known as 052

KG-based QA (Jiang et al., 2023b). 053

Meanwhile, as large language models (LLMs) 054

(West et al., 2023) achieve significant progress and 055

exhibit substantial proficiency within numerous 056

NLP fields (Zhu et al., 2023), applying LLMs into 057

various downstream tasks have been a predominant 058

trend in industry (Zhang et al., 2023a). Contrasting 059

earlier pre-trained language models (Devlin et al., 060

2019; Raffel et al., 2020), LLMs trained on the 061

massive corpus have outperformed text generation 062

capabilities which perform better when interact- 063
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ing with human (Ouyang et al., 2022). To adapt064

the LLMs for downstream usage, supervised fine-065

tuning (SFT) (Zhang et al., 2023e) is applied to fit066

the model with specific tasks and data. However,067

the LLM application for real-scenario QA with ex-068

ternal KG remains an underexplored domain, with069

limited work addressing this intersection.070

Our goal entails the resolution of a challenge in071

real-world applications: how can LLM be used to072

solve real-scenario QA problems supported by073

external knowledge graphs? A generic pipeline074

for this problem is the retrieve-augmented genera-075

tion (RAG) (Tian et al., 2023), which first retrieves076

relative knowledge triples for the question as ref-077

erence data and subsequently fine-tunes the LLM078

with knowledge-enhanced prompt. However, this079

conventional approach often encounters obstacles080

in practical scenarios. Firstly, the LLM-produced081

responses must prioritize user-friendliness, avoid-082

ing any generation of inappropriate or unfriendly083

content. Secondly, the retrieved knowledge is not084

invariably useful, necessitating that LLMs develop085

the capacity to judiciously exploit knowledge. Fig-086

ure 1 illustrates a simple case in which retrieved087

knowledge is not always desperately needed (e.g.,088

MAC is a kind of lipstick), which requires the089

LLMs to selectively utilize the retrieved knowledge090

instead of generating answers without thoughtful091

consideration. These two issues can uniformly092

collectively constitute the preference problem of093

LLMs. LLMs have their style preference to gen-094

erate contents and knowledge preference to selec-095

tively use the retrieved knowledge in the prompt.096

As a practical application, the preference of097

LLMs needs to align with human expectations098

and requirements for better service. This refers099

to preference alignment (PA) (Yuan et al., 2023), a100

burgeoning topic in the LLMs community, which101

would incorporate human preference to tune the102

LLMs during training. PA aims to control the103

model to generate human-preferred content and104

avoid unpreferred content. However, the scenar-105

ios faced by current PA works tend to be generic.106

No research has been explicitly directed towards107

domain-specific applications such as our scenario,108

providing impetus for further exploration.109

In this paper, we propose a novel three-step110

Knowledgeable Preference AlignmenT (Know-111

PAT) pipeline to address the domain-specific QA112

task for a real-scenario LLM application. Know-113

PAT propose knowledgeable preference set con-114

struction to incorporate domain KGs to construct115

knowledgeable preference data. Besides, a new 116

alignment objective is designed to optimize the 117

LLM with the knowledge preference. Our contri- 118

bution can be summarized as three-folded: 119

(1). We are the first work that introduces preference 120

alignment for domain-specific QA with LLMs and 121

domain KGs, which is an industrial practice with 122

practical applications. 123

(2). We propose a knowledgeable preference align- 124

ment (KnowPAT) framework to incorporate KGs 125

into the preference alignment process of LLMs. 126

We balanced the need for both style and knowledge 127

preference and devised a new training objective to 128

align the LLM with human preference. 129

(3). We conduct comprehensive experiments to val- 130

idate the effectiveness of our methods by automatic 131

and human evaluations, which shows that Know- 132

PAT stands as a paramount option for real-world 133

applications, outperforming 15 existing baselines. 134

2 Problem Setting 135

In this section, we will first introduce our problem 136

scenario and basic notations. 137

Our overall target is to fine-tune a LLM M with 138

our QA datasets D = {(qi, ai) | i = 1, 2, . . . , N} 139

where qi, ai represent a question and answer pair. 140

The questions in the dataset are all about common 141

usage issues with our cloud products while the 142

questions and answers are manually collected and 143

labeled, which are gloden answers with decent and 144

knowledgeable responses. For vanilla fine-tuning 145

(VFT), we first wrap the QA pair with a prompt 146

template I and the model M is autogressively 147

(Brown et al., 2020) optimized as: 148

Lft = − 1

|ai|

|ai|∑
j=1

logPM(ai,j |I, qi, ai,<j) (1) 149

where ai,j is the j-th token of ai and PM denotes 150

the token probability predicted by the model M. 151

With such a training objective, the training QA 152

data serves as the supervision information to tune 153

the model M to the QA scenario. Besides, as a 154

domain-specific task, we construct a cloud product 155

knowledge graph (CPKG) based on the product 156

documents maintained in the real production envi- 157

ronment. The CPKG is denoted as G = (E ,R, T ) 158

where E ,R, T are the entity set, relation set, and 159

triple set respectively. The knowledge graph will 160

be used as an external knowledge source to support 161

the model for QA. By retrieving top-k knowledge 162

with higher relevance, the input prompt will in- 163
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Figure 2: The overall architecture of KnowPAT. We design three important modules in our framework: unsupervised
triple linking (part 1), knowledgeable preference set construction (part 2), and knowledgeable preference alignment
(part 3). We first retrieve relative knowledge triples for the question in part 1 and apply the retrieved knowledge to
construct the knowledgeable preference set in part 2. The preference sets will participate in the fine-tuning and
preference alignment process in part 3, which will align the LLM with human preference.

corporate the retrieved knowledge K. Thus, M164

can learn the relative knowledge during the VFT165

process, which is a general pipeline for domain-166

specific LLM applications.167

However, such a VFT approach can not achieve168

pretty good results for the domain-specific QA. On169

the one hand, applications in real scenarios should170

be user-friendly, otherwise, they will not bring com-171

mercial value. Thus, the text style of the generated172

response should be more acceptable for users. On173

the other hand, the knowledge retrieval process is174

unsupervised and the effectiveness of the retrieved175

knowledge is hard to guarantee, which means that176

the model M needs to acquire the ability to judge177

and selectively utilize the knowledge triples. There-178

fore, we should improve the basic VFT to solve179

these two problems.180

Actually, both of these problems can be sum-181

marised as model preference. The LLM M has182

its style preference to generate texts and its knowl-183

edge preference to selectively utilize the retrieved184

knowledge. For the model to be practically ap-185

plicable, the model preference should align with186

human preference, aiming to generate high-quality187

answers that humans prefer. Preference alignment188

(PA) is an important topic for LLMs. To apply PA189

during LLM fine-tuning, we sample a preference190

set P = {b1, b2, . . . , bl} with l different answers191

for each QA pair (q, a). We denote ri as the pref-192

erence score of each answer bi where higher ri193

represents that humans prefer this answer. During194

training, we will define another objective Lalign to195

align the model M with the preference set P , aim-196

ing to increase the probability of a human preferred 197

answer appearing and simultaneously decrease the 198

probability of an unpreferred answer. The human 199

preference of each answer is the preference score 200

r. The overall training objective then becomes 201

L = Lft+Lalign.With such a multi-task objective, 202

the LLM is fine-tuned to fit the golden answers 203

while avoiding unpreferred results. The next 204

question is how to generate a preference set to re- 205

flect both the style and knowledge preference. 206

3 Our KnowPAT Pipeline 207

In this section, we will present our pipeline of 208

knowledgeable preference alignment (KnowPAT), 209

which consists of three key parts: unsupervised 210

triple linking, knowledgeable preference set con- 211

struction, fine-tuning, and training. Figure 2 212

demonstrates an intuitive view of the three parts in 213

our pipeline design. 214

3.1 Unsupervised Triple Linking 215

The first key parts is the unsupervised triple linking 216

which aims to link the triples in the CPKG G to 217

each question qi. We design a simple semantic 218

similarity-based retriever H to achieve this goal. 219

The similarity between the i-th question qi and the 220

j-th triple (hj , rj , tj) is: 221

sim(i, j) = Cosine(H(qi),H(hj , rj , tj)) (2) 222

where the retriever H serves as a textual encoder 223

and we treat both the question and knowledge triple 224

as a text sequence to get their sentence representa- 225

tions. The similarity is based on the cosine similar- 226
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ity of the two representations. We retrieve the top-k227

triples with the highest similarities for each ques-228

tion qi and denote the retrieved knowledge (RK)229

as K. RK will be added into the input prompt as the230

background knowledge for the current question.231

This process is unsupervised as we have no man-232

ually labeled question-knowledge pairs. Besides,233

our model will be deployed for real scenario usage,234

so it also requires strong zero-shot generalization235

capabilities to new questions. For these two rea-236

sons, the retrieved knowledge K might be noisy237

and useless to provide background knowledge. We238

think that the LLM M should learn the knowledge239

preference to select helpful information from the240

retrieved knowledge K.241

3.2 Knowledgeable Preference Set242

Construction243

Motivated by such goal, we propose a knowledge-244

able preference set construction process to enable245

retrieved knowledge in the preference set construc-246

tion, which consists of two parts: the style and the247

knowledge preference set.248

For the style preference set (SPS) Ps, we select249

l−1 different LLMs denoted M1,M2, . . . ,Ml−1.250

These different LLMs Mi have different textual251

comprehension and expression skills, which can252

generate answers with different text styles. The253

ability and quality of these models to answer254

domain-specific questions are inferior compared255

to human-labeled golden answers. The l − 1 an-256

swers generated in this way and golden answers257

form a style preference set Ps = {b1, b2, . . . , bl}258

with length l. For the knowledge preference set259

(KPS), we assume that the knowledge triples that260

have high similarity but do not reach the top-k rank261

are more likely to be knowledge that is not useful262

for the input question. We can get preference sets263

with different quality by retrieving some relatively264

worse knowledge and prompting the model to gen-265

erate responses with knowledge of different quality.266

In our design, we retrieve 3 groups of knowledge267

triples K1,K2,K3 from the CPKG. K1 represents268

the retrieved top-k triples, K2 = ∅ is an empty set269

with no retrieved knowledge. K3 represents the270

triples with top k + 1 to 2k similarities which we271

think are easily misused knowledge with relatively272

high semantic similarity. Then we wrap the dif-273

ferent knowledge Ki with the input prompt I into274

the LLM M and generate different answers. These275

generated 3 answers and the golden answer form a276

knowledge preference set Pk = {c1, c2, c3, c4}.277

By doing this, we can get two preference sets 278

for each QA pair. To simplify the setting, we set 279

l = 4 to let the two sets be of the same size. Be- 280

sides, we design a rule-based strategy to decide the 281

preference score r for each answer. For the style 282

preference set Ps, the high-quality golden answer 283

b1 is assigned with the highest score, and answers 284

from other LLMs were determined by their general 285

capabilities. In practice, we choose three differ- 286

ent LLMs ChatGPT (b2) (Ouyang et al., 2022), 287

ChatGLM-6B (b3) (Zeng et al., 2023), and Vicuna- 288

7B (b4). The results of several LLM ranking lists 289

indicate that the three are ranked in order of ability 290

as follows ChatGPT > ChatGLM > Vicuna. Be- 291

sides, after verification by human experts, we also 292

believe that the quality of the answers generated 293

by these three models in our QA scenarios also 294

conforms to this rule. Thus, the preference scores 295

are assigned in this order: r1 > r2 > r3 > r4. 296

Meanwhile, for the knowledge preference set Pk, 297

the golden answer c1 still has the highest prefer- 298

ence score r1. The answer c2 generated with top-k 299

knowledge K1 has the second highest preference. 300

The answer c3 generated with no extra knowledge 301

K2 has the third highest preference, and the answer 302

c4 generated with knowledge K3 is the worst. We 303

found in our actual tests that the mismatch rate be- 304

tween the retrieved knowledge K3 and the question 305

q is very high and easily misleads the model M, 306

so we set its score to be lower than the case of the 307

empty knowledge K2. Thus, for the knowledge 308

preference set Pk, the preference scores are still 309

in the order: r1 > r2 > r3 > r4. For each QA 310

pair, we can construct two preference sets and we 311

finally get the whole preference data with 2N pref- 312

erence sets. The preference data will participate 313

in the fine-tuning process to control the style pref- 314

erence and knowledge preference for the model 315

M. Note that the size of the two preference sets 316

need not be strictly same, and we have adopted 317

the above formulation for the sake of uniformity of 318

representation in our paper. 319

3.3 Fine-tuning and Preference Alignment 320

In addition to the vanilla fine-tuning loss Lft with 321

the golden answer, the preference data will also 322

participate in the training process. For each prefer- 323

ence set, the preference score ri of the i-th answer 324

represents our degree of preference. We expect the 325

model M to align with our preference. Thus, we 326

design another score to represent the preference of 327

the model, which is denoted as: 328
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Si =
1

|ai|

|ai|∑
j=1

logPM(ai,j |I, qi, ai,<j) (3)329

This score Si is the average log-likelihood of330

each answer token conditioned on the given prompt331

template I and question qi. Higher scores repre-332

sent a higher probability that the model considers333

the current answer to occur. To align the model334

preference with our envision, we designed a new335

alignment objective for our scenario. The align-336

ment objective is denoted as:337

Lalign = −
|P|−1∑
i=1

log σ(Si) +
∑

rj<ri

log σ(−Sj)

 (4)338

where σ is the sigmoid function. Such an objec-339

tive is newly proposed by us to achieve the pref-340

erence alignment process, which contrasts the pre-341

ferred answer and the unpreferred answers. It is342

worth noting that the human preference scores ri343

will only determine the ordering corresponding to344

different answers and will not be directly involved345

in the computation and gradient accumulation. Ex-346

isting methods like RRHF (Yuan et al., 2023) and347

SLiC-HF (Zhao et al., 2023) apply a margin-rank348

loss in the form
∑

rj<ri
max(0, λ − Si + Sj) to349

achieve preference alignment. But their design only350

optimizes the model preference when the model351

preference score S of a human preferred answer is352

lower than an unpreferred answer (a more formal-353

ized formulation would be Si < Sj when rj < ri).354

However, we think that the preference should still355

be optimized in this situation and propose such356

a training objective to continuously decrease the357

occurrence probability of the unpreferred answers.358

Meanwhile, as different answers have different text359

quality and preference degrees, we further design360

an adaptive weight to control the influence of each361

preferred answer, which is denoted as:362

µi =
Si − Smin

Smax − Smin
(5)363

where Smax and Smin are the max and min model364

preference scores in a preference set P . With such365

an adaptive weight, the influence of the answers366

with different preferences could be dynamically367

adjusted. The alignment loss then becomes:368

Lalign =

|P|−1∑
i=1

µi

log(1 + e−Si) +
∑

rj<ri

log(1 + eSj )


(6)369

The final training objective is still in a multi-task 370

manner and we add a hyper-parameter λ as the 371

coefficient of the alignment loss: 372

L = Lft +
λ

|P| − 1
Lalign (7) 373

where P−1 represents the count of prefer-unprefer 374

contrast to normalize the alignment loss. For each 375

preference set constructed in the previous section, 376

the model is trained and optimized with such an 377

objective. 378

4 Experiments and Analysis 379

In this section, we present the detailed experimen- 380

tal settings and analyze the experiment results to 381

investigate the following four research questions: 382

(i) RQ1: How does KnowPAT perform compared 383

with the baseline methods? 384

(ii) RQ2: Do the proposed modules in KnowPAT 385

really benefit the performance of KnowPAT? 386

(iii) RQ3: Are there some intuitive cases to demon- 387

strate the effectiveness of KnowPAT. 388

(iv) RQ4: Does the LLM still keep the general 389

ability rather than catastrophic forgetting? 390

These four questions evaluate our approach on 391

four dimensions: performance, design soundness, 392

intuition, and usability in real scenarios. We will 393

answer the four questions in the following sections. 394

4.1 Experiment Settings 395

4.1.1 Dataset Information 396

The dataset we used in our experiment consists of 397

two parts. The first part is the CPKG with 13995 398

entities, 463 relations, and 20752 triples. The sec- 399

ond part is the QA dataset with 8909 QA pairs. 400

We split the dataset into 7909/500/500 for train- 401

ing/validation/test. For each data instance in the 402

training, we construct two preference sets and get 403

15818 preference sets with 4 answers in each set. 404

4.1.2 Baseline Methods 405

To make a comprehensive study, we select four 406

types of different baseline methods to demonstrate 407

the effectiveness of our preference alignment ap- 408

proach. We not only want to show that alignment 409

is a better framework for LLM application com- 410

pared to other paradigms (e.g. zero-shot reasoning, 411

in-context learning (Dong et al., 2023), vanilla fine- 412

tuning (Ouyang et al., 2022; Fang et al., 2023)), but 413

also to show that our method is better than other 414

preference alignment methods (Yuan et al., 2023; 415

Zhao et al., 2023; Song et al., 2023; Wang et al., 416
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Table 1: The experimental results for traditional text generation metrics. We reproduce four types of baseline
methods to make a comprehensive comparison. For zero-shot approaches, we select several popular LLMs as the
backbone. For other methods, Atom-7B is employed as the backbone. The red numbers represent the improvement
of KnowPAT. The best baseline performance is underlined.

Type Setting BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L CIDEr METEOR

Zero-shot
Reasoning

Vicuna 14.18 7.89 5.02 2.69 16.31 6.15 15.69 2.03 17.96
ChatGLM 14.21 8.36 5.41 2.79 15.38 5.64 14.75 0.95 19.34
Baichuan 15.51 9.08 5.86 2.87 16.74 6.64 15.81 1.86 19.71

Atom 10.07 4.11 2.06 8.15 6.24 1.99 6.02 0.87 11.31
ChatGPT 13.09 7.72 4.93 2.59 16.96 6.68 16.15 2.98 19.52

In-context
Learning

Atom(1-shot) 8.97 3.84 1.88 0.53 7.49 1.99 7.31 1.34 10.41
Atom(2-shot) 9.11 3.84 1.85 0.5 7.34 1.82 7.01 0.99 9.88
Atom(4-shot) 8.18 3.42 1.65 0.48 7.07 2.04 6.91 1.77 8.83
Atom(8-shot) 7.79 3.29 1.7 0.79 6.57 1.38 6.41 1.62 8.19

Fine-tuning
w/o KG 14.33 8.85 6.81 5.71 14.33 5.01 14.26 22.92 15.29

w/ KG (RAG) 14.89 9.35 7.33 6.05 14.77 5.57 14.61 21.34 15.99

Alignment

RRHF 11.99 6.32 4.52 3.47 12.56 4.08 12.29 5.39 12.62
SLiC 16.55 10.34 7.99 6.53 14.69 5.03 14.48 26.55 16.95
PRO 18.27 12.36 10.04 8.41 17.07 6.75 16.85 28.46 19.17

AFT-BC 18.39 12.17 9.86 7.81 18.09 7.14 17.76 33.04 19.48
AFT-DC 15.34 8.44 5.94 4.35 14.51 5.59 14.15 13.22 16.31

KnowPAT 22.56 16.66 14.26 12.11 20.28 9.09 19.91 54.86 23.62
↑22.67% ↑34.79% ↑42.03% ↑43.99% ↑12.10% ↑27.31% ↑12.11% ↑66.04% ↑21.25%

Table 2: The experimental results of model-based met-
rics. We report the BERTScore, reward score, and per-
plexity (PPL) for KnowPAT and the baseline methods.
The best result of each metric is bold and the second
best is underlined.

BERTScore↑ Reward↑ PPL↓

VFT 66.24 -1.64 31.13
RRHF 64.48 -1.67 31.26
SLiC 66.69 -1.74 32.51
PRO 67.41 -1.78 32.37
AFT 66.16 -2.25 30.11

KnowPAT 69.34 -1.69 29.93

2023b). The detailed information of the baselines417

are shown in Appendix B.1.418

4.1.3 Evaluation Metrics419

To make a comprehensive evaluation of the exper-420

imental results, we employ the different evalua-421

tion metrics from three aspects: traditional text422

generation metrics (BLEU (Papineni et al., 2002),423

ROUGE (Lin, 2004), CIDEr (Vedantam et al.,424

2015), and METEOR (Banerjee and Lavie, 2005)),425

model-based metrics (BERTScore (Zhang et al.,426

2020a), PPL), and manual evaluation. The detailed427

information of the evaluation metrics refers to Ap-428

pendix B.2.429

4.1.4 Implementation Details430

In our experiment, we select Atom-7B 1 as the back-431

bone LLM M, which is an open-source version of432

Llama2 (Touvron et al., 2023b,a) with Chinese vo-433

1https://github.com/FlagAlpha/Llama2-Chinese

cabulary extension. As our dataset is mainly in Chi- 434

nese, we choose Atom-7B-chat to be our backbone 435

model for experiments. Another consideration for 436

us is that using the open-source Llama architecture 437

model enhances the generality of our method to 438

maintain the community ecology of LLMs. For un- 439

supervised triple linking, BGE-base-zh-v1.5 (Xiao 440

et al., 2023) is applied as the retriever H to encode 441

and retrieve relative knowledge triples. 442

During training, we tune the backbone model 443

with bf16 float precision. The training epoch is 444

set to 3 and the gradient accumulation step is set 445

to 8. We optimize the model using AdamW op- 446

timizer (Loshchilov and Hutter, 2019) while the 447

learning rate is fixed to 3e−4. The coefficient hyper- 448

parameter λ is search in {1, 0.1, 0.01, 0.001}. 449

4.2 Main Results (Q1) 450

The main results of the traditional metrics are 451

shown in Table 1. As we mentioned before, the 452

traditional metrics can measure the similarity be- 453

tween the generated answer and the golden answer. 454

From the results, we can observe that KnowPAT 455

achieved obvious improvements compared with the 456

baseline methods. We can conclude that KnowPAT 457

achieves a more significant improvement in the 458

BLEU-3(42.03%)/BLEU-4(43.99%) than BLEU- 459

1(22.67%)/BLEU-2(34.79%), which means that 460

KnowPAT makes more significant progress in cap- 461

turing some complex phrases and discourse. Corre- 462

sponding to our cloud product QA scenario, these 463

6
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Figure 3: The human evaluation results. For each com-
petition, we randomly select 100 questions and compare
the generated results of the two methods.

complex phrase usages are usually specialized464

terms that have a critical impact on the quality of465

the answer.466

Besides, we evaluate our methods with three467

model-based metrics BERTScore (Zhang et al.,468

2020a), reward score (Yuan et al., 2023), and PPL469

(Yuan et al., 2023), which is shown in Table 2.470

We can observe that KnowPAT still achieves good471

performance in the model-based metrics such as472

BERTScore and PPL, which means that the results473

generated by KnowPAT are more acceptable for the474

language models. For the reward score, relatively475

good results have also been achieved by KnowPAT.476

Further, we conduct a human evaluation for our477

method and baseline methods. The two results478

from the two models are shown to the human evalu-479

ator anonymously so that the human evaluator can480

choose a better result. The model which generates481

that result will get one point and the competition482

results are shown in Figure 3. We can observe from483

the figure that our method generates answers that484

are more acceptable to humans compared to other485

baselines, maintaining a relatively high win rate486

in the competition. Only a small number of times487

does KnowPAT perform weaker than the baselines,488

and most of the time KnowPAT is equal or even489

better. Therefore, combining the above three dif-490

ferent perspectives of evaluation, we can conclude491

that KnowPAT achieves outperforming results in492

the cloud product QA scenario.493

4.3 Ablation Study (Q2)494

We conduct Ablation experiments to verify the va-495

lidity of each module design. We validated the496

effectiveness of the designed components in our497

KnowPAT. We can find that the fine-tuning objec-498

tive Lft and the alignment objective Lalign are499

both contributing to the model performance. With-500

out fine-tuning (FT), the model performance can501

take a serious dip, as the LLM is not tuned to fit502

Table 3: The ablation study results. We evaluate var-
ious stripped-down versions of our model to compare
the performance gain brought by different components.
The full names of these abbreviations are as follows: FT
(fine-tuning); AW (adaptive weight); SPS (style prefer-
ence setting); KPS (knowledge preference setting); RK
(retrieved knowledge).

Setting BLEU-1↑ ROUGE-1↑ Reward↑ PPL↓

KnowPAT 22.56 20.28 -1.69 29.93
w/o FT 13.17 12.91 -2.14 31.96
w/o AW 21.87 19.91 -1.71 30.84
w/o SPS 17.57 17.66 -1.75 31.08
w/o KPS 16.12 16.51 -1.79 30.82
w/o RK 17.46 17.56 -1.89 30.85
w/o KG 15.09 16.55 -2.09 33.50

the golden answer. Besides, both two preference 503

sets (SPS and KPS) in KnowPAT are contributing 504

to the performance. The adaptive weights (AW) 505

can control for the participation of different qual- 506

ity samples in the loss, which is also effective in 507

KnowPAT. 508

Besides, we demonstrate the necessity of the 509

CPKG with two groups of experiments. w/o RK 510

denotes the experiment that removes the retrieved 511

knowledge in the input prompt during the fine- 512

tuning and preference alignment process. w/o KG 513

denotes the experiment without KG in the whole 514

process, which means the KPS and RK in the input 515

prompt are all removed. For the results of these 516

two groups of experiments, we can observe that 517

the CPKG plays a remarkable role in KnowPAT. 518

In the design of KnowPAT, the CPKG does not 519

only serve as an external knowledge source dur- 520

ing training but also participates in the preference 521

set construction process, which is important to the 522

model performance. In summary, each detailed 523

design in our method KnowPAT has its unique role 524

and contributes to the overall performance. 525

4.4 Case Study (Q3) 526

To make an intuition for the effectiveness of our 527

method, we conduct a case study as shown in Table 528

4. We can observe that the answers generated by 529

KnowPAT are more similar to the golden answer 530

while keeping a user-friendly tone and providing 531

sufficient information such as the host parameters 532

in the second case. This suggests that the model 533

learns appropriate style preferences. Besides, the 534

retrieved knowledge in the first case is (EIP, used 535

for, IP Binding), (Select Box, belongs to, Alarm 536

Management Component), etc., which are all help- 537

less to answer this question. However, KnowPAT is 538
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Table 4: The case study results for ground truth (GT),
our KnowPAT predictions, and RRHF (Yuan et al., 2023)
results. The original Chinese text have been translated
into English for clarity.

Question Please provide the steps for handling IOPS
detection errors.

GT
It is recommended to replace the disk with one
that meets the IOPS specification.

Ours
It is recommended to replace the server with
device that meets the IOPS specifications.

RRHF
After ADAC troubleshooting, restart the business
and check whether it is valid.

Question What is the explanation for the hwFlowRestoreFailed
alarm in CloudEngine 1800V product?

GT
The switch flow table restore failed (host_ip=
[host_ip], host_name=[host_name])

Ours
The switch flow table restore failed. (host_ip=
[host_ip], host_name=[host_name])

RRHF Flow table restore failed

not misled by this useless knowledge and generates539

the correct answer while RRHF falls into the trap.540

4.5 Knowledge Retention Analysis (Q4)541

Figure 4: The commonsense ability on five domains.

As a project that needs to get off the ground542

in real-world scenarios, the general ability of the543

trained model should also be carefully evaluated,544

because the user may ask various kinds of ques-545

tions if they like the model. We expect the model546

to keep their existing knowledge learned during547

pre-training and obtain new knowledge about our548

domain. Thus, we also conduct a commonsense549

evaluation on the trained models with the CMMLU550

(Li et al., 2023) dataset, which is a benchmark for551

LLM’s Chinese ability evaluation. The evaluation552

result is shown in 4. We demonstrate the general553

ability on five distinctive commonsense regions554

(history, clinical, politics, computer science, and555

economics) for KnowPAT, vanilla Atom-7B (none),556

and other PA methods. As can be seen from the557

radargram, there is a relatively significant decline in558

the KnowPAT’s ability in medicine, but in the areas559

of politics, history, and economics it still maintains560

the ability of the original backbone model and even 561

grows slightly. PRO, while unexpectedly showing a 562

significant improvement in the economics problem, 563

shows a more pronounced performance degrada- 564

tion than KnowPAT in several other areas. Taken 565

together, such variations of KnowPAT in general- 566

ized ability are acceptable for our cloud product 567

QA scenario. 568

5 Related Works 569

Preference alignment (PA) (Wang et al., 2023d; 570

Cheng et al., 2023) seeks to tailor pre-trained 571

LLMs to align with human preferences (feedbacks) 572

(Ouyang et al., 2022). RLHF is a landmark work 573

for PA, which leverages reinforcement learning 574

(RL) (Schulman et al., 2017) to align human pref- 575

erence with LLMs. Due to the sensitivity of RL 576

parameters and the intricate three-stage processes 577

of RLHF, many PA approaches have been pro- 578

posed to address these challenges. For example, 579

RRHF (Yuan et al., 2023) propose a margin-rank 580

loss to optimize the LLMs without the need for 581

extra reward models. PRO (Song et al., 2023) op- 582

timizes complex preference data with a list-wise 583

contrastive loss. DPO (Rafailov et al., 2023) pro- 584

pose a direct preference optimization method by 585

treating the LLM itself as a reward model. AFT 586

(Wang et al., 2023b) propose a ranking-feedback 587

boundary-constrained alignment loss to optimize 588

the preference data. Besides, our work also fo- 589

cuses on the large language model application and 590

knowledge-enhanced QA. We give a brief introduc- 591

tion of these fields in Appendix A.1 and A.2. 592

6 Conlusion 593

In this paper, we introduce a novel framework, 594

knowledgeable preference alignment (KnowPAT), 595

for domain-specific QA tasks in cloud product ser- 596

vices, leveraging LLMs and KGs in a practical ap- 597

plication setting. Our approach constructs a knowl- 598

edgeable preference set by retrieving and utilizing 599

knowledge triples to generate answers with dif- 600

ferent quantities. A new alignment objective is 601

designed to unleash the power of the preference set. 602

Comprehensive experiments demonstrate that our 603

method surpasses existing solutions for this real- 604

world challenge. Looking ahead, we aim to apply 605

KnowPAT to more real scenarios such as enterprise- 606

class services and further investigate the potential 607

of KG-enhanced LLM application in the future. 608
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Limitations609

In this paper, we mainly focuses on a real-world610

application problem to align LLMs with knowledge611

preference for better domain-specific QA. There612

are still some limitations in our work.613

Domain-specific scenario. Our approach is de-614

signed for specific domain (cloud product QA in615

our paper), and its effectiveness on general domains616

and open-source datasets is still subject to further617

validation. This will be the goal of our future en-618

deavours.619

Forms of external knowledge. In our paper, we620

apply knowledge graphs (KGs) to store the external621

background knowledge for the QA tasks. This is622

a convenient and efficient way of storing knowl-623

edge for our scenario, but in more other scenarios,624

knowledge may be stored in other forms (e.g. un-625

structured text). Therefore, a more general frame-626

work to process the external knowledge with any627

format (KGs, unstructured text, documents) should628

be considered for better usage, which is also our629

future plan.630

Ethical Considerations631

In this paper, we employ the open-source LLM to632

validate the effectiveness of our approach. Besides,633

the dataset we used is manually labeled with golden634

answer from domain experts engaged legally with635

suitable work intensity and well above aversage636

wages. Their rights are well protected at work. The637

content of the dataset is mainly questions about our638

cloud product usage, which do not involve private639

information and sensitive data of the target users.640

We promise that the content and collection steps of641

our dataset that are not against scientific ethics.642
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Appendix 1000

A Related Works 1001

A.1 KG-enhanced Question Answering 1002

Knowledge graphs (KGs) (Wang et al., 2017; Liang 1003

et al., 2022) is a kind of complex semantic web 1004

that models world knowledge in terms of structural 1005

triples as (head entity, relation, tail entity). KGs 1006

serve as external knowledge source and benefit 1007

many AI tasks like language model pre-training 1008

(Liu et al., 2020), question answering (Yasunaga 1009

et al., 2021; Wang et al., 2023c), and recommenda- 1010

tion systems (Wang et al., 2019; Sun et al., 2020). 1011

Besides, domain-specific KGs are the important 1012

infrastructure of internet industry to provide exact 1013

factual knowledge, which is widely leveraged in 1014

E-commerce (Zhu et al., 2021; Zhang et al., 2021), 1015

telecom fault analysis (Chen et al., 2023b), health 1016

care (Li et al., 2020; Zhang et al., 2020b) and so 1017

on. It is a popular topic to utilize KGs in real in- 1018

dustry applications. In our scenario, we construct 1019

a domain-specific KG for cloud service products 1020

to benefit our Question Answering (QA) task. QA 1021

stands as a cornerstone in NLP, aiming at equipping 1022

machines with the capability to autonomously re- 1023

spond to human queries (Su et al., 2019; Yoon et al., 1024

2019). QA tasks can take on various forms. Some 1025

require the selection from multiple choices, as seen 1026

in certain knowledge base QA (KBQA) (Cui et al., 1027

2017; Tian et al., 2023; Baek et al., 2023) and vi- 1028

sual question answering (VQA) (Antol et al., 2015; 1029

Chen et al., 2021; Wang et al., 2018). Conversely, 1030

tasks like open-domain QA often challenge sys- 1031

tems to directly produce textual responses without 1032

a set answer pool (Gao et al., 2021; Karpukhin 1033

et al., 2020). In the last few years, fine-tuning 1034

pre-trained language models has been a leading 1035

approach for QA tasks. Models like BERT (Devlin 1036

et al., 2019) and T5 (Raffel et al., 2020) have previ- 1037

ously achieved notable performance when adapted 1038

with question-answer pairs. 1039
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We hold that QA doesn’t just remain an aca-1040

demic pursuit; it acts as a bridge, facilitating the1041

adoption of AI technologies in real-world appli-1042

cations. Numerous industrial efforts have been1043

directed toward developing domain-specific QA1044

systems to meet the needs of their users (Gao et al.,1045

2021, 2019). Such systems often rely on domain-1046

specific knowledge bases, like Knowledge Graphs1047

(KGs), to provide relevant information for the1048

posed questions. Our current investigation aligns1049

with this trend, focusing on a domain-specific QA1050

scenario for cloud service products. Moreover, our1051

approach diverges from these recent KG-based QA1052

systems (Jiang et al., 2023b,a; Luo et al., 2023;1053

Zhang et al., 2023d; Chen et al., 2022) that utilize1054

prompts for dialog with (large) language models to1055

facilitate path reasoning and refine the scope of KG1056

retrieval. We propose an innovative knowledgeable1057

preference alignment framework that enhances KG-1058

aware QA with the knowledge preference.1059

A.2 Large Language Model Application1060

Prominent large language models (LLMs) like GPT1061

(OpenAI, 2023; Brown et al., 2020; Ouyang et al.,1062

2022) and GLM (Zeng et al., 2023; Du et al., 2022)1063

are sparking a wave of research in the commu-1064

nity due to their generalization ability in many1065

NLP tasks such as relation extraction (Zhu et al.,1066

2023), algebraic reasoning (Wei et al., 2022), and1067

question answering (Dao et al., 2023; Nguyen and1068

Nguyen, 2023). Most LLMs leverage the trans-1069

former (Vaswani et al., 2017) architecture, benefit-1070

ing from training on vast corpora (Thakkar et al.,1071

2023) through autoregressive tasks. Deploying and1072

applying LLMs in real-life scenarios is also a ma-1073

jor topic in industry today and several efforts have1074

been made. For example, many works (Zhang1075

et al., 2023a; Bao et al., 2023b; Zhang et al., 2023c;1076

Bao et al., 2023a; Zhang et al., 2023b; Chen et al.,1077

2023a) attempt to build recommendation systems1078

with LLMs. Some work like Huatuo (Wang et al.,1079

2023a) and LawyerLlama (Huang et al., 2023) have1080

developed LLMs for domain-specific usage.1081

Our work proposes a knowledgeable preference1082

alignment framework to incorporate the domain-1083

specific KG into the preference alignment pipeline1084

for the LLM application. By constructing a knowl-1085

edgeable preference set, the LLMs are trained to1086

align the knowledge preference with humans and1087

select better factual knowledge in the input prompt1088

to solve the QA task.1089

B Experiment Details 1090

B.1 Baseline Details 1091

(i) Zero-shot approach, which directly prompts 1092

the LLM with the input question to get the answer 1093

without training. 1094

(ii) In-context learning (Dong et al., 2023) ap- 1095

proach, which would sample a few (k-shot) QA 1096

pairs as demonstrations from the training dataset 1097

as examples and get the answers from the LLM 1098

without training. 1099

(iii) Vanilla fine-tuning approach, which fine- 1100

tunes the LLM using the QA pairs w/ or w/o re- 1101

trieved knowledge as Equation 1. The fine-tuning 1102

baseline with retrieved knowledge is also known as 1103

retrieve-augmented generation (RAG) method. 1104

(iv) Preference alignment approaches, which in- 1105

troduce additional preference alignment objectives 1106

during training to align with human preference. 1107

We select five existing state-of-the-art (SOTA) PA 1108

methods including RRHF (Yuan et al., 2023), SLiC- 1109

HF (Zhao et al., 2023), PRO (Song et al., 2023), 1110

AFT (both AFT-BC and AFT-DC) (Wang et al., 1111

2023b) as our baselines. 1112

B.2 Evaluation Details 1113

We select three types of metrics to evaluate our 1114

method against baselines. The detailed information 1115

on the metrics is listed in the following: 1116

(i) Traditional text generation metrics. We 1117

select several traditional text generation metrics 1118

such as BLEU (Papineni et al., 2002), ROUGE 1119

(Lin, 2004), CIDEr (Vedantam et al., 2015), and 1120

METEOR (Banerjee and Lavie, 2005) to evaluate 1121

the generated answers. However, these evaluation 1122

metrics are mainly used to measure the text-level 1123

similarity between generated answers and real an- 1124

swers, which means they can not fully reflect the 1125

semantic relevance or depth of understanding of 1126

the text. 1127

(ii) Model-based metrics. To evaluate the se- 1128

mantic similarity of the generated answers and the 1129

golden answers, we employ several model-based 1130

metrics such as BERTScore (Zhang et al., 2020a), 1131

perplexity (PPL), and preference score. These met- 1132

rics evaluate the generated answers using various 1133

language models. BERTScore employs BERT (De- 1134

vlin et al., 2019) to calculate the semantic similarity 1135

between two sentences. PPL measures the ability 1136

of the LLM to understand and predict the entire 1137

sentence. The preference score is S mentioned in 1138
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Equation 3 to reflect the model’s preference degree1139

of the current answer.1140

(iii) Manual evaluation metrics. We employ1141

human labelers to evaluate the results from differ-1142

ent methods. The labeler makes a judgment on1143

two answers from unknown sources in a single-1144

blind situation, chooses the better one, and counts1145

the results. The comparison result in each turn is1146

recorded as win/tie/lose.1147

The three main categories of metrics respond to1148

a certain part of the result’s characteristics at three1149

levels: similarity at the textual level, similarity at1150

the semantic level, and human preference.1151

B.3 Implemention Details1152

For baselines, we select several different LLMs1153

(ChatGPT (Ouyang et al., 2022), ChatGLM-6B1154

(Zeng et al., 2023), Baichuan-7B 2, Vicuna-7B1155
3, and Atom-7B-CP) for the zeros-shot approach.1156

For in-context learning, we sample 1,2,4,8-shot1157

QA pairs as demonstrations to support the input1158

question. For the PA methods, we leverage the1159

official code of RRHF (Yuan et al., 2023) and im-1160

plement other PA methods (SLiC-HF (Zhao et al.,1161

2023), PRO (Song et al., 2023), AFT (Wang et al.,1162

2023b)) based on the code to reproduce the results1163

on our preference dataset. The selection of hyper-1164

parameters is based on the original paper. Atom-1165

7B-CP is employed as the backbone model for all1166

the baseline methods such as in-context learning,1167

vanilla fine-tuning, and PA methods.1168

2https://github.com/baichuan-inc/Baichuan-7B
3https://github.com/lm-sys/FastChat
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