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ABSTRACT

We introduce a new, physics-based continuous-time reinforcement learning (CT-
RL) algorithm for control of affine nonlinear systems, an area that enables a
plethora of well-motivated applications. Based on fundamental input/output con-
trol mechanisms, our approach uses reference command input (RCI) as probing
noise in learning. With known physical dynamics of the environment, and by
leveraging on the Kleinman algorithm structure, our RCI-based CT-RL algorithm
not only provides theoretical guarantees such as learning convergence, solution
optimality, and closed-loop stability, but also well-behaved dynamic system re-
sponses with data efficiency during learning. Our results are therefore an advance
from the two currently available classes of approaches to CT-RL. The first school
of adaptive dynamic programming (ADP) methods features elegant theoretical re-
sults stemming from adaptive and optimal control. Yet, they have not been shown
effectively synthesizing meaningful controllers. The second school of fitted value
iteration (FVI) methods, also the state-of-the-art (SOTA) deep RL (DRL) design,
has shown impressive learning solutions, yet theoretical guarantees are still to be
developed. We provide several evaluations to demonstrate that our RCI-based
design leads to new, SOTA CT-RL results.

1 INTRODUCTION AND RELATED WORK

Continuous-time optimal control problems can be found in many important engineering and so-
cioeconomic application domains such as aerospace (Stengel, 2022), waste water treatment (Yang
et al., 2022), robotics (Craig, 2005), and economics (Caputo, 2005). Reinforcement learning (RL)
emerged as a systematic method in the early 1980s (Barto et al., 1983; Sutton & Barto, 1998) to
combat the curse of dimensionality. While discrete-time (DT) RL algorithms (Si et al., 2004; Lewis
et al., 2012; Kiumarsi et al., 2018; Bertsekas, 2017; Liu et al., 2021) have demonstrated extensive
theoretical guarantees and demonstrations in applications, CT-RL algorithms have seen fewer theo-
retical results and little applications successes. Current CT-RL results generally fall into two classes:
adaptive dynamic programming (ADP), and actor-critic deep RL (DRL), each discussed below.

The first school of adaptive dynamic programming (ADP) learns through optimal and adaptive con-
trol frameworks, oftentimes treating network weights as part of the adaptation parameters. ADP
approaches were developed largely within the scope of seminal works such as integral reinforce-
ment learning (IRL) (Vrabie & Lewis, 2009), synchronous policy iteration (SPI) (Vamvoudakis &
Lewis, 2010), robust ADP (RADP) (Jiang & Jiang, 2014), and continuous-time value iteration (CT-
VI) (Bian & Jiang, 2022). Refer to a recent comprehensive and systematic review of up-to-date ADP
methods (Wallace & Si, 2022) for how peripheral algorithms revolve around the four central works.
As a result of ADP’s theoretical frameworks in adaptive and optimal control, Lyapunov arguments
are available to prove qualitative properties including weight convergence and closed-loop stability
results. Yet, quantitative results are few, as the proposed algorithms have only been evaluated on
simple systems with known optimal solutions. For additional performance and design insights of
ADP approaches, please refer to Appendix J.

The second deep RL (DRL) approach is the most recent and perhaps most promising to date, in
particular fitted value iteration (FVI) deep RL methods. These frameworks solve the Hamilton-
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Jacobi-Bellman/Isaacs (HJB/HJI) equations directly through approximation by deep networks, large
datasets, and extensive training. The concept of applying black-box function approximation to solve
the HJB traces back to the seminal work of Doya (2000). Subsequently, Tassa & Erez (2007) pro-
posed a foundational value-function approximation framework using least-squares regression tech-
niques for its neural network training. Recently, the novel continuous FVI (cFVI) (Lutter et al.,
2023a) and robust FVI (rFVI) (Lutter et al., 2022) algorithms empirically exhibit low variance and
control performance far surpassing that of prevailing ADP methods, and stand for the state-of-the-art
currently. However, theoretical guarantees as those offered by ADP are yet to be developed.

Contributions. We propose a new model-based learning approach with the following three contri-
butions to CT-RL: 1) Our novel reference command input (RCI) learning framework leverages fun-
damental input/output control mechanisms for well-behaved dynamic system responses and learning
performance guarantees. 2) We take advantage of Kleinman’s structure and data-driven learning to
address nonlinear learning control problems with data efficiency. 3) This model-based learning
framework presents new SOTA results through our performance evaluations.

In addition, when the system physics afford a decentralized structure with distinct dynamical loops,
RCI can use this information to reduce dimensionality and make the algorithm even more efficient.

2 METHOD

RCI addresses the same affine nonlinear system as the above SOTA ADP and DRL methods:

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn is the state, u ∈ Rm is the control, f : Rn → Rn, and g : Rn → Rn×m. As
standard, we assume f and g are Lipschitz on a compact set Ω ⊂ Rn containing the origin x = 0 in
its interior, and that f(0) = 0. We consider the infinite-horizon undiscounted cost

J(x0) =

∫ ∞

0

(xTQx+ uTRu) dτ, (2)

where Q ∈ Rn×n, Q = QT ≥ 0 and R ∈ Rm×m, R = RT > 0 are the state and control penalties.

Background: Kleinman’s Algorithm for Linear Systems (Kleinman, 1968). We adapt some
successive approximation concepts from Kleinman’s algorithm to the proposed nonlinear RCI algo-
rithm for data efficiency. Classical Kleinman’s algorithm considers the linear time-invariant system
ẋ = Ax+Bu. We assume that (A,B) is stabilizable and (Q1/2, A) is detectable (Rodriguez, 2004).
Kleinman’s algorithm iteratively solves for the optimal LQR control K∗ ∈ Rm×n as follows. For
iteration i = 0, 1, . . . , on the current policy Ki, let Pi ∈ Rn×n, Pi = PT

i > 0 be the solution of the
algebraic Lyapunov equation (ALE)

(A−BKi)
TPi + Pi(A−BKi) +KT

i RKi +Q = 0. (3)

Then, Pi solved from (3) leads to the new policy Ki+1 ∈ Rm×n as

Ki+1 = R−1BTPi. (4)

Definition 2.1 (Operators for Learning) For P = PT ∈ Rn×n, define its “vectorization” v(P ) as

v(P ) =
[
p11, 2p12, . . . , 2p1n, p22, 2p23, . . . , 2pn−1,n, pnn

]T
. (5)

We denote the dimension of the vector v(P ) as n ≜ n(n+1)
2 . Given vectors x, y ∈ Rn, define

B(x, y) = 1

2

[
2x1y1, x1y2 + x2y1, . . . , x1yn + xny1, 2x2y2, . . . , 2xnyn

]T ∈ Rn. (6)

Further properties of these operations can be found in Proposition A.1 of Appendix A.

RCI Algorithm. Leveraging Kleinman’s structure, RCI uses state-action trajectory data (x, u) to
iteratively solve for the optimal policy of the nonlinear system (1).

Critic Network Structure. The critic is given by V (x) = BT (x, x)ci, where ci ∈ Rn are the
weights yielded from RCI learning (discussed shortly). This neural network approximation structure
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for the critic is standard in SOTA ADP methods. Given ci ∈ Rn and from Proposition A.1, we have
that there exists a unique Pi = PT

i ∈ Rn×n such that ci = v(Pi), and that V (x) = BT (x, x)ci =
BT (x, x)v(Pi) = xTPix, the same quadratic approximation form of Kleinman’s algorithm.

Algorithm Procedure: Overview. Given a designer-selected state-action sample count l ∈ N, se-
quence of sample instants {tk}lk=0, and reference input r(t) (see discussions around Equation (13)),
we apply r(t) to the nonlinear system (1) simulating the environment under an initial stabilizing
policy K0 and collecting state-action data {(x(tk), u(tk))}lk=0. With this trajectory data, we use the
method of integral reinforcement (Vrabie & Lewis, 2009) to construct a learning weight update:

Ai ci = bi. (7)

Here, the learning matrices Ai ∈ Rl×n, bi ∈ Rl contain environment data pertaining to 1) trajectory
sample difference data x(tk) − x(tk−1), 2) trajectory integral data

∫ tk
tk−1

xdτ , and 3) the current
policy Ki. We describe the exact form of these matrices below:

Step 1. Given iteration i ≥ 0, we use the method of integral reinforcement to construct a learning
update for the next iteration controller Ki+1. Let t0 < t1 be given. The critic network approximates
the cost J (2), which implies that along environment trajectories, we have

V (x(t1))− V (x(t0)) =

∫ t1

t0

xTQx+ uTRudτ. (8)

The right-hand-side of (8), called the integral reinforcement signal (Vrabie & Lewis, 2009), requires
only state-action data (x, u) from the nonlinear system (1). (8) is exact only when the critic V
represents the cost J exactly. The learning goal is to minimize residual approximation error in (8).

Step 2. In order to recast (8) in a form amenable to learning, we rearrange the terms in (1) as

ẋ = f̃(x) + g(x)u+Aix+BKix. (9)

Here, the drift term f̃(x) ≜ f(x) − Ax ∈ Rn fully captures 1) the system nonlinearities, and 2)
possible model uncertainties, while A, B, and Ai ≜ A − BKi are known nominal linearization
terms. We emphasize that the equation (9) is still exact to the original nonlinear dynamics (1).
Differentiating the value function V along system trajectories, we have V (x(t1)) − V (x(t0)) =∫ t1
t0

d
dτ {V (x)} dτ , and using the identification ci = v(Pi) from Proposition A.1, along the solutions

of the nonlinear system (1) we have

V (x(t1))− V (x(t0)) = xT (t1)Pix(t1)− xT (t0)Pix(t0)

=

∫ t1

t0

[
2(f̃(x) + g(x)u+BKix)

TPix+ xT
(
AT

i Pi + PiAi

)
x
]
dτ. (10)

Now, applying the algebraic identity (19) and rearranging terms, (10) becomes[
−2

∫ t1
t0
B
(
f̃(x) + g(x)u+BKix, x

)
dτ + B

(
x(t1) + x(t0), x(t1)− x(t0)

)]T
ci

=
[∫ t1

t0
B
(
x, x

)
dτ

]T
v
(
AT

i Pi + PiAi

)
= −

[∫ t1
t0
B
(
x, x

)
dτ

]T
v
(
Q+KT

i RKi

)
. (11)

The integral reinforcement equation (11) is now of the required form for learning: The terms in
brackets

[
−2

∫ t1
t0
· · · dτ +B(x(t1) · · ·−x(t0))

]T
ci contain the environment trajectory integral and

difference data and will form a single row of the learning matrix Ai (7), multiplied on the right by
the network weight vector ci. Meanwhile, the term in v

(
Q +KT

i RKi

)
requires only integral state

data x, learning cost Q, R, and current policy Ki. This will form a single element of the learning
vector bi (7), establishing an integral reinforcement learning update.

Step 3. We now use the integral reinforcement (11) (which comprises a single trajectory sample) to
construct the learning matrices Ai ∈ Rl×n, bi ∈ Rl (7) from l such samples. Specifically, applying
(11) at the sample instants {tk}lk=0 and manipulating further, the learning matrices Ai and bi are

Ai = −2
[
If̃+gu,x + Ix,xW

T
i

]
+ δx,x, bi = −Ix,xv(Q+KT

i RKi). (12)
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Here Wi ≜ W (In ⊗BKi)W
−1
r , where ⊗ is the Kronecker product (Brewer, 1978), and W , W−1

r
(17) are standard Kronecker terms. I•,x, δx,x ∈ Rl×n (18) are simply “storage” matrices containing
integral data I•,x ←

∫ tk
tk−1

xdτ and difference data δx,x ← x(tk) − x(tk−1) between successive
samples as they appear in the integral reinforcement equation (11) and are discussed below (11).

Step 4. Having solved for the critic weights ci (7), we update the policy as (4): Ki+1 =
R−1BT v−1(ci) (Proposition A.1), after which we return to (7) to yield ci+1, and so on.
Remark 2.1 (System Dynamics Required by SOTA CT-RL Works) Comparing the dynamics
required by RCI and deep RL FVIs in Table 1, the additional partial derivative knowledge required
by FVIs with respect to the state x and model uncertainty parameters θ is generally susceptible
to modeling error (Khalil, 2002). The ADPs generally require little dynamics, but these methods
struggle to synthesize designs (Wallace & Si, 2022).

Table 1: System dynamics required by SOTA CT-RL methods

Algorithm System dynamics required
RCI f , g

FVIs (Lutter et al., 2023a; 2022) f, g, ∂f/∂x, ∂g/∂x, ∂f/∂θ, ∂g/∂θ (Remark 2.1)
IRL | SPI | RADP | CT-VI g | f, g | None | None (Remark 2.1)

Table 2: Environments in SOTA CT-RL evaluations (full details in Appendices D-F)

Algorithm System Order # Inputs Source of model parameters

RCI

Pendulum −→ −→ Identical to FVIs below as benchmark
Jet aircraft 4 2 Full-scale NASA wind tunnel tests

(new in CT-RL) (Soderman & Aiken, 1971)
DDMR ground bot 4 2 System ID on actual hardware

(new in CT-RL) (Mondal et al., 2020; 2019)

FVIs
Pendulum 2 1 Quanser STEM curriculum resources
Cart pendulum 4 1 (Quanser, 2018)
Furatura pendulum 4 1

ADPs Simple academic 2 1 Non-physical, constructed so optimal
solutions known a priori

Reference Command Input (RCI). Persistence of excitation (PE) requirements are often invoked in
proofs of ADP CT-RL algorithm properties (cf. Remark 2.2). To achieve PE, it is standard practice
in ADP to apply a probing noise d to the system (1) in a feedback control of the form u = µ(x)+ d,
where µ : Rn → Rm is a stabilizing policy. Since good feedback control attenuates plant input
disturbances, plant-input probing noise excitation is an inherently problematic practice (Rodriguez,
2004) which was shown a limitation (Wallace & Si, 2022). We propose a reference command input
(RCI) solution which instead excites the closed-loop system at the favorable reference command
input r. Critically, RCI is compatible with current RL formulations. Since full state information is
required in the optimal control problem, we may designate a subset of the state x as measurement
variables y ∈ Rp for reference injection. Writing x =

[
yT xT

r

]T
, where xr ∈ Rn−p denotes the

rest of the state, and denoting e = r − y as the tracking error signal, the control

u = µ(e, xr) = µ(y, xr) + d̃, d̃ ≜ µ(e, xr)− µ(y, xr), (13)

is of the required form u = µ(x)+d̃. Thus, RCI can improve learning of existing CT-RL algorithms.

We are now ready to present our main theoretical guarantees:
Theorem 2.1 (Convergence, Optimality, and Closed-Loop Stability of RCI) Suppose that the
initial policy K0 stabilizes the nominal linearization (i.e., that A − BK0 is Hurwitz), and that the
sample instants {tk}lk=0 are such that the integral reinforcement matrix Ix,x (18) has full rank n.
Identifying ci = v(Pi) (Proposition A.1), RCI and Kleinman algorithm’s ALE (3) produce identical
sequences of matrices {Pi}∞i=0 and policies {Ki}∞i=1. As a result, the 1) convergence, 2) solution
optimality, and 3) closed-loop stability results of Kleinman’s algorithm (Theorem B.1) hold for RCI
in the choice of critic bases B(x, x) ∈ Rn on the nonlinear system (1).
Proof: An induction argument presented in Appendix B. ■
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Remark 2.2 (Theoretical Results and Assumptions of SOTA CT-RL Works) RCI, like the lead-
ing ADP-based works (Vrabie & Lewis, 2009; Vamvoudakis & Lewis, 2010; Jiang & Jiang, 2014;
Bian & Jiang, 2022) provides theoretical results of convergence, optimality, and closed-loop stabil-
ity. The SOTA FVIs (Lutter et al., 2023a; 2022) do not provide these guarantees. Meanwhile, RCI’s
assumptions are among the least stringent in CT-RL, which we outline in detail in Remark C.3 of
Appendix C. RCI requires standard stabilizability, detectability, and full-rank assumptions for well-
posedness (see above). Meanwhile, DRL FVIs (Lutter et al., 2023a; 2022) require partial derivatives
of f and g (cf. Remark 2.1) and neglect higher-order terms in the Taylor expansion of the optimal
value V ∗. The ADP methods generally have the most stringent assumptions. For instance, CT-VI
(Bian & Jiang, 2022) requires PE, existence and uniqueness of solutions to an uncountable family
of finite-horizon HJB equations, and an initial globally asymptotically stabilizing policy.
Remark 2.3 (Decentralizable Environment for Further Data Efficiency) Consider a decentral-
ized environment (f, g) (1) with N separable control loops. To illustrate, we present N = 2 loops:[

ẋ1

ẋ2

]
=

[
f1(x)
f2(x)

]
+

[
g11(x) g12(x)
g21(x) g22(x)

] [
u1

u2

]
. (14)

No assumptions are made on dynamic coupling between the loops; i.e., the loops may be fully
coupled. Here, xj ∈ Rnj , uj ∈ Rmj (j = 1, . . . , N) with

∑N
j=1 nj = n and

∑N
j=1 mj = m.

Such partitions appear in a variety of real-world applications such as robotic systems (Craig, 2005;
Dhaouadi & Abu Hatab, 2013), helicopters (Enns & Si, 2002; 2003b;a), UAVs (Wang et al., 2016),
and aircraft (Stengel, 2022; Dickeson et al., 2009a;b) In this case, the RCI learning rule (7) occurs in
a decentralized fashion in each of the loops, thereby reducing problem dimensionality. This results
in sequences of critic network weights {ci,j}∞i=0 and policies {Ki,j}∞i=1 in each loop yielded by
learning analogous to (7), now constructed with xj instead of x, uj instead of u, etc. Crucially,
learning convergence, optimality, and closed-loop stability results analogous to Theorem 2.1 hold
for the policies {Ki,j}∞i=1 in each loop.

3 EXPERIMENT SETUP FOR EVALUATIONS

We conduct ablation studies with comparisons to baseline LQR, demonstration of robustness and
generalization of RCI, and comparisons with the SOTA FVIs (Lutter et al., 2023a; 2022). Perfor-
mance criteria are defined in Section 3.2.

3.1 SELECTION OF SOTA ENVIRONMENTS

Extensive evaluations of RCI are performed on three SOTA environments described in Table 2. The
dynamics of the environments are given by

θ̇ = ω

ω̇ = mgL
2I sin θ + τ

I

V̇ = mcd
m̂ ω2 − 2β

m̂r2V + kt

m̂kgr
iar +

kt

m̂kgr
ial

ω̇ = −mcd

Î
ωV − βd2

w

2Îr2
ω + dwkt

2Îkgr
iar − dwkt

2Îkgr
ial

i̇ar
=

−kgkb

lar
V − kgkbdw

2lar
ω − ra

la
iar

+ 1
2la

ea +
1
2la

∆ea

i̇al
=

−kgkb

lar
V +

kgkbdw

2lar
ω − ra

la
ial

+ 1
2la

ea − 1
2la

∆ea

(15)

 V̇
γ̇
q̇
α̇

 =


−DV −g cosαe 0 0
LV

Ve
0 0 Lα

Ve

0 0 Mq Mα
−LV

Ve
0 1 −Lα

Ve


 V

γ
q
α

+

 TδT 0
0 0
0 MδE
0 0

[
δT
δE

]
. (16)

The pendulum (15, left) has states x = (θ, ω), where θ is the pendulum angle (measured zero
pointing upward, positive counterclockwise), ω is the pendulum angular velocity, and the single-
input control u = τ is the torque applied to the pendulum base. The jet (16) has states x =
(V, γ, q, α), where V is the airspeed, γ is the flightpath angle (FPA), q is the pitch rate, and α is
the angle of attack (AOA). It has controls u = (δT , δE), where δT is the throttle setting (associated
with the airspeed V in the translational loop j = 1), and δE is the elevator deflection (associated
with the FPA γ and attitude q, α in the rotational loop j = 2). The differential drive mobile robot
(DDMR) (15, right) also lends itself to decentralization, with states x = (V, ω, iar , ial

), where V is
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the velocity, ω is the angular velocity, and iar
, ial

are the right and left DC motor armature currents,
respectively. The controls are u = (ea,∆ea), where ea is the average of the armature voltages
applied to the right and left DC motors (associated with the speed V in the translational loop j = 1),
and ∆ea is the difference of the right/left voltages (associated with the rotational velocity ω in the
rotational loop j = 2).

3.2 IMPLEMENTATION AND TRAINING PROCEDURES

All Code/Data Available. All RCI code and datasets for this study are available in supplemental and
at Anonymized (2024). All FVI results (Lutter et al., 2023a; 2022) are generated by the open-source
code developed by the authors available at Lutter et al. (2023b). Hyperparameters: RCI. Can be
found in Table 16 of Appendix G. 1) Reference command inputs r: After in-depth analysis of the
system physics in Appendices D-F, we choose the references r based on the natural input/output res-
onances of each environment to maximize excitation efficiency. 2) Sample period Ts = tk − tk−1:
chosen based on the natural bandwidth of each environment. 3) Number of samples l: chosen based
on the system dimensionality n. 4) Number of iterations i∗: 5 iterations was observed to be sufficient
for convergence of all environments, a low number due to RCI data efficiency. Hyperparameters:
FVIs. Can be found in Table 17 of Appendix G. For the pendulum system, we use the FVI setup/hy-
perparameters of the original studies (Lutter et al., 2023a; 2022) with a few minor implementation
changes to make results comparable among the methods (cf. Appendix G for discussion). For the jet
and DDMR examples that are new to FVIs, we have chosen hyperparameters in light of the successes
achieved by the selections in Lutter et al. (2023a; 2022), tailored to maximize learning performance
for these specific systems. Generalizations. To evaluate generalization to model uncertainty, we
account for different levels of modeling error ν ∈ R for each system over a grid of values ν ∈ Gν

(cf. Appendix G for selections), ranging from zero modeling error (ν = 1) to a 25% modeling error
(ν = 1.25 for the pendulum and DDMR, ν = 0.75 for the jet). The direction of the perturbation
(i.e., ν > 1 or ν < 1) is chosen to maximize the difficulty of the learning problem (cf. Appendices
D-F for in-depth discussion). Performance Measures. To quantify learning performance, we use
the following measures: 1) policy cost performance J (2), 2) critic network approximation error
J − V , 3) closed-loop time-domain responses, 4) algorithm data/time efficiency and number of free
parameters, and 5) generalization to model uncertainty ν. Hardware, Software. These studies are
performed in MATLAB R2022b, on an NVIDIA RTX 2060, Intel i7 (9th Gen) processor. Integra-
tions are performed in MATLAB’s adaptive ode45 solver. For an in-depth discussion of our setup,
and for a complete list of numerical hyperparameter selections, see Appendix G.

Training: RCI. Online data is collected from the actual system (i.e., with modeling error ν ̸= 1)
over one simulation beginning at an initial condition x0. We thus define learning over a pair (x0, ν)
as constituting one trial for RCI. We present data for RCI trained over the trial space (x0, ν) ∈
Gx0 × Gν (cf. Appendix G for numerical selections). This corresponds to 1,620 trials for the
pendulum (81 ICs x0 × 20 modeling errors ν), 1,089 trials for the jet (99 x0 × 11 ν), and 1,287
trials for the DDMR (117 x0 × 11 ν). Training: FVIs. The notion of a trial in FVI training
differs from that of RCI. To execute to completion, FVI requires training data from over 5 million
simulations (cf. Table 9) initialized in a uniform distribution U over the state domain, for details
see Lutter et al. (2023a; 2022). Thus, for FVI a trial is associated with the specific random number
generation seed. In this work, we evaluated the FVI algorithms over 20 seeds for each environment.
All surface plot results (e.g., Figure 2) correspond to seed 42, the same as the original works (Lutter
et al., 2023a; 2022). For further discussion of FVIs training, see Appendix C.

4 ABLATION STUDY

In this evaluation, we provide quantitative assessment of the nonlinear RCI algorithm over the base-
line classical LQR design performed on the nominal linearization (A,B) (Section 2).

RCI on Nominal/Perfect Model ν = 1 and Ablation Sweeps of Initial Conditions (ICs). A com-
plete evaluation of RCI over a systematic sweep of ICs and modeling errors (different ν) for all
three environments can be found in Tables 18-20 of Appendix H. For illustration, some of this data
is in Table 3 for the pendulum. At worst-case over the IC grid x0 ∈ Gx0

, on the nominal model
ν = 1 RCI converges to within 3.71 × 10−5 of the optimal policy K∗ for the pendulum (Table 3),
2.42×10−8 for the jet, and 5.17×10−5 for the DDMR. Thus, RCI achieves real-world convergence
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performance in accordance with its theoretical guarantees. As a comparison, the FVIs also converge
nicely, but they still exhibit appreciable variance between seeds (cf. Figure 1).

Table 3: RCI initial condition x0 and modeling error ν ablation on pendulum

ν Nom LQ policy optimality Data over RCI policy optimality Percent reduction
(24) error ∥K0 −K∗∥ x0 ∈ Gx0 error ∥Ki∗ −K∗∥ Nom LQ→ RCI

1 0 (Nom LQ optimal) worst 3.71e-05 N/A
avg±std 1.75e-05±1.19e-05 N/A

1.1 1.04 worst 0.06 94.12
avg±std 0.03±5.47e-03 96.75±0.53

1.25 2.61 worst 0.20 92.18
avg±std 0.13±0.01 95.21±0.54

RCI Learning Generalization in the Presence of Modeling Error ν ̸= 1. Tables 18-20 of Ap-
pendix H summarize the optimality errors ∥Ki∗ −K∗∥ between the RCI final policies Ki∗ and the
optimal policy K∗, reproduced here for the pendulum in Table 3. As a worst case observed over the
IC grid x0 ∈ Gx0 and in the presence of the most severe 25% modeling error tested, RCI converges
to within 0.20, 1.78 × 10−8, and 0.32 of the optimal policy K∗ for the pendulum, jet, and DDMR,
respectively. By comparison, the optimality errors of the nominal LQ controllers K0 are 2.61, 0.13,
and 1.74, respectively. Thus, for the pendulum we see that RCI’s policy error ∥Ki∗ −K∗∥ is at most
0.20/2.61 (8%) the policy error of the nominal LQ design ∥K0 −K∗∥; i.e., a reduction of at least
92% for a given initial condition x0 ∈ Gx0

. Similarly, RCI offers a reduction of at least 99.99% and
81% from the nominal LQ design for the jet and DDMR, respectively, thus demonstrating general-
izability of learning with respect to environment errors.
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Figure 1: Learning curves of cFVI and rFVI obtained over 20 seeds for the pendulum (left), jet
aircraft (middle), and DDMR (right). The shaded area displays the min/max range between seeds,
as is presented in the original works (Lutter et al., 2023a; 2022).

5 QUANTITATIVE COMPARISONS BETWEEN RCI AND DEEP RL FVIS

FVIs as Benchmark. We plot the cFVI and rFVI learning curves for all three systems in Figure 1.
As can be seen, these algorithms exhibit overall consistent learning behavior as shown in the original
works (Lutter et al., 2023a; 2022), a result confirmed independently here on SOTA environments.

Cost Performance. Figure 2 illustrates the cost difference data of cFVI and rFVI with respect to
RCI, summarized in Table 4. Note that wherever this difference is positive, RCI delivers better
performance than the respective FVI algorithm. Several key trends emerge from Table 4: 1) RCI
achieves the lowest cost for all three systems as modeling error ν is increased, and the best modeling
error generalization overall. 2) For both multi-loop systems (i.e., the jet and DDMR), RCI achieves
lowest cost pointwise, regardless of modeling error. 3) The FVIs perform quite well. Indeed, the
leftmost plot in Figure 2 shows that cFVI performance edges out that of RCI for the nominal pendu-
lum far from the origin x = 0. However, when modeling error is introduced (second from the left),
cFVI performance degrades significantly, a trend we observe for all three systems (cf. Appendix I).
By contrast, rFVI degradation is less pronounced, but at the cost of inferior overall performance.
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Figure 2: Left two figures: cFVI cost difference JcFV I − JRCI for the nominal pendulum model
ν = 1 (first) and at 25% modeling error ν = 1.25 (second). Right two figures: cFVI (third) and
rFVI (fourth) cost difference for the nominal jet aircraft model ν = 1. Full plots in Appendix I.

Table 4: Training cost difference data JxFV I − JRCI (> 0: RCI better)

Alg Data Pendulum Jet aircraft DDMR
ν = 1 ν = 1.25 ν = 1 ν = 0.75 ν = 1 ν = 1.25

cFVI
min -0.23 -0.02 0.00 0.00 1.11e-05 1.08e-05
max 4.62e-04 0.51 8.04 8.57 0.27 0.41
avg -0.02±0.04 0.12±0.12 3.08±1.80 3.74±1.98 0.09±0.08 0.13±0.11

rFVI
min -1.33e-06 -3.81e-04 0.00 0.00 1.77e-03 1.77e-03
max 7.72 10.27 10.15 10.34 2.27 1.60
avg 2.16±1.92 2.99±2.61 3.72±2.23 4.22±2.29 0.63±0.54 0.46±0.38

Estimation Error. Figure 3 shows the critic network error J − V for the three methods on the
DDMR at 25% modeling error. As is the case with cost performance, RCI exhbits the smallest critic
network error when modeling error is introduced and the best generalization overall. cFVI does
an excellent job of approximating its policy cost for the nominal model but experiences significant
degradation. Indeed, Table 23 in Appendix I shows that cFVI’s worst-case critic error increases by
454% from ν = 1 to ν = 1.25, as compared to RCI’s 39%. Meanwhile, rFVI struggles with cost
approximation to a larger degree than RCI or cFVI; however, rFVI’s worst-case cost approximation
improves from 6.08 at nominal to 5.36 at 25% modeling error (cf. Table 23), demonstrating favorable
generalization.
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Figure 3: Critic NN approximation error J(x) − V (x) for DDMR environment at 25% modeling
error ν = 1.25 (43). Left: RCI, middle: cFVI, right: rFVI. Note: rFVI color normalized indepen-
dently for legibility purposes. Full plots can be found in Appendix I.

Closed-Loop Performance. Figure 4 displays closed-loop responses for all three systems at 25%
modeling error. Overall, the FVI responses are either sluggish and/or exhibit large overshoot when
compared to RCI. As corroborated by Section 4, RCI recovers the closed-loop performance of the
optimal policy for all systems and outperforms the nominal classical LQ design.
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Figure 4: Closed-loop responses at 25% modeling error. Left: pendulum swing-up from natural
hanging position (i.e., θ = 180◦). Middle: jet aircraft 1 deg step FPA command. Right: DDMR 30
deg/s step angular velocity command. Full plots can be found in Appendix I.

Algorithm Time/Data/Parameter Complexity. Refer to Table 9 of Appendix C, which lists key al-
gorithm complexity parameters for RCI and FVI. On the DDMR, for example, the ratio of RCI/FVI
for simulations required: 1/5,000,000, data samples: 1/6,000,000, network weights: 1/12,000, train-
ing epochs: 1/400, number of hyperparameters: 1/4, and training time: 1/3,000. As a result, we are
able to conduct 160 times the number of learning trials for RCI in these studies than for FVI.

6 CONCLUSION AND DISCUSSION

In the context of current ADP and deep RL CT-RL methods, we formulate a model-based RCI al-
gorithm which leverages nonlinear learning alongside input/output insights of the environment and
Kleinman control structures for data efficiency. RCI leads to new CT-RL results on SOTA envi-
ronments (jet aircraft and DDMR ground robot new to CT-RL). All three CT-RL classes represent
different approaches to the learning control problem. RCI presents theoretical guarantees, and its
learning performance at least matches, and often outperforms, the SOTA deep RL FVIs in terms of 1)
policy cost performance, 2) critic network approximation performance, 3) closed-loop time-domain
performance, 4) algorithm data/time efficiency, and 5) generalization to modeling error. Yet, RCI’s
efficiency requires knowledge of the environment, and RCI only considers Q-R cost structures (2).
Meanwhile, ADP presents strong analytical results and may not require knowledge of the environ-
ment (f, g), but these methods have not been proven for meaningful applications, as only evaluations
of simple systems with known optimal solutions are available. Furthermore, ADPs generally restrict
to Q-R cost as well. Finally, deep RL FVIs are learning-driven methods with significant empirical
promise and generalizability, as independently verified by the new SOTA evaluations we conduct
on these algorithms in Section 5. These methods also consider flexible cost structures including
dense/sparse costs. However, FVIs require the most dynamic knowledge of the three classes, and
theoretical results are yet to be developed.

Limitations of this Study. Our reference command as probing signal requires understanding of the
environment physics, which may be restrictive when the model is unknown. Furthermore, for data
efficiency we have restricted RCI to Q-R cost (2). While Q-R cost addresses a variety of control
problems in CT-RL, RCI does not have the flexibility to consider other forms of the cost structure.

Reproducibility Statement. All RCI code and all datasets for this study are available in supple-
mental and at Anonymized (2024). All FVI results (Lutter et al., 2023a; 2022) are generated by the
open-source code developed by the authors available at Lutter et al. (2023b). For an in-depth dis-
cussion of our setup and a complete list of numerical hyperparameter selections, see Section 3.2 and
Appendix G. All theoretical assumptions can be found in Remark 2.2, and all proofs of theoretical
results can be found in Appendix B.
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APPENDIX A RELEVANT OPERATORS FOR RCI ALGORITHM

Definition A.1 (Relevant Operators for Learning) Let n ≜ n(n+1)
2 , and define the maps v :

Rn×n → Rn, and B : Rn × Rn → Rn as in (5) and (6), respectively. Define W ∈ Rn×n2

(and its
right inverse W−1

r ∈ Rn2×n) as the matrices satisfying the identities

B(x, y) = W (x⊗ y), x⊗ x = W−1
r B(x, x), ∀ x, y ∈ Rn, (17)

where ⊗ is the Kronecker product (Brewer, 1978). For l ∈ N and a strictly increasing sequence
{tk}lk=0, whenever x, y : [t0, tl]→ Rn, define the matrices δx,y ∈ Rl×n and Ix,y ∈ Rl×n as

δx,y =

 BT
(
x(t1) + y(t0), x(t1)− y(t0)

)
...

BT
(
x(tl) + y(tl−1), x(tl)− y(tl−1)

)
 , Ix,y =


∫ t1
t0
BT (x, y) dτ

...∫ tl
tl−1
BT (x, y) dτ

 . (18)

Proposition A.1 The operators v (5), B (6), and matrices W , W−1
r (17) have the following proper-

ties:

(i) The restriction of v to the symmetric matrices is a linear isomorphism, and B is a symmetric
bilinear form.

(ii) Whenever P ∈ Rn×n, P = PT , the following identity holds

BT (x, y)v(P ) = xTPy, ∀ x, y ∈ Rn. (19)

(iii) The matrices W , W−1
r are uniquely determined the identity (17).

APPENDIX B PROOFS OF THEORETICAL RESULTS

The following theorem will be needed to prove the main result. Here, let K∗ = R−1BTP ∗ denote
the optimal LQR controller, where P ∗ ∈ Rn×n, P ∗ = P ∗T > 0 is the solution of the Riccati
equation (Rodriguez, 2004).
Theorem B.1 (Convergence, Optimality, and Closed-Loop Stability of Kleinman’s Algorithm
(Kleinman, 1968)) Suppose the initial policy K0 is such that A− BK0 is Hurwitz. Then we have
the following:

(i) A−BKi is Hurwitz for all i ≥ 0.

(ii) P ∗ ≤ Pi+1 ≤ Pi for all i ≥ 0, and lim
i→∞

Pi = P ∗, lim
i→∞

Ki = K∗.

We are now ready to proceed with the proof of Theorem 2.1:

B.1 PROOF OF THEOREM 2.1

Suppose that A0 = A−BK0 (9) is Hurwitz, and the sample count l ∈ N and sample times {tk}lk=0
are such that Ix,x (18) has full rank n.

Suppose it has been proved for iteration i ≥ 0 that Ai = A − BKi is Hurwitz. We first claim the
hypotheses imply that the least-squares matrix Ai ∈ Rl×n (7) also has full column rank n. For
suppose v(P ) ∈ Rn is such that Aiv(P ) = 0. Examining (11), we note for any symmetric matrix
that Aiv(P ) = Ix,xv(N), where N ∈ Rn×n, N = NT is

N = AT
i P + PAi. (20)

However, (20) is itself an ALE. Furthermore, since N = NT and since Ai = A−BKi is Hurwitz by
hypothesis, (20) has the unique solution P =

∫∞
0

eA
T
i t(−N)eAit dt (Rodriguez, 2004). Meanwhile,

the full rank of Ix,x and that Ix,xv(N) = 0 imply v(N) = 0, or N = 0. Since N = 0, we have by

13



Under review as a conference paper at ICLR 2024

the above that v(P ) = 0. We have shown that Ai has trivial right null space, hence full column rank
n.

Having established that Ai has full rank, we now claim that Pi ∈ Rn×n, Pi = PT
i > 0 (uniquely)

solves the ALE (3) if and only if ci = v(Pi) satisfies the least-squares regression (7) at equality. The
forward direction was already proved in the derivation (10), (11). Conversely, suppose v(P ) ∈ Rn is
such that the least-squares regression (7) is minimized. Since Ai has full column rank, v(P ) ∈ Rn

is unique. Now, letting Pi = PT
i > 0 be the (unique) solution of the ALE (3), (10),(11) establish

that v(Pi) ∈ Rn satisfies (7) at equality. Thus, v(P ) = v(Pi), whence P = Pi (Proposition A.1)
and the result is proved.

Having established the preceding, the proof now follows by induction on the algorithm iteration i.
■

APPENDIX C RCI COMPARED TO SOTA CT-RL RESULTS IN DEEP RL AND
ADP

In this section, we illustrate a holistic overview of the qualitative and quantitative differences be-
tween RCI and the leading CT-RL methods in ADP (Vrabie & Lewis, 2009; Vamvoudakis & Lewis,
2010; Jiang & Jiang, 2014; Bian & Jiang, 2022), and in deep RL FVI (Lutter et al., 2023a; 2022).
Comprehensive comparisons show that the proposed RCI method is SOTA.

Remark C.1 (Environments Studied by SOTA CT-RL Works) We provide an overview of the
environments studied in the evaluations of the leading CT-RL works in Table 5 below. As can be
seen the proposed environments are SOTA.

Table 5: Environments in SOTA CT-RL evaluations (full details in Appendices D-F)

Algorithm System Order # inputs Source of model parameters

RCI

Pendulum −→ −→ Identical to FVIs below as benchmark
Jet Aircraft 4 2 Full-scale NASA wind tunnel tests

(new in CT-RL) (Soderman & Aiken, 1971)
DDMR 4 2 System ID on actual hardware

(new in CT-RL) (Mondal et al., 2020; 2019)

FVIs
Pendulum 2 1 Quanser STEM curriculum resources
Cart Pendulum 4 1 (Quanser, 2018)
Furatura Pendulum 4 1

IRL Simple Academic 2 1 Non-physical, constructed so optimal
Simple Academic 2 1 solutions known a priori (Remark 1)

SPI Simple Linear 3 1 Non-physical LQR example
Simple Academic 2 1 See IRL above

RADP Simplified Engine 2 1 Non-physical,
Simplified Power Bus 2 1 chosen for illustration

CT-VI Simple Academic 2 1 See IRL above
Simplified Robot Arm 4 2 Non-physical, chosen for illustration

Remark 1: The leading ADP works (Vrabie & Lewis, 2009; Vamvoudakis & Lewis, 2010; Jiang &
Jiang, 2014; Bian & Jiang, 2022) almost universally study simple academic second-order examples
which are constructed such that the optimal value and policy are polynomial functions known a
priori in closed form, and for which the bases chosen can achieve exact approximation. Bian &
Jiang (2022) do study a robotic arm example, but the model is highly simplified and the parameter
values are chosen academic for illustration.

Remark C.2 (Data and Dynamical Information Required by SOTA CT-RL Works) We provide
an overview of the system data and environment dynamical information required of the leading CT-
RL works in Table 6 below.
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Table 6: Data and system dynamics required by SOTA CT-RL methods

Algorithm Data System dynamics required

RCI (x, u) f, g

cFVI (Lutter et al., 2023a) (x, u) f, g, ∂f/∂x, ∂g/∂x (Remark 1)
rFVI (Lutter et al., 2022) (x, u) f, g, ∂f/∂x, ∂g/∂x, ∂f/∂θ, ∂g/∂θ (Remark 1)
IRL (Vrabie & Lewis, 2009) (x, u) g
SPI (Vamvoudakis & Lewis, 2010) (x, u) f, g
RADP (Jiang & Jiang, 2014) (x, u) None (Remark 2)
CT-VI (Bian & Jiang, 2022) (x, u) None (Remark 2)

Remark 1: Note that the deep RL FVIs (Lutter et al., 2023a; 2022) require more dynamics knowledge
than RCI, in particular partial derivative knowledge with respect to the state x and model uncertainty
parameters θ, which is generally highly susceptible to modeling error (Khalil, 2002).

Remark 2: RCI and FVIs are edged out by the RADP (Jiang & Jiang, 2014) and CT-VI (Bian &
Jiang, 2022) in dynamical information required, but at the cost of highly restrictive theoretical as-
sumptions (cf. Remark C.3) and significant empirical issues (Wallace & Si, 2022).

Remark C.3 (Theoretical Assumptions Required by SOTA CT-RL Works) As shown below,
RCI is among the least restrictive in CT-RL in its theoretical assumptions. As a note, all methods
require that be Lipschitz near origin to assure well-posedness of solutions to the system differential
equations.

• RCI (present work):

– Stabilizability of the linearization (A,B) of the nonlinear system (f, g) (1) (for well-
posedness of regulation problem)

– (Q1/2, A) detectable (for definiteness of underlying ALE solution)
– Full column rank of integral reinforcement matrix Ix,x (18)
– Initial stabilizing linear controller K0

• FVIs (Lutter et al., 2023a; 2022):

– f and g are smooth in their partial derivatives in the state x and model uncertainty
parameters θ, and these partials are all known a priori

– Undiscounted problem γ = 1 can be approximated by discounted problem 0 < γ < 1

– Discrete-time running cost r(x, u) can be approximated by continuous-time counter-
part: r(x, u) = ∆t rc(x, u) with sample time ∆t

– Strict convexity of action penalty gc
– Availability of convex conjugate function to action penalty gc
– Higher-order terms in Taylor series expansion of optimal value V ∗ are negligible
– Existence of an a priori state grid x ∈ D to contain trajectories to for fitting procedure
– Trajectories leaving the grid x ∈ D can be instantaneously re-initialized to the previ-

ous position inside the grid

• IRL (Vrabie & Lewis, 2009):

– There exists a sequence of sampling instants t0 < t1 < · · · < tl such that the IRL
regression matrix has full rank

– Chosen basis functions approximate optimal value and its gradient uniformly on com-
pact sets

– Basis functions for critic network are linearly-independent
– Initial stabilizing policy

• SPI (Vamvoudakis & Lewis, 2010):
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– Existence and uniqueness of least-squares solution to approximate HJB equation
– PE assumption on various learning signals
– Chosen basis functions approximate optimal value and its gradient uniformly on com-

pact sets
– Chosen basis functions approximate optimal policy uniformly on compact sets
– Basis functions for critic network are linearly-independent
– Basis functions for actor network are linearly-independent
– Initial stabilizing policy

• RADP (Jiang & Jiang, 2014):

– Optimal value can be bounded from above and below by a priori known class K∞
functions

– Existence of a priori known compact set Ω0 for which the closed-loop system under
the initial policy is invariant with respect to the probing noise d

– PE assumption on various learning signals
– Chosen basis functions approximate optimal value and its gradient uniformly on com-

pact sets
– Chosen basis functions approximate optimal policy uniformly on compact sets
– Basis functions for critic network are linearly-independent
– Basis functions for actor network are linearly-independent
– Initial stabilizing policy

• CT-VI (Bian & Jiang, 2022):

– Existence and uniqueness of solutions to an uncountable family of finite-horizon HJB
equations

– Properness of each solution to the finite-horizon HJB equation
– Convergence of family of solutions of finite-horizon HJB equation to the infinite-

horizon HJB solution
– Invariance of closed-loop state/action trajectory to compact set with respect to the

probing noise d

– Initial globally asymptotically stabilizing policy
– PE assumption on various learning signals
– Chosen basis functions approximate optimal value and its gradient uniformly on com-

pact sets
– Chosen basis functions approximate optimal policy uniformly on compact sets
– Chosen basis functions approximate optimal Hamiltonian uniformly on compact sets
– Basis functions for critic network are linearly-independent
– Basis functions for actor network are linearly-independent
– Basis functions for Hamiltonian network are linearly-independent

Remark C.4 (RCI vs. FVI: Qualitative Overview) We present a general overview of these two
algorithm types in Table 7. For RCI, the structural simplicity afforded by classical LQ frameworks
places little requirements on data. In fact, all state trajectory data required for execution is collected
over a single trial under a single stabilizing controller K0. Controller updates are performed after
data collection, and equivalence to the classical Kleinman algorithm ensures that each successive
controller Ki (i = 1, 2, . . . ) is stabilizing (cf. Section 2). By contrast, the deep learning data needs
of FVI require too many trials to execute practically in hardware, so data must be collected offline
in simulation. FVI’s target function fitting requires collection of data under the current-iteration
policy. Furthermore, since FVI lacks theoretical stability guarantees, each of these policies need
not be stabilizing. Rather, simulations are terminated and re-initialized after a fixed time horizon
regardless of the stability of the controller, posing further limitations on adapting this algorithm for
training in hardware.

In the case of RCI, a nominal model is required for the regression (7), but its ability to collect data
from the actual system allows optimality error reductions (cf. Sections 4, 5). Meanwhile, FVI
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Table 7: RCI vs. FVI: Qualitative overview
Parameter RCI cFVI/rFVI
Underlying Approach Classical control Deep RL
Offline/Online Online Offline
Model Required Yes Yes
Initial Stabilizing Policy Req’d Yes No
Activation Quadratic (fixed) Flexible
# NN Layers 1 (fixed) Large
# Weights/Layer n (fixed) Large

requires a nominal model to conduct its simulations, and the lack of practical ability to train its
networks from actual system data leaves this algorithm agnostic to any modeling error present in the
physical process. In particular, cFVI policy degradation with modeling error is numerically apparent
in our evaluations of Section 5. rFVI attempts to learn a more robust policy by its adversarial training
structure (Lutter et al., 2022), but as is shown in Section 5 this has consequences on the overall
performance of rFVI in relation to cFVI and RCI.

In terms of network design, FVI’s use of deep networks offers significant advantages over RCI,
which fixes the basis functions as the monomials of degree two B(x, x) ∈ Rn – the basis associated
with the LQR problem. On the other hand, FVI allows the designer to select the network activation
(tanh, sigmoid, etc.), enabling potentially greater learning performance based on application-specific
needs. Furthermore, RCI uses a single-layer architecture, while FVI network dimensions may also
be chosen to fit the needs of the problem. This represents a significant juncture between the two
approaches: On one hand, RCI’s LQR-based network enables its convergence and closed-loop sta-
bility guarantees (cf. Section 2), yet this choice of basis restricts designer flexibility and places
approximation capabilities at a disadvantage to FVI’s deep networks. Indeed, in evaluation FVI
exhibits superior value function approximation on the nominal model, before modeling error gives
the approximation advantage to RCI. This network choice has ramifications on the final policies, as
well. RCI outputs an LQ controller, which for systems with strong nonlinearities may not achieve
the performance of FVI’s nonlinear policy network. On the nominal pendulum model in Section 5,
for example, FVI’s policy offers better performance in regions far from the origin, before modeling
error gives RCI the advantage.

Remark C.5 (Hyperparameter Suites: Greater Design Intuitiveness with RCI) We now exam-
ine Table 8, which lists the hyperparameter suites of RCI and FVI. Per loop j, RCI requires less than
a fourth the selections of FVI. Even though the number of RCI hyperparameter selections increases
linearly with the number of loops, each of these parameters is explicitly linked to the loop dynamics
(e.g., sample period Ts,j to loop bandwidth, number of samples lj ≥ nj to loop dimension, refer-
ence excitation rj to the closed-loop complementary sensitivity map shapeable via classical control
techniques by the initial controller K0,j , etc.). Thus, the designer may select learning parameters
optimized to the inherent physics of each loop, rather than being forced to select a single set of
“middle-ground” parameters for the aggregate system which fails to adequately address individual-
loop learning needs. Furthermore, the designer is afforded the luxury of performing troubleshooting
at the individual loop level, greatly increasing transparency. By contrast, little intuition is available
to select the network hyperparameters of FVI, besides the general rule of thumb that more weights
and deeper networks offer better approximation performance. Here, the physics-based dynamical
insights offered by RCI’s classical underpinning offers clear advantages to designers. In particular,
choosing adversary bounds for the rFVI learning which yield improved robustness without disrupt-
ing its value function fitting is particularly difficult and offers little systematic insights.

Remark C.6 (Comparing RCI to FVI (Lutter et al., 2023a; 2022): Significant Reductions in
Time/Data Complexity) We have assembled some key algorithm parameters used in our training
studies to gauge the general numerical complexity of RCI in relation to FVI. When compared to FVI,
the reductions in algorithm complexity offered by RCI are substantial: On the DDMR, for example,
RCI requires 1/5,000,000 the simulations, 1/6,000,000 the data samples, 1/12,000 the weights, 1/400
the epochs, and 1/3,000 the time to train the same model as FVI. These reductions in computational
and numerical requirements are a deliberate aim of the RCI algorithm design philosophy, illustrating
that dynamical insights and classical control principles may be leveraged to greatly enhance RL
learning efficiency and performance. This simplicity comes with further advantages for real-world
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Table 8: RCI vs. FVI: learning hyperparameter suites
RCI loop j cFVI/rFVI
Sample Period Ts,j Time Step (s)
Number of Samples lj Time Horizon (s)
Final Iteration i∗j Discounting γ
Ref Cmd rj Network Dimensions
Initial Controller K0,j # Ensemble

Activation
Learning Rate
Weight Decay
Hidden Layer Gain
Output Layer Gain
Output Layer Bias
Diagonal Softplus Gain βL

Batch Size
# Batches
Eligibility Trace
n-step Trace Weight
# Iterations
# Epochs/Iteration
State Adversary ∥ξx∥max
Action Adversary ∥ξu∥max
Model Adversary ∥ξθ∥max
Obs Adversary ∥ξo∥max

designers. Firstly, RCI requires less than 5 s to run regardless of the system, as opposed to FVI’s
6,000-9,000 s. This drastically shortened training time allows designers to immediately iterate on
hyperparameter selections. When combined with the loop-level selection capability discussed in
Remark C.5, RCI offers far superior troubleshooting and transparency of design.

Table 9: RCI vs FVI: Algorithm time/data complexity

Parameter Pendulum Jet Aircraft DDMR
RCI cFVI/rFVI RCI cFVI/rFVI RCI cFVI/rFVI

# Simulations Req’d 1 1.05e+7 1 5.12e+6 1 5.12e+6
/ 3.84e+6

# Data Samples Req’d 15 3.45e+8 45 2.30e+8 35 2.30e+8
/ 1.73e+8

# NN Weights 3 79,104 13 79,104 6 79,104
# Epochs Req’d 5 2,000 5 2,000 5 2,000

/ 3,000
Avg Training Time (s) 0.17a 6.88e+3b 4.25 8.18e+3 2.58 6.30e+3

/ 8.98e+3 / 7.98e+3 / 6.04e+3
# Trials/Seeds Tested 1,620c 20 1,089 20 1,287 20

aAveraged over initial condition sweep x0 ∈ Gx0 on the nominal model ν = 1.
bAveraged over 20 seeds (cf. Appendix H).
cRCI sweeps over the IC grid x0 ∈ Gx0 and modeling error grid ν ∈ Gν (see Section 3.2).

One number is larger for RCI than the FVI algorithms: the number of learning trials conducted.
Since RCI can be run so quickly, for the ablation studies in Section 4 we have the luxury of running
RCI at almost 160 times the number of learning trials than cFVI and rFVI. This should stand as a
clear empirical benchmarking advantage of classical methods.

Remark C.7 (On RCI vs FVI Evaluation Performance: Key Insights) We conclude this sec-
tion with a summary of the key takeaways from the numerical analysis presented in Sections 4, 5.
These studies crucial new insights into algorithm structure’s impact on learning performance, with
significant practical takeaways for real-world designers. Kleinman’s quadratic basis keeps RCI’s
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network dimension low and enables its theoretical guarantees, but consequently FVI enjoys an ap-
proximation advantage where system nonlinearities are strong. Regardless, RCI exhibits a decisive
performance advantage for the higher-order, multi-loop systems studied in this work, suggesting
that: 1) Our physics-based decentralization paradigm developed for these systems trumps FVI’s
approximation advantage, and 2) FVI’s large data learning struggles as system order/complexity is
increased. Indeed, FVIs require three orders of magnitude more time and six orders of magnitude
more simulations to train than RCI, suggesting these algorithms face the common deep RL time/data
complexity challenges. As a direct result, the deep methods require training in computer simulation
on a nominal model, which makes cFVI particularly sensitive to modeling error performance degra-
dation. rFVI attempts to robustify this vulnerability by training under adversarial input (Lutter et al.,
2022), which ultimately mitigates degradation at the cost of inferior overall performance. By con-
trast, RCI’s classical formulation reduces data requirements to a single simulation trial collected
from the actual model, enabling more focused policy training.

These insights motivate an important practical consideration for designers: Given the uncertain na-
ture of modeling error, it is perhaps unclear a priori which FVI method is appropriate for a given
application. As a result, designers must make a cumbersome decision between two tools without
clear criteria for their use cases, and they face empirically-demonstrated repercussions even if they
make the right decision. By contrast, classical principles furnish a single RCI framework offering
designers both excellent closed-loop performance (via its theoretical guarantees) and little degrada-
tion (via its focused training and inherited LQ robustness characteristics (Rodriguez, 2004)).

APPENDIX D PENDULUM MODEL & DESIGN FRAMEWORK

D.1 PENDULUM MODEL

We consider the identical pendulum model used in the cFVI evaluations (Lutter et al., 2023a; 2022)
for this work, which has the following equations of motion

θ̇ = ω,

ω̇ =
mgL

2I
sin θ +

1

I
τ, (21)

where θ is the pendulum angle (measured zero pointing upward, positive counterclockwise), ω is the
pendulum angular velocity, and τ is the torque applied to the pendulum base. The numerical values
of all model constants are chosen identical to the cFVI evaluations (Lutter et al., 2023a; 2022) and
are available in Table 10.

The system (21) is second-order, with states x = [θ, ω]
T and control u = τ . We examine the

output y = θ; i.e., control of the pendulum angle θ. We examine the upright pendulum equilibrium
xe = [θe, ωe]

T
= [0 rad, 0 rad/s]T . At this upright condition, the pendulum is trimmed by the

control τe = 0 N-m.

Table 10: Pendulum model parameters
Definition Symbol Value

Pendulum length L L0 = 1 m (nominal)
Pendulum mass m 1 kg

Gravitational field constant g 9.81 m/s2

Pendulum moment of inertia I 1
3mL2

Remark D.1 (Pendulum Dynamical Structure) The pendulum length L is a central physical pa-
rameter in the dynamics (21). Firstly, increasing the pendulum length L increases its rotational
inertia I in the square of the length; resultantly, (21) shows that the torque τ required to achieve the
same angular acceleration increases with the square of the pendulum length L. The pendulum length
L also determines the severity of the upright pendulum instability. Linearization of (21) about the
upright equilibrium yields [

θ̇
ω̇

]
=

[
0 1

mgL
2I 0

] [
θ
ω

]
+

[
0
1
I

]
τ. (22)
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Examination the linearization (22) shows that the system has modes

s = ±
√

3

2

√
g

L
. (23)

The real, imaginary-axis-symmetric pair of poles (23) is a common feature of inverted pendulum
systems. We notice that the bandwidth of these modes are inversely proportional to the square root
of the pendulum length L; i.e., a shorter pendulum increases the instability and system bandwidth. A
longer pendulum reduces the instability, but it also reduces system bandwidth. Combined with the
above discussion of the reduced control effectiveness associated with increased pendulum length,
these first-principles analyses have significant implications for practical robotics design. Generally
speaking, taller robotic systems with inverted pendulum instabilities will require significantly more
actuator effort to achieve control objectives than shorter systems.

In the studies conducted in this work, we will focus on how modeling errors in the pendulum length
L affect the pendulum dynamics and learning performance. Specifically, we study modeling errors
of the form

L = ν L0, (24)

where L0 ∈ R is a nominal value of the pendulum length, and ν ∈ R is the modeling error parameter
(nominally 1). As ν > 1 increases, L > L0 increases, and our prior discussion shows that the system
becomes more sluggish and requires greater control effort.

Table 11 shows the inverted pendulum instability and control effectiveness constant 1
I as a function

of the modeling error ν (24). As predicted in (23), the system instability reduces with increasing
pendulum length. Control effectiveness is highly sensitive to changes in pendulum length, decreas-
ing by 17% for a 10% modeling error ν = 1.1 and by 36% for a 25% modeling error ν = 1.25.
Increases in the pendulum length will thus result in degraded closed-loop performance.

Table 11: Pendulum instability and control effectiveness versus modeling error parameter ν (24)
ν (24) Unstable Mode Location (23) Control Effectiveness 1

I
1 (nom) 3.8360 3

1.1 3.6575 2.4793
1.25 3.4310 1.9200

D.2 PENDULUM DESIGN FRAMEWORK

The pendulum system (21) is fundamentally a single-loop system j = 1. Thus, we do not employ
the multi-loop decentralization techniques of RCI for this system. We do wish to highlight the
great dynamical flexibility of RCI discussed in Section 2: RCI generalizes to any integer number
of loops j ∈ N, and this includes the single-loop case j = 1. The optimal LQ controller K∗

1
is a function of the modeling error ν, so when necessary we will show explicit dependence by
the notation K∗

1 (ν). For the model parameters in Table 10 and cost structure selections (58), the
pendulum has the following optimal LQ controllers

K∗
1 (1) = [ 10.0098 2.6217 ] , (25)

K∗
1 (1.1) = [ 10.9733 3.0086 ] , (26)

K∗
1 (1.25) = [ 12.4235 3.6251 ] , (27)

As can be seen, the optimal controller K∗
1 (ν) is heavily dependent on the modeling error ν (24).
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APPENDIX E JET AIRCRAFT MODEL & DESIGN FRAMEWORK

E.1 JET AIRCRAFT MODEL

Consider the following T-tailed small jet airplane model (Stengel, 2022; Soderman & Aiken, 1971) V̇
γ̇
q̇
α̇

 =


−DV −g cosαe 0 0
LV

Ve
0 0 Lα

Ve

0 0 Mq Mα
−LV

Ve
0 1 −Lα

Ve


 V

γ
q
α

+

 TδT 0
0 0
0 MδE
0 0

[
δT
δE

]
, (28)

where V is the vehicle airspeed, γ is the flightpath angle (FPA), q is the pitch rate, and α is the
vehicle angle of attack (AOA). As is standard in aerospace circles, here a subscript denotes a partial
derivative with respect to the particular variable (e.g., DV denotes the dimensional aerodynamic
derivative of drag D with respect to airspeed V ). For definitions of the parameters and their nu-
merical values, see Table 12. This jet airplane model is a central example of the standard flight
control text Stengel (2022), and it was constructed from aerodynamic data obtained by full-scale
wind tunnel tests conducted by NASA (Soderman & Aiken, 1971).

The jet (28) is fourth-order, with states x = [V, γ, q, α]
T and controls u = [δT , δE ]

T . We examine
a level steady flight condition γe = 0, qe = 0 at a cruising airspeed Ve = 100 m/s and altitude
he = 1000 m (Mach Me ≈ 0.3). At this flight condition, the vehicle is trimmed at an angle of attack
αe = 3.4006 deg by the controls ue = [δT,e, δE,e]

T
= [0.2135, 0 deg]T .

Table 12: Jet aircraft model parameters
Definition Symbol Value

Lift/AOA aero deriv Lα Lα0 = 127.9 N/rad (nominal)
Lift/airspeed aero deriv LV 0.190 N/(m/s)
Drag/airspeed aero deriv DV 1.850 N/(m/s)
Moment/AOA aero deriv Mα -798.56 N-m/rad

Moment/pitch rate aero deriv Mq -127.94 N-m/(rad/s)
Thrust/throttle setting control deriv TδT 4.6645 N/-

Moment/elevator control deriv MδE -9.069 N-m/rad
Gravitational field constant g 9.81 m/s2

Remark E.1 (Jet Aircraft Minimum Phase Behavior) We note in (28) that the (2, 2) element of
the input gain matrix B is assumed zero; i.e., elevator deflections δE do not directly impact the FPA
derivative γ̇. As a result, the jet model (28) is minimum phase. However, in reality tail-controlled
aircraft feature lift/elevator parasitic couplings in this location which cause them to be nonminimum
phase (Rodriguez et al., 2008; Bolender & Doman, 2006). Nevertheless, the assumption made in
the development of this model (Stengel, 2022) is quite standard in modeling for flight control design
(Hauser et al., 1992; Marrison & Stengel, 1998; Wang & Stengel, 2000).
Remark E.2 (Jet Aircraft Decentralized Dynamical Structure) The jet aircraft studied here is a
multi-input system which naturally lends itself to a decentralized dynamical structure. The throttle
δT is associated with the airspeed V in the translational loop j = 1, and the elevator δE is associated
with the FPA γ and attitude q, α in the rotational loop j = 2. Indeed, this decentralized structure
is general to aviation systems (Stengel, 2022), even high-performance hypersonic vehicles (HSVs)
(Dickeson et al., 2009a;b; Dickeson, 2012; Marrison & Stengel, 1998; Wang & Stengel, 2000; Parker
et al., 2006).

The lift/AOA derivative Lα determines the lift efficiency of the aircraft and is hence a central aero-
dynamic parameter in any aviation system. As with any aerodynamic modeling process, it is also
subject to large modeling errors and sensitivity to changes in flight condition (Stengel, 2022; Bolen-
der & Doman, 2007). Thus, in this work we study the effects of modeling error ν on the lift/AOA
dimensional aerodynamic derivative as

Lα = ν Lα0, (29)

where Lα0 ∈ R is the nominal value of the lift/AOA aerodynamic derivative, and ν ∈ R is the
modeling error parameter (nominally 1). As ν < 1 decreases, the vehicle exhibits decreased lift
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efficiency, leading to a more difficult control problem (Stengel, 2022). The jet aircraft (28) has the
following characteristic equation and natural modes

ϕ(s) =
(
s2 + 2ζphs+ ωnph

) (
s2 + 2ζsps+ ωnsp

)
, (30)

sph = −ζphωnph
± jωnph

√
1− ζ2ph, ssp = −ζspωnsp

± jωnsp

√
1− ζ2sp. (31)

The first pair of modes sph (31) is the phugoid mode, associated with the translational dynamics
via exchanges in kinetic and potential energy (i.e., with coupled oscillations between the airspeed
V and FPA γ). They are generally slow and lightly damped. The second pair ssp (31) is called the
short-period mode and is associated with the rotational dynamics via exchanges between rotational
energy and aeroelastic energy (i.e., with coupled oscillations between the pitch rate q and AOA α).
If the vehicle is designed so the center of gravity (c.g.) lies forward the center of pressure (c.p.),
they are generally fast, stable, and lightly damped (as is the case here). If the c.p. lies forward the
c.g., they are generally real, imaginary-axis symmetric, one stable and the other unstable.

We have plotted these modes as a function of the modeling error paramer ν (29) in Table 13. As
can be seen, the damping of both modes decreases with decreased lift efficiency ν < 1, and the
short-period modes get closer to the imaginary axis; i.e., less stable.

Table 13: Jet aircraft phugoid and short-period modes versus modeling error parameter ν (29)
ν (29) sph ζph ωnph

ssp ζsp ωnsp

1 (nom) −0.00849± j0.119 0.0709 0.120 −1.28± j2.83 0.412 3.10
0.9 −0.00853± j0.120 0.0708 0.121 −1.22± j2.83 0.395 3.08

0.75 −0.00863± j0.120 0.0705 0.122 −1.12± j2.82 0.369 3.04

E.2 JET AIRCRAFT DECENTRALIZED DESIGN FRAMEWORK

This work implements a decentralized design methodology, wherein controllers are designed sepa-
rately for the weakly-coupled translational subsystem (associated with the airspeed V and throttle
setting δT ) and rotational subsystem (associated with the FPA γ, attitude q, α, and elevator δE).
In order to achieve zero steady-state error to step reference commands, we augment the plant at
the output with the integrator bank z =

∫
y dτ = [zV , zγ ]

T
=

[∫
V dτ,

∫
γ dτ

]T
. For RCI, the

state/control vectors are thus partitioned as x1 = [zV , V ]
T , u1 = δT (n1 = 2, m1 = 1) and

x2 = [zγ , γ, q, α]
T , u2 = δE (n2 = 4, m2 = 1). Applying the LQ servo design framework

(Rodriguez, 2004) to each of the loops yields a proportional-integral (PI) speed controller K∗
1 and

a PI/PD FPA/attitude inner-outer loop controller K∗
2 . It is these optimal LQ controller parameters

which RCI will learn online. In general, the optimal LQ controllers K∗
j (j = 1, 2) are functions of

the modeling error ν, so when necessary we will show explicit dependence by the notation K∗
j (ν).

For the model parameters in Table 12 and cost structure selections (59), the jet aircraft has the
following optimal LQ controllers

K∗
1 (ν) = [ 0.0316 0.1496 ] , (32)

K∗
2 (1) = [ −0.7071 −1.7089 −0.1960 −0.4251 ] , (33)

K∗
2 (0.9) = [ −0.7071 −1.7403 −0.1858 −0.3944 ] , (34)

K∗
2 (0.75) = [ −0.7071 −1.8014 −0.1687 −0.3450 ] . (35)

As can be seen from (32), the optimal controller K∗
1 in the translational loop j = 1 is independent

of the modeling error ν. This is because the lift/AOA derivative Lα enters dynamically into the FPA
γ and AOA α equations in (28), so the modeling error only affects the dynamics in the rotational
loop j = 2.
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APPENDIX F DIFFERENTIAL DRIVE MOBILE ROBOT (DDMR) MODEL &
DESIGN FRAMEWORK

F.1 DDMR MODEL

Consider the following DDMR model (Dhaouadi & Abu Hatab, 2013; Mondal et al., 2020; 2019;
Mondal, 2021)

V̇ = −2β
m̂r2 V + mcd

m̂ ω2 + kt

m̂kgr
iar +

kt

m̂kgr
ial

,

ω̇ = − βd2
w

2Îr2
ω − mcd

Î
ωV + dwkt

2Îkgr
iar − dwkt

2Îkgr
ial

,

i̇ar
=

−kgkb

lar
V − kgkbdw

2lar
ω − ra

la
iar

+ 1
2la

ea +
1
2la

∆ea

i̇al
=

−kgkb

lar
V +

kgkbdw

2lar
ω − ra

la
ial

+ 1
2la

ea − 1
2la

∆ea

(36)

where V is the robot speed (measured positive forward), ω is the robot angular velocity (measured
positive counterclockwise), and iar

, ial
are the right and left DC motor armature currents, respec-

tively. We provide definitions and numerical values of all model constants in Table 14. It should
be noted that these parameter selections are standard and were obtained empirically from actual
hardware (Mondal, 2021).

The system (36) is fourth-order, with states x = [V, ω, iar , ial
]
T . The controls are u = [ea, ∆ea]

T ,
where ea =

ea,r+ea,l

2 is the average of the armature voltages ea,r, ea,l applied to the right and
left wheels, respectively, and ∆ea = ea,r − ea,l is the difference of the armature voltages.
We examine the outputs y = [V, ω]

T ; i.e., control of the DDMR speed V and angular veloc-
ity ω. We examine the equilibrium forward cruise condition xe = [Ve, ωe, iar,e, ial,e]

T
=

[2 m/s, 0 rad/s, 0.68A, 0.68A ]
T . At this cruise condition, the DDMR is trimmed by the controls

ea,e = 3.9115 V, ∆ea,e = 0 V.

Table 14: DDMR model parameters
Definition Symbol Value

c.g./wheelbase separation d d0 = -6 cm (nominal)
Mass of robot chassis mc 3.963 kg
Mass of single wheel mw 0.659 kg

Wheel motor moment of inertia Iw 570 µkg-m2

Total vehicle moment of inertia I 0.224 kg-m2

Radius of wheels r 3.85 cm
Length of robot chassis l 44 cm
Width of robot chassis w 34 cm

Distance between wheels at midpoint dw 34 cm
Motor armature inductance la 13.2 µH
Motor armature resistance ra 3.01 Ohm
Motor gear up/down ratio kg 1
Motor back EMF constant kb 0.075 V/(rad/s)

Motor torque constant kt 0.075 (N-m)/A
Speed damping constant β 7.4 µN-m-s

Total vehicle mass m mc + 2mw

Effective mass m̂ m+ 2Iw
r2

Effective moment of inertia Î I +
d2
wIw
2r2

Effective damping constant β β + ktkb

ra

Remark F.1 (DDMR Dynamical Structure) Assuming that the motor armature inductance la ≈ 0
(which has proven a reasonable approximation – if included, the motor dynamics have poles on the
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order of s = −106), then the DDMR model (36) reduces to (Mondal, 2021)

V̇ =
−2β
m̂r2

V +
mcd

m̂
ω2 +

2kt
m̂kgrar

ea,

ω̇ = − βd2w

2Îr2
ω − mcd

Î
ωV +

dwkt

2Îkgrar
∆ea. (37)

We will use this model for purposes of first-principles analysis here. We also use it as the design
model for the methods studied to improve numerics. Examination of the DDMR model (37) quickly
reveals a natural dynamical partition of the form (14). The translational loop j = 1 consists of
the speed state V and is associated with the average voltage control ea. The rotational loop j = 2
consists of the angular velocity state ω and is associated with the differential voltage control ∆ea.

The (signed) distance d that the vehicle center of gravity (c.g.) lies forward the wheelbase is a cen-
tral physical parameter in the dynamics of the DDMR (37). Firstly, the c.g./wheelbase separation d
determines the strength of the coupling terms in (37) (i.e., the second term in each state equation).
Indeed, (37) shows that when d = 0, the translational and rotational dynamics of the DDMR de-
couple – why placing the robot c.g. on the wheel axis is a common design choice in the DDMR
community (Mondal et al., 2020; 2019; Mondal, 2021).

The c.g./wheelbase separation d also determines the stability properties of the DDMR. Loosely
speaking, placing the vehicle c.g. forward the wheelbase d >> 0 renders the rotational dynamics ω
stable: Perturbations in the robot’s rotational pose make the friction forces acting on the wheelbase
induce torques on the vehicle which counter the direction of the perturbation. Conversely, placing
the wheelbase forward the c.g. d << 0 results in directional instability for similar reasons. This
stability behavior is entirely analogous to the longitudinal dynamics of aircraft, wherein pitch-up
instabilities occur if and only if the vehicle center of pressure (playing the analogous role of the
wheelbase as the center of forces acting on the vehicle) lies forward the c.g. (Stengel, 2022) (see
Appendix E).

More concretely, given an equilibrium xe = [Ve, ωe]
T of (37), the following controls ue =

[ea,e, ∆ea,e]
T achieve equilibrium

ea,e = −
m̂kgrar

2kt

(
− 2β

m̂r2
Ve +

mcd

m̂
ω2
e

)
,

∆ea,e =
2Îkgrar

dwkt

(
mcd

Î
Veωe +

βd2w

2Îr2
ωe

)
, (38)

and linearization about the equilibrium (xe, ue) yields[
V̇
ω̇

]
=

[
−2β
m̂r2

2mcdωe

m̂
−mcdωe

Î

(
−mcdVe

Î
− βd2

w

2Îr2

) ][
V
ω

]
+

[
2kt

m̂kgrar
0

0 dwkt

2Îkgrar

] [
ea
∆ea

]
. (39)

Note from examination of the linearization (39) that, reaffirming our insights of the nonlinear dy-
namics (37), the DDMR decouples when d = 0; i.e., when the vehicle c.g. is placed on the wheel-
base. Decoupling of the linearized model also occurs when ωe = 0 (studied here), in which case
examination (39) shows that the DDMR has open-loop eigenvalues at s = sV , sω , where

sV ≜
−2β
m̂r2

, (40)

sω ≜ −
(
mcVe

Î
d+

βd2w

2Îr2

)
. (41)

The first mode sV (40) is a stable speed damping mode arising from wheel friction and the electro-
mechanical damping characteristics of the motors. The second mode sω (41) determines the stabil-
ity properties of the rotational dynamics. (41) shows that the following critical value dMS of the
c.g./wheelbase separation results in marginal stability:

dMS = − βd2w
2mcVer2

. (42)
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For d > dMS , the DDMR is stable. For d < dMS , the DDMR is unstable. Note in the case of
zero speed/motor damping β = 0 that dMS = 0; i.e., the DDMR is stable if and only the vehicle
c.g. lies forward the wheel axis d > 0 – numerically reaffirming the physical intuitions discussed
above. More generally, (41) shows that greater translational damping β increases the stability of the
DDMR rotational dynamics. For the DDMR parameters studied (cf. Table 14), dMS = −0.92 cm,
so the nominal c.g./wheelbase separation d0 = −6 cm results in a directionally-unstable system.

In the studies conducted in this work, we will focus on how modeling errors in the c.g./wheelbase
separation d affect the DDMR dynamics and learning performance. Specifically, we study modeling
errors of the form

d = ν d0, (43)

where d0 ∈ R is a nominal value of the c.g./wheelbase separation, and ν ∈ R is the modeling error
parameter (nominally 1). As ν > 1 increases, d < d0 < dMS < 0 decreases, and (41) shows that
the system becomes more unstable. Table 15 shows the effect of DDMR eigenvalues as a function
of the modeling error parameter ν (43). The DDMR directional instability is highly sensitive to
modeling errors ν in the c.g./wheelbase separation d. As predicted by (40), the speed mode sV is
stable and independent of the c.g/wheelbase separation d.

Table 15: DDMR eigenvalues versus modeling error parameter ν (43)
ν (43) Speed Mode sV (40) Angular Velocity Mode sω (41)

1 (nom) -0.4184 1.6343
1.1 -0.4184 1.8274
1.25 -0.4184 2.1171

F.2 DDMR DECENTRALIZED DESIGN FRAMEWORK

This work implements a decentralized design methodology, wherein controllers are designed sepa-
rately for the weakly-coupled translational subsystem (associated with the speed V and average volt-
age control ea) and rotational subsystem (associated with the angular velocity ω and differential volt-
age control ∆ea). In order to achieve zero steady-state error to step reference commands, we aug-
ment the plant at the output with the integrator bank z =

∫
y dτ = [zV , zω]

T
=

[∫
V dτ,

∫
ω dτ

]T
.

For RCI, the state/control vectors are thus partitioned as x1 = [zV , V ]
T , u1 = ea (n1 = 2, m1 = 1)

and x2 = [zω, ω]
T , u2 = ∆ea (n2 = 2, m2 = 1). Applying the LQ servo design framework

(Rodriguez, 2004) to each of the loops yields a proportional-integral (PI) speed controller K∗
1 and a

PI angular velocity controller K∗
2 . It is these optimal LQ controller parameters which RCI will learn

online. For the model parameters in Table 14 and cost structure selections (60), the DDMR has the
following optimal LQ controllers

K∗
1 (ν) = [ 3.6515 5.2062 ] , (44)

K∗
2 (1) = [ 5.0000 10.2344 ] , (45)

K∗
2 (1.1) = [ 5.0000 10.9164 ] , (46)

K∗
2 (1.25) = [ 5.0000 11.9718 ] . (47)

As can be seen from (44), the optimal controller K∗
1 in the translational loop j = 1 is independent

of the modeling error ν. This is immediately seen from examination of the linearized dynamics
(39), wherein we observe that the diagonal terms in A,B pertaining to the speed V are independent
of the c.g./wheelbase separation d, hence of the modeling error ν. On the other hand, the optimal
controller K∗

2 in the rotational loop j = 2 is heavily dependent on the modeling error ν.

APPENDIX G EXPLORATION STUDIES SETUP, HYPERPARAMETER
SELECTIONS

Hardware. These studies were performed in MATLAB R2022b, on an NVIDIA RTX 2060, Intel i7
(9th Gen) processor. All numerical integrations in this work are performed in MATLAB’s adaptive
ode45 solver to ensure solution accuracy.

25



Under review as a conference paper at ICLR 2024

Software. All RCI code developed for this work is available at Anonymized (2024). All FVI results
(Lutter et al., 2023a; 2022) were generated from the open-source repository developed by the authors
Lutter et al. (2023b).

Training Procedures. Throughout the comparative CT-RL studies presented in Section 5, we
present data for RCI trained at the equilibrium initial condition x0 = xe for the respective mod-
eling error ν = 1, 1.1, 1.25. Since RCI requires only one simulation (cf. Table 9) and on the order
of l = 20 data points (cf. Table 16) to train to completion, online learning is highly practical for
this algorithm. On the other hand, FVI requires on the order of 5 million simulations to achieve
good learning performance (cf. Table 9 and original studies (Lutter et al., 2023a; 2022)). Nowhere
near the required 5 million trials needed to properly learn the modeling error can be executed in a
real-world setting. As a result, the only practical means of training FVI is in simulation. Since the
modeling error ν for a given system is not known a priori, this means that FVI must train on the
nominal model (modulo adversary perturbations in the rFVI case (Lutter et al., 2022)). Thus, the
results presented in this work for FVI are attained through training on the nominal model ν = 1, a
training procedure identical to that presented by the original authors in (Lutter et al., 2023a; 2022).

G.1 DATA GENERATION, PERFORMANCE METRICS CONSIDERED

In the pendulum ablation study, we examine the convergence and conditioning performance of RCI
with respect to pendulum initial conditions x0 = [θ0, ω0]

T in the grid

Gx0
= [−60 : 15 : 60] deg × [−60 : 15 : 60] deg/s. (48)

Note that, as is the case with all systems in this work, the pendulum IC grid Gx0
is centered

about studied equilibrium point xe; namely, the upright equilibrium point xe = [θe, ωe]
T

=

[0 deg, 0 deg/s]T (cf. Appendix D). In the jet aircraft ablation study, we examine initial conditions
x0 = [V0, γ0, q0 = 0, α0 = 0]

T in the grid

Gx0 = [90 : 2 : 110] m/s × [−2 : 0.5 : 2] deg. (49)

In the DDMR ablation study, we examine initial conditions x0 = [V0, ω0]
T in the grid

Gx0 = [1.5 : 0.125 : 2.5] m/s × [−30 : 5 : 30] deg/s. (50)

In the jet aircraft and DDMR studies, we always initialize the integrator augmentation states z0 = 0
(cf. Appendices E.2 and F.2). For the pendulum, we study modeling errors ν (24) in the grid

Gν = [1 : 0.01 : 1.25], (51)

while for the jet aircraft, we study modeling errors ν (29) in the grid

Gν = [1 : −0.025 : 0.75], (52)

and for the DDMR, we study modeling errors ν (43) in the grid

Gν = [1 : 0.025 : 1.25]. (53)

In what follows, consider an arbitrary system, and let a loop j ∈ N be given. In loop j, we define
the final-iteration controller error eKj as

eKj
(x0, ν) =

∥∥Ki∗,j(x0, ν)−K∗
j (ν)

∥∥ , (x0, ν) ∈ Gx0
×Gν , (54)

where Ki∗,j is the final-iterate RCI controller in loop j, K∗
j is the optimal LQ controller in loop j,

and the norm used in (54) and subsequently is the operator norm. The final RCI controller Ki∗,j

is, strictly speaking, a function of the initial condition x0 (which determines the state-action data
available for learning) and modeling error ν (which determines the dynamics and hence also the
state trajectory produced by the closed-loop system). Meanwhile, the optimal LQ controller K∗

j is
a function of the model parameters ν (43) only (omitting obvious dependence on the state/control
penalties Qj , Rj for our purposes here).

Given a modeling error ν ∈ R, we define the nominal LQ controller error eKj ,nom as

eKj ,nom(ν) =
∥∥K∗

j (1)−K∗
j (ν)

∥∥ , ν ∈ Gν . (55)
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This quantifies how severe the controller error is if the designer keeps the classical LQR design
performed on the nominal model ν = 1 without updating. Examining the size of this error relative
to the final RCI controller error eKj

(54) is absolutely central and rigorously answers the question:
How much better off is a designer by running RCI than by sticking with a nominal LQ design? To
this end, we define the percentage controller error %eKj

of RCI relative to the nominal as

%eKj
(x0, ν) =

(
eKj

(x0, ν)

eKj ,nom(ν)

)
× 100, (x0, ν) ∈ Gx0

×Gν , (56)

whenever this number is well-defined. Note that smaller percent controller error %eKj
implies RCI

performs better in comparison to the nominal classical design.

Studying the convergence performance of RCI for a fixed modeling error ν, it is natural to define the
IC-sweep worst-case final controller error eKj ,max as

eKj ,max(ν) = max
x0∈Gx0

eKj
(x0, ν), ν ∈ Gν . (57)

This metric provides an upper bound for the controller error expected from RCI for a fixed model
uncertainty ν (43). It also has great practical utility: Given an a priori upper bound for the severity
of the modeling error, eKj ,max provides an upper bound for RCI’s resulting final controller error.

G.2 HYPERPARAMETER SELECTIONS

G.2.1 SHARED HYPERPARAMETERS

State, Control Penalty Gains. For the pendulum, we use identical penalty selections to those in the
original cFVI studies (Lutter et al., 2023a; 2022); namely,

Q1 = diag(1, 0.1), R1 = 0.5. (58)

For the jet aircraft, consider the decentralized design framework described in Section E.2. We choose
the following cost structure

Q1 = diag(0.005, 0.05), R1 = 5,

Q2 = diag(0.5, 1, 0, 0), R2 = 1. (59)

These state/control penalties were chosen to yield optimal LQ controllers K∗
1 (32), K∗

2 (33) achiev-
ing nominal closed-loop step response specifications comparable to existing benchmarks (Stengel,
2022): A 90% rise time in speed tr,V,90% = 9.297 s and FPA tr,γ,90% = 4.52 s, a 1% settling time
in speed ts,V,1% = 14.47 s and FPA ts,γ,1% = 7.20 s, percent overshoot in speed Mp,V = 0.09%
and FPA Mp,γ = 0.25%.

For the DDMR, consider the decentralized design framework described in Section F.2. We choose
the following cost structure

Q1 = 10I2, R1 = 0.75,

Q2 = diag(25, 7.5), R2 = 1. (60)

These state/control penalties were chosen to yield optimal LQ controllers K∗
1 (44), K∗

2 (45) achiev-
ing nominal closed-loop step response specifications comparable to existing benchmarks (Mon-
dal et al., 2020; 2019): A 90% rise time in speed tr,V,90% = 3.778 s and angular velocity
tr,ω,90% = 1.27 s, a 1% settling time in speed ts,V,1% = 5.556 s and angular velocity ts,ω,1% = 6.73
s, percent overshoot in speed Mp,V = 0% and angular velocity Mp,ω = 16.9%.

G.2.2 RCI

Initial Stabilizing Controller. For the pendulum, we use the initial stabilizing controller

K0,1 = [ 13.5108 5.8316 ] , (61)

which we obtained from cost structure selections Q1 = diag(0.5, 0.25), and R1 = 0.01. For the
jet aircraft in loop j (j = 1, 2), we use the initial stabilizing controllers

K0,1 = [ 0.0316 0.1168 ] , (62)

K0,2 = [ −1.7321 −3.4191 −0.3427 −0.9709 ] , (63)
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which we obtained from a decentralized design with cost structure selections Q1 = 0.01I2, R1 =
10, Q2 = diag(1.5, 2.5, 0, 0), and R2 = 0.5. For the DDMR in loop j (j = 1, 2), we use the
initial stabilizing controllers

K0,1 = [ 2.2361 3.4966 ] , (64)

K0,2 = [ 8.6603 12.4403 ] , (65)

which we obtained from a decentralized design with cost structure selections Q1 = 5I2, R1 = 1,
Q2 = diag(7.5, 2.5), and R2 = 0.1.

The remainder of the RCI hyperparameter selections can be found in Table 16. Examination of Table
16 shows that these hyperparameter selections comprise little more than “round-number” designer
first-choices, requiring only insights of the system dynamics and a few minutes of trial-and-error to
obtain.

Table 16: RCI hyperparameter selections

Hyperparameter Pendulum Jet Aircraft DDMR
Loop j = 1 Loop j = 1 Loop j = 2 Loop j = 1 Loop j = 2

Sample Period Ts,j (s) 1 2 0.5 4 1
Number of Samples lj 15 15 30 20 15

Final Iteration i∗j 5 5 5 5 5
Ref Cmd rj 10 sin( 2π10 t) 5 sin(2π50 t) 0.1 sin( 2π

2.5 t) 2 sin( 2π10 t) 5 sin(2π50 t)
(deg | m/s, deg | m/s, deg/s) +5 sin( 2π5 t) +10 sin(2π25 t) +0.1 sin( 2π

1.5 t) + sin( 2π5 t) +5 sin( 2π5 t)
+5 sin( 2π

2.5 t)
Initial Controller K0,j (61) (62) (63) (64) (65)

G.2.3 CFVI, RFVI

Remark G.1 (cFVI/rFVI Hyperparameter Selections) As with our selections of the pendulum
model structure and parameters (cf. Section D), for our pendulum studies we have selected hyper-
parameters identical to those of the original cFVI/rFVI evaluations (Lutter et al., 2023a; 2022), with
two exceptions. In (Lutter et al., 2023a; 2022), the authors use a logcos control penalty function
scaled so that its curvature at the origin u = 0 is 2R; i.e., so that its curvature agrees with that of
a quadratic penalty uTRu. In order to make comparisons consistent across the methods studied,
and in order to produce a more widely-applicable performance benchmark for real-world designers,
we have decided to apply the standard quadratic control penalty uTRu for all methods. Likewise,
the authors in (Lutter et al., 2023a; 2022) wrap the penalty function of the pendulum angle state to
be periodic in [0, 2π), a practice which we have dropped for consistency of comparison and gener-
alizability of benchmarking. Finally, due to these changes we observed that more iterations were
necessary for rFVI to converge in training the pendulum system (cf. Figure 6), so we increased its
iteration count from 100 previously (Lutter et al., 2023a; 2022) to 150 here (cf. Table 17).

Hyperparameter selections for cFVI and rFVI can be found in Table 17. These parameter selections
are overall quite standard and have indeed demonstrated great learning performance successes on
second-order, unstable systems in previous studies (Lutter et al., 2023a; 2022).
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Table 17: cFVI, rFVI hyperparameter selections

Hyperparameter Pendulum Jet Aircraft DDMR
cFVI rFVI cFVI rFVI cFVI rFVI

Time Step (s) 0.008 0.008 0.008 0.008 0.008 0.008
Time Horizon (s) 5 5 20 20 5 5

Discounting γ 0.99 0.99 0.99 0.99 0.99 0.99
Network Dimension [3× 96] [3× 96] [3× 96] [3× 96] [3× 96] [3× 96]

# Ensemble 4 4 4 4 4 4
Activation Tanh Tanh Tanh Tanh Tanh Tanh

Learning Rate 1e-5 1e-5 3e-5 3e-5 3e-5 3e-5
Weight Decay 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6

Hidden Layer Gain 1.41 1.41 1.41 1.41 1.41 1.41
Output Layer Gain 1.00 1.00 1.00 1.00 1.00 1.00
Output Layer Bias -0.1 -0.1 -0.1 -0.1 -0.1 -0.1

Diagonal Softplus Gain βL 1.0 1.0 7.5 7.5 1.0 1.0
Batch Size 256 128 256 256 256 256
# Batches 200 200 200 200 200 200

Eligibility Trace 0.85 0.85 0.85 0.85 0.85 0.85
n-step Trace Weight 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4

# Iterations 100 150 100 100 100 100
# Epochs/Iteration 20 20 20 20 20 20

State Adversary ∥ξx∥max 0.0 0.025 0.0 0.025 0.0 0.025
Action Adversary ∥ξu∥max 0.0 0.1 0.0 0.1 0.0 0.1
Model Adversary ∥ξθ∥max 0.0 0.15 0.0 0.1 0.0 0.009

Obs Adversary ∥ξo∥max 0.0 0.025 0.0 0.025 0.0 0.025

APPENDIX H EVALUATIONS: RCI MODELING ERROR AND INITIAL
CONDITION ABLATION STUDY

When benchmarking the characteristics of a new RL control framework, studies must address the
central question: Does the RL algorithm deliver better performance than existing, well-established
classical methods? In this evaluation, we provide substantive quantitative analysis demonstrating
that RCI offers significant performance improvements over classical LQR. In short, in the face of
severe modeling errors, for all systems RCI reliably delivers a 90% reduction in operator-norm error
with respect to the optimal controller over a nominal LQR design. In the process of substantiating
this claim, we also establish the key convergence and conditioning properties of RCI with respect to
significant variations in 1) system initial conditions x0 ∈ Gx0

(50), and 2) modeling error ν ∈ Gν

(53).

For a detailed discussion of the dynamical models, see Appendices D-F. All hyperparameter selec-
tions and definitions of the performance metrics examined in these studies can be found in Appendix
G.

Training Results. Running RCI over the IC sweep x0 ∈ Gx0
for varying modeling errors ν ∈ Gν ,

we plot the final-iteration controller error eKj
(54) over the sweep in Figure 5 (top row). In the

bottom row of Figure 5, we examine the IC-sweep worst-case controller error eKj ,max (57) as a
function of modeling error ν (i.e., the max being taken over the initial condition grid x0 ∈ Gx0 , cf.
Appendix G for further details). Tables 18, 19, and 20 provide max, mean, and standard deviation
data of the metrics presented in Figure 5 for the pendulum, jet, and DDMR, respectively.

Remark H.1 (RCI Matches Optimal LQ Performance on Nominal Model, Delivers on Theo-
retical Guarantees) Examining the nominal-model learning ν = 1 in the top row of Figure 5 (blue
curve) and Tables 18-20, we see that RCI successfully converges to the optimal controller for the
nominal model ν = 1 regardless of the IC chosen for all systems. Indeed, RCI exhibits a worst-
case controller error eK1,max = 3.71 × 10−5 for the pendulum system. For the jet aircraft, RCI
has worst-case controller errors of eK1,max = 2.55 × 10−15 in the translational loop j = 1 and
eK2,max = 2.42× 10−8 in the rotational loop j = 2. For the DDMR, RCI has worst-case controller
errors of eK1,max = 4.78× 10−9 in the translational loop j = 1 and eK2,max = 5.17× 10−5 in the
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Figure 5: RCI modeling error ν and IC x0 ablation study results. First column: pendulum. Second
column: jet aircraft. Third column: DDMR. First row: Final controller error eKj

(54) versus IC
x0 ∈ Gx0

(48). Second row: Worst-case controller error eKj ,max(ν) (57).

Table 18: RCI IC/modeling error sweep convergence performance – pendulum
ν Loop j

eKj ,nom Data Over eKj %eKj

(24) (55) x0 ∈ Gx0
(54) (56)

1 1 0
max 3.71e-05 N/Aa

avg 1.75e-05 N/A
std 1.19e-05 N/A

1.1 1 1.0383
max 0.0610 5.88
avg 0.0337 3.25
std 0.00547 0.527

1.25 1 2.6139
max 0.204 7.82
avg 0.125 4.79
std 0.0140 0.536

aNot applicable for the nominal model ν = 1.

rotational loop j = 2. Thus, RCI matches the optimal performance of classical LQR when training
on a nominal model and achieves real-world convergence performance in exact accordance with its
theoretical guarantees (cf. Section 2).

Remark H.2 (RCI Reduces Controller Error Relative to Nominal LQR Design by a Factor
of Ten, Demonstrates Real-World Synthesis Guarantees) Having proven that RCI successfully
converges to the optimal controller when training on the nominal model ν = 1, we now turn our
attention to its convergence properties in the presence of modeling error ν ̸= 1. We examine the first
row of Figure 5, comparing the RCI controller error eKj

(54) for a 25% modeling error (red curve)
with the nominal LQ controller error eKj ,nom(1.25) (eKj ,nom(0.75) in the case of the jet) (55) at
this same modeling error (gray curve). As can be seen qualitatively in Figure 5, for all three systems
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Table 19: RCI IC/modeling error sweep convergence performance – jet aircraft
ν Loop j

eKj ,nom Data Over eKj %eKj

(29) (55) x0 ∈ Gx0
(54) (56)

1

1 0
max 2.55e-15 N/Aa

avg 1.61e-15 N/A
std 4.09e-16 N/A

2 0
max 2.42e-08 N/Aa

avg 1.93e-08 N/A
std 2.54e-09 N/A

0.9

1 0
max 2.66e-15 N/Ab

avg 1.49e-15 N/A
std 3.76e-16 N/A

2 0.04507
max 2.15e-08 4.77e-05
avg 1.71e-08 3.79e-05
std 2.29e-09 7.06e-06

0.75

1 0
max 2.27e-15 N/Ab

avg 1.26e-15 N/A
std 3.29e-16 N/A

2 0.12533
max 1.79e-08 1.43e-05
avg 1.38e-08 1.10e-05
std 1.94e-09 1.55e-06

aNot applicable for the nominal model ν = 1.
bModeling error ν does not affect optimal controller K∗

1 in loop j = 1 for the jet aircraft (cf. Appendix
E.2).

RCI consistently achieves a significantly reduced controller error with respect to the nominal LQ
design regardless of the IC chosen.

For the pendulum, Table 18 shows for a 25% modeling error ν = 1.25 that RCI exhibits
worst-case controller error eK1,max(1.25) = 0.204. By contrast, the nominal controller error
is eK1,nom(1.25) = 2.6139; thus, as a worst-case RCI delivers an optimality error %eK1

(56)
of only 7.82% relative to the nominal LQ design; i.e., a 92% reduction. For the jet, Table
19 shows for a 25% modeling error ν = 1.25 that RCI exhibits worst-case controller error is
eK2,max(1.25) = 1.79× 10−8 in the rotational loop j = 2, a 99% reduction from nominal. For the
DDMR, Table 20 shows for a 25% modeling error ν = 1.25 that RCI exhibits worst-case controller
error is eK2,max(1.25) = 0.324 in the rotational loop j = 2. By contrast, the nominal controller
error eK2,nom(1.25) = 1.7375; thus, as a worst-case RCI delivers an optimality error %eK2

(56) of
only 18.65% relative to the nominal LQ design; i.e., an 81% reduction. On average, RCI offers a
94% reduction in optimality error in loop j = 2, with a standard deviation 3.23%.
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Table 20: RCI IC/modeling error sweep convergence performance – DDMR
ν Loop j

eKj ,nom Data Over eKj %eKj

(43) (55) x0 ∈ Gx0
(54) (56)

1

1 0
max 4.78e-09 N/Aa

avg 4.67e-09 N/A
std 5.56e-11 N/A

2 0
max 5.17e-05 N/Aa

avg 1.19e-05 N/A
std 9.06e-06 N/A

1.1

1 0
max 1.03e-04 N/Ab

avg 1.03e-04 N/A
std 3.31e-07 N/A

2 0.68206
max 0.103 15.15
avg 0.0610 8.94
std 0.0277 4.07

1.25

1 0
max 3.08e-04 N/Ab

avg 3.05e-04 N/A
std 9.56e-07 N/A

2 1.7375
max 0.324 18.65
avg 0.0982 5.65
std 0.0563 3.23

aNot applicable for the nominal model ν = 1.
bModeling error ν does not affect optimal controller K∗

1 in loop j = 1 for the DDMR (cf. Appendix F.2).

APPENDIX I EVALUATIONS: QUANTITATIVE COMPARISONS BETWEEN RCI
& FVIS

In this section, we examine the effects of modeling error ν on 1) policy performance J (2), 2) critic
network approximation error J−V , and 3) closed-loop performance. All hyperparameter selections
can be found in Appendix G.

RCI Weight Responses, cFVI/rFVI Learning Curves. We first present convergence performance
of RCI weights and the learning curves for the two deep RL methods in Figure 6. We generated
these curves using an identical procedure to the original FVI studies (Lutter et al., 2023a; 2022)
using the original authors’s code (Lutter et al., 2023b), the results obtained over 20 seeds. As a note,
due to RCI’s classical structure, its learning is completely deterministic given a set of state-action
data. Thus, RCI does not require random number generation, so training over seeds does not apply.
As can be seen, RCI exhibits monotonic weight responses without chatter for all three systems.

I.1 TRAINING RESULTS: COST PERFORMANCE

Figure 7 shows the cost difference JcFV I − JRCI between cFVI and RCI (first row), and the differ-
ence JrFV I − JRCI between rFVI and RCI (second row) for the nominal pendulum model ν = 1
(left column), a 10% modeling error ν = 1.1 (middle column), and a 25% modeling error ν = 1.25
(right column). Note that wherever this difference is positive, RCI delivers better performance than
the respective FVI algorithm. Table 21 presents the corresponding min, max, average, and standard
deviation data. Figure 8 and Table 22 are laid out analogously for the jet aircraft, and Figure 9 and
Table 23 are laid out analogously for the DDMR.

Cost Performance – Pendulum. In short, RCI and cFVI perform comparably overall, cFVI edging
out RCI near the nominal model but degrading with increasing modeling error. By contrast, rFVI’s
performance is significantly worse than RCI’s or cFVI’s. Examining the first row of Figure 7, the
RCI and cFVI policies deliver highly comparable cost performance J in a large region around the
origin for the nominal model ν = 1 and 10% modeling error ν = 1.1. Toward the fringes of the test
domain, the performance of cFVI edges out that of RCI slightly, by as much as -0.243 (Table 21).
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Figure 6: Convergence plots for pendulum (left), jet aircraft (middle), and DDMR (right). Top row:
RCI weight responses ci,j (7) for IC x0 = xe on nominal model ν = 1. Bottom row: Learning
curves of cFVI and rFVI, obtained over 20 seeds. The shaded area displays the min/max range
between seeds, as is presented in the original works (Lutter et al., 2023a; 2022).

Specifically, cFVI performs better near the corners x = (−60,−60) and x = (60, 60); i.e., for large
initial pendulum displacements and velocities in the direction of the displacement. This is perhaps
intuitive, since these trajectories depart furthest from the origin. Here, the pendulum nonlinearities
are strongest, and cFVI’s deep network will have an approximation advantage over RCI’s quadratic
cost approximator. However, we note that is precisely in these two regions that the performance
of cFVI degrades the heaviest in relation to RCI when the modeling error is increased. For a 25%
modeling error ν = 1.25, Figure 7c shows that in these corners the RCI policy is far superior, by as
much as 0.499 at max (Table 21).

Meanwhile, the second row of Figure 7 shows that rFVI performs comparably to RCI and cFVI
in near the origin, but its policy performance degrades significantly on the same fringes. Indeed,
Table 21 shows that RCI exhibits lower cost pointwise relative to rFVI, and rFVI’s worst-case cost
increases from 6.50 at nominal to 8.59 at the 25% modeling error relative to RCI. Overall, the cost
performance of RCI and cFVI are much more comparable, and rFVI exhibits the worst performance
across the board.

Cost Performance – Jet Aircraft. For the jet aircraft, RCI perhaps enjoys the largest performance
advantage over the FVIs of any of the systems tested. Examination of the jet cost data in Table
22 shows that RCI delivers the lowest cost pointwise regardless of modeling error. Furthermore,
the cost discrepancy between the FVIs and RCI is the largest of the three systems tested, averaging
at least 3.08 for cFVI and 3.72 for rFVI. rFVI’s degradation is less severe than cFVI’s, but rFVI
delivers inferior cost performance overall, as much as 10.34 higher than RCI’s at max. Meanwhile,
examining Figure 8 shows that cFVI and rFVI exhibit similar cost performance behavior for this sys-
tem. Both compare well with RCI for lower initial airspeeds V , but a large performance discrepancy
develops at higher airspeeds. The discrepancy is seen to be slightly worse in the rFVI case.

Cost Performance – DDMR. Figure 9 shows the cost difference data for the DDMR. Note that RCI
delivers lower cost J than cFVI and rFVI pointwise, regardless of modeling error – an important
result for training on this more complicated real-world DDMR system. The performance of cFVI
in relation to RCI degrades with increasing modeling error, the maximum performance discrepancy
JcFV I − JRCI increasing by 50% from 0.273 on the nominal model ν = 1 to 0.414 at ν = 1.25
(cf. Table 23). On the other hand, rFVI’s performance improves with modeling error, its max
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performance discrepancy decreasing from 2.27 at ν = 1 to 1.60 at ν = 1.25. Nevertheless, as with
the pendulum system, rFVI exhibits the worst overall cost performance of the three methods.

(a) (b) (c)

(d) (e) (f)

Figure 7: Cost performance results of pendulum model. First row: Cost difference JcFV I − JRCI

(2). Second row: Cost difference JrFV I − JRCI (2). Left: Nominal model ν = 1 (43). Middle:
10% modeling error ν = 1.1. Right: 25% modeling error ν = 1.25.
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Table 21: Pendulum training cost/approximation data

Function Data ν (24)
1 1.1 1.25

JcFV I − JRCI

min -0.230 -0.235 -0.0248
max 4.628e-04 0.0384 0.512
avg -0.0196 -0.00950 0.122
std 0.0352 0.0359 0.121

JrFV I − JRCI

min -1.33e-06 2.43e-06 -3.81e-4
max 7.72 8.80 10.27
avg 2.16 2.50 2.99
std 1.92 2.20 2.61

J(x)− V (x) RCI

min -1.758 -2.28 -3.24
max 1.93e-04 0.00828 0.0431
avg -0.257 -0.325 -0.444
std 0.345 0.447 0.626

J(x)− V (x) cFVI

min -0.0213 -0.00732 -0.00941
max 0.0338 2.75 8.29
avg -0.00407 0.627 1.88
std 0.00839 0.610 1.83

J(x)− V (x) rFVI

min -11.80 -7.98 -1.54
max -0.04e-4 -0.00142 -0.00142
avg -3.11 -2.16 -0.544
std 2.81 1.93 0.436

Table 22: Jet aircraft training cost/approximation data

Function Data ν (29)
1 0.9 0.75

JcFV I − JRCI

min 0.00 0.00 0.00
max 8.04 7.90 8.57
avg 3.08 3.25 3.74
std 1.80 1.82 1.98

JrFV I − JRCI

min 0.00 0.00 0.00
max 10.15 10.23 10.34
avg 3.72 3.86 4.22
std 2.23 2.24 2.29

J(x)− V (x) RCI

min 0.00 0.00 0.00
max 11.77 13.01 15.66
avg 3.15 3.43 4.01
std 2.75 3.00 3.52

J(x)− V (x) cFVI

min -0.461 -0.141 -5.90e-04
max 31.29 32.33 35.82
avg 8.28 8.72 9.81
std 6.57 6.69 7.14

J(x)− V (x) rFVI

min -3.44 -3.12 -2.42
max 32.75 33.73 36.30
avg 7.93 8.35 9.30
std 7.16 7.26 7.56
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Figure 8: Cost performance results of jet aircraft model. First row: Cost difference JcFV I − JRCI

(2). Second row: Cost difference JrFV I − JRCI (2). Left: Nominal model ν = 1 (29). Middle:
10% modeling error ν = 0.9. Right: 25% modeling error ν = 0.75.

Table 23: DDMR training cost/approximation data

Function Data ν (43)
1 1.1 1.25

JcFV I − JRCI

min 1.11e-05 1.07e-05 1.08e-05
max 0.273 0.284 0.414
avg 0.0912 0.0933 0.130
std 0.0773 0.0792 0.112

JrFV I − JRCI

min 0.00177 0.00177 0.00177
max 2.27 1.99 1.60
avg 0.630 0.562 0.462
std 0.535 0.472 0.381

J(x)− V (x) RCI

min -0.698 -0.759 -0.931
max 0.824 0.990 1.147
avg 0.00583 0.0197 0.0117
std 0.201 0.231 0.274

J(x)− V (x) cFVI

min -0.0128 -0.00105 -0.00105
max 0.325 0.806 1.802
avg 0.0961 0.241 0.498
std 0.0904 0.157 0.376

J(x)− V (x) rFVI

min -6.08 -5.80 -5.36
max 3.15e-04 3.31e-04 3.57e-04
avg -1.79 -1.72 -1.60
std 1.30 1.23 1.13
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Figure 9: Cost performance results of DDMR model. First row: Cost difference JcFV I − JRCI (2).
Second row: Cost difference JrFV I − JRCI (2). Left: Nominal model ν = 1 (43). Middle: 10%
modeling error ν = 1.1. Right: 25% modeling error ν = 1.25.

I.2 TRAINING RESULTS: APPROXIMATION PERFORMANCE

Figures 10, 11, and 12 show the the critic network error J − V for RCI (first row), cFVI (second
row), and rFVI (third row) for the pendulum, jet, and DDMR systems, respectively. In general, it is
desirable for the difference J − V to be as small in magnitude as possible (so the critic is accurate)
and to be negative if it does deviate from zero (so the critic underestimates the policy performance).

Approximation Performance – Pendulum. Examining Figure 12, the overall picture is clear: RCI
exhibits the most consistent approximation performance, while the performance of the two FVI
methods is much more sensitive to modeling error. RCI’s network is highly accurate in a large
region around the origin and slightly underestimates the policy performance toward the fringes.
This underestimation increases in magnitude monotonically with the modeling error. However, the
degradation is gradual, beginning at a worst-case approximation error of -1.758 for the nominal
model ν = 1 and decreasing to only -3.24 for a 25% modeling error ν = 1.25 (Table 21).

cFVI’s critic does an excellent job of approximating the policy cost for the nominal model ν = 1,
the two functions falling within 0.0338 of each other at max (Table 21). Given cFVI’s deep network
critic structure, such approximation performance is intuitive. However, with the introduction of
a 10% modeling error ν = 1.1, the critic approximation quality degrades significantly. Examining
Table 21, cFVI overestimates its policy’s performance by 0.627 on average, 2.75 at max for ν = 1.1,
compared to RCI’s underestimation by only -0.325 on average, -2.28 at min for the same modeling
error. Thus, for even mild modeling errors, RCI exhibits an underestimation behavior preferable
to the overestimation behavior of cFVI, and in magnitude RCI’s critic error is approximately half
that of cFVI on average. We note that cFVI also tends to overestimate its policy performance for
the DDMR system as well (see below), suggesting this is a common performance characteristic of
the method. The discrepancies grow more pronounced as we move to the severe 25% modeling
error ν = 1.25. Here, RCI underestimates its policy performance by -3.24 at minimum, -0.444 on
average. In comparison, cFVI overestimates its policy performance by 8.29 at max, 1.88 on average.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: Critic NN approximation error J(x) − V (x) of pendulum model. Left: Nominal model
ν = 1 (24). Middle: 10% modeling error ν = 1.1. Right: 25% modeling error ν = 1.25. First row:
RCI. Second row: cFVI (Lutter et al., 2023a). Third row: rFVI (Lutter et al., 2022).

On the other hand, rFVI’s approximation performance is poor for the nominal model and actually
improves with increasing modeling error. rFVI underestimates its policy performance by -10.37
at worst for the nominal model, improving to -6.82 and -1.34 for 10% and 25% modeling errors,
respectively. Thus, we conclude that rFVI’s value function has successfully adapted to its modeling
error adversary ξθ, at the cost of inferior performance for models closer to the nominal.

Approximation Performance – Jet Aircraft. As with cost performance, for the jet aircraft RCI
definitively surpasses the FVIs in approximation performance. Examination of Table 22 shows that
the worst-case critic network error for RCI on the nominal model is only 11.77, compared to cFVI’s
31.29 and rFVI’s 32.75. Similar results hold when modeling error is introduced. The approximation
performance seen visually in Figure 11 shows that RCI achieves low approximation error across the
state domain. Meanwhile, similarly to the cost performance, cFVI and rFVI exhibit similar behavior
and both struggle to approximate at higher airspeeds V .

Approximation Performance – DDMR. We display the critic approximation error J − V of RCI,
cFVI, and rFVI in Figure 12, laid out analogously to Figure 10. Overall, the trends are similar to
those of the pendulum: RCI exhbits the most consistent approximation performance, while the per-
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Figure 11: Critic NN approximation error J(x)− V (x) of jet aircraft model. Left: Nominal model
ν = 1 (29). Middle: 10% modeling error ν = 0.9. Right: 25% modeling error ν = 0.75. First row:
RCI. Second row: cFVI (Lutter et al., 2023a). Third row: rFVI (Lutter et al., 2022).

formance of the FVI methods is more sensitive to modeling error. cFVI does an excellent job of
cost approximation in the case of the nominal model ν = 1, edging out the approximation perfor-
mance of RCI on the corners of the test grid. However, RCI exhibits much more consistent cost
approximation performance in the face of modeling error. Indeed, as with the pendulum system, the
approximation advantage of cFVI is lost when modeling error is introduced, eventually overestimat-
ing by up to 1.802 at max for the 25% modeling error to RCI’s 1.147. Meanwhile, rFVI struggles the
most with cost approximation, universally underestimating its policy performance by on the order
of -6 at minimum.

I.3 TRAINING RESULTS: CLOSED-LOOP PERFORMANCE

Closed-Loop Performance – Pendulum. We now study the swing-up performance of RCI, cFVI,
the optimal LQ controller, and the nominal LQ controller (i.e., optimal for the nominal model ν = 1).
Figure 13a shows these responses for the nominal model ν = 1, Figure 13b for a 10% modeling
error ν = 1.1, and Figure 13c for a 25% modeling error ν = 1.25. As can be seen, the cFVI exhibits
the most sluggish response, followed by rFVI. RCI and the LQ controllers are the most responsive.
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Figure 12: Critic NN approximation error J(x) − V (x) of DDMR model. Left: Nominal model
ν = 1 (43). Middle: 10% modeling error ν = 1.1. Right: 25% modeling error ν = 1.25. First row:
RCI. Second row: cFVI (Lutter et al., 2023a). Third row: rFVI (Lutter et al., 2022). Note: rFVI
color normalized independently for legibility purposes.

cFVI/rFVI exhibit relatively slow closed-loop responses for the DDMR system as well (see below),
suggesting that FVI tends to train to the control penalty more heavily. Regardless of the modeling
error, RCI successfully recovers the closed-loop performance if the optimal LQ controller. As seen
by the increased overshoot of the nominal LQ controller in Figures 13b and 13c, RCI successfully
outperforms a classical LQR design in the face of modeling error.

Closed-Loop Performance – Jet Aircraft. Figure 14 plots the closed-loop responses to a 1 deg
step FPA command. As can be seen, RCI exhibits a nice, monotonic response with no overshoot.
By contrast, the FVIs exhibit a large overshoot transient and comparatively high settling time. The
overshoot increases for both FVI algorithms as the modeling error increases.

Closed-Loop Performance – DDMR. Moving on to the DDMR, we study the closed-loop re-
sponses of RCI, cFVI, rFVI, the optimal LQ controller, and the nominal LQ controller to a 30
deg/s step angular velocity command in Figure 15. Figure 15a shows the responses for the nominal
model ν = 1, Figure 15b for 10% modeling error ν = 1.1, and Figure 15c for 25% modeling error
ν = 1.25. As can be seen, regardless of the modeling error ν, the closed-loop response of the cFVI

40



Under review as a conference paper at ICLR 2024

0 0.5 1 1.5 2 2.5
-20

0

20

40

60

80

100

120

140

160

180

(a)

0 0.5 1 1.5 2 2.5
-20

0

20

40

60

80

100

120

140

160

180

(b)

0 0.5 1 1.5 2 2.5
-20

0

20

40

60

80

100

120

140

160

180

(c)

Figure 13: Swing-up closed-loop response of pendulum model. Left: Nominal model ν = 1 (24).
Middle: 10% modeling error ν = 1.1. Right: 25% modeling error ν = 1.25.
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Figure 14: Closed-loop response of jet aircraft model to 1 deg step FPA command. Left: Nominal
model ν = 1 (29). Middle: 10% modeling error ν = 0.9. Right: 25% modeling error ν = 0.75.

controller has similar rise time to RCI, but with significant overshoot and slow settling time. The
cFVI overshoot increases with increasing modeling error. Meanwhile, the rFVI response has similar
overshoot to RCI, but with relatively long rise time and very sluggish settling time. Regardless of
the modeling error, RCI successfully recovers the closed-loop performance of the optimal LQ con-
troller. As seen by the increased overshoot of the nominal LQ controller in Figures 15b and 15c,
RCI successfully outperforms a classical LQR design.
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Figure 15: Closed-loop response of DDMR model to 30 deg/s step angular velocity command. (a):
Nominal model ν = 1 (43). (b): 10% modeling error ν = 1.1. (c): 25% modeling error ν = 1.25.
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APPENDIX J ADP PERFORMANCE AND DESIGN INSIGHTS

ADP approaches were developed largely within the scope of seminal works such as integral rein-
forcement learning (IRL) (Vrabie & Lewis, 2009), synchronous policy iteration (SPI) (Vamvoudakis
& Lewis, 2010), robust ADP (RADP) (Jiang & Jiang, 2014), and continuous-time value iteration
(CT-VI) (Bian & Jiang, 2022). As a result of ADP’s theoretical frameworks in adaptive and op-
timal control, Lyapunov arguments are available to prove qualitative properties including weight
convergence and closed-loop stability results. However, the results require restrictive theoretical
assumptions (see detailed list in Remark C.3) which are difficult to satisfy for even simple academic
examples. Furthermore, the methods do not provide constructive design procedures for ensuring
that the required hypotheses are met. In all, these restrictions result in significant numerical issues
which limit ADP synthesis capability (Wallace & Si, 2022).

Besides the common limitations discussed above, each of the central four algorithms has individ-
ual numerical challenges exhibited empirically in Wallace & Si (2022). IRL’s excitation quality
quickly degrades as the state is regulated to the origin, since IRL does not accommodate probing
noise excitation in its formulation (Vrabie & Lewis, 2009). SPI’s gradient descent tuning laws often
experience weight freezing due to a lack of PE and poor scaling of the required update terms. Mean-
while, RADP is sensitive to over-excitation and ultimately fails to stabilize the inverted pendulum.
Finally, CT-VI’s dynamic tuning laws require nested integration and matrix inversion which prove
particularly susceptible to weight divergence.

The elegant results of ADPs have made significant contributions to CT-RL. However, further algo-
rithm development work is required to enable these algorithms to synthesize for meaningful appli-
cations.
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