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ABSTRACT

We formalize a new concept for LLMs, context-enhanced learning. It involves
standard gradient-based learning on text except that the context is enhanced with
additional data on which no auto-regressive gradients are computed. This setting
is a gradient-based analog of usual in-context learning (ICL) and appears in some
recent works. Using a multi-step reasoning task, we prove in a simplified setting
that context-enhanced learning can be exponentially more sample-efficient than
standard learning when the model is capable of ICL. At a mechanistic level, we
find that the benefit of context-enhancement arises from a more accurate gradient
learning signal. We also experimentally demonstrate that it appears hard to detect
or recover learning materials that were used in the context during training. This
may have implications for data security as well as copyright.

1 INTRODUCTION

Pre-trained LLMs (Brown et al., 2020; Touvron et al., 2023; Team et al., 2023) show strong capability
to learn new material at inference time, for instance via in-context-learning (ICL). There is also
emerging evidence that gradient-based learning on a piece of text (say, math Q&A) can be enhanced
if additional helpful text is placed in the context, even though no auto-regressive loss is computed on
this helpful text Liao et al. (2024); Zou et al. (2024). Furthermore, such strategies have also been
shown to benefit pre-training as prepending source URLs to documents can enhance the model’s
training efficiency and memorization capacity (Allen-Zhu & Li, 2024; Gao et al., 2025).

The current paper seeks to formally study this phenomenon, whereby LLMs’ gradient-based learning
is enhanced via placement of additional helpful material in the context, but without actual auto-
regressive gradient updates on this material. We will call this form of learning context-enhanced
learning. Because the material used for context-enhancement can evolve over the course of training,
this approach naturally aligns with the idea of a curriculum.

Context-enhanced learning intuitively mirrors how humans learn: when solving problems, they refer
to textbooks or demonstrations for guidance, yet they do not seek to memorize these resources per se.
An analogous concept Learning using Privileged Information (or LUPI), has been well-studied in the
context of kernel SVMs Vapnik & Vashist (2009) and classification models. Our work adapts this
concept for LLMs, and surfaces the following questions:

• Q1: Even though autoregressive loss is computed on the same set of tokens, can context-
enhanced learning be significantly more powerful than usual auto-regressive learning with no addi-
tional in-context materials? Can we theoretically characterize and understand such improvement?
• Q2: Do models need a certain capability level to benefit from context-enhanced learning?
This is a natural question, since leveraging in-context information (e.g., ICL) likely requires
a minimum capability level or model size Brown et al. (2020); Wei et al. (2022).
• Q3: Is context-enhanced learning a viable way to use privileged/private information during
learning? Providing such privileged information in the context could conceivably enhance the
model’s learning, but since no auto-regressive gradient updates happen on the privileged/private
information, there might be a lower risk of leakage of such information via API calls.
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Paper Overview: Section 2.1 formally defines context-enhanced learning. To allow rigorous under-
standing of the power of context-enhanced learning, Section 2.2 introduces a multi-step reasoning task
called Multi-layer translation. This is a synthetic setting involving d+1 languages L1, L2, . . . , Ld+1

over finite alphabets. For each i, there is a simple phrasebook that describes how to translate from
Li to Li+1, and the mapping from L1 to Ld+1 is a sequential application of the set of phrasebooks.

The goal is to learn how to translate text from L1 into Ld+1 without explicitly writing down interme-
diate steps. The learner is provided excerpts from these phrasebooks as helpful information in the
context during training, but allowed no auto-regressive gradient updates on these tokens.

If we train with auto-regressive loss on translation output conditioning on the phrasebooks’ excerpts
and the input, a model with certain ICL capacity level may quickly learn to leverage the in-context
phrasebooks and correctly conduct the translations. However, this learning could be brittle, meaning
that the model becomes reliant on having the phrasebooks’ excerpts in its context. This reliance
can be weaned off by use of probabilistic dropout on phrasebooks tokens in context. Intuitively,
this simple curriculum forces the model to not only read phrasebooks’ excerpts, but also (over time)
internalize the phrasebooks’ contents. Over time, the model’s ability to translate from L1 to Ld+1

will become robust to the dropout of phrasebooks’ excerpts, and eventually, their complete removal.

Experiments show that this training strategy indeed works when the learner is a pre-trained LLM that
is capable of ICL (but fails when LLM is incapable of ICL). Even when training with 20% dropout
rate, the model can perfectly translate strings from L1 to Ld+1 without any phrasebooks’ excerpts
at test time. The rest of the paper is structured as follows:

• Section 4, shows that after context-enhanced learning, the output probabilities of the model reveal
little about the phrasebooks rules that were seen during training.

• Section 3 details our experiments and the findings sketched above. Experiments show that an
ICL-capable model follows an intuitive sequential processing of the phrasebooks provided in-context,
whereby transformer layers approach stages of translation in an intuitive way; e.g., L3 → L4 is done
after L2 → L3 (Section 3.3).

• In Section 5, we propose a theoretical framework using a surrogate/simplified model that represents
an ideal LLM for the translation task (Section 5.1). This framework shows an exponential gap in
sample complexity depending on whether the model is trained with or without in-context information
on phrasebooks (Sections 5.2 and 5.3). Experiments reveal that the mechanism behind the increased
sample efficiency of context-enhanced learning is an improved gradient signal, measured by gradient
prediction accuracy (Section 5.4).

Related works: Extended discussion appears in Appendix D which contrasts with prior works on
LUPI and Learning with Side Information (Vapnik & Vashist, 2009; Kuusela & Ocone, 2002). We also
compare and contrast to prior works on masked language modeling and language infilling (Kenton &
Toutanova, 2019; Bavarian et al., 2022), emergence and competition between ICL and knowledge
memorization (Chan et al., 2022; Reddy, 2024), and mechanistic studies involving transformers and
synthetic datasets (e.g. Nanda et al. (2023); Bhattamishra et al. (2020)).

2 SETUP

2.1 CONTEXT-ENHANCED LEARNING

Let X be the space of all possible text strings and let Y be the space of all possible distributions
over texts. Let g be a language task mapping inputs x ∈ Xg ⊂ X to a distribution Y ∈ Y . Let
fθ : X → Y be an auto-regressive language model. We characterize fθ’s capability on task g as:

Definition 2.1 (g-capable model, informal). A language model fθ is g-capable for a language
task g if fθ is close to g, as measured by a suitable metric on Xg .

Vanilla supervised fine-tuning (SFT) aims to create a g-capable model by minimizing auto-regressive
loss ℓauto on a supervised dataset Dg = {(xi, yi)}Ni=1, where the label yi for each xi ∈ Xg is
sampled from g(xi). Context-enhanced learning involves augmenting the supervision with additional
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curriculum-text that depends on the task g, input x, and training step t. We denote curriculum-text
as CURRg(x, t), which could be anything (excerpts from textbooks, worked-out examples, etc.).

Algorithm 1 Context-Enhanced Learning
Beyond vanilla SFT, it relies on curriculum-text in context with no auto-regressive loss computed.

Input: Supervised dataset Dg , curriculum-text CURRg , initialization θ, total steps T
for t = 1 to T do

Sample (x, y) ∼ Dg

Compute loss l← ℓauto (fθ([CURRg(x, t), x, y]), y) .
Update parameters θ with gradient∇θl

end for
Return θ

On sample (x, y) drawn from the supervised dataset, we use auto-regressive loss for model’s
prediction on y conditioned on [CURRg(x, t), x] to train our models. Note that no loss is computed
for curriculum-text tokens. We denote this loss as ℓauto (fθ([CURRg(x, t), x, y]), y).

2.2 MULTI-LEVEL TRANSLATION (MLT)

To study the power of context-enhanced learning, we introduce a translation task that is easy to learn
with a straightforward curriculum in the context, but very difficult to learn with just input-output
examples. The task is inspired by encryption methods such as the Feistel cipher Knudsen (1993).

Concretely, let A1, . . . ,Ad+1 be d+ 1 alphabets
all of the same size with n characters. For every
consecutive pair of alphabets Ai and Ai+1, we
fix a phrasebook πi : A2

i → A2
i+1 as a bijec-

tive mapping from 2-tuples in Ai to 2-tuples in
Ai+1. Each phrasebook πi can be represented
by a binary stochastic matrix Matrix(πi) with
rules represented as one-hot columns (see detailed
characterization in Definition G.4).

The input of the translation process is an even-
length sequence s1 ∈ AL

1 where L is the se-
quence length. The translation process modifies
s1 recursively. For every i ∈ [d], si ∈ AL

i will be
transformed to si+1 ∈ AL

i+1 using phrasebook
πi through the following 2 sub-processes:

• Circular shift: The characters in si ∈ AL
i

are shifted by 1 character leftward (and wrapped
around to the end if necessary) to give sequence
s̃i ∈ AL

i . Formally, for each j ∈ [1, L] we have

s̃i,j = si,(j+1)%L.

• Translate: Using the phrasebook πi : A2
i →

A2
i+1, we translate 2-tuples (bigrams) of consecu-

tive characters in sequence s̃i to create si+1. That
is, for every odd j ∈ [1, L], we have

(si+1,j , si+1,j+1) = πi(s̃i,j , s̃i,j+1).

Table 1: Important notations for defining MLT

n Number of characters in each alphabet
d Depth of translation task
A An alphabet set
π A phrasebook between two alphabets
Π A set of phrasebooks {πi}

MLTΠ Translation task defined by Π

MLT(d, n) Family of translation tasks of
depth d and n characters

π2 π2 π2 π2

π1 π1 π1 π1

B C D E F G H A

e b h d a f g c

b h d a f g c e

A B C D E F G H

Phrasebook π1
BC → eb
FG → af

DE → hd
HA → gc…

Phrasebook  π2
bh → γβ
fg → θδ

da → απ
ce → ζµ…γ β α π θ δ ζ µ

Circular Shift

Circular Shift

s1

s̃1

s2

s̃2

s3

Figure 1: Illustration of an MLT(2, 8) instance
with input sequence of 8 tokens. Input sequence
s1 went through 2 translation steps to s3. Each
output character depends on 4 input characters.
e.g., character µ is derived from c,e in s2, which,
in turn, are computed from A,B,C,H in s1.

We denote the above mapping from si to si+1 as si+1 = Tπi
(si). Π = {πi}di=1 denotes the set

of phrasebooks of all levels, and we denote MLTΠ : s1 7→ MLTΠ(s1) := Tπd
◦ · · · ◦ Tπ1

(s1)
the mapping from input s1 to output sd+1 using Π. We use MLT(d, n) to refer to the family of
translations involving d step and n characters in each alphabet.
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We note two key properties of MLT(d, n): 1. Once the phrasebooks are fixed, the translation task
defines a bijection between input and output strings since Circular shift and Translate are invertible
(see Lemma E.1). 2. Each character in the output string depends on 2d characters from the input text
string (see caption of Figure 1), making learning from input-output pairs very difficult (Theorem 5.4).

For each phrasebook πi, we compose its textual representation STR (πi) to be of the form ... a
b -> C D; e d -> B A; ... which lists (insensitive of ordering) phrasebook rules between
2-tuples in the previous alphabet and the next alphabet. Moreover, we denote the concatenation
[STR (π1) , . . . , STR (πd)] as STR (Π), and will be used to define curriculum-text.

2.3 NEEDED: CURRICULUM WITHOUT EXPLICIT COT

To teach the model a particular translation task MLTΠ from input-output pairs of the form
(s1,MLTΠ(s1)), we can train it with relevant sections of the phrasebooks STR (Π) in context as
curriculum, but at test time it would not have access to the phrasebook so it is important not to teach
it explicit chain-of-thought (CoT) containing in-context information. (Another consideration is data
privacy, with the phrasebook being considered privileged information.) However, a dual use of CoT
is to provide the model extra compute at inference time Goyal et al. (2023), which is needed here
since the translation task has d stages. To facilitate such silent computation we teach the model to
output a fixed number of <THINK> tokens, sometimes refered to as silent CoT or internalized CoT.

2.4 ICL-CAPABLITY FOR MLT(d, n)

To learn from books, one needs to know how to read. The analogous question here is whether
context-enhanced learning requires capability to sort-of “understand” the in-context material (Q2). In
the context of MLT, we formalize such capability as being able to achieve low loss on the translation
task when provided with the relevant phrasebook sections in context while allowing silent CoT.

Definition 2.2 (MLT(d, n)-ICL-capability, informal).
A language model fθ is MLT(d, n)-ICL-capable if for any set of phrasebooks Π in MLT(d, n),
fθ([STR (Π) , s1]) is close to sd+1 = MLTΠ(s1) disregarding the <THINK> tokens, when
measured by a discrepancy metric over all valid input strings s1.

3 EXPERIMENTS AND OBSERVATIONS

In this section, we fix a set of phrasebooks Π∗ and study context-enhanced learning on MLTΠ∗ . We
use the Llama 3.2-3B instruction-tuned model (Dubey et al., 2024) as the base model and fix d = 5
with n = 8 or 10. Detailed configurations are available in Appendix B.5. We first outline the prepa-
ration of an MLT(d, n)-ICL-capable model, then introduce context-enhanced learning curriculum
with random rule dropping, demonstrate sample efficiency, and conclude with mechanistic insights.

3.1 EXPERIMENTAL SETUP

(i) Preparing an MLT(d, n)-ICL-Capable Model:
The Llama 3.2B model has not seen the translation task during its training, and so it is not MLT(d, n)-
ICL-capable. To make it ICL-capable for our purpose, we use SFT on other random translation tasks
with random phrasebooks Π1, . . . ,ΠM , following common CoT internalization pipeline (Deng et al.,
2024; Hao et al., 2024). We use one training example per set of phrasebooks to prevent memorization
of specific phrasebooks. At the end of training, given input [STR(Π), s1] for any s1 and Π the
model can generate <THINK>,...,MLTΠ(s1) correctly. Details on the first stage of training are
described in Appendix B.4.

(ii) Setting up context-enhanced learning for MLTΠ∗ : We use the MLT(d, n)-ICL-capable model
above as initialization and train for MLTΠ∗ . Supervised dataset DΠ∗ is curated with input-label
pairs of the form (s1, [<THINK>,...,MLTΠ∗(s1)]), where s1 is a random string sampled from
A1, with length between 20 and 40.

4
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We define curriculum-text CURRΠ∗(s1, t) using
excerpts from phrasebooks STR(Π∗) (selected
based on s1) with random dropout of rules (pa-
rameterized by training step t). We explore the
following curriculum and study their impact:

• No Context (vanilla SFT): Empty curriculum-
text, identical to standard SFT training.

• Fixed Dropout: A simple strategy indepen-
dent of step t; given s1, only curate rules in
Π∗ used in the translation of s1, then randomly
drop 20% of the curated rules.

• Annealing Dropout: A better strategy: for s1,
select necessary rules from Π∗ plus 25% un-
used rules. Apply random dropout on these
rules, increasing linearly from 0% to 100%
over first 60% of training, then maintain 100%.

• No Dropout (ablation): Given s1, always pro-
vide all rules in Π∗ used in the translation of
s1 in curriculum-text.

• Wrong Context (ablation): Equivalent to An-
nealing Dropout but the rules in the curricu-
lum are incorrect.

Te
st
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y
(w

ith
ou

t c
on

te
xt

) d=5
n=8

Random Guess

104 105 106

Number of Samples |D * |
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st
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ac

y
(w

ith
ou

t c
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te
xt

) d=5
n=10

Random Guess

No Context (baseline)
Fixed Dropout
Annealing Dropout

No Dropout (ablation)
Wrong Context (ablation)
No ICL (ablation)

Figure 2: Context-enhanced learning of MLTΠ∗

when n = 8 and n = 10. Annealing Dropout
learns the fastest followed by Fixed Dropout, re-
quiring 10x less samples compared to vanilla SFT.
Ablations show the necessity of correct context,
proper dropout, and sufficient ICL capability as a
good initialization.

3.2 EXPERIMENT RESULTS

To check the sample efficiency benefit of context-enhanced learning (Q1), we construct supervised
datasets DΠ∗ with 104 to 106 unique samples and train the models for one epoch on each.1 We
report the next-token prediction accuracy on the final answer tokens (ignoring thought tokens) for
held-out samples when conditioning on no curriculum-text (100% dropped-out) and compare against
the supervised dataset size. To check the necessity of proper ICL capability (Q2), we ablate with
Annealing Dropout but starting from non-MLT(d, n)-ICL-Capable 3B base model.

Figure 2 demonstrates the significant sample efficiency of context-enhanced learning. Moreover,
models trained with subsets of phrasebooks and just 20% dropout give perfect heldout test-time
accuracy with 100% dropout rate. Thus they are able to effectively use phrasebook rules from subsets
of the phrasebook that did not co-occur in the same training sample. Clearly, the model has learned
the phrasebook atomically, and can combine the rules as needed at test time.

In an ablation (Appendix C), we show that context-enhanced learning only internalizes the rules
whose dropout from curriculum-text leads to an increase in loss on training data. The experiment
results can be summarized as follows: (i) Context-enhanced learning from ICL-capable models
greatly improves training sample efficiency. (ii) Phrasebook rules are internalized atomically, and
only when missing them incurs an increased loss.

3.3 MECHANISTIC INSIGHTS: LAYER BY LAYER MAPPING OF THE TRANSLATION TASK

To understand the behavior of context-enhanced learning, we probe into the hidden representations
and weights of models before and after context-enhanced learning.

Sequential Processing in ICL-capable model

First, we look into how phrasebooks in curriculum-text are used by an MLT(d, n)-ICL-capable model
for solving a translation task. We perform our experiments on a random set of phrasebooks Π =
{π1, . . . , πd}. On any input s1 , we feed in input sequence [STR(Π), s1,<THINK>,..., sd+1],

1We fix 1 epoch for fair comparison on sample efficiency.
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and record the model’s hidden representations, i.e. output of each transformer layer, for the tokens
<THINK>,..., sd+1.

Now, we perturb each phrasebook independently in curriculum-text and measure the change in the
model’s representations. That is, for each level 1 ≤ i ≤ d, we substitute STR(πi) with the textual
representation of another random phrasebook, say STR(π̂i), and compute the norm difference between
the model’s representations before and after substitution. The first layer with significant difference in
its output representation is identified as the layer where the model begins processing the phrasebook.

In Figure 3, we show that an ICL-capable model processes phrasebooks in curriculum-text sequen-
tially, with earlier phrasebooks read by earlier layers. Formal details are in Appendix B.2 and
additional experiments are in Appendix C.2.

Localized Storage after Context-Enhanced Learning

Here, we verify whether a similar sequential pattern for internalizing phrasebooks is used in a
MLTΠ∗-capable model. We denote the ICL-capable model as fθ and its post context-enhanced
learning counterpart as fθ∗ . As fθ∗’s capability no longer depends on textual representation of the
phrasebooks, our analysis focuses on the model’s parameters.

We assess the importance of each layer in model fθ∗ for each phrasebook by constructing “stitched”
models and measuring their output behavior. For every 1 ≤ Lstart ≤ Lend ≤ 28 (total layers in
Llama3.2 3B), we replace layers Lstart to Lend of the ICL model fθ with corresponding layers from
fθ∗ to create a stitched model. This strategy has been used in prior works on localizing information
after SFT (Gong et al., 2022; Panigrahi et al., 2023; Wei et al., 2024).

For each level 1 ≤ i ≤ d, we evaluate the stitched models on MLTΠ∗ using the following in-
context information: [STR(π∗

1), · · · , STR(π∗
i−1), STR(π∗

i+1), · · · , STR(π∗
d)]. Note here the textual

representation of π∗
i has been dropped. If a stitched model shows high accuracy on inputs that use π∗

i
for translation without having π∗

i ’s information in context, then the layers selected from fθ∗ to create
the stitched model can be deemed responsible for storing information on π∗

i in their parameter space.

Figure 4 demonstrates that information of all phrasebooks can be localized to a few mutually disjoint
layers in fθ∗ . Moreover, the end of the group of layers where π∗

i is localized in fθ∗ marks the start of
the layers that begin processing level i phrasebook in the ICL-capable model fθ (e.g. compare the role
of layer 17 in Figures 3 and 4). Details and additional experiments are in Appendices B.3 and C.2.
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Figure 3: Evidence for sequential processing in a MLT(5, 8)-ICL-capable model. Each entry is the
l2 norm between the latent representation pre and post-perturbing πi. Perturbing later phrasebooks in
the context changes output representations in the later layers.
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This suggests that instead of storing phrasebooks as a single chunk in its parameters, the model
re-learns each translation step locally to compensate for missing information when rules are dropped.
Thus, we conjecture that context-enhanced learning leverages curriculum-text to improve training
by localizing learning in the parameter space. We build a surrogate model in Section 5 to show how
such localized learning can prove beneficial for faster training.

4 CURRICULUM-TEXT: DETECTABLE FROM QUERIES?

Context-enhanced learning for MLT uses the phrasebooks in its curriculum-text. Can rules of the
phrasebooks be recovered post-hoc querying the model (Q3) using likelihood-based methods for
detecting training data?

We take an MLTΠ∗-capable model (with d = 5, n = 10)2 trained with context-enhanced learning
from Section 3.2. Let STR (Π∗) denote the concatenation of all phrasebooks. For each rule in
STR (Π∗), which are of the form “a b -> C D”3, we measure the probability of the model
generating the ground truth tokens “C D” after observing “a b ->”. We compute (1) the fraction
of cases where the model’s top-1 prediction matches the ground truth (greedy decoding) and (2) the
probability of generating ground truth tokens via random sampling (with temperature set as 1). These
are standard tests on textual description, and we would expect high probabilities for the correct tokens.

We also test two adversarial strategies with additional token filtering4 in generation: (i) setting
probability of <THINK> tokens to zero (ii) when querying for a rule in πi with output alphabet
Ai+1, setting probability of all tokens outside Ai+1 to zero. Note that this corresponds to a strong
adversary which knows the alphabet set of the intermediate phrasebooks, but not the rules.

As shown in Table 2, recovering rules from intermediate phrasebooks (π1, . . . , π4) is nearly
impossible without token filtering. For the final phrasebook (π5), results remain near-random, where
random guess probability is 1% for a 2-tuple when n = 10. Even with filtering (ii), recovery success
rates remain only slightly above random.5

Table 2: Recovery Success Rate (Rounded to 2 decimals)

Token Filter Greedy Decoding Sampling
π∗
1 − π∗

4 π∗
5 π∗

1 − π∗
4 π∗

5

None 0.00% 0.20% 0.00% 0.89%
No <THINK> 0.00% 0.20% 0.00% 0.90%
Only from Ai+1 1.66% 0.20% 1.28% 0.94%

5 MATHEMATICAL ANALYSIS

Having empirically demonstrated the sample efficiency benefits of context-enhanced learning, we
now formalize them through a mathematical lens. We first define the sample complexity of an
algorithm for learning the task.

Definition 5.1 (informal). Sample complexity for an algorithm to learn MLTΠ is defined as the
minimum total length of all (possibly repeated) input sequences required by the algorithm to return
an MLTΠ-capable model fθ.

Analysis of gradient-based learning on a multilayer transformer (let alone a 28-layer model like
Llama 3.2-3B) is an open mathematical question. We use our mechanistic findings (i.e., translation
layers map onto transformer layers) to propose a surrogate model to think about how transformers
learn MLT(d, n). In this surrogate model we demonstrate that learning a task MLTΠ via vanilla

2See results for more models and setup details in Appendix C.3.
3a,b,C,D are generic tokens for presentation
4See detailed characterization in Appendix C.3.
5We did not explore the full spectrum of attack strategies (e.g. adversarial prompt engineering), and leave

that as an interesting direction for future work.
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SFT will require nΩ(d) samples. Then, we prove that, with context-enhanced learning, the surrogate
model can learn MLTΠ∗ with a sample complexity of O(poly(n)d log d).

5.1 SURROGATE MODEL (SURR-MLT)

Formalization of the surrogate model, in short SURR-MLT, relies on observations from Section 3.3,
which reveal that an ICL-capable model (Definition 2.2) performs the translation task step-by-step,
with earlier phrasebook processed by lower layers. This aligns with how the model stores internalized
knowledge in layers after context-enhanced learning. Our SURR-MLT represents an idealized and
simplified transformer that has already been “pre-conditioned” to solve MLT in this sequential
fashion. Using SURR-MLT, we will show the benefits of context-enhanced learning.

Without loss of generality we assume the alphabet sets as A1, . . . ,Ad+1 := A = {1, 2, . . . , n}.
SURR-MLT will represent a length-L sequence si = (si,1, . . . , si,L) as an embedding matrix
Vi ∈ Rn2×L/2 that uses {v (si,1, si,2) , · · · ,v (si,L−1, si,L)} as columns. Here, for any 2-tuple
(a, b), v(a, b) ∈ Rn2

represents a one-hot vector with 1 at dimension an+ b.

SURR-MLT operates on embedding matrices, transforming V1 → V2 → · · · → Vd+1. Each layer
i will be primarily defined by two matrices, Ci,Wi ∈ Rn2×n2

. Ci presents a (possibly partial or
completely dropped) phrasebook that is provided in-context, and Wi is a trainable parameter storing
phrasebook information during context-enhanced learning.

Definition 5.2. SURR-MLT with trainable parameters {Wi}di=1 and in-context representation
{Ci}di=1, is represented by its operation on an input s1 as

Vd+1 = SURR-MLT{Wi}d
i=1

(
{Ci}di=1,V1

)
, where

Vi+1 = HardMax(Ci +Wi)Shift(Vi), for i ≥ 1,

and V1 is the embedding matrix for the input string s1.

Shift represents Circular shift operation and is defined as a Hadamard product on the embedding
matrices (details in Definition G.2). HardMax represents hard-max function converting Ci +Wi

to a binary column stochastic matrix. In the following discussion, we show 2 examples where the
surrogate model can perfectly represent an ICL-capable model and MLTΠ∗ -capable model.

Case 1 (Representing MLT(d, n)-ICL-capable): The trainable matrices are all 0s as the
model hasn’t undergone context-enhanced learning. To produce the output for a task MLTΠ,
SURR-MLT takes phrasebooks into in-context representations by setting each Ci as a stochastic
matrix Matrix(πi), which represents rules of πi as one-hot columns (please see Definition G.4
and Lemma G.5).

Case 2 (Representing MLTΠ∗-capable): For a model that has performed context-enhanced
learning on a translation task MLTΠ∗ , no in-context information will be provided to the surrogate
model and so {Ci}di=1 will be all 0s. A MLTΠ∗-capable-model should contain the phrasebooks
as {Matrix(π⋆

i )}di=1 in its trainable parameters {Wi}di=1.

SURR-MLT as an Ideal Transformer for MLT: The following theorem constructs a transformer
that can simulate SURR-MLT. Thus, while our discussions and proofs focus on the surrogate model
for simplicity, they remain fully applicable to the transformer architecture.6

Theorem 5.3 (cf Lemma H.4). There exists a transformer that can simulate SURR-MLT with 2d
self-attention and 2d MLP layers with embedding dimension 2n2 + 2d+ 4.

5.2 SAMPLE COMPLEXITY FOR VANILLA SFT

For the surrogate model, vanilla SFT corresponds to always setting in-context representations
{Ci}di=1 to 0s when training for MLTΠ∗ . While we use the surrogate model for consistency in our
discussion, the argument generalizes to any model learning MLTΠ∗ with vanilla SFT.

6Llama model used in Section 3 is significantly larger than the required size of SURR-MLT for the scale of
our datasets.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a paper at DATA-FM workshop @ ICLR 2025

Our analysis is built on the Statistical Query (SQ) framework (Kearns, 1998), which measures the
difficulty of learning tasks using algorithms that rely on expectation estimates of specific functions to
approximate the true solution. Gradient-based methods, such as Stochastic Gradient Descent (SGD),
fall under this framework as they compute gradients by estimating expectations of loss functions
and their derivatives.

The complexity of learning a task is quantified by the SQ dimension, which measures the number
of candidate functions that are pairwise uncorrelated under the input distribution and difficult to
distinguish with limited samples. A higher SQ dimension implies a richer hypothesis class, that
requires more samples to identify the correct function. We show in the following theorem that the SQ
dimension of MLT(d, n) grows exponentially with task parameters.

Theorem 5.4. SQ dimension of MLT(d, n) under uniform input distribution is at least nΩ(d).

Informally this implies that any algorithm that tries to learn a MLTΠ∗-capable SURR-MLT
with trainable parameters {Wi}di=1, and in-context information {Ci}di=1 always fixed at 0s, by
minimizing loss across samples will require at least nΩ(d) sample complexity.

A corollary is that for vanilla SFT with SGD, sample complexity to learn MLTΠ∗ can be at least
nΩ(d). This is adapted from Edelman et al. (2023), who analyse for sparse parity that has similar
SQ dimension (Corollary F.6).

Informal proof for SQ dimension: Our proof extensively analyses the case where number of
characters is 2 (lem. F.10), on which we will build proof for general n (lem. F.18). The proof for
n = 2 leverages uncorrelations between two randomly selected translation tasks; i.e. we show that for
two random set of phrasebooks Πα,Πβ , the translation tasks MLTΠα ,MLTΠβ will have 0 output
correlation with probability at least 1 − 2−Ω(d) w.r.t. random choice of Πα,Πβ (Lemma F.11).
We then show that we can pick exponentially many such random set of phrasebooks for which the
translation tasks will be pairwise uncorrelated with high probability. This translates to a high SQ
dimension.

5.3 SAMPLE COMPLEXITY OF CONTEXT-ENHANCED LEARNING

Here, we show that context-enhanced learning substantially improves the sample complexity of
learning in SURR-MLT. An MLT(d, n)-ICL-capable model gets a set of phrasebooks Π∗ by setting
{Matrix(π∗

i )}di=1 as in-context representations {Ci}di=1. When a curriculum is followed such
that a translation rule is dropped from a phrasebook, say π∗

i , SURR-MLT will set the corresponding
column in its in-context representation Ci as 0s. Due to this, the expected loss will increase for the
task MLTΠ∗ . A heuristic search algorithm, that searches among n2 possibilities for a dropped rule
and stores its one-hot representation in the corresponding column in Wi, can be used to minimize
the loss. By randomly dropping rules, followed by a search and store process, the algorithm achieves
polynomial sample complexity.
Theorem 5.5 (Informal; cf Corollary G.17). For any task MLTΠ∗ , there is a heuristic search
algorithm, paired with a curriculum of iteratively dropping a random rule from phrasebooks, that can
learn a MLTΠ∗ -capable SURR-MLT with sample complexity O(n6d log d) with high probability.

The enumerative step in the heuristic search algorithm requires Θ(n2) steps on average, as the
algorithm needs to search over Θ(n2) possibilities when a rule is dropped from a phrasebook. Instead,
we show that gradient descent requires only a few steps per dropped rule. Dropping a rule sets the
respective column in the in-context representation to 0, causing the gradient for the corresponding
column in the trainable parameters to strongly align with the missing column. We formally present
results for d = 2; due to exponentially growing number of terms to analyse with higher d, we keep
the result for general d as a conjecture.
Theorem 5.6 (Informal; cf Corollary G.23). When d = 2, there is a gradient descent based algorithm,
paired with a curriculum of iteratively dropping a random rule from phrasebooks, that can return
MLTΠ∗ -capable SURR-MLT with sample complexity O(n4) with high probability.

In Figure 11 in appendix, we train a surrogate model of much higher depth, and show that the trainable
parameters quickly learn the phrasebooks in Π∗ with gradient descent.
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Figure 5: Gradient prediction accuracy when (left) varying dropping rates for rules in π1 and batch
sizes of gradient computation, and (right) varying dropping rates and max phrasebook index (k) for
rules dropped from π1, . . . , πk. Higher dropping rates leads to lower gradient prediction accuracy.

5.4 INSIGHT FROM SURR-MLT: GRADIENT QUALITY

In this section, we show the major difference between context-enhanced learning and vanilla SFT to be
the amount of predictive information in gradients for the trainable parameters. Our theoretical analysis
in Theorem 5.6 primarily shows that when a translation rule in a phrasebook is dropped, equivalently
a column in an in-context representation Ci is zeroed out, the gradient of the corresponding column
in Wi aligns strongly with the one-hot vector representation of the dropped rule.

We define a measure called gradient prediction accuracy. For an ICL-capable SURR-MLT, we
randomly drop one or more rules from the phrasebooks by zeroing out columns in in-context
representations. We then measure whether gradients computed using a batch of examples for the
trainable parameters align with the representations of the dropped rules. We report the average
over gradients of trainable parameters in the first layer of SURR-MLT. A more formal description
is in Appendix B.1. We evaluate for two cases: (1) rules dropped only from the first phrasebook
and (2) rules dropped from multiple phrasebooks. In both cases, higher dropping rates significantly
degrade accuracy, with larger batch sizes offering slower improvement. Dropping rules from multiple
phrasebooks further degrades gradient prediction accuracy.

6 DISCUSSION, LIMITATIONS, AND FUTURE WORK

Some experimental works have implicitly used the notion of context-enhanced learning but the
current paper formalized this notion for auto-regressive models and showed, using MLT, that
this form of learning can be exponentially more sample-efficient than standard SFT. At the end
of training it is hard to recover the in-context information seen during training from the model’s
output probabilities. We note that this finding appears to have implications about copyright law (e.g.,
whether or not LLM training amounts to “transformative use” of text Carlini et al. (2021; 2022);
Karamolegkou et al. (2023)) whose further study is left for future work.

Our experiments focus on a synthetic MLT task for a few reasons: (1) to ensure that the task is absent
from LLM pre-training, which allows precise quantification of benefits of context-enhanced learning,
including not revealing the curriculum text at inference time. (2) the task is too difficult (at least for
Llama 3.2 3B model) to learn via vanilla SFT, but is learnable via context-enhanced learning. Extend-
ing these findings to real-world complicated tasks (e.g., in math and coding) is left for future work.

Our convergence analysis for context-enhanced learning relies on a surrogate model, and extending
it to an actual transformer remains an open challenge for theory of deep learning. Extending
formalization of context-enhanced learning to explore LLM training in multi-agent settings–where
models collaborate and learn from each other to discover novel concepts–would be an exciting
avenue for future research.
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A STRUCTURE OF THE APPENDIX

Here, we outline the structure for the appendix for easier readability. Due to space constraints, we
had to defer a lot of details from the main paper. Appendix B.1 contains details on the experiments on
gradient prediction accuracy from Section 5.4. Appendix B.4 shows the details on CoT internalization
pipeline that we followed to get an MLT(d, n)-ICL-capable model. Appendix B.5 gives more details
on the context-enhanced learning experiments conducted in Section 3.

Appendix C shows mechanistic experiments, designed in Section 3.3, for additional experimental
settings. Appendix C.3 present additional details and results for information recovery through
querying experiments conducted in Section 4. Appendix D presents extensive discussion of relevant
related works.

Appendix E discusses few properties on the MLT. Appendix F presents the formal theorems on
the computational hardness of learning the translation task and their proofs, which were informally
outlined in Section 5.2 in the main paper. Appendix G then presents the formal statements and proofs
for context-enhanced learning in the surrogate model, which were informally outlined in Section 5.1
in the main paper. Finally, Appendix H presents the theoretical construction of an ideal transformer
that can simulate the surrogate model. We present extensive details on prompts, and examples of
training sequences, that we used for context-enhanced learning in Appendix I.

B DEFERRED DEFINITIONS, AND EXPERIMENTAL DETAILS FROM THE MAIN
PAPER

B.1 GRADIENT PREDICTION ACCURACY

Our theoretical analysis in Theorem 5.6 was built on the fact that when a translation rule in a
phrasebook is dropped by zeroing out a column in an in-context representation Ci, the gradient for
the corresponding column in Wi points to the direction of the dropped rule.

On the other hand, we show that when multiple rules are simultaneously dropped from the
phrasebooks, the gradients for the trainable parameters become increasingly noisy. To quantify this
degradation, we compute gradient for each column of the trainable parameters for an ICL-capable
model, when the corresponding rule is dropped from phrasebooks by zeroing out the relevant column
in the in-context representations. We then compute whether the computed gradient points to the
right rule. By progressively increasing the number of simultaneously dropped rules, we measure
the resulting degradation in the accuracy of the gradient’s predictions.

More formally, denote RANDOM-DROP as an operation that takes in column dropping rates per
layer p1, · · · , pd, set of phrasebooks Π∗, and returns in-context representations {Ci}di=1, such that
(Ci):,j = (Matrix (π∗

i )):,j (jth columns of Ci and Matrix (π∗
i ) are equal) with probability 1−pi

and 0 otherwise. Then,

Definition B.1. For a set of column dropping rates per layer p1, · · · , pd, set of phrasebooks
Π∗ and MLT(d, n)-ICL-capable model, predictive accuracy of gradients is defined as

E{Ci}d
i=1=RANDOM-DROP(p1,··· ,pd,Π∗)

Ej∈[1,n2]|(C1):,j=0I
[
HardMax

(
−∇(W1):,jL

)
= (Matrix (π∗

i )):,j

]
L = Es1

ℓ
(

SURR-MLT{Wi}d
i=1

(
{Ci}di=1,V1

)
,MLTΠ∗(s1)

)
,

where ℓ, adapted from Section 2.1, computes cross-entropy loss on the predicted output
embeddings of surrogate model using true output string and I denotes the indicator function.

The above definition computes gradients on the expected loss of the model. We primarily focus
on predicting the trainable parameters of the first layer, i.e. W1, as that is the deepest layer in the
surrogate model and intuitively should suffer the most with noise accumulation from dropped rules.
On the other hand, we can further adapt the definition to compute the accuracy for batched gradients,
where the gradients are computed using average loss on a randomly sampled batch of input sequences.
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In Figure 5, we report the predictive accuracy of gradient for an MLT(d, n)-ICL-capable model, and
its behavior with varying batch size and the column dropping rates. We report for two cases, one
where column dropping rates is non-zero only for the first phrasebook, and one where we increase
the number of phrasebooks for which rules are independently and uniformly dropped. In both cases,

• Increased column dropping rates leads to noisier gradients and reduced prediction accuracy.
• Larger batch sizes improve gradient accuracy but cannot fully compensate for high dropout

rates.
• Dropping rules from multiple phrasebooks significantly degrades gradient prediction accu-

racy.

B.2 HIDDEN REPRESENTATIONS OF A MODEL

A transformer fθ with embedding dimension p and K layers takes any input sequence x, say of length
L, converts to an embedding matrix H1 ∈ RL×p, and modifies the embeddings using a succession of
K transformer layers; which we will denote by f

(1)
θ , f

(2)
θ , · · · , f (K)

θ .

We refer to the hidden representations for the input x, with embedding matrix H1, as the output of
the model after every layer. We will denote them as Hi+1 ∈ RL×p for the output of layer f (i)

θ . That
is,

Hi+1 = f
(i)
θ ◦ · · · ◦ f

(2)
θ ◦ f (1)

θ (H1) , for all i ≥ 1.

ℓ2-norm in change in hidden representation with perturbation in in-context information For
an MLT(d, n)-ICL-capable model, we supply in-context information for the textual description of a
set of phrasebooks Π as STR(Π) = [STR(π1), · · · , STR(πd)]. Our inputs to the transformer for an
input string s1 will be of the form [STR (Π) , s1,<THINK>,..., sd+1], where sd+1 = MLTΠ(s1).
By the definition of hidden representations, H2, · · · ,HK+1 will denote the output of the transformer
layers for this input string. However, we will be only interested in the hidden representations for
the tokens involved in the tokens for <THINK>,..., sd+1; and we will refer to the corresponding
subsets of H2, · · · ,HK+1 that represent these specific tokens as V2, · · · ,VK+1.

Now, suppose we randomly take a phrasebook πi in the Π and changed to a random phrasebook
π̃i. The corresponding textual description that will augment the context for an input string will then
be [STR(π1), · · · , STR(πi−1), STR(π̃i), STR(πi+1), · · · , STR(πd)]. If Ṽ2, · · · , ṼK+1 now denote the
hidden representations that represent the tokens for <THINK>,..., sd+1, then the ℓ2-norm in the
change of the hidden representation after layer j (for any 1 ≤ j ≤ K) with the perturbation in the set
of phrasebooks Π will be given by

∥∥∥Ṽj − Vj

∥∥∥
2
.

B.3 DEFINITION OF A “STITCHED” MODEL

We reuse notations from Appendix B.2. Suppose we have an MLT(d, n)-ICL-capable model
fθ and an MLTΠ∗-capable model fθ∗ . Their corresponding transformer layers are denoted by
f
(1)
θ , f

(2)
θ , · · · , f (K)

θ and f
(1)
θ∗ , f

(2)
θ∗ , · · · , f (K)

θ∗ . Each model takes in an input sequence and processes
them with their K transformer layers.

Formally, we will write for the ICL-capable model. It takes in input sequence x, and converts to an
embedding matrix, say H1, and the output after the Klayers are given by:

HK+1 = f
(d)
θ ◦ · · · ◦ f (2)

θ ◦ f (1)
θ (H1) .

Process of “stitching”: The process of stitching takes in two parameters Lstart and Lend and replaces
all layers from Lstart to Lend in fθ with the corresponding layers in fθ∗ to give a “stitched” model, say
fθ,θ∗,Lstart,Lend . The output of the “stitched” model fθ,θ∗,Lstart,Lend on an input sequence x will be given
by

HK+1 = f
(d)
θ ◦ · · · ◦ f (Lend+1)

θ ◦ f
(Lend)
θ∗ ◦ · · · f (Lstart)

θ∗︸ ︷︷ ︸
Layers are replaced by layers from fθ∗

◦f (Lstart−1)
θ ◦ f (2)

θ ◦ f (1)
θ (H1) .
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B.4 PIPELINE ON COT INTERNALIZATION

We randomly sample M sets of phrasebooks Π1, . . . ,ΠM not equal to Π∗. For each set of phrase-
books Πi, we randomly sample a single input sequence s1 and compute all the intermediate translation
steps s2, . . . , sd+1. We first train the model to do robust explicit CoT by auto-regressive training on
sequences [STR(Πi), s1, s2, . . . , sd, sd+1] with loss computed over s2, . . . , sd+1.

Then we follow common CoT internalization strategies (Deng et al., 2024; Hao et al., 2024; Yu
et al., 2024; Su et al., 2024) and gradually replace the intermediate sequences by <THINK> tokens
in training. After all intermediate sequences have been replaced, the model has low loss on sd+1

with input [STR(Π1), s1,<THINK>, . . . ,<THINK>, sd+1], satisfying Definition 2.2. Since we only
sample on sequence per set of phrasebooks, there is little memorization on particular phrasebooks.

Details on trainng hyperparameters: We use M = 3 × 105 random sets of phrasebooks with
length between 20 and 40, for getting MLT(5, 8)-ICL-capable model, and M = 106 random sets
of phrasebooks with length between 20 and 40, for getting MLT(5, 10)-ICL-capable model. We
use cosine learning rate schedule (Loshchilov & Hutter, 2016), with peak learning rate 10−4 and a
6% warmup phase, where learning rate is linearly increased from 0 to the peak. We use AdamW
optimizer for optimization (Loshchilov & Hutter, 2019), with weight decay fixed at 10−4. We use a
batch size of 64 for training.

CoT internalization curriculum: For the first 10% fraction of training, we train the model with
explicit CoT tokens that contain the intermediate steps in translation. Then between 10% to 60%
fractions of training, CoT tokens are gradually replaced by <THINK> tokens, with the rate of
replacement increasing linearly from 0% to 100%. We follow a deterministic first-to-last order for
replacing CoT tokens; earlier CoT tokens are replaced first with <THINK> tokens. After that, the
model is trained with the <THINK> CoT tokens till the end of training.

B.5 EXPERIMENT CONFIGURATION FOR CONTEXT-ENHANCED LEARNING

For context-enhanced learning, we create supervised datasets DΠ∗ of different sizes; each containing
between 104 to 106 samples. When performing Annealing Dropout or Fixed Dropout, at each step
of training, we randomly perform dropout on the rules of all phrasebooks or apply dropout to the
rules of a randomly sampled phrasebook to define curriculum-text. That is, if π∗

1 , . . . , π
∗
5 represent

the phrasebooks, then at each step of training, we either randomly drop rules uniformly from all
of π∗

1 , . . . , π
∗
5 , or just drop from one of the phrasebooks randomly selected from π∗

1 , . . . , π
∗
5 , while

keeping the rules of all other phrasebooks intact, to create curriculum-text.

Hyperparameters: Training hyperparameters are set equal to the optimization hyperparameters used
in preparation of ICL-capable training phase (Appendix B.4), except we set weight decay to 0 in all
experiments. We report the performance of the trained model after single epoch of training on each
DΠ∗ and plot against the size of the dataset in Figure 2.
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C ADDITIONAL EXPERIMENTS RESULTS

C.1 SELECTIVE INTERNALIZATION OF CONTEXT

In this experiment, we test whether the model can internalize rules that don’t incur an increase in loss
when dropped during training. To do so, we ablate on Annealing Dropout. We select a phrasebook
and create 2 splits of rules in the phrasebook; one set of rules will be utilized by training samples
for performing the translation task (which we call the training split), while other set of rules will
appear in curriculum-text during training but never utilized for the translation task (which we call the
heldout split).

At test time, we measure the performance of the trained model on 2 sets of evaluation examples, one
that only use rules from the training split for their translation (equal to training distribution), and other
that uses rules only from the heldout split for their translation (different from training distribution).
Recall that the model is being measured without any phrasebooks information at evaluation.

We conduct the above experiment for each phrasebook, i.e. we create 5 sets of experiments where we
only create heldout split for one specific level of phrasebook. In Figure 6, we show that the model
fails to perform any translation that use the rules from the heldout split, in each experiment. This
shows that the model only internalizes those rules that are important for the translation task for the
training samples, and which incurs an increase in training loss when dropped.
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Figure 6: Ablations on Annealing Dropout for MLT(5, 10) assess whether models internalize rules
not used in training samples. (Left to right) 1 ≤ i ≤ 5: Five independent experiments where a
held-out split is created for phrasebook π∗

i , and training excludes samples that use the translation
rules in the heldout split of π∗

i . Evaluation is conducted on two sets: one where samples do not use
held-out rules from π∗

i and one where only held-out rules from π∗
i are used. The model’s random

performance on the latter indicates that it internalizes only rules used during training, particularly
those whose removal increases loss.
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C.2 MECHANISTIC INSIGHTS

Here we provide additional figures corresponding to Figure 3 and Figure 4, but in more settings
(n = 10 vs n = 8, Annealing Dropout vs Fixed Dropout).
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Figure 7: Evidence for sequential processing in MLT-ICL capable models (n = 8, n = 10). The left
figure is identical to Figure 3. We observe the same behavior for MLT(5, 10)-ICL-capable model:
perturbing later phrasebooks in the context changes output representations in the later layers. A
clearer explanation on the context perturbation experiment is available in ??
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(a) DΠ∗ with 10000 samples
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(b) DΠ∗ with 25000 samples
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(c) DΠ∗ with 50000 samples
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(d) DΠ∗ with 100000 samples
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(e) DΠ∗ with 250000 samples

Figure 8: Repeated experiments from Figure 4 for models trained with context-enhanced learning at
varying supervised dataset sizes (Plots for row (d) are identical to the plots in Figure 4). We observe
that phrasebooks are progressively internalized with the number of training samples available during
context-enhanced learning; later phrasebooks are internalized with fewer samples than the earlier
ones. We observe similar localization patterns across layers from different phrasebooks across the
models, however, we also observe that the localization patterns get increasingly sparser as training
continues.
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(a) DΠ∗ with 25000 samples
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(b) DΠ∗ with 50000 samples
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(c) DΠ∗ with 100000 samples
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(d) DΠ∗ with 250000 samples
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(e) DΠ∗ with 500000 samples

Figure 9: Repeated experiments from Figure 8 for models trained with Fixed Dropout instead of
Annealing Dropout. Observations remain similar. This suggests that the position of phrasebook
internalization is primarily decided by the MLT(d, n)-ICL-capable initialization, and less dependent
on the specific dropout curriculum we use for context-enhanced learning.
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C.3 (NON)VERBATIM MEMORIZATION OF PHRASEBOOK RULES

In this subsection, we provide a more detailed explanation for the evaluation on the feasibility of
recovering phrasebook rules from models trained with context-enhanced learning with phrasebook
excerpts in context.

Given a MLTΠ∗ -capable model fθ∗ trained with context-enhanced learning where phrasebook rules
from STR(Π∗) are provided within the context during training, we test if the model retains explicit
memory of the textual format of rules. Namely, for each of the phrasebook rule of the form “a b
-> C D” in STR(Π∗), whether it can complete the ground truth output tokens “C D” providing “a
b ->” and additional context of the phrasebook STR(Π∗) before “a b -> C D”. We conduct the
test by computing the forward pass through fθ∗ with STR(Π∗) as the input (see exact input format in
Figure 15).

Now we formally define the query strategies and metrics we used for creating Table 2. Suppose
there are h unique tokens and STR(Π∗) contains L tokens, let S ∈ Rh×L denote the corresponding
output logit score matrix when we pass STR(Π∗) into fθ∗ . For a translation rule with ground truth
output tokens of index a1, a2 ∈ Ai+1 ⊂ [h], let S(k) and S(k+1) ∈ Rh denote the logit vector
corresponding to predicting these two entries.

If we are doing greedy decoding, then we will recover the correct phrasebook rule if and only if we
greedily select both a1 from S(k) and a2 from S(k+1), so the probability of correctly recovering
(a1, a2) conditioned on S is

P [Greedy-Recover(a1, a2)] = 1

[
argmax

i∈[h]

S(k) = a1

]
· 1

[
argmax

i∈[h]

S(k+1) = a2

]
.

Meanwhile, if we apply random sampling with softmax temperature of 1, the probability of correctly
recovering (a1, a2) conditioned on S is just then

P [Sampling-Recover(a1, a2)] =

 exp
(
S

(k)
a1

)
∑

i∈[h] exp
(
S

(k)
i

)
 ·

 exp
(
S

(k+1)
a1

)
∑

i∈[h] exp
(
S

(k+1)
i

)
 .

Recall from Section 4 that we have also introduced two stronger adversaries with additional token
filtering when doing decoding: (1) setting probability of <THINK> tokens to zero (2) when querying
for a rule in πi with output alphabet Ai+1, setting probability of all tokens outside Ai+1 to zero.

Denoting the token index of <THINK> as a<THINK>, then filter 1 corresponds to

P [Greedy-Filter1-Recover(a1, a2)] = 1

[
argmax

i∈[h]\{a<THINK>}
S(k) = a1

]
· 1

[
argmax

i∈[h]\{a<THINK>}
S(k+1) = a2

]
,

P [Sampling-Filter1-Recover(a1, a2)] =

 exp
(
S

(k)
a1

)
∑

i∈[h]\{a<THINK>} exp
(
S

(k+1)
i

)
 ·

 exp
(
S

(k)
a1

)
∑

i∈[h]\{a<THINK>} exp
(
S

(k+1)
i

)
 .

Similarly, for filter 2, the probabilities are

P [Greedy-Filter2-Recover(a1, a2)] = 1

[
argmax
i∈Ai+1

S(k) = a1

]
· 1

[
argmax
i∈Ai+1

S(k+1) = a2

]
,

P [Sampling-Filter2-Recover(a1, a2)] =

 exp
(
S

(k)
a1

)
∑

i∈Ai+1
exp

(
S

(k+1)
i

)
 ·

 exp
(
S

(k)
a1

)
∑

i∈Ai+1
exp

(
S

(k+1)
i

)
 .

Note that the second filter is a very strong adversarial assumption which assumes the user already
has side information on the set of tokens contained in alphabet Ai and Ai+1. To compute the final
statistics, we sample 20 permutations of STR(Π∗) for forward passes and compute the mean of the
above statistics over all atomic phrasebook rules appearing in the context. That is 1280 entries for
each phrasebook in the case of n = 8 and 2000 entries for each phrasebook in the case of n = 10.
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Table 3: Recovery Success Rate For n = 8, d = 5 Cases (Rounded to 2 decimals) Random Guess
Baseline: 1.56%

Curriculum # Samples Query Method Greedy Decoding Sampling (T = 1)
π1 − π4 π5 π1 − π4 π5

Annealing Dropout 50000
Base 0.00% 0.00% 0.00% 0.01%
Rule out <THINK> 0.06% 1.95% 0.00% 0.54%
Only keeping Ai 3.18% 1.95% 1.82% 1.49%

Annealing Dropout 100000
Base 0.00% 0.00% 0.00% 0.64%
Rule out <THINK> 0.00% 0.08% 0.00% 1.25%
Only keeping Ai 1.37% 0.08% 1.69% 1.80%

Annealing Dropout 250000
Base 0.00% 0.23% 0.00% 1.25%
Rule out <THINK> 0.00% 0.23% 0.00% 1.28%
Only keeping Ai 2.95% 0.23% 2.53% 1.38%

Fixed Dropout 50000
Base 0.00% 0.00% 0.00% 0.00%
Rule out <THINK> 0.08% 0.78% 0.00% 0.09%
Only keeping Ai 0.82% 0.86% 1.48% 1.43%

Fixed Dropout 100000
Base 0.00% 0.00% 0.00% 0.21%
Rule out <THINK> 0.43% 0.00% 0.03% 0.80%
Only keeping Ai 2.36% 0.00% 1.95% 1.32%

Fixed Dropout 250000
Base 0.00% 0.47% 0.02% 0.51%
Rule out <THINK> 0.68% 1.09% 0.11% 0.73%
Only keeping Ai 2.23% 1.09% 2.19% 1.10%

Table 4: Recovery Success Rate For n = 10, d = 5 Cases (Rounded to 2 decimals) Random Guess
Baseline: 1%

Curriculum # Samples Query Method Greedy Decoding Sampling (T = 1)
π1 − π4 π5 π1 − π4 π5

Annealing Dropout 100000
Base 0.00% 0.20% 0.00% 0.89%
Rule out <THINK> 0.00% 0.20% 0.00% 0.90%
Only keeping Ai 1.66% 0.20% 1.28% 0.94%

Annealing Dropout 250000
Base 0.00% 1.80% 0.00% 1.12%
Rule out <THINK> 0.00% 1.80% 0.00% 1.13%
Only keeping Ai 3.05% 1.80% 1.72% 1.23%

Fixed Dropout 250000
Base 0.00% 1.60% 0.00% 1.07%
Rule out <THINK> 0.05% 1.60% 0.01% 1.07%
Only keeping Ai 2.46% 2.15% 1.99% 1.39%

Fixed Dropout 500000
Base 0.26% 2.05% 0.05% 1.13%
Rule out <THINK> 0.33% 2.05% 0.07% 1.13%
Only keeping Ai 2.11% 2.05% 1.91% 1.34%

Here we report the query success rate for a variaty of models trained with context-enhanced learning
using different curriculum on different datasets sizes. All models reaches nearly perfect test accuracy
when no context is provided (see Figure 2), i.e., the in context phrasebook rules played significant
role in the learning of the models.

For all runs, we can see that it is nearly impossible (with recovery probability < 0.1% in most cases)
to recover the correct phrasebook rules for hidden steps (π1, . . . , π4) even when we provide the
correct partial phrasebooks in context (see columns corresponding to Query Method “Base”). Ruling
out <THINK> token when sampling also did not significantly increase the recovery rate. We note
that the phrasebook knowledge are not memorized in an completely undetectable manner, as
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the strongest token filtering gives non-random probability of outputting the correct target 2-tuple.
However the probability is still very low (< 3%), which can be considered as negligible to recover
the full correct phrasebooks STR(Π∗).

D RELATED WORKS

LEARNING USING PRIVILEGED INFORMATION (LUPI)

This was formally introduced by Vapnik & Vashist (2009) in kernel SVMs. A related concept is
Learning with Side Information Kuusela & Ocone (2002); Jonschkowski et al. (2015); Zhang et al.
(2018). Primarily, both concepts refer to training a model with additional information that could help
training but may not be available at test time. This framework has been extended theoretically for
classification tasks (e.g. Pechyony & Vapnik (2010); Momeni et al. (2018)) and has been used to
explain benefits of knowledge distillation(Vapnik et al., 2015; Lopez-Paz et al., 2015). To name a few
applications, this concept has been heavily studied for improving boosting for classification tasks
(Chen et al., 2012), visual and video encoders Hoffman et al. (2016); Cheng et al. (2020); Xu et al.
(2017), product preference predictions Farias & Li (2019), multi-agent games (Sessa et al., 2020),
speech recognition (Synnaeve et al., 2014), and medical recognition (Ceccarelli & Maratea, 2008;
Sabeti et al., 2020).

While traditionally applied to classification, extending LUPI to large language models (LLMs)
introduces unique challenges due to their auto-regressive training. Due to the auto-regressive nature
of training LLMs, such a concept raises questions on whether applying auto-regressive loss on the
additional information is necessary to get the benefits of additional supervision information in context,
and how the additional information changes the training behavior of LLMs. Hence, our work is a non
trivial generalization of this framework to LLMs, that connects to their in-context learning strengths.

DIFFERENCES WITH MASKED LANGUAGE MODELING (MLM) AND LANGUAGE INFILLING

MLM models like BERT, RoBERTa, and T5 (Kenton & Toutanova, 2019; Liu et al., 1907; Raffel
et al., 2020) train models by either masking or removing tokens from a sequence and compute
loss on the predictions of the model on the missing tokens. This concept has been adapted for
training auto-regressive models, with a task called language infilling task (Bavarian et al., 2022; Li
et al., 2022; Donahue et al., 2020; Li et al., 2022). The primary difference from these works is that
context-enhanced learning doesn’t take loss on the removed context tokens when they are removed
from curriculum-text.

IN-CONTEXT LEARNING AND MEMORIZATION

Recent works have studied emergence of ICL and competition with in-weights learning (IWL) (equiv-
alent to knowledge memorization) during pre-training of language models (Chan et al., 2022; Reddy,
2024; Singh et al., 2024a;b; Nguyen & Reddy, 2024). These studies show that data distribution prop-
erties affect the behavior of the model during training. Our work can be thought of as contemporary
to these studies, where we show that strong ICL capabilities can be utilized for improving knowledge
on a task by context-enhanced learning.

Benefits of in-context learning: In-context learning has been primarily studied in the context of
few-shot prompting of large language models. Better supervision with in-context supervision can
help in improved performance (e.g. some representative works (Arora et al., 2022; Si et al., 2022;
Wu et al., 2022; Lu et al., 2021; Su et al., 2022)), OOD generalization and factuality (reduced
hallucination) (Yang et al., 2023; Dhuliawala et al., 2023; Chen et al., 2023; Didolkar et al., 2024) for
large language models in prompting. On the other hand, we show that improved supervision with
in-context supervision can also help a model learn faster in SFT, while seemingly not leaking the
in-context information in its output probabilities.

COMPOSITIONAL AND OOD GENERALIZATION

Measuring generalization for a transformer beyond training distribution has been a study of interest
in many prior works. OOD generalization is measured by training a transformer on simpler examples
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and measuring its performance on harder ones. Prominent studies include length generalization,
informally defined as the ability of the model to reason longer than what it has been trained on (Zhou
et al., 2023; Anil et al., 2022), and compositional generalization on concepts, defined as the ability of
the model to reason on composition of concepts that it has seen during training (Zhao et al., 2024; Yu
et al., 2023; Wang et al., 2024; Yang et al., 2024; Press et al., 2022; Allen-Zhu & Li, 2023b). Our
experiments on Fixed Dropout in Section 3, where we train with 20% dropout on the phrasebooks
information but measure performance with 100% dropout at test time, measures compositional OOD
generalization behavior of the language model. The results show that the model internalizes the rules
from the phrasebooks in an atomic way, and re-compose them together as necessary at test time.

MECHANISTIC BEHAVIOR OF TRANSFORMERS WITH SYNTHETIC DATASETS:

Our work builds on a growing body of research exploring the behavior of transformers trained on
synthetic datasets. Prior studies have examined tasks such as modular addition (Nanda et al., 2023;
Zhong et al., 2023), context-free grammars (Zhao et al., 2023; Allen-Zhu & Li, 2023a), regular and
n-gram languages (Bhattamishra et al., 2020; Yao et al., 2021; Akyürek et al., 2024; Li et al., 2023),
and synthetic article-style datasets (Allen-Zhu & Li, 2023b; 2024; Eldan & Li, 2023). While our
work is structurally similar to these studies, it investigates the benefits of context-enhanced learning
that has not been explored in previous works.

E PROPERTIES OF MLT

MLT(d, n) is defined by the phrasebooks π1, · · · , πd at each of its translation layers. We use Bπ as
all possible set of bijective maps that can be used for any phrasebook π ∈ {π1, · · · , πd}. We will use
variable π to refer to an arbitrary bijective map from the set Bπ . For simplicity of proof, we will refer
to any alphabet set A of size n as {0, 1, · · · , n− 1}.
Here, we formally mention some of the properties of MLT(d, n).

Lemma E.1 (Invertibility of sequence translation). For any level i ∈ [d], fixing
{πi, πi+1, . . . , πd} gives a bijection between si and sd+1.

Proof. All of the four operations involved in the mapping from si to si+1 are invertible.

Structure of the mappings: The mappings πi are selected as random bijective maps between
2-tuples of characters in A2

i and 2-tuples of characters in A2
i+1. A combinatorial argument can then

give the number of such possible phrasebooks to be n2!.

Lemma E.2 (Number of mappings in each level). The number of possible bijective maps between
2-tuples of characters from alpbhabet sets Ai,Ai+1, each being of size n, is n2!, i.e. |Bπ| = n2!.

Proof. Each alphabet set contains n2 possible 2-tuples, meaning there are two sets of n2 elements
in Ai and Ai+1 that must be mapped via a bijective function. Fixing the order of 2-tuples in A2

i+1

reduces the problem to ordering the 2-tuples in A2
i . The number of possible orderings is n2!.

Importance of Circular shift: The composition of the d random bijective maps can be demonstrated
to result in another random bijective map. Consequently, without the Circular shift, each character in
the output sequence sd+1 depends on only two characters from the input sequence s1 via a shared
random map across 2-tuples.

Incorporating Circular shift on the other hand enables each character in the output sequence to depend
on 2d characters from the input sequence. This is because the character positions are shifted to
the right at each step, causing the input 2-tuples to also shift to the right at each stage. As we will
elaborate later, incorporating Circular shift increases the required number of training samples to
learn the set of phrasebooks from input and label pairs to nΩ(d), whereas without Circular shift, this
requirement is only O(n2).
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Representing the mappings on 2-tuples in-context: Each map can be defined using O(n2)
characters, as it can be simply defined by the n2 relations each connecting 2 unique random 2-
tuples from their corresponding alphabet sets. Thus, defining d maps in-context will require O(n2d)
characters. In contrast, describing all possible random mappings that connect d characters in input
sequence to a character in output sequence will require Ω(d

(
n
d

)
) characters. Thus, MLT with d

translation steps involving random mappings on 2-tuples and Circular shift helps define a mapping
where each character in the output sequence can depend on d character in the input sequence, and the
set of phrasebooks can be described using O(n2d) characters.

F LOWER BOUND: HARDNESS OF LEARNING MLT(d, n) WITHOUT CONTEXT

F.1 BRIEF INTRODUCTION TO SQ FRAMEWORK

Statistical query (SQ) bounds : The statistical query (SQ) framework measures the computational
hardness of learning a task in the presence of noise. It measures the hardness of learning a task by the
number of statistical queries needed by a learning algorithm to learn the true function. Statistical
queries are defined by some polynomially-computable property Q of labeled instances and a tolerance
parameter τ ∈ [0, 1] over (x, y) ∼ D where D is the data distribution. For a query, the algorithm
receives a response from the oracle within τ error of the true value. The statistical dimension, or
SQ-dim, is measured in terms of the number of functions in the hypothesis class that the learning
algorithm need to distinguish and the number of queries necessary to do the same. Correlation
between two functions is used to define the statistical query dimension.
Definition F.1. Correlation of two functions f1, f2 on a domain X with respect to a distribution D is
given by

Correlation(f1, f2,D) :=
∣∣∣∣ Prx∈D

[f1(x) = f2(x)]− Pr
x∈D

[f1(x) ̸= f2(x)]

∣∣∣∣ .
For functions f1, f2 : X → {0, 1}, the above definition is also equivalent to

Correlation(f1, f2,D) := |1− 2Ex∈D[f1(x)⊕ f2(x)]| .

Remark F.2. Two functions f1, f2 : X → {0, 1} are said to be uncorrelated w.r.t. D if

Pr
x∈D

[f1(x) = f2(x)] = Pr
x∈D

[f1(x) ̸= f2(x)]

(alternately) Ex∈D[f1(x)⊕ f2(x)] =
1

2
.

On the other hand, if

Prx∈D[f1(x) = f2(x)] = 1 (or 0)
(alternately) Ex∈D[f1(x)⊕ f2(x)] = 0 (or 1),

then Correlation(f1, f2,D) = 1.

We take the following formal definitions of SQ-dim and its relation to computational hardness in the
SQ framework from Blum et al. (1994).
Definition F.3 (Definition 2 in Blum et al. (1994)). For a function class F of boolean functions
over {0, 1}n and D a distribution over {0, 1}n, SQ-dim(F ,D), the statistical query dimension of F
with respect to distribution, is defined to be the largest natural number µ such that F contains µ
functions f1, · · · , fµ with the property that for all i ̸= j we have:

Correlation(fi, fj ,D) :=
∣∣∣∣ Prx∈D

[fi = fj ]− Pr
x∈D

[fi ̸= fj ]

∣∣∣∣ ≤ 1

µ3
.

Theorem F.4 (Theorem 12 in Blum et al. (1994)). Let F be a class of functions {0, 1}n and D a
distribution such that SQ-dim(F ,D) ≥ µ ≥ 16. Then if all queries are made with a tolerance of
atleast 1

µ1/3 , at least µ1/3/2 queries are required to learn F with error less than 1/2− 1/µ3 in the
statistical query model.
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F.2 LOWER BOUND LEMMA

Here, we mention the 2 main theorems that study the SQ dimension of the MLT task of interest.
The first theorem shows the SQ dimension bound when number of characters n = 2, which is then
adapted to get the SQ dimension bound for general n. Proofs of both the theorems are given in
Appendix F.4 and Appendix F.5 respectively.

Theorem F.10 (SQ dimension for n = 2). The family of translation task MLT(d, 2) on input
distribution U({0, 1}2d) has statistical query dimension SQ-dim(MLT(d, 2)) atleast 2Ω(d).

Theorem F.18 (SQ dimension for general n). For the translation task MLT(d, n) that has depth d
and n characters per level, the statistical query dimension SQ-dim(MLT(d, n)) is atleast nΩ(d).

F.2.1 BOUNDS FOR SGD

The following corollary measures the sample complexity needed to learn MLTΠ∗ by SGD. It has
been adapted from proposition 3 in Edelman et al. (2023), who study the sample complexity for
learning d-sparse parity task on n length sequences, whose SQ dimension is

(
n
d

)
= Θ(nd). We

simply state the corollary without specifying the proof.

Loss function and SGD updates: Consider training of a model fθ with r parameters that is trained
with mean squared error, i.e. ℓauto (fθ([CURRg(x, t), x, y]), y) = ∥fθ([CURRg(x, t), x, y])− y∥2 .
The empirical loss on a batch S of batch size B from the supervised dataset DΠ∗ will be denoted by
LS(fθ,MLTΠ∗); the population loss will be denoted by LU({0,1}L)(fθ,MLTΠ∗). SGD updates are
of the form:

θt+1 = θt − ηt(∇θLSt
(fθt ,MLTΠ∗) +R(θt) + ζt).

for some sample St, step size ηt, regularizer R(·), and adversarial noise ζt ∈ [−τ, τ ]r. For simplicity,
we assume the gradient∇θLSt

(θt) is bounded on all parameters θ in parameter space of the model.

Fake trajectory: Suppose 0 denote the constant function that maps all inputs to 0. Then, with the
contemporary losses LS(fθ,0) and LU({0,1}L)(fθ,0) that computes difference from this constant
function, consider the following trajectory θ̃1, · · · , θ̃t, · · · starting from the same initiation θ0:

θ̃t+1 = θ̃t − ηt(∇θLSt
(fθ̃t ,0) +R(θ̃t)).

Assumption F.5. For all t, suppose
∥∥∇θLU({0,1}L)(fθ̃t ,0)−∇θLSt(fθ̃t ,0)

∥∥
2
≤ τ/2.

Corollary F.6 (Sample complexity bounds for SGD). Fix an initialization θ0 such that fθ0 is
statistically independent (correlation 0) from all possible MLTΠ∗ . Further, set τ = O(n−d). Under
this assumption, if LTB ≤ nΩ(d)/r, then there exists at least one task MLTΠ∗ ∈ MLT(n, d)
for which the functions obtained after the first T SGD updates, fθ1 , . . . , fθT , remain statistically
independent (correlation 0) from MLTΠ∗ despite training on it.

LTB is the product of input length, total training steps, and batch size, which represents sample
complexity used by the SGD algorithm.

F.3 USEFUL LEMMAS FOR n = 2

Here, we mention some useful lemmas for charaterizing the bijective maps on {0, 1}2 → {0, 1}2 that
we will regularly use for the proof of Theorem F.10. The first lemma will show that each bijective
map can be represented by three operations on input characters, copy, xor, and not operations. The
second lemma measures correlation on the outputs of two randomly sampled bijective maps. The
proofs are given in Appendix F.6.

We define the following necessary operations to describe the random bijective maps on {0, 1}2 →
{0, 1}2:

1. copy: Given a tuple (x1, x2), and a position argument i ∈ {1, 2}, the operation returns value
of xi as output. We will use copy1 and copy2 to indicate the copy operation on positions 1
and 2 respectively.
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2. not: Given a variable xi, this operation returns flipped value of xi. That is, if xi = 1, then it
returns 0 and vice-versa.

3. xor: Given a tuple (x1, x2), this operation returns x1 ⊕ x2.
Lemma F.19 (Formulation of bijective maps for n = 2). Any bijective map π : {0, 1}2 → {0, 1}2
can be expressed using copy, not, and xor operations. Furthermore, from 24 possible maps for π,

1. There are 6 maps ∆1,∆2, · · · ,∆6 for which characters in the output tuple can be defined
by copy and xor operations on the characters in the input tuple.

2. Mirror maps: For each map π ∈ {∆1,∆2, · · · ,∆6}, there exist mirror maps
π(1), π(2), π(3) whose output on each input tuple can be defined by selective not opera-
tions on either or both characters of the output tuple of π. We call {π, π(1), π(2), π(3)} as a
mirror map set of π, in short, Mirrorset(π).

Remark F.7. Mirror map set definition is general and isn’t restricted to maps π ∈ {∆1,∆2, · · · ,∆6}.
Because mirror maps are defined in terms of not operation, a mirror map set Mirrorset(π) for
π ∈ {∆1,∆2, · · · ,∆6} is also equivalent to Mirrorset(π(i)) for i ∈ {1, 2, 3}.

Remark F.8. Lemma F.19 can be re-stated as follows: the 24 possible bijective maps
{0, 1}2 → {0, 1}2 can be grouped into 6 family of maps, each containing 4 maps and
represented by a map from {∆1,∆2, · · · ,∆6}. Each family is defined by mirror map set
of their corresponding representative map.

Lemma F.20 (Correlation of bijective maps for n = 2). For two randomly selected maps πα, πβ :
{0, 1}2 → {0, 1}2, the following hold true.

1. Correlation at output characters: Fix an i, j ∈ {0, 1}. With probability 1
3 w.r.t. the random

selection of the maps, the ith character in the output of πα has non-zero correlation to jth
character in the output of πβ , i.e.

Correlation(πα(·)i, πβ(·)j ,U({0, 1}2))

:=

∣∣∣∣ Pr
x∼U({0,1}2)

[πα(x)i ̸= πβ(x)j ]− Pr
x∼U({0,1}2)

[πα(x)i = πβ(x)j ]

∣∣∣∣ = 1.

2. With probability 1
3 w.r.t. the random selection of the maps, both the characters in the outputs

of πα, πβ have non-zero correlation, i.e. either one of the cases hold true

Correlation(πα(·)1, πβ(·)1,U({0, 1}2)) = 1.

Correlation(πα(·)2, πβ(·)2,U({0, 1}2)) = 1.

or

Correlation(πα(·)1, πβ(·)2,U({0, 1}2)) = 1.

Correlation(πα(·)2, πβ(·)1,U({0, 1}2)) = 1.

Other cases are not possible, i.e. for any i ∈
{1, 2}, both Correlation(πα(·)i, πβ(·)1,U({0, 1}2)) > 0 and
Correlation(πα(·)i, πβ(·)2,U({0, 1}2)) = 1 can’t hold true.

Remark F.9. Implication of Lemma F.20 is as follows: With probability at most 1
3 , output of

two random maps can stay correlated. This would suggest that the probability of the output
of two chains of random maps staying correlated should decay exponentially with the length
of the chains.

F.4 PROOF FOR STATISTICAL DIMENSION LOWER BOUND FOR n = 2

We repeat the lemma of interest for presentation.
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Theorem F.10 (SQ dimension for n = 2). The family of translation task MLT(d, 2) on input
distribution U({0, 1}2d) has statistical query dimension SQ-dim(MLT(d, 2)) atleast 2Ω(d).

Proof. We narrow our argument to the first character output of the task. The proof goes through 2
major steps.

1. First, we show that two random instances of MLT(d, 2), defined by 2 chains of random maps
{πα

1 , · · · , πα
d , } and {πβ

1 , · · · , π
β
d , } as their phrasebooks at each level, will be uncorrelated

with probability at least 1− (1/3)(7/9)d−1 w.r.t. the selection of the random code-books.
The lemma is formally given in Lemma F.11.

2. Then, we can apply a chernoff bound to show that we can have 2Ω(d) instances of MLT(d, 2)
that will have zero pairwise correlation of their output.

By the definition of SQ-dim from Definition F.3, the above observations suggest that
SQ-dim(MLT(d, 2)) ≥ 2Ω(d).

F.4.1 AUXILIARY LEMMAS

Here, we will prove the following primary lemma, that is used to prove Theorem F.10.

Lemma F.11. With probability at least 1 − 1
3

(
7
9

)d−1
w.r.t. random map selection, the

following holds true for 2 sets of random maps {πα
1 , · · · , πα

d } and {πβ
1 , · · · , π

β
d }:

Correlation(MLT(d, 2)Π={πα
i }d

i=1
(·)1,MLT(d, 2)Π={πβ

i }d
i=1

(·)1,U({0, 1}2d)) = 0.

Proof. We first dive into the dependencies between characters in input and output sequences in the
translation process. In Lemma F.13, we show that at any step i of MLT(d, 2) with phrasebooks
{πi}di=1, the following relation holds true on an input s1 ∈ {0, 1}2d:

(si+1,1, si+1,2) = πi((si+1,2, si+1,3)).

We will use superscripts α and β to differentiate the intermediate outputs of MLT when the phrase-
books are set as {πα

1 , · · · , πα
d } and {πβ

1 , · · · , π
β
d } respectively. We will use an induction strategy to

find the correlation of sαd+1,1 and sβd+1,1. To do so, we will require the following variables:

1. pℓ,ij : For one pair of i, j ∈ {2, 3}, this represents the probability at a level 2 ≤ ℓ ≤ 1 + d

w.r.t. the randomness of {πα
1 , · · · , πα

ℓ } and {πβ
1 , · · · , π

β
ℓ }, that sαℓ,i and sβℓ,j are perfectly

correlated. Additionally, we define pℓ,11 that represents the probability at a level 1 ≤ ℓ ≤
1 + d w.r.t. the randomness of {πα

1 , · · · , πα
ℓ } and {πβ

1 , · · · , π
β
ℓ }, that sαℓ,1 and sβℓ,1 are

perfectly correlated.

2. pℓ,both: This represents the probability at a level 2 ≤ ℓ ≤ 1 + d w.r.t. the randomness
of {πα

1 , · · · , πα
ℓ } and {πβ

1 , · · · , π
β
ℓ }, that either sαℓ,2, sβℓ,2 are correlated and sαℓ,3, sβℓ,3 are

correlated, or sαℓ,2, sβℓ,3 are correlated and sαℓ,3, sβℓ,2 are perfectly correlated.

There are three relations that we need to keep in mind, before we proceed with the induction proof.

1. First, the correlations are circular in nature, i.e., for j ∈ {2, 3} and any integer k, pℓ,jj =
pℓ,j(j+2k)%L (Lemma F.15). We will use this relation to connect pℓ,11 with pℓ,33, i.e.

pℓ,11 = pℓ,33. (1)
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2. Second, pℓ,both ≤ maxij pℓ,ij . Intuitively, this is because getting correlations at both posi-
tions must be at most as probable as getting correlations at one of the positions.

pℓ,both ≤ max
ij

pℓ,ij . (2)

3. Third, cross-correlation probabilities given by pℓ,23 and pℓ,32 must be ≤ 1
2 (pℓ,22 + pℓ,33)

(Lemma F.17).

pℓ,ij ≤
1

2
(pℓ,ii + pℓ,jj), for any i, j ∈ {2, 3}, i ̸= j. (3)

Base condition: We will use the values of the variables at ℓ = 2 as our base condition. The input
for first layer of translation is same to both MLT(d, 2){πi=πα

i }d
i=1

, MLT(d, 2){πi=πβ
i }d

i=1
. Then, for

an input s1,
(sα2,1, s

α
2,2) = πα

1 ((s1,2, s1,3))

(sβ2,1, s
β
2,2) = πα

1 ((s1,2, s1,3)).

We can then use Lemma F.20 to show that

p2,ij =
1

3
, for all i, j ∈ {1, 2},

p2,both =
1

3
.

Connecting the variables at ℓ and ℓ+1: We connect pℓ+1,22 to pℓ,23, pℓ,32, pℓ,33 and pℓ,both. This
will undergo a case by case analysis.

1. First, if under maps πα
1 , · · · , πα

ℓ−1 and πβ
1 , · · · , π

β
ℓ−1, if

(either) sαℓ,2 and sβℓ,2 are perfectly correlated , and sαℓ,3 and sβℓ,3 are perfectly correlated

(or) sαℓ,2 and sβℓ,3 are perfectly correlated , and sαℓ,3 and sβℓ,2 are perfectly correlated ,

(4)

holds true, we can use Lemma F.12 to show that with probability 1
3 w.r.t. the selection of

πα
ℓ and πβ

ℓ , sαℓ+1,2 and sβℓ+1,2 will be correlated. Conditions necessary for Lemma F.12,
i.e. uniform distribution of the characters in the input sequence, is shown to hold true in
Lemma F.14. The probability w.r.t. the selection of maps πα

1 , · · · , πα
ℓ−1 and πβ

1 , · · · , π
β
ℓ−1

that Equation (4) holds true is given by the variable pℓ,both.

2. On the other hand, if there exists a pair i, j ∈ {2, 3}, if under maps πα
1 , · · · , πα

ℓ−1 and
πβ
1 , · · · , π

β
ℓ−1, sαℓ,i and sβℓ,j are perfectly correlated, then with probability 1

9 w.r.t. the
selection of πα

ℓ and πβ
ℓ , sαℓ+1,2 and sβℓ+1,2 will be correlated. We again refer to Lemma F.12

for this statement. Probability that this condition happens under maps πα
1 , · · · , πα

ℓ−1 and
πβ
1 , · · · , π

β
ℓ−1 is given by the variable pℓ,ij .

3. If none of the above situation occurs, then for all pairs i, j ∈ {2, 3}, sαℓ,i and sβℓ,j are
uncorrelated, and so, by Lemma F.20, correlation between sαℓ+1,2 and sβℓ+1,2 will stay 0 for
any choice of πα

ℓ and πβ
ℓ .

Thus, combining the 3 cases, we must have

pℓ+1,22 ≤
1

3
pℓ,both +

1

9

∑
i,j∈{2,3}

pℓ,ij (5)

≤ 1

3
pℓ,both +

4

9
max

i,j∈{2,3}
pℓ,ij

≤ 1

3
max

i,j∈{2,3}
pℓ,ij +

4

9
max

i,j∈{2,3}
pℓ,ij =

7

9
max

i,j∈{2,3}
pℓ,ij (6)

Reasoning for each step is as follows:
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1. Equation (5) follows from conditional probability computations using the 3 cases that we
discussed before.

2. Equation (6) uses Equation (2) to connect pℓ,both to pℓ,ij .

We can give the same inequality for pℓ+1,11. As pℓ+1,11 = pℓ+1,33 from Equation (1) and pℓ,23 and
pℓ,32 must be atmost the average of pℓ,22 and pℓ,33 (Equation (3)), we can write

max
i,j∈{2,3}

pℓ+1,ij ≤
7

9
max

i,j∈{2,3}
pℓ,ij .

This implies that the probability of correlation at any bit under the two random sets of maps decays at
the rate of 7

9 . Solving the recurrence will give:

max
i,j∈{2,3}

pd+1,ij ≤
(
7

9

)ℓ−1

p2,ij =

(
7

9

)d−1
1

3
.

As pd,33 should be equal to pd+1,11, this implies that with probability at least 1−pd,33 = 1−
(
7
9

)d−1 1
3 ,

the following must hold true:

Correlation(MLT(d, 2)Π={πα
i }d

i=1
(·)1,MLT(d, 2)Π={πβ

i }d
i=1

(·)1,U({0, 1}2d)) = 0.

Lemma F.12. Suppose f, g : {0, 1}k → {0, 1}2 denote 2 functions for some arbitrary k, satisfying

Ex∼U({0,1}k)f(x)j = 1/2, Ex∼U({0,1}k)g(x)j = 1/2

Ex∼U({0,1}k)f(x)1 ⊕ f(x)2 = 1/2, Ex∼U({0,1}k)g(x)1 ⊕ g(x)2 = 1/2

for all j ∈ {1, 2}. Then, the following holds true:

1. Both bits have correlations between f and g: If

(either) Correlation(f(·)1, g(·)1,U({0, 1}k)) = 1 and Correlation(f(·)2, g(·)2,U({0, 1}k)) = 1

(or) Correlation(f(·)1, g(·)2,U({0, 1}k)) = 1 and Correlation(f(·)2, g(·)1,U({0, 1}k)) = 1,

then for two randomly picked maps πα, πβ ,

(a) Correlation of an output bit of πα(f(·)) and πβ(g(·)): Fix an i, j ∈ {1, 2}. With
probability 1/3 w.r.t. the random selections of πα, πβ ,

Correlation(πα(f(·))i, πα(g(·))j ,U({0, 1}k)) = 1

(b) Correlation of both bits of πα(f(·)) and πβ(g(·)): With probability 1/3 w.r.t. the
random selections of πα, πβ , one of the following two conditions hold true.

(either) Correlation(πα(f(·))1, πα(g(·))1,U({0, 1}k)) = 1 and

Correlation(πα(f(·))2, πα(g(·))2,U({0, 1}k)) = 1

(or) Correlation(πα(f(·))1, πα(g(·))2,U({0, 1}k)) = 1 and

Correlation(πα(f(·))2, πα(g(·))1,U({0, 1}k)) = 1

2. Only a pair of bits have correlations between f and g: If there exists only one pair
i, j ∈ {0, 1} such that

Correlation(f(·)i, g(·)j ,U({0, 1}k) = 1,

and for all other i′, j′, Correlation(f(·)i′ , g(·)j′ ,U({0, 1}k)) = 0, then
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(a) Fix any i′, j′ ∈ {1, 2}. With probability 1
9 w.r.t. the random selections of πα, πβ ,

Correlation(πα(f(·))i′ , πβ(g(·))j′ ,U({0, 1}k)) = 1.

If the above condition holds true, for all other ī, j̄ pairs,

Correlation(πα(f(·))ī, πβ(g(·))j̄ ,U({0, 1}k)) = 0.

3. No correlations between f and g: If for all pairs i, j ∈ {0, 1},
Correlation(f(·)i, g(·)j ,U({0, 1}k)) = 0, then for all pairs i′, j′ ∈ {0, 1},

Correlation(πα(f(·))i′ , πβ(g(·))j′ ,U({0, 1}k)) = 0.

Proof. We will prove each case separately.

1. Both bits have correlations between f and g: We will consider the case when
Correlation(f(·)1, g(·)1,U({0, 1}k)) = 1 and Correlation(f(·)2, g(·)2,U({0, 1}k)) = 1,
proof for the other case is similar. Then, there are 4 cases possible.

Subcase 1: f(x)1 = g(x)1, f(x)2 = g(x)2 for all x ∈ {0, 1}k

Subcase 2: f(x)1 = not(g(x)1), f(x)2 = g(x)2 for all x ∈ {0, 1}k

Subcase 3: f(x)1 = g(x)1, f(x)2 = not(g(x)2) for all x ∈ {0, 1}k

Subcase 4: f(x)1 = not(g(x)1), f(x)2 = not(g(x)2) for all x ∈ {0, 1}k

Because f(·) and g(·) are inputs to the maps πα and πβ respectively and f(·) and g(·) are
connected by selective not operations in their outputs in each of the possible 4 subcases, the
output of πβ(g(·)) can be replaced by π̃β(f(·)) for a mirror map π̃β of πβ . We showcase
this formally for one subcase, say subcase 2; argument for other subcases are similar.

Subcase 2 is true: Then, for any two maps πα and πβ , suppose π̃β denotes a mirror map of
πβ such that

π̃β(x)1 = not(πα(x)1), π̃
β(x)2 = πα(x)2, for all x ∈ {0, 1}2.

Such a map exists by Lemma F.19. Then, for a pair i, j ∈ {1, 2},

Correlation(πα(f(·))i, πβ(g(·))j ,U({0, 1}k))
= Correlation(πα((f(·)1, f(·)2))i, πβ((g(·)1, g(·)2))j ,U({0, 1}k)) (7)

= Correlation(πα((f(·)1, f(·)2))i, πβ((not(f(·)1), f(·)2))j ,U({0, 1}k)) (8)

= Correlation(πα((f(·)1, f(·)2))i, π̃β((f(·)1, f(·)2))j ,U({0, 1}k)) (9)

= Correlation(πα(·)i, π̃β(·)j ,U({0, 1}2)). (10)

Reasoning for each step is as follows.

• Because the outputs of f and g are a tuple on any input, Equation (7) simply replaces
f(x) (similarly g(x)) as (f(x)1, f(x)2) for any input x.

• Equation (8) uses the relation between the outputs of f and g when subcase 2 is true.
• Equation (9) simply replaces πβ with π̃β due to their relation as mirror maps.
• Finally, because of the assumption on the output of f , i.e. Ex∼U({0,1}k)f(x)j =
1/2,Ex∼U({0,1}k)f(x)1 ⊕ f(x)2 = 1/2, the distribution of outputs of f can be shown
to be identical to U({0, 1}2).

Hence, Correlation(πα(f(·))i, πβ(g(·))j ,U({0, 1}k)) boils down to
Correlation(πα(·)i, π̃β(·)j ,U({0, 1}2)). We can then use Lemma F.20 to show the
probabilities of each of the desired conditions.
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2. Only a pair of bits have correlations between f and g: For typographical simplicity,
consider the case when

Correlation(f(·)1, g(·)1,U({0, 1}k)) = 1,

and for all pairs i′, j′ with atleast one of them being not equal to 1,
Correlation(f(·)i′ , g(·)j′ ,U({0, 1}k)) = 0. The argument when the condition holds for
other i, j pairs can be similarly handled. Then, there are 2 cases possible.

Subcase 1: f(x)1 = g(x)1, for all x ∈ {0, 1}k

Subcase 2: f(x)1 = not(g(x)1), for all x ∈ {0, 1}k,
while in each of these pairs, (f(·)2, g(·)2), (f(·)2, g(·)1), and (f(·)1, g(·)2), the output bits
of f and g are completely independent of each other. We only consider subcase 1; subcase
2 can be handled using mirror maps similar to the proof for case 1 (in particular with
Equation (9)).

For simplicity, we will argue for i′, j′ = 1, 1; the argument about other i′, j′ pairs are similar.
The proof will follow by two steps,

• Step (a): We first argue about the probability with which
Correlation(πα(f(·))1, πβ(g(·))1,U({0, 1}k)) is equal to 1,

• Step (b): We then argue that if the condition in (a) holds true, then
Correlation(πα(f(·))i′ , πβ(g(·))j′ ,U({0, 1}k)) must be 0 for any other pair i′, j′

where atleast one of them is not equal to 1.

Step (a): For simplicity, we will assume that πα, πβ ∈ {∆1,∆2, · · · ,∆6} defined in
Table 6; other cases can be handled as Lemma F.21.

Correlation(πα(f(·))1, πβ(g(·))1,U({0, 1}k))
= Correlation(πα((f(·)1, f(·)2))1, πβ((g(·)1, g(·)2))1,U({0, 1}k)) (11)

= Correlation(πα((f(·)1, f(·)2))1, πβ((f(·)1, g(·)2))1,U({0, 1}k)) (12)

=

∣∣∣∣ Pr
x∼U({0,1}k)

[
πα((f(x)1, f(x)2))1 = πβ((f(x)1, g(x)2))1

]
− (13)

Pr
x∼U({0,1}k

[
πα((f(x)1, f(x)2))1 ̸= πβ((f(x)1, g(x)2))1

]∣∣∣∣ (14)

=

∣∣∣∣ Pr
x∼U({0,1})

[
Pr

y,y′∼U({0,1}2)

[
πα((x, y))1 = πβ((x, y′))1

]
− Pr

y,y′∼U({0,1}2)

[
πα((x, y))1 = πβ((x, y′))1

]]∣∣∣∣
(15)

The reasoning for each step is as follows:

• Because the outputs of f and g are a tuple on any input, Equation (11) simply replaces
f(x) (similarly g(x)) as (f(x)1, f(x)2) for any input x.

• Equation (12) uses the relation between the outputs of f and g when subcase 1 is true.
• Equation (9) simply writes the definition of correlation.
• Finally, because of the assumption on the output of f , i.e. Ex∼U({0,1}k)f(x)j =
1/2,Ex∼U({0,1}k)f(x)1 ⊕ f(x)2 = 1/2, the distribution of outputs of f can be shown
to be identical to U({0, 1}2).

From the definitions of πα, πβ ∈ {∆1,∆2, · · · ,∆6} in Table 6, the first character in the
outputs of πα and πβ can be expressed using 3 operators on the input characters, which are
copy1, copy2, and xor. These operators are independently selected for πα and πβ , as they
are randomly picked from these 6 possibilities. Formally, for any tuple of variables (x, y)
and (x, y′),

copy1(x, y) = x, copy2(x, y) = y, xor(x, y) = x⊕ y,

copy1(x, y′) = x, copy2(x, y′) = y′, xor(x, y′) = x⊕ y′.
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However, because x, y, y′ are independent variables, only operations copy1(x, y) and
copy1(x, y

′) for (x, y, y′) ∼ U({0, 1}3) will be correlated. This can be verified by writing
the definition of correlation and using copy1 for the first character output of πα and πβ :∣∣∣∣ Pr
x∼U({0,1})

[
Pr

y,y′∼U({0,1}2)

[
πα((x, y))1 = πβ((x, y′))1

]
− Pr

y,y′∼U({0,1}2)

[
πα((x, y))1 = πβ((x, y′))1

]]∣∣∣∣
=

∣∣∣∣ Pr
x∼U({0,1})

[
Pr

y,y′∼U({0,1}2)
[copy1(x, y) = copy1(x, y′)]− Pr

y,y′∼U({0,1}2)
[copy1(x, y) ̸= copy1(x, y′)]

]∣∣∣∣ = 1,

as the first term is 1 and the second term is 0. However, if you pick any other pair of
operations, the correlation will be 0. We demonstrate by using copy1 and xor for πα and
πβ respectively.∣∣∣∣ Pr
x∼U({0,1})

[
Pr

y,y′∼U({0,1}2)

[
πα((x, y))1 = πβ((x, y′))1

]
− Pr

y,y′∼U({0,1}2)

[
πα((x, y))1 = πβ((x, y′))1

]]∣∣∣∣
=

∣∣∣∣ Pr
x∼U({0,1})

[
Pr

y,y′∼U({0,1}2)
[copy1(x, y) = xor(x, y′)]− Pr

y,y′∼U({0,1}2)
[copy1(x, y) ̸= xor(x, y′)]

]∣∣∣∣
=

∣∣∣∣ Pr
x∼U({0,1})

[
Pr

y,y′∼U({0,1}2)
[x = x⊕ y′]− Pr

y,y′∼U({0,1}2)
[x ̸= x⊕ y′]

]∣∣∣∣ = 0,

as both terms are equal to 1
2 in the final step. By a counting argument, one can reason that the

probability of corr(πα(f(·))1, πβ(g(·))1,U({0, 1}k)) being 1 is equal to the probability of
copy1 being selected to define the first character of πα and πβ , which will be equal to 1

9 .

Step (b): Now, say we have selected a pair πα and πβ such that
Correlation(πα(f(·))1, πβ(g(·))1,U({0, 1}k)) = 1. From the proof of step (a), this
is only possible when copy1 was selected to define the first characters in the outputs of πα

and πβ . Any other operation pairs for defining the first characters in the outputs of πα and
πβ would have meant correlation to be 0.

We can use this same argument to show that for any other pair i′, j′ where atleast one of
them is not equal to 1. Correlation(πα(f(·))i′ , πβ(g(·))j′ ,U({0, 1}k)) must be 0. This is
because once copy1 has been used to define the operation for the first character, it can’t
be used to define the operation for the second character (please look at the truth tables
for {∆1, · · · ,∆6} in Table 6. Following a similar argument, we can then show that any
correlation between output characters πα(f(·))i′ , πβ(g(·))j′ will be 0, as copy1 can’t be
used for at least one of these characters.

3. The third case is when none of the above conditions hold true. That is, for any pair
i, j ∈ {1, 2},

Correlation(f(·)i, g(·)j ,U({0, 1}k)) = 0.

In such case, following similar arguments as case 1 and 2, one can show that for any
i, j ∈ {1, 2}, for any choice of πα and πβ :

Correlation(πα(f(·))i, πβ(g(·))j ,U({0, 1}k))

=

∣∣∣∣ Pr
x,y∼U({0,1}2)

Pr
x′,y′∼U({0,1}2)

[
πα((x, y))i = πβ((x′, y′))j

]
−

Pr
x,y∼U({0,1}2)

Pr
x′,y′∼U({0,1}2)

[
πα((x, y))i ̸= πβ((x′, y′))j

]∣∣∣∣
= 0,

due to independence of inputs to πα and πβ .

Lemma F.13. At any step i of MLT(d, 2) with phrasebooks {πi}di=1, the following relation holds
true for the intermediate outputs {si}d+1

i=2 on an input s1 ∈ {0, 1}2d:

(si+1,1, si+1,2) = πi((si,2, si,3)).
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Proof. MLT(d, 2) has 2 primary steps: Circular shift and Translate. By Circular shift, first, we first
get sequence s̃i, where for j ∈ [L] we have s̃i,j = si,(j+1)%L. After Translate step,

(si+1,1, si+1,2) = πi((s̃i,1, s̃i,2)) = πi((si,2, si,3))

Lemma F.14. At any step i of MLT(d, 2) with phrasebooks {πi}di=1, the following conditions hold
true for the intermediate outputs {si}d+1

i=1 :

Es1∼U({0,1}L)si,j =
1

2
, for all 1 ≤ j ≤ L

Es1∼U({0,1}L)si,j ⊕ si,j′ =
1

2
, for all j ̸= j′.

The above conditions are equivalent to showing that si,j behaves like a uniformly random boolean
variable, independent of any other character si,j′ for all coordinates j .

Proof. The proof will follow by induction on the output of the translation task at each step. We
will show the result for coordinate j = 1 in the si at each layer ℓ; similar argument holds for other
coordinates j.

Base condition: At layer i = 1, the s1 represents the input sequence from U({0, 1}L). By
definition of uniform distribution, the conditions hold true for the input.

Induction step: Argument for general i > 1: Suppose the conditions are true for all layers
1 ≤ ℓ < i. Then for layer i, we will provide an argument for the condition to hold true for j = 1 and
j = 2, arguments for other js will extend similarly. By Lemma F.13,

(si,1, si,2) = πi((si−1,2, si−1,3)).

From Lemma F.19, we have each output character can be defined in terms of copy, xor, and not
operations on input characters. Then, the relations for si,1, si,2 can be computed as follows:

• If a map πα is selected from Mirrorset(π) for some π ∈ {∆1, · · · ,∆6}, then one can show
that the conditions hold true for πi = πα if the conditions hold true for πi = π. This follows
because the output of πα follows from the output of π by selective not operations to the
output of π. As not operation won’t change the expected values of a variable which behaves
like a random boolean variable, the argument follows.

• Now, we show that for πi = π for some π ∈ {∆1, · · · ,∆6}, the conditions hold true.
For these maps, the output characters are defined by copy and xor operations. We use
the definitions of these maps from Table 6 and show the expected values si,1 in terms of
expected values of si−1,1 and si−1,2, and the expected values si,1⊕si,2 in terms of expected
values of si−1,1 and si−1,2 in Table 5.

Both of the above arguments then can be combined to show that

Es1∼U({0,1}L)si,j =
1

2
, for j ∈ {1, 2}

Es1∼U({0,1}L)si,1 ⊕ si,2 =
1

2
.

We can extend the argument for expectation of each individual character to other positions j > 2. We
can also extend the argument for joint expectation of two consecutive characters si,2k+1⊕si,2k+2 for
any general k. This is similar to claiming that after Split operation on the sequence si, in each of the
resulting 2-tuples which are of the form (si,2k+1, si,2k+2), the individual characters are independent
of each other.
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Operator Expected value Expected ⊕ value with operator
copy1 copy2 xor

copy1 Es1
si−1,2 = 1/2 - Es1

si−1,2 ⊕ si−1,3 = 1/2 Es1
si−1,3 = 1/2

copy2 Es1si−1,3 = 1/2 Es1si−1,2 ⊕ si−1,3 = 1/2 - Es1si−1,2 = 1/2
xor Es1si−1,2 ⊕ si−1,3 = 1/2 Es1si−1,3 = 1/2 Es1si−1,2 = 1/2 -

Table 5: Esi,1 (similarly Esi,2) and Esi,1 ⊕ si,2 under different πi maps, defined by copy and xor
operations on si−1,2 and si−1,3.

The final argument will be to show that characters across the resulting tuples are going to be
independent of each other as well. Consider any two tuples (si,2k+1, si,2k+2) and (si,2k′+1, si,2k′+2),
with k ̸= k′. By adapting Lemma F.13, one can show that

(si,2k+1, si,2k+2) = πi((si−1,2k+2, si,2k+3))

(si,2k′+1, si,2k′+2) = πi((si−1,2k′+2, si,2k′+3))

The primary thing to note here is that both the tuples depend on two distinct tuples in layer i− 1. By
induction assumption, characters across these two tuples are independent of each other. As πi is a
bijective map, this will also suggest that characters across the tuples in the resulting output must also
be independent of each other. This will give the final argument.

Lemma F.15. Under the assumption that sequence lengths L are even, for any 1 ≤ i ≤ d, where
sαi,j , s

β
i,j denote the output after i− 1st translation step for a random sequence s1 ∼ U({0, 1}L) at

any position 1 ≤ j ≤ L under the two sets of random maps {πα
ℓ }

i−1
ℓ=1 and {πβ

ℓ }
i−1
ℓ=1, the following

holds true for all positions j:

Correlation(sαi,j , s
β
i,j ,U({0, 1}

L)) = Correlation(sαi,(j+2k)%L, s
β
i,(j+2k)%L,U({0, 1}

L)), for all integer k.

Proof. Fix an integer k. By Definition F.1, the necessary condition would be to show∣∣∣1− 2Es1∼{0,1}Lsαi,j ⊕ sβi,j

∣∣∣ = ∣∣∣1− 2Es1∼{0,1}Lsαi,(j+2k)%L ⊕ sβi,(j+2k)%L

∣∣∣ .
We will look at the behavior of the function h(s1) = sαi,j ⊕ sβi,j . Denote Ck as a circular operation
that takes a sequence s1 and returns a shifted sequence ⟲s1, i.e. if ⟲s1 = Ck(s1) then for all j,
⟲s1,j = s1,(j+2k)%L. Note that, we can also define an inverse function C−1

k and s1 = C−1
k (Ck(s1)).

From the definition of MLT(2, d)Π for any code-book Π, we have for any input s1:

si = Tπi−1
◦ · · · ◦ Tπ1

(s1) ,

where for any level i, Tπi
denotes the translation step at level i that includes Circular shift, Split,

Translate with πi, and Merge.

In Lemma F.16, we show that for any translation task MLT(2, d)Π and any input s1,

Tπi−1
◦ · · · ◦ Tπ1

(s1) = C−1
k

(
Tπi−1

◦ · · · ◦ Tπ1
◦ Ck (s1)

)
.

On input ⟲s1 = Ck(s1), if ⟲sαi and ⟲sβi represent the output of translations using {πα
ℓ }

i−1
ℓ=1 and

{πβ
ℓ }

i−1
ℓ=1 respectively, then the above statement says that

sαi = C−1
k

(
⟲sαi

)
, sβi = C−1

k

(
⟲sβi

)
(or) Ck (sαi ) = ⟲sαi , Ck

(
sβi

)
= ⟲sβi
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Thus, for any position j, we will have Ck (sαi )j = ⟲sαi,j (and similarly for ⟲sβi,j). We can then
compute the value of h on input ⟲s1 as follows:

h(⟲s1) =
⟲sαi,j ⊕ ⟲sβi,j

= Ck (sαi )j ⊕ Ck
(
sβi

)
j

= sαi,(j+2k)%L ⊕ sβi,(j+2k)%L

The last step follows from using the definition of Ck. On the other hand,

E⟲s1∼U({0,1}L)h(
⟲s1) = Es1∼U({0,1}L)h(s1),

as the uniform distribution can be shown to not change under circular function Ck. This will imply:

Es1∼U({0,1}L)s
α
i,(j+2k)%L ⊕ sβi,(j+2k)%L = Es1∼{0,1}Lsαi,j ⊕ sβi,j

=⇒
∣∣∣1− 2Es1∼{0,1}Lsαi,j ⊕ sβi,j

∣∣∣ = ∣∣∣1− 2Es1∼{0,1}Lsαi,(j+2k)%L ⊕ sβi,(j+2k)%L

∣∣∣
=⇒ Correlation(sαi,j , s

β
i,j ,U({0, 1}

L)) = Correlation(sαi,(j+2k)%L, s
β
i,(j+2k)%L,U({0, 1}

L)).

Lemma F.16. For any translation task MLT(2, d)Π, at any level i ≤ d and any input s1,

Tπi ◦ · · · ◦ Tπ1 (s1) = C−1
k (Tπi ◦ · · · ◦ Tπ1 ◦ Ck (s1)) .

Proof. Denote Ck as a circular operation that takes a sequence s1 and returns a shifted sequence ⟲s1,
i.e. if ⟲s1 = Ck(s1) then for all j, ⟲s1,j = s1,(j+2k)%L. Note that, we can also define an inverse
function C−1

k and s1 = C−1
k (Ck(s1)).

Recall that for any level i, Tπi denotes the translation step at level i that includes Circular shift, Split,
Translate with πi, and Merge. The argument will again follow by an induction step.

Base condition: i = 1: We need to show that

Tπ1
(s1) = C−1

k (Tπ1
◦ Ck (s1)) .

To do so, we will look at the behavior of the first 2 characters. Argument for others can be extended.
If ⟲s1 = Ck (s1), s2 = Tπ1

(s1), ⟲s2 = Tπ1
(⟲s1) , then by Lemma F.13,

(s2,1, s2,2) = π1((s1,2, s1,3))

(⟲s2,1,
⟲s2,2) = π1((

⟲s1,2,
⟲s1,3)).

But by definition of Ck,

(⟲s1,2,
⟲s1,3) = (s1,(2+2k)%L, s1,(3+2k)%L).

On the other hand, Lemma F.13 can be adapted to give(
s2,(1+2k)%L, s2,(2+2k)%L

)
= π1(s1,(2+2k)%L, s1,(3+2k)%L).

Thus, we can show by combining the above 3 steps that

(⟲s2,1,
⟲s2,2) = π1((

⟲s1,2,
⟲s1,3))

= π1(s1,(2+2k)%L, s1,(3+2k)%L)

=
(
s2,(1+2k)%L, s2,(2+2k)%L

)
.

We can extend the above argument to show that for any position j,
⟲s2,j = s2,(j+2k)%L,
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which by definition of Ck, implies
⟲s2 = Ck(s2) or s2 = C−1

k

(
⟲s2

)
,

which can be further simplified (using the notations: ⟲s1 = Ck (s1), s2 = Tπ1(s1),
⟲s2 =

Tπ1(
⟲s1))

s2 = C−1
k

(
⟲s2

)
= C−1

k

(
Tπ1

(
⟲s1

))
= C−1

k (Tπ1 (Ck (s1))) := C−1
k (Tπ1 ◦ Ck (s1)) .

General argument for i: Suppose the induction condition holds true for all layers ℓ < i. Then,

Tπi
◦ · · · ◦ Tπ1

(s1) = Tπi

(
C−1
k

(
Tπi−1

· · · ◦ Tπ1
◦ Ck (s1)

))
.

We can then follow the same argument as the base condition, and show that

Tπi

(
C−1
k

(
Tπi−1

· · · ◦ Tπ1
◦ Ck (s1)

))
= C−1

k (Tπi
· · · ◦ Tπ1

◦ Ck (s1)) .

Lemma F.17. For any 1 ≤ i ≤ d, if sαi,j , s
β
i,j denote the output after i− 1st translation step for a

random sequence s1 ∼ U({0, 1}L) at any position 1 ≤ j ≤ L under the two sets of random maps
Πα

:i := {πα
ℓ }

i−1
ℓ=1 and Πβ

:i := {π
β
ℓ }

i−1
ℓ=1, the following holds true for all positions j:

Pr
Πα

:i,Π
β
:i

[
Correlation

(
sαi,j , s

β
i,j+1,U({0, 1}

L)
)
= 1
]

≤ 1

2

(
Pr

Πα
:i,Π

β
:i

[
Correlation

(
sαi,j , s

β
i,j ,U({0, 1}

L)
)
= 1
]
+ Pr

Πα
:i,Π

β
:i

[
Correlation

(
sαi,j+1, s

β
i,j+1,U({0, 1}

L)
)
= 1
])

.

Proof. We will prove the required result with a counting argument. We will create a family of
code-books: let FAMILY(j) and FAMILY(j + 1) denote two sets of code-books, such that for every
code-book Πα

:i in FAMILY(j), there exists at least one code-book Πβ
:i in FAMILY(j + 1) such that

Correlation
(
sαi,j , s

β
i,j+1,U({0, 1}

L)
)
= 1,

where sαi,j , s
β
i,j+1 are outputs on a random sequence s1 ∼ U({0, 1}L) corresponding to using Πα

:i

and Πβ
:i respectively.

We then apply a grouping algorithm GROUP to group correlated code-books together in each family.
That is, in FAMILY(j), we create groups of code-books {S1, S2, · · · } such that for any two code-books
Πα

:i and Πα′

:i that belong to a group S,

Correlation
(
sαi,j , s

α′

i,j ,U({0, 1}L)
)
= 1,

where sαi,j , s
α′

i,j+1 are outputs on a random sequence s1 ∼ U({0, 1}L) corresponding to using Πα′

:i

and Πα′

:i respectively. We call the resulting output of this operation as GROUP(FAMILY(j)). Similarly,
we compute GROUP(FAMILY(j + 1)).

One can then show the following two characteristics of GROUP(FAMILY(j)) and GROUP(FAMILY(j+
1)):

1. For every set S1 ∈ GROUP(FAMILY(j)) there will exist one set S2 ∈ GROUP(FAMILY(j +

1)), such that for all code-books Πα
:i ∈ FAMILY(j) and Πβ

:i ∈ FAMILY(j + 1), correlation
will be 1 for output at positions j and j + 1 respectively.

2. For every set S1 ∈ GROUP(FAMILY(j)) there can’t exist two sets S2, S
∗
2 ∈

GROUP(FAMILY(j + 1)), such that the maps in S1 are correlated to maps from both S2, S
∗
2

for output at positions j and j + 1 respectively.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a paper at DATA-FM workshop @ ICLR 2025

Let CORRELATION-MAP denote the map between GROUP(FAMILY(j)) and GROUP(FAMILY(j+1)),
which connects sets S1 ∈ GROUP(FAMILY(j)) to a set S2 ∈ GROUP(FAMILY(j + 1)) whose code-
books have correlations for output at positions j and j + 1 respectively.

The result will then follow from a counting argument. The number of possible pairs (can be equal
maps) that can give correlations for output at position j are given by:

∑
S1∈GROUP(j) |S1|2. Similarly,

the number of possible pairs that can give correlations for output at position j + 1 are given by:∑
S2∈GROUP(j+1) |S2|2. On the other hand, the number of possible pairs that can give correlations for

output at position j and j+1 respectively are given by:
∑

S1∈GROUP(j);S2=CORRELATION-MAP(S1)
|S1||S2|.

We then apply a AM-GM inequality to show that the average of the number of pairs for which
correlation is 1 at outputs at either position j or j + 1 is higher than the number of pairs for which
correlation is 1 for output at positions j and j + 1.

F.5 PROOF FOR STATISTICAL QUERY LOWER BOUND FOR GENERAL n

We present the main theorem statement again for readability.

Theorem F.18 (SQ dimension for general n). For the translation task MLT(d, n) that has
depth d and n characters per level, the statistical query dimension SQ-dim(MLT(d, n)) is
atleast nΩ(d).

Proof. We adapt the SQ-dimension proof for MLT(d, 2) to show the SQ-dimension proof for
MLT(d, n). We will design a family of code-books Π = {πi : {0, 1, · · · , n− 1}2 → {0, 1, · · · , n−
1}2}di=1, where each phrasebook builds on top of a translation task in MLT(log2 n, 2) as follows:

For a character a ∈ {0, 1, · · · , n− 1}, suppose BIT(a) ∈ {0, 1}log2 n indicates its binary representa-
tion, and NUMERIC represent map from binary representation to representation in {0, 1, · · · , n− 1}.
Then, we design each map π in the code-book using a random translation task ν ∈MLT(log2 n, 2).
For any tuple (a, b) ∈ {0, 1, · · · , n− 1}2, output of π is given as

π(a, b) = (o1, o2), where

o1 = NUMERIC
(
ν
(
{ãi ⊕ b̃i}log2 n

i=1

))
o2 = NUMERIC

(
ν
(
b̃
))

ã = BIT(a)

b̃ = BIT(b)

Primarily, the phrasebooks are defined as follows:

1. On a tuple of characters (a, b), we first compute their binary representations (BIT(a), BIT(b)).
We then compute two intermediate outputs, one where a xor operation is applied on
BIT(a), BIT(b) at each bit, and another where BIT(b) is simply copied. This operation
is equivalent to applying a deterministic map on tuples of 2 characters (∆6 from Table 6),
where tuples are created by pairing binary bits of a and b.

2. We then apply a random MLT of depth log2 n on each of the intermediate outputs. This
applies a random bijective map on the sequence of bits in the intermediate outputs, using a
translation task in MLT(log2 n, 2) (Lemma E.1).

3. The final tuple of characters is returned by applying a NUMERIC operation on the binary
representations.

Thus, we have narrowed our focus on a special group of tasks from MLT(d, n) that applies
MLT(log2 n, 2) on the binary representations of the characters at each level. By Theorem F.10,
we can create 2Ω(log2 n) maps that are pairwise uncorrelated for each level of translation task. We
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can then give a similar proof as Theorem F.10 to show that we can create
(
2Ω(log2 n)

)Ω(d)
= nΩ(d)

translation tasks, using the above restriction, that are pairwise uncorrelated on any bit in the binary
representation of any character in the output.

F.6 PROOFS OF USEFUL LEMMAS

Here we give the proofs for the useful lemmas necessary to prove Theorem F.10. We repeat the
lemma statements for easier readability.
Lemma F.19 (Formulation of bijective maps for n = 2). Any bijective map π : {0, 1}2 → {0, 1}2
can be expressed using copy, not, and xor operations. Furthermore, from 24 possible maps for π,

1. There are 6 maps ∆1,∆2, · · · ,∆6 for which characters in the output tuple can be defined
by copy and xor operations on the characters in the input tuple.

2. Mirror maps: For each map π ∈ {∆1,∆2, · · · ,∆6}, there exist mirror maps
π(1), π(2), π(3) whose output on each input tuple can be defined by selective not opera-
tions on either or both characters of the output tuple of π. We call {π, π(1), π(2), π(3)} as a
mirror map set of π, in short, Mirrorset(π).

Map name (π) Output for corresponding input tuple π(a, b) General formulation on output for map π

(0, 0) (0, 1) (1, 0) (1, 1) π(a, b)1 π(a, b)2

∆1 (0, 0) (0, 1) (1, 0) (1, 1) copy1(a, b) copy2(a, b)
∆2 (0, 0) (0, 1) (0, 1) (1, 0) copy1(a, b) xor(a, b)
∆3 (0, 0) (1, 0) (0, 1) (1, 1) copy2(a, b) copy1(a, b)
∆4 (0, 0) (1, 1) (0, 1) (1, 0) copy2(a, b) xor(a, b)
∆5 (0, 0) (1, 0) (1, 1) (0, 1) xor(a, b) copy1(a, b)
∆6 (0, 0) (1, 1) (1, 0) (0, 1) xor(a, b) copy2(a, b)

Table 6: The table captures the definition of 6 bijective maps on 2-tuples {0, 1}2 → {0, 1}2, whose
output characters can be defined in terms of copy and xor operations on the input characters. Any
other bijective map can be shown to belong to Mirrorset of one of these bijective maps.

Proof. There are 4 possible tuples (0, 0), (0, 1), (1, 0), (1, 1). By Lemma E.2, the number of possible
bijective maps are 4! = 24. We will show that the output tuple of each map can be represented by the
3 operations.

Operation not creates mirror maps: For each map π, there exists 3 alternative maps
π(1), π(2), π(3) such that if π(a, b)i represents the ith character in the output tuple for input tuple
(a, b):

• π(1) selectively applies the not operation to the first character in the output tuple of π on
any input tuple, i.e.

π(1)(a, b) = (not(π(a, b)1), π(a, b))
for all tuples (a, b) ∈ {0, 1}2.

• π(2) selectively applies the not operation to the second character in the output tuple of π on
any input tuple, i.e.

π(2)(a, b) = (π(a, b)1,not(π(a, b)))
for all tuples (a, b) ∈ {0, 1}2.

• π(3) selectively applies the not operation to both characters in the output tuple of π on any
input tuple, i.e.

π(3)(a, b) = (not(π(a, b)1),not(π(a, b)))
for all tuples (a, b) ∈ {0, 1}2.
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Thus, for each map π, there exist 3 other alternative maps that simply modify the output of map π
with the not operation.

After removing the mirror maps: We now show that there 6 possible maps that apply either a xor
or a copy on the input characters to get the output characters. We name them ∆1,∆2, · · · ,∆6. We
give the output of each map on the 4 tuples in Table 6 and show that the each character in the output
tuple can be represented using copy and xor operations.

Lemma F.20 (Correlation of bijective maps for n = 2). For two randomly selected maps πα, πβ :
{0, 1}2 → {0, 1}2, the following hold true.

1. Correlation at output characters: Fix an i, j ∈ {0, 1}. With probability 1
3 w.r.t. the random

selection of the maps, the ith character in the output of πα has non-zero correlation to jth
character in the output of πβ , i.e.

Correlation(πα(·)i, πβ(·)j ,U({0, 1}2))

:=

∣∣∣∣ Pr
x∼U({0,1}2)

[πα(x)i ̸= πβ(x)j ]− Pr
x∼U({0,1}2)

[πα(x)i = πβ(x)j ]

∣∣∣∣ = 1.

2. With probability 1
3 w.r.t. the random selection of the maps, both the characters in the outputs

of πα, πβ have non-zero correlation, i.e. either one of the cases hold true
Correlation(πα(·)1, πβ(·)1,U({0, 1}2)) = 1.

Correlation(πα(·)2, πβ(·)2,U({0, 1}2)) = 1.

or
Correlation(πα(·)1, πβ(·)2,U({0, 1}2)) = 1.

Correlation(πα(·)2, πβ(·)1,U({0, 1}2)) = 1.

Other cases are not possible, i.e. for any i ∈
{1, 2}, both Correlation(πα(·)i, πβ(·)1,U({0, 1}2)) > 0 and
Correlation(πα(·)i, πβ(·)2,U({0, 1}2)) = 1 can’t hold true.

Proof. We prove the lemma for case 1, cases 2 and 3 can be similarly proved. From Lemma E.2, πα

and πβ can be randomly selected from a set of 24 possible candidates. On the other hand, Lemma F.19
shows that there are 6 maps {∆1, · · · ,∆6} whose output can be defined in terms of copy and xor
operations of characters in the input tuple. For each π in this set, there are mirror maps π(1), π(2), π(3)

whose output are defined by selective not operations on the output of π, and the set of 4 maps is
represented by Mirrorset(π).

The proof will follow from 2 steps: first, we argue about correlations when πα and πβ are selected
from {∆1, · · · ,∆6}, and then we argue about the general case when πα and πβ are selected from
the general set of bijective maps.

• In Lemma F.22, we show that for two maps that are randomly selected from {∆1, · · · ,∆6},
the correlation is 1 with probability 1/3.

• The remaining possibility is when πα and πβ belong to Mirrorset(πi) and Mirrorset(πj) for
some πi, πj ∈ {∆1, · · · ,∆6}. We show in Lemma F.21, correlation of πα and πβ will be
equal to correlation of πi, πj .

Thus, we can combine all the observations to show that for two random maps πα, πβ that belong to
Mirrorset(πi) and Mirrorset(πj) for some πi, πj ∈ {∆1, · · · ,∆6},

Correlation(πα(·)1, πβ(·)1,U({0, 1}2))

= Correlation(πi(·)1, πj(·)1,U({0, 1}2)) =
{
1, w.p. 1/3 w.r.t. randomness in πi, πj

0, otherwise.
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Lemma F.21. The following holds true for any maps πα and πβ with πα, πβ ∈ {∆1, · · · ,∆6} and
for all π̃α ∈ Mirrorset(πα), π̃β ∈ Mirrorset(πβ):

Correlation(πα(·)1, πβ(·)1,U({0, 1}2)) = Correlation(π̃α(·)1, π̃β(·)1,U({0, 1}2)),

Proof. We prove as follows:

Correlation(πα(·)1, πβ(·)1,U({0, 1}2)) =
∣∣∣∣ Pr
x∼U({0,1}2)

[πα(x)1 ̸= πβ(x)1]− Pr
x∼U({0,1}2)

[πα(x)1 = πβ(x)1]

∣∣∣∣
=

∣∣∣∣2 Pr
x∼U({0,1}2)

[πα(x)1 ̸= πβ(x)1]− 1

∣∣∣∣ (16)

=

{∣∣2Prx∼U({0,1}2)[π
α(x)1 ̸= πβ(x)1]− 1

∣∣ , if condition “c1” is true∣∣1− 2Prx∼U({0,1}2)[π
α(x)1 = πβ(x)1]

∣∣ , if condition “c2” is true
(17)

=

∣∣∣∣ Pr
x∼U({0,1}2)

[π̃α(x)1 ̸= π̃β(x)1]− Pr
x∼U({0,1}2)

[π̃α(x)1 = π̃β(x)1]

∣∣∣∣
= Correlation(π̃α(·)1, π̃β(·)1,U({0, 1}2)), (18)

where the second and the penultimate steps follow from the law of total probability. Here, condition
“c1” holds when either case is true,

π̃α(x)1 = not(πα(x)1), π̃β(x)1 = not(πα(x)1), for all x ∈ {0, 1}2

π̃α(x)1 = πα(x)1, π̃β(x)1 = πα(x)1, for all x ∈ {0, 1}2.

and condition “c2” holds when either case is true,

π̃α(x)1 = πα(x)1, π̃β(x)1 = not(πα(x)1), for all x ∈ {0, 1}2

π̃α(x)1 = not(πα(x)1), π̃β(x)1 = πα(x)1, for all x ∈ {0, 1}2.

One of condition “c1” or condition “c2” is true because π̃α and πα (similarly, π̃β and πβ) are mirror
maps.

Lemma F.22. The following holds true for two randomly selected maps πα and πβ with πα, πβ ∈
{∆1, · · · ,∆6} :

• With probability 1/3 w.r.t. random selection,

Correlation(πα(·)1, πβ(·)1,U({0, 1}2)) > 0 (= 1).

• With probability 1/3 w.r.t. random selection,

Correlation(πα(·)2, πβ(·)2,U({0, 1}2)) > 0 (= 1).

Proof. We prove for case 1, proof for case 2 is analogous.

Among {∆1, · · · ,∆6}, we can create three family of maps: Fcopy1 : {∆1,∆2}, Fcopy2 : {∆3,∆4},
Fxor : {∆5,∆6} that are identical in operation (copy1, copy2, xor respectively) at the first char-
acter in output tuple. This would imply, if the πα and πβ both belong to one of these families,
Correlation(πα(·)1, πβ(·)1,U({0, 1}2)) will be 1.

On the other hand, one can show that for any operation f1, f2 ∈ {copy1, copy2, xor} with f1 ̸= f2
will have Correlation(f1, f2,U({0, 1}2)) = 0. That would then suggest that if πα and πβ belong to
different families among Fcopy1 , Fcopy2 , Fxor, then Correlation(πα(·)1, πβ(·)1,U({0, 1}2)) will be 0.

By a simple counting argument, with probability 1
3 , two maps πα and πβ randomly selected from

{∆1, · · · ,∆6} will have non-zero correlation.
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G UPPER BOUND: CONTEXT-ENHANCED LEARNING OF MLT(n, d) WITH
SIMPLE SURROGATE MODEL

G.1 SETUP OF SURROGATE MODEL WITH IN-CONTEXT CAPABILITY

Given d+ 1 alphabets A1, . . . ,Ad+1 of size n and d bijective phrasebooks πi : A
2
i → A2

i+1 The
input of the translation process is an even-length sequence in the first alphabet, which we denote as
s1 ∈ AL

1 where L is the sequence length. The translation process modifies the input string recursively
from si to si+1 through the following 4 sub-processes:

1. Circular shift: The characters in si ∈ AL
i are shifted by 1 character leftward (and wrapped

around to the end if necessary) to give sequence s̃i ∈ AL
i . For j ∈ [L] we have

s̃i,j = si,(j+1)%L.

2. Split: The shifted sequence s̃i splits into consecutive 2-tuples (s̃(1)i , s̃
(2)
i , · · · , s̃(L/2)

i ) where
for any k ∈ [L/2],

s̃
(k)
i = (s̃i,2k−1, s̃i,2k) ∈ A2

i .

3. Translate: Using the dictionary πi : A
2
i → A2

i+1, each 2-tuple s̃
(k)
i ∈ A2

i is translated to a
tuple in A2

i+1, giving
(πi(s̃

(1)
i ), πi(s̃

(2)
i ), · · · , πi(s̃

(L/2)
i )).

4. Merge: The translated tuples are merged to give the sequence si+1 ∈ AL
i+1. Where for

j ∈ [L] we have
si+1,j = πi(s̃

(⌈j/2⌉)
i )j%2.

Now let us revisit the surrogate model introduced in Section 5.1. Without loss of generality let
A1 = A2 = · · · = Ad+1 := A = {1, 2, . . . , n}. For any single character a ∈ A, let its vector
representation be a one-hot vector ea ∈ Rn such that (ea)a = 1. For any 2-tuple (a, b) ∈ A2, let
its vector representation be a n2-dimensional vector v(a, b) ≜ ea ⊗ eb. Note that v(a, b) is also a
one-hot vector where

v(a, b)i =

{
1 if i = an+ b

0 elsewhere
.

We use the notation ēa (long one-hot) to denote a one-hot vector in Rn2

with a-th position being 1 to
avoid confusion.

Definition G.1 (Matrix Representation of Sequence).
For a length-L input sequence si = (si,1, . . . , si,L), let its matrix representation be
Mat(si) ≜ Vi ∈ Rn2×L/2 that

Vi =

[ | | · · · |
v (si,1, si,2) v (si,3, si,4) · · · v (si,L−1, si,L)

| | · · · |

]

For each j ∈ [L/2], we use V
(j)
i to denote the j-th column of Vi. We also denote the above

conversion from a sequence si to its matrix form as Vi = Mat(si) and assume that V1 serves
as the input to the surrogate model.

Note that the matricization operation is invertible by construction: for each column V
(j)
i , let

x = argmaxV
(j)
i , we may read off the two characters in the original alphabet by computing

Mat−1(V
(j)
i ) = (⌈x/n⌉, x%n).

At each level of translation, we assume the surrogate model will perform the following operations to
Vi:

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a paper at DATA-FM workshop @ ICLR 2025

(a) Circular shift from Vi to Ṽi

Definition G.2 (Circular Shifting Operator Shift).
Given a matrix representation V ∈ Rn2×L/2 of a sequence s, the circular shifting operator
Shift acts on V as Shift(V ) := Ṽ ∈ Rn2×L/2 where for all j ∈ [L/2],

Ṽ (j) = QV (j) ⊙Q⊤V ((j+1)%L)

where Q = (In ⊗ 1n) (1n ⊗ In)
⊤ , 1n ∈ Rn×1 is the all-ones vector, and⊙ is the Hadamard

product.

Lemma G.3 (Equivalence of Shift and circular shift).
For any sequence s ∈ AL, let s̃ be the circular shifted s, then

Mat (s̃) = Shift (Mat (s)) .

Proof of Lemma G.3. In this proof we will show that Mat (s̃) and Shift (Mat (s)) agrees on every
column.

Fix a column j ∈ [n/2], without loss of generality let the input sequence s be (a, b, c, d) ∈ A starting
from the (2j − 1)-th position to the (2j + 2)-th position (wrapped around when necessary). By
construction each output column of Ṽ (j) is dependent on at most V (j) and V (j+1) which corresponds
to 4 characters in the sequence s.

By definition of V we then have V (j) = v(a, b) = ea ⊗ eb and V (j+1)%L = v(c, d) = ec ⊗ ed. It
follows that

Ṽ (j) = QV (j) ⊙Q⊤V ((j+1)%L)

=
(
(In ⊗ 1n)

(
1⊤
n ⊗ I⊤n

)
(ea ⊗ eb)

)
⊙
(
(1n ⊗ In)

(
I⊤n ⊗ 1⊤

n

)
(ec ⊗ ed)

)
=
(
(In ⊗ 1n)

(
1⊤
n ea ⊗ I⊤n eb

))
⊙
(
(1n ⊗ In)

(
I⊤n ec ⊗ 1⊤

n ed
))

= ((In ⊗ 1n) (1⊗ eb))⊙ ((1n ⊗ In) (ec ⊗ 1)) (ea, ed are one-hot, 1⊤
n ea = 1⊤

n ed = 1)
= ((In ⊗ 1n) (eb ⊗ 1))⊙ ((1n ⊗ In) (1⊗ ec))

= (eb ⊗ 1n)⊙ (1n ⊗ ec)

= eb ⊗ ec. (by definition of Kronecker product)

Note that eb ⊗ ec is just Mat(s̃)(j) since the (2j − 1)-th and the 2j-th character of the shifted
sequence s̃ is now (b, c).

This concludes the proof.

(b) Translation from Ṽi to Vi+1

With Shift effectively completing Merge, Circular shift, and Split, what remains is the translation
leveraging πi. Since Ai = Ai+1 = A = [n], there is a natural bijection between the space of binary
column-stochastic matrix and the space of all possible (not necessarily bijective) mappings between
2-tuples from A. Concretely

Definition G.4 (Column-Stochastic Matrix Representation of phrasebook).
Given phrasebook π : A2 → A2, its matrix representation is defined to be Matrix(π) ∈
Rn2×n2

that for i, j ∈ [n2],

Matrix(π)
j,i =

{
1 if π(⌈i/n⌉, i%n) = (⌈j/n⌉, j%n)

0 elsewhere
.
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Let Vi+1 = MatrixṼi where Matrix is a binary column-stochastic matrix, we can show that, a
complete translation process for one level can be formally expressed as follows:

Lemma G.5 (Equivalence of Matrix and Translate).
For any sequence si ∈ AL, let πi be a bijective phrasebook A2 → A2 defined in Section 2.2,
then

Vi+1 = Matrix(πi) Shift (Mat (si)) = Mat (Tπi
(si)) = Mat(si+1).

Proof of Lemma G.5. Fix any column j ∈ [L/2], let (a, b) be the (2j − 1)-th and the 2j-th character
of the shifted sequence s̃i. Let (c, d) = πi(a, b), by the translation construction we know the
(2j − 1)-th and the 2j-th character of si+1 is just c and d. Hence Mat(si+1)

(j) = v(c, d).

From Lemma G.3 we know that Shift(Mat(si))(j) = v(a, b). By construction of Matrix(πi)

above, we know that Matrix(πi) Shift(Mat(si))(j) is a one-hot vector at the (cn+d)-th position,
i.e. V (j)

i+1 = Matrix(πi) Shift(Mat(si))(j) = ec ⊗ ec = v(c, d). Since Mat(si+1)
(j) = V

(j)
i+1

for all j, we have Vi+1 = Mat(si+1).

Parameterization of the Translation Matrix Matrix.

With the two key operations in place, now we can introduce the surrogate model in its full detail. Since
the multi-level translation task is a naturally sequential operation, we model the surrogate operations
as a multi-layer network as well (which also matches with the solution found by Llama-based models
when trained on real data as in Section 3.3).

For each level, the surrogate model needs to present both in-context learning capability at the
initialization and in-weight capability toward the end of context-enhanced learning on a certain set of
phrasebooks Π∗. The in-weight capability requires certain parameter to store Π∗ on its own that is
independent of the context.

To capture both capabilities at the same time, we parameterize the translation matrix Matrixi

as a combination of in-context information Ci ∈ Rn2×n2

and in-weight memory Wi ∈ Rn2×n2

.
Concretely, we define

Matrixi = HardMax (Ci +Wi)

where HardMax is the column-wise hard-max function converting Ci + Wi to a binary column
stochastic matrix. Column k in Matrixi, which we denote as Matrix(k)

i , is equal to the one-hot
vector at argmax(C

(k)
i +W

(k)
i ).

Surrogate Model with In-Context Capability

Now we can formally introduce the surrogate model.

Definition G.6 (Surrogate Model for MLT).
The surrogate model for MLT(d, n) can be represented by the recursive expression

Vi+1 = HardMax(Ci +Wi)Shift(Vi) (19)

The learnable parameters for the surrogate model are the weight matrices {Wi}di=1 :=

{W1,W2, . . . ,Wd}. We denote the surrogate model parameterized by {Wi}di=1 as
SURR-MLT{Wi}d

i=1
(·) which maps the input and the in-context information to the output as

Vd+1 = SURR-MLT{Wi}d
i=1

(C1,C2, . . . ,Cd,V1)

≜ HardMax(Cd +Wd)

Shift (HardMax(Cd−1 +Wd−1)Shift (· · ·HardMax(C1 +W1)Shift(V1) · · · )) .
(20)
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In this surrogate model, the in-context descriptive text DESC is just {C1, . . . ,Cd}, where each matrix
is directly being passed into the corresponding layer. When providing information about a set of
phrasebooks Π = {πi}di=1, we have Ci = Matrix(πi) where Matrix(πi) is the column-stochastic
matrix representation of πi as defined in Definition G.4.

When partial phrasebook information is provided (corresponding to dropping certain ab->CD entries
in the language model context), we zero-out the corresponding column in Ci. When no in-context
information is provided for level i, we just have Ci be the all-zero matrix containing no information
(assuming zero as prior).

Now let us check what does Definition 2.2 (ICL-capable) and Definition 2.1 (specific task-capable)
mean in the context of the surrogate model. To make things more rigorous we introduce two stronger
notions of capabilities:

Definition G.7 (Strongly MLT(n, d)-ICL-capable surrogate model).
We say a surrogate model SURR-MLT{Wi}d

i=1
(·) is strongly MLT(n, d)-ICL-capable if for

any set of phrasebooks Π = {πi}di=1 in MLT(n, d), for any input sequence s1 ∈ AL where
L is even, we have

SURR-MLT{Wi}d
i=1

(Matrix(π1), . . . ,Matrix(πd),Mat(s1)) = Mat(MLTΠ(s1)).

Definition G.8 (Strongly MLTΠ∗ -capable surrogate model).
For a fixed set of phrasebooks Π∗ = {π∗

i }
d
i=1 in MLT(n, d), we say a surrogate model

SURR-MLT{Wi}d
i=1

(·) is strongly MLTΠ∗-capable if for any input sequence s1 ∈ AL

where L is even, we have

SURR-MLT{Wi}d
i=1

(0, . . . ,0,Mat(s1)) = Mat(MLTΠ∗(s1)).

Now we can show the following properties of the surrogate model SURR-MLT{Wi}d
i=1

(·):

Lemma G.9. When ∥Wi∥0 < 1
2 for all i ∈ [d], SURR-MLT{Wi}d

i=1
is strongly MLT(d, n)-

ICL-capable.

Proof. Fix any set of phrasebooks Π = {πi}di=1 and its corresponding matrix representations
{Matrix(πi)}di=1. Since ∥Wi∥0 < 1

2 , for any column k, no entries in W
(k)
i can flip the argmax of

Matrix(πi)(k) +W
(k)
i away from being argmaxMatrix(πi)(k). Therefore we have Matrixi =

HardMax(Matrix(πi) +Wi) = Matrix(πi) for all layers i ∈ [d].

By Lemma G.5, for all i ∈ [d] we have Matrixi = Matrix(πi) recovering Tπi . Hence for any in-
put sequence s1 ∈ AL, we have SURR-MLT{Wi}d

i=1
(Matrix(π1), . . . ,Matrix(πd),Mat(s1)) =

Mat(MLTΠ(s1)).

Lemma G.10. Fix a target set of phrasebooks Π∗ = {π∗
i }

d
i=1, when HardMax (Wi) =

Matrix(π∗
i ) for all i ∈ [d], SURR-MLT{Wi}d

i=1
(·) is strongly MLTΠ∗ -capable.

Proof. By Lemma G.5, for all i ∈ [d] we have Matrixi = HardMax(Wi + 0) =

Matrix(π∗
i ) recovering Tπ∗

i
. Hence for any input sequence s1 ∈ AL, we have

SURR-MLT{Wi}d
i=1

(0, . . . ,0,Mat(s1)) = Mat(MLTΠ∗(s1)).

Lemma G.9 suggests that when the weight matrices have small initializations, the model has perfect
ICL capability. Meanwhile Lemma G.10 suggests that when the weights Wi recover Matrix(π∗

i ) in
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the column-wise hard-max sense, then the surrogate model can perform MLTΠ∗ when no context is
being provided (Ci = 0).

G.2 LEARNING Π∗ IN MLT(d, n) WITH HEURISTICS SEARCH

In this section, we provide a brute-force algorithm that can learn any target set of phrasebooks Π∗ in
MLT(d, n) using a single “short” sequence whose length is not exponentially dependent on d.

Before proceeding to the details, let us first investigate more on the nature of MLT and the surrogate
model. For simplicity of notations, given Π∗ = {π∗

1 , . . . , π
∗
d}, we denote the general translation

operator Matrix as P , and denote the translation operator Matrix(π∗
1 ) as W ∗

i . Also, with slight
abuse of notations we use MLTΠ∗(V1) to denote Mat

(
MLTΠ∗(Mat−1(V1))

)
.

First, we characterize the input sequence that is good for providing learning signals.

Definition G.11 (Π∗-coverable input).
Fix a target set of phrasebooks Π∗ = {π∗

1 , . . . , π
∗
d} in MLT(d, n) and an input matrix

V1 ∈ Rn2×L, let Ṽ ∗
1 ,V ∗

2 , Ṽ ∗
2 , . . . , Ṽ ∗

d ,V ∗
d+1 ∈ Rn2×L be the intermediate outputs when

applying MLTΠ∗ on V1. We say V1 is Π∗-coverable if for all levels i ∈ [d], Ṽ ∗
i is of

rank-n2.

Note that as a matrix with only one-hot columns, Ṽ ∗
i being rank-n2 suggests that for all k ∈ [n2],

there exists some column j ∈ [L] such that Ṽ ∗(j)
i = ek. In the context of the translation process, it

means that the correct translation process of a Π∗-coverable input V1 would require all entries of all
phrasebooks in Π∗.

Next we will show that if we use the context to condition all translation operators Pl of the surrogate
model to be P (π∗

l ) for all but one level l ∈ [d]\ {i} (i as the unconditioned level), then for the
surrogate model to correctly perform MLTΠ∗ , the operator for the unconditioned level i must also be
equal to P (π∗

i ).

Lemma G.12 (Uniqueness of a single Pi when conditioning all other levels).

Fix a target set of phrasebooks Π∗ = {π∗
1 , . . . , π

∗
d} in MLT(d, n) and a Π∗-coverable input

V1. For any level i ∈ [d], consider a surrogate model SURR-MLT{Wi}d
i=1

(C1,C2, . . . ,Cd, ·)
with certain context C1,C2, . . . ,Cd such that Pl = W ∗

l for all l ∈ [d] except l = i. Then
SURR-MLT{Wi}d

i=1
(C1,C2, . . . ,Cd,V1) = MLTΠ∗(V1) if and only if

Pi = HardMax (Ci +Wi) = W ∗
i .

Proof. This lemma is a direct consequence of the bijective property of the translation process
shown in Lemma E.1. Let Ṽ ∗

1 ,V ∗
2 , Ṽ ∗

2 , . . . , Ṽ ∗
d ,V ∗

d+1 ∈ Rn2×L be the intermediate outputs when
applying MLTΠ∗ on V1, and let Ṽ1,V2, Ṽ2, . . . , Ṽd,Vd+1 ∈ Rn2×L be the intermediate outputs
when applying SURR-MLT{Wi}d

i=1
(C1,C2, . . . ,Cd, ·) as described. Since we assume Pl = P (π∗

l )

for all l < i, we have Vi = V ∗
i and therefore Ṽi = Ṽ ∗

i .

On the other end, since SURR-MLT{Wi}d
i=1

(C1,C2, . . . ,Cd,V1) = MLTΠ∗(V1) = V ∗
d+1 and

Pl = P (π∗
l ) for all l > i, by the invertible property of the translation process (Lemma E.1) we must

have Ṽi+1 = Ṽ ∗
i+1 and thus Vi+1 = V ∗

i+1. Combining both ends we know that

PiṼi = Vi+1 = V ∗
i+1 = W ∗

i Ṽ
∗
i = W ∗

i Ṽi. (21)

Since Ṽi = Ṽ ∗
i is rank n2 by the Π∗-coverable assumption and Pi ∈ Rn2×n2

, it must be so that
Pi = W ∗

i .

If we further condition on the held-out level Pi such that we only leave one column of P (k)
i not

necessarily equal to W
∗(k)
i , we have the following corollary
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Corollary G.13 (Uniqueness of a single Pi column when conditioning everything else).

Fix a target set of phrasebooks Π∗ = {π∗
1 , . . . , π

∗
d} in MLT(d, n) and a Π∗-coverable in-

put V1. For any level i ∈ [d] and translation entry k ∈ [n2], consider a surrogate model
SURR-MLT{Wi}d

i=1
(C1,C2, . . . ,Cd, ·) with certain context C1,C2, . . . ,Cd such that P

(j)
l =

W
∗(j)
l for all (l, j) ∈ [d] × [n2]\ {(i, k)}. Then SURR-MLT{Wi}d

i=1
(C1,C2, . . . ,Cd,V1) =

MLTΠ∗(V1) if and only if

P
(k)
i = HardMax

(
C

(j)
i +W

(j)
i

)
= W

∗(k)
i .

This suggests that if we condition everything else except for one column of the translation operator,
then to match the final output on a Π∗-coverable sequence, the model must recover the held-out
column to be the same as the ground truth in the set of phrasebooks.

Now we can introduce the search algorithm, which simply enumerate over all translation columns
W

(j)
i as learning target, generate a contextual information that only leaves that column unconditioned,

and search over all possible one-hot vectors for W (j)
i until the output matches with MLTΠ∗ . Once

the output matches, by Corollary G.13 we know HardMax(W (j)
i ) recovers W ∗(j)

i and we move on
to the next learning target. The algorithm can be formalized as follows:

Algorithm 2 Context-Enhanced Searching Algorithm for MLT(d, n)
1: Input:
2: input V1 ∈ Rn2×L, label V ∗

d+1 ∈ Rn2×L, descriptive text W ∗
1 , . . . ,W

∗
d ∈ Rn2×n2

3:
4: Initialize W1, . . . ,Wd ← 0 # Start with zero initialization
5: for i = 1 to d do
6: for k = 1 to n2 do
7: Initialize Ci(k) ←W ∗

i (In2 − diag(ēk)) #
Create masked context matrix

8: # Search Loop
9: for a = 1 to n2 do

10: W
(k)
i ← ēa # Search over one-hot columns

11: Vd+1 ← SURR-MLT{Wi}d
i=1

(W ∗
1 . . . ,W ∗

i−1,Ci(k),W
∗
i+1 . . . ,W

∗
d ,V1)

12: if Vd+1 = V ∗
d+1 then

13: break # Break when found the right column
14: end if
15: end for
16: end for
17: end for
18: Return W1, . . . ,Wd.

Theorem G.14 (Learning Π∗ with context-enhanced search with Π∗-coverable input).
For any target set of phrasebooks Π∗ = {π∗

1 , . . . , π
∗
d} in MLT(d, n), given an Π∗-coverable

input V1 and the corresponding ground truth label V ∗
d+1 = MLTΠ∗(V1), Algorithm 2

terminates with Wi = W ∗
i for all i ∈ [d] with O(n4d) forward passes through the surrogate

model.

Proof. The statement can be proven by a simple induction.

Let the inductive hypothesis be such that when the enumeration goes to k-th column of the i-th layer,
if HardMax(W (j)

l +W
∗(j)
l ) = W

∗(j)
l for all (l, j) ∈ [d] × [n2] and W

(j)
l = W

∗(j)
l for all (l, j)

such that l < i or l = i ∧ j < k, then the search loop (?? 15: line 13) breaks with W
(k)
i = W

∗(k)
i

while HardMax(W (j)
l +W

∗(j)
l ) = W

∗(j)
l for all (l, j) ∈ [d]× [n2] is preserved.
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The base case is satisfied as with zero initialization, we have HardMax(W (j)
l + W

∗(j)
l ) =

HardMax(0 + W
∗(j)
l ) = W

∗(j)
l for all (l, j) ∈ [d] × [n2] and there are no requirements for

W
(k)
i = W

∗(k)
i yet.

For the induction step, we note that with the condition of HardMax(W (j)
l +W

∗(j)
l ) = W

∗(j)
l for

all (l, j) ∈ [d]× [n2], W ∗
1 . . . ,W ∗

i−1,Ci(k),W
∗
i+1 . . . ,W

∗
d will correctly condition all columns of

P ’s except for the P
(k)
i since

C
(k)
i(k) = W ∗

i (In2 − diag(ēk))
(k)

= 0. (22)

Thus by Corollary G.13, we know that the search loop will terminate when it finds W (k)
i = W

∗(k)
i .

The newly added column provides the correct inductive hypothesis on W
(j)
l = W

∗(j)
l for the next

enumeration step.

By induction to i = d and k = n2, we will be able to recover Wi = W ∗
i for all i ∈ [d].

Given that we can learn Wi effectively with Π∗-coverable input, how should we construct such
inputs? It turned out that with high probability, short random strings suffices.

Lemma G.15 (Distribution of intermediate sequences). Fix a target set of phrasebooks Π∗ =

{π∗
1 , . . . , π

∗
d} in MLT(d, n). Let V1 ∈ Rn2×L be a random input matrix to MLT(d, n) such that

each column V
(j)
1 is i.i.d. sampled from U({ēk}n

2

k=1) (the uniform distribution over one-hot vec-

tors {ēk}n
2

k=1), then the columns of intermediate random sequences Ṽ∗
1,V

∗
2, Ṽ

∗
2, . . . , Ṽ

∗
d,V

∗
d+1 ∈

Rn2×L obtained by passing the input V1 through MLTΠ∗ also follow the same i.i.d. uniform
distribution.

Proof. We will prove the claim by induction on depth i. Let the inductive hypothesis be that columns
in Vi independently follow an uniform distribution over the one-hot vectors {ēk}n

2

k=1. Note that the
base case is just the assumption.

Now we prove for the inductive step. For any j ∈ [L], we can write V
(j)
i = ea(2j−1)

⊗ ea(2j) where
a(i)’s follows i.i.d. U([n]). Intuitively this means each 2-tuple in the random input sequence is formed
from two i.i.d. uniformly random characters, which is straightforward by construction. Now by
Lemma G.3 we have Ṽ

∗(j)
i = ea(2j) ⊗ ea(2j+1)

also following U({ēk}n
2

k=1). Note that there is total

independency of Ṽ∗(j)
i with respect to the set of any other columns of Ṽi since a(2j) and a(2j+1) are

independent from the generative process of any other columns in Ṽi.

With columns in Ṽi i.i.d. following U({ēk}n
2

k=1), permuting the indices via P (π∗
i ) does not change

the distribution by symmetry of the uniform distribution. Therefore we have columns of Vi+1 =

P (π∗
i )Ṽi also i.i.d. distributed as U({ēk}n

2

k=1) and this complete the inductive step. By induction on
i we have the desired statement proved.

Since each column in Ṽi i.i.d. follows U({ēk}n
2

k=1), sampling Ṽi to be rank n2 becomes identical to
the classic coupon collection problem (see Lemma G.27 from Motwani (1995)). Thus we have the
following bound:

Lemma G.16 (Short Π∗-coverable random sequence).
A random sequence V1 of length L ≥ 2n2 log nd

δ is Π∗-coverable with probability at least
1− δ.

Proof. Let the event Ai denote that Ṽi is not rank n2. By Lemma G.15, each column of Ṽi is i.i.d.
distributed following U({ēk}n

2

k=1). Thus making Ṽi being rank n2 is equivalent to a coupon collecting
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problem (Motwani, 1995) with set size n2. By Lemma G.27 we know that with L = 2n2 log nd
δ ,

P [Ai] ≤ δ
d . Thus by a simple union bound the probability that Ṽi being not Π∗-coverable is

P

[
d⋃

i=1

Ai

]
≤

d∑
i=1

P [Ai] ≤ d
δ

d
= δ. (23)

Now we can apply the above result and extend Theorem G.14.

Corollary G.17 (Learning Π∗ with random input using heuristics search).
For any target set of phrasebooks Π∗ = {π∗

1 , . . . , π
∗
d} in MLT(d, n), with probability at

least 1−δ over a uniformly random input V1 of length L = 2n2 log nd
δ , Algorithm 2 provided

with ground truth label V ∗
d+1 = MLTΠ∗(V1) terminates with Wi = W ∗

i for all i ∈ [d] with
O(n4d) forward passes through the surrogate model.

G.3 LEARNING Π∗ IN MLT(2, n) WITH SURROGATE GRADIENT DESCENT

In this section we take the analysis one step beyond the heuristics searching regime. We will show
that any set of phrasebooks Π∗ = {π∗

1 , π
∗
2} can be sample-efficiently learned by a gradient-descent

based algorithm. In this particular case, the surrogate model is parameterized by

V3 = SURR-MLT{Wi}d
i=1

(C1,C2,V1) ≜ HardMax(C2 +W2)Shift (HardMax(C1 +W1)Shift (V1)) .

(24)

We start with any weight initializations W
(0)
1 ,W

(0)
2 ∈ Rn2×n2

satisfying ∥W (0)
1 ∥1 <

1
2 , ∥W

(0)
2 ∥1 < 1

2 , by Lemma G.9 the initialization is strongly MLT(n, d)-ICL-capable.

For simplicity, we denote the ground truth permutation matrix induced by π∗
1 as W ∗

1 ≜ P (π∗
1 ) and

similarly the ground truth permutation matrix induced by π∗
2 as W ∗

2 ≜ P (π∗
2 ). From Lemma G.10 we

know that the learning is successful if we have HardMax (W1) = W ∗
1 and HardMax (W2) = W ∗

2
7 (i.e. the maximum index of each weight column agrees with that of the ground truth).

We employ a layer-wise gradient descent algorithm for the learning process. The algorithm takes in a
single fixed sequence s1 with matrix representation V1 and its corresponding ground truth label

V ∗
3 ≜ Mat(MLTΠ∗(s1)) = SURR-MLT

(W
(0)
1 ,W

(0)
2 )

(W ∗
1 ,W

∗
2 ,V1). (25)

Given the input and label, we employ the following gradient descent based algorithm to update the
weights:

The training happens in a layer-wise and column-wise fashion: We first freeze W2 and set
W1 as the trainable parameter. For each entry k ∈ [n2], we create a context matrix C1(k) ≜
W ∗

1 (In2 − diag(ek)) which essentially creates a copy of W ∗
1 except of setting the k-th column to

be zero. Then we take a forward pass through the surrogate model with the one-column dropped-out
context and get output V3(1,k) ≜ SURR-MLT(W1,W2)(C1(k),W

∗
2 ,V1). Here the subscript ·(1,k)

denotes the final output when the i-th column of the first context matrix is being dropped.

The weight update follows a surrogate gradient update scheme where we use the MSE loss: L =
∥V3(1,k) − V ∗

3 ∥22. Since it is difficult to take gradient through the hardmax function, we instead
compute the gradient of the loss with respect to the translation matrix P1 = HardMax

(
W1 +C1(k)

)
and apply the update W (k)

1 ←W
(k)
1 − ∂L

∂P
(k)
1

. We apply such gradient update twice for each dropped

column k.

7Note that this is not the unique solution to attain strongly MLTΠ∗ -capable model
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For the second layer, we freeze the first layer W1 and apply one-column dropouts to the C2. Similarly
we apply the surrogate gradient update W2 ←W2 − ∂L

∂P2
but we only need one gradient step per

column.

Algorithm 3 Context-Enhanced Layerwise Gradient Descent

1: Input: input V1 ∈ Rn2×L, label V ∗
3 ∈ Rn2×L, descriptive text W ∗

1 ,W
∗
2 ∈ Rn2×n2

, init
W

(0)
1 ,W

(0)
2 ∈ Rn2×n2

2:
3: # Train the first layer
4: for k = 1 to n2 do
5: C1(k) ≜ W ∗

1 (In2 − diag(ek)) # Create context matrix with k-th column dropped.
6: for t = 1 to 2 do
7: V3(1,k) ← SURR-MLT(W1,W2)(C1(k),W

∗
2 ,V1) #

Forward pass
8: L ← ∥V3(1,k) − V ∗

3 ∥22
9: W

(k)
1 ←W

(k)
1 − ∂l

∂P
(k)
1

# Surrogate gradient update

10: end for
11: end for
12:
13: # Train the second layer
14: for k = 1 to n2 do
15: C2(k) ≜ W ∗

1 (In2 − diag(ek)) # Create context matrix with k-th column dropped.
16: V3(2,k) ← SURR-MLT(W1,W2)(W

∗
1 ,C2(k),V1) #

Forward pass
17: L ← ∥V3(2,k) − V ∗

3 ∥22
18: W

(k)
2 ←W

(k)
2 − ∂l

∂P
(k)
2

# Surrogate gradient update

19: end for
20: Return W1,W2

We claim the surrogate gradient descent update can correctly recover P ∗
1 and P ∗

2 similar to the
heuristics search case.

Theorem G.22 (Learning Π∗ with context-enhanced surrogate GD with Π∗-coverable input).

For any initialization W1(0),W2(0) ∈ Rn2×n2

such that ∥W1(0)∥0 ≤ 1
2 and ∥W2(0)∥0 ≤ 1

2 ,
for any target set of phrasebooks Π∗ = {π∗

1 , π
∗
2} in MLT(2, n), given an Π∗-coverable input

V1 and the corresponding ground truth label V ∗
3 = MLTΠ∗(V1), Algorithm 2 terminates

with HardMax (W1) = W ∗
1 and HardMax (W2) = W ∗

2 .

To prove for Theorem G.22, we will carefully analyze the learning of the first layer and second layer
respectively, and provide a similar induction argument as in the proof for the heuristics search case.

G.3.1 LEARNING THE FIRST LAYER

To study the learning process we first need to compute the closed-form gradient ∂L
∂P

(k)
1

, which requires

the following lemma:

Lemma G.18 (Gradient with respect to incorrect column in P1).

When only the k-th column of translation matrix P
(k)
1 is not equal to P

∗(k)
1 , let P (k)

1 = ea ⊗ eb

and P
∗(k)
1 = ea∗ ⊗ eb∗ for some a, b, a∗, b∗ ∈ [n]. If P (k)

1 is used in the forward pass, there exists
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α ∈ Z+ and β ∈ N such that the gradient of L with respect to P
(k)
1 is of the form

∂L
∂P

(k)
1

=


(2α+ 2β) (1n ⊗ eb)− (2α+ 2β) (1n ⊗ eb∗) + 2β (ea∗ ⊗ 1n) if a∗ = a, b∗ ̸= b

(2α+ 2β) (ea ⊗ 1n)− (2α+ 2β) (ea∗ ⊗ 1n) + 2β (1n ⊗ eb∗) if a∗ ̸= a, b∗ = b

(2α+ 2β) (ea ⊗ 1n) + (2α+ 2β) (1n ⊗ eb)− 2α (ea∗ ⊗ 1n)− 2α (1n ⊗ eb∗) if a∗ ̸= a, b∗ ̸= b.

Proof of Lemma G.18. In this proof we use ēa (long one-hot) to denote the one-hot vector in Rn2

with 1 on the a-th index and use ea (short one-hot) to denote the one-hot vector in Rn with 1 on the
a-th index. We use Ṽ1,V2, Ṽ2 and V3 to denote the intermediate sequences attained with translation
matrix P

(k)
1 and Ṽ ∗

1 ,V ∗
2 , Ṽ ∗

2 and V ∗
3 to denote the counterfactual intermediate sequences should

the forward pass is done with the ground truth translations P ∗(k)
1 = W ∗

1 .

Now we can proceed to the gradient calculations. First note that with L(P1) = ∥V3 − V ∗
3 ∥22, by

chain rule we have

∂L
∂P1

=

L∑
j=1

(
∂V

(j)
3

∂P1

)⊤(
∂∥V (j)

3 − V
∗(j)
3 ∥22

∂V
(j)
3

)
= 2

L∑
j=1

(
∂V

(j)
3

∂P1

)⊤ (
V

(j)
3 − V

∗(j)
3

)
. (26)

Specifically for each column l ∈ [n2] of P1 we have

∂L
∂P

(l)
1

= 2

L∑
j=1

(
∂V

(j)
3

∂P
(l)
1

)⊤ (
V

(j)
3 − V

∗(j)
3

)
. (27)

Let us fix a particular column j ∈ [L] in the output V3 and compute the gradients. With M (j) as the
j-th column of the matrix M , the computation graph for the forward pass is of the form:

V
(j)
1 → Ṽ

(j)
1

P1−→ V
(j)
2 → Ṽ

(j)
2

P2−→ V
(j)
3

↗ ↗

V
(j+1)
1 → Ṽ

(j+1)
1

P1−→ V
(j+1)
2

↗

V
(j+2)
1

(28)

We can see that V (j)
3 is only affected by P1 through V

(j)
2 and V

(j+1)
2 .

Let us first compute ∂V
(j)
3 /∂P1. Assume V

(j)
2 = ēp and V

(j+1)
2 = ēq for some p, q ∈ [n2], V (j)

3
is computed as

V
(j)
3 = W ∗

2 Ṽ
(j)
2 = W ∗

2

(
QV

(j)
2 ⊙Q⊤V

(j+1)
2

)
= W ∗

2

(
QP

(p)
1 ⊙Q⊤P

(q)
1

)
. (29)

We may express the Hadamard product in the following two ways:

V
(j)
3 = W ∗

2

(
QP

(p)
1 ⊙Q⊤P

(q)
1

)
= W ∗

2 diag
(
QP

(p)
1

)
Q⊤P

(q)
1 ;

= W ∗
2

(
Q⊤P

(q)
1 ⊙QP

(p)
1

)
= W ∗

2 diag
(
Q⊤P

(q)
1

)
QP

(p)
1 .

(30)

Therefore when p ̸= q we have

∂V
(j)
3

∂P
(p)
1

= W ∗
2 diag

(
Q⊤P

(q)
1

)
Q;

∂V
(j)
3

∂P
(q)
1

= W ∗
2 diag

(
QP

(p)
1

)
Q⊤; ∀l ̸∈ {p, q} : ∂V

(j)
3

∂P
(l)
1

= 0.

(31)

When p = q, the expression would be

∂V
(j)
3

∂P
(p)
1

= W ∗
2 diag

(
Q⊤P

(p)
1

)
Q+W ∗

2 diag
(
QP

(p)
1

)
Q⊤; ∀l ̸= p :

∂V
(j)
3

∂P
(l)
1

= 0. (32)
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Now we move on to compute (V (j)
3 −V

∗(j)
3 ). There are in total four cases to consider: depending on

whether P (k)
1 is being used when computing Ṽ

(j)
2 and Ṽ

(j+1)
2 . Let us go over these cases one-by-one.

1. Case 1: Ṽ (j)
1 ̸= ēk and Ṽ

(j+1)
1 ̸= ēk.

Assume Ṽ
(j)
1 = ēp and Ṽ

(j+1)
1 = ēq for some p, q ̸= k. Since V

(j)
2 = P1Ṽ

(j)
1 while P1

equals P ∗
1 for all columns not equal to k by assumption, we have V

(j)
2 = P1ēp = P

(p)
1 =

P
∗(p)
1 = P ∗

1 ēp = V
∗(j)
2 . With an identical argument we have V

(j+1)
2 = V

∗(j+1)
2 . Thus in

this case V
(j)
3 = V

∗(j)
3 and hence(

∂V
(j)
3

∂P1

)⊤ (
V

(j)
3 − V

∗(j)
3

)
= 0. (33)

2. Case 2: Ṽ (j)
1 = ēk and Ṽ

(j+1)
1 ̸= ēk.

Assume Ṽ
(j+1)
1 = ēq for some q ̸= k, from case 1 we know V

(j+1)
2 = V

∗(j+1)
2 . However

since Ṽ
(j)
1 = ēk we have V

(j)
2 = P1ēk = P

(k)
1 , which is not equal to V

∗(j)
2 = P

∗(k)
1 .

Therefore

V
(j)
3 − V

∗(j)
3 = W ∗

2

(
QP

(k)
1 ⊙Q⊤P

(q)
1

)
−W ∗

2

(
QP

∗(k)
1 ⊙Q⊤P

(q)
1

)
= W ∗

2

(
Q⊤P

(q)
1 ⊙Q

(
P

(k)
1 − P

∗(k)
1

))
= W ∗

2 diag
(
Q⊤P

(q)
1

)
Q
(
P

(k)
1 − P

∗(k)
1

)
.

(34)

For the gradient with respect to P
(k)
1 , combining Equation (34) with Equation (31) (substi-

tuting p = k) we have(
∂V

(j)
3

∂P
(k)
1

)⊤ (
V

(j)
3 − V

∗(j)
3

)
=
(
W ∗

2 diag
(
Q⊤P

(q)
1

)
Q
)⊤ (

W ∗
2 diag

(
Q⊤P

(q)
1

)
Q
(
P

(k)
1 − P

∗(k)
1

))
= Q⊤diag

(
Q⊤P

(q)
1

)
W ∗⊤

2 W ∗
2 diag

(
Q⊤P

(q)
1

)
Q
(
P

(k)
1 − P

∗(k)
1

)
= Q⊤diag

(
Q⊤P

(q)
1

)
diag

(
Q⊤P

(q)
1

)
Q
(
P

(k)
1 − P

∗(k)
1

)
=
(
(1n1

⊤
n )⊗ In

) (
P

(k)
1 − P

∗(k)
1

)
(by Lemma G.25)

(35)

where we dropped W ∗⊤
2 W ∗

2 in the third step since W ∗
2 is a permutation matrix and

W ∗⊤
2 W ∗

2 = In.

Now plugging in P
(k)
1 = ea ⊗ eb and P

∗(k)
1 = ea∗ ⊗ eb∗ we have(

∂V
(j)
3

∂P
(k)
1

)⊤ (
V

(j)
3 − V

∗(j)
3

)
=
(
(1n1

⊤
n )⊗ In

)
(ea ⊗ eb)−

(
(1n1

⊤
n )⊗ In

)
(ea∗ ⊗ eb∗)

=
(
(1n1

⊤
n ea)⊗ Ineb

)
−
(
(1n1

⊤
n ea∗)⊗ Ineb∗

)
= 1n ⊗ eb − 1n ⊗ eb∗

= 1n ⊗ (eb − eb∗) .
(36)

3. Case 3: Ṽ (j)
1 ̸= ēk and Ṽ

(j+1)
1 = ēk.

This is a symmetric case with respect to case 2. Assume Ṽ
(j)
1 = ēp for some p ̸= k, from

case 1 we know V
(j)
2 = V

∗(j)
2 . However since Ṽ

(j)
1 = ēk we have V

(j+1)
2 = P1ēk =
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P
(k)
1 , which is not equal to V

∗(j+1)
2 = P

∗(k)
1 . Therefore similar to case 2 we have

V
(j)
3 − V

∗(j)
3 = W ∗

2 diag
(
QP

(p)
1

)
Q⊤

(
P

(k)
1 − P

∗(k)
1

)
. (37)

Combining Equation (37) with Equation (32) gives(
∂V

(j)
3

∂P
(k)
1

)⊤ (
V

(j)
3 − V

∗(j)
3

)
=
(
W ∗

2 diag
(
QP

(p)
1

)
Q⊤
)⊤ (

W ∗
2 diag

(
QP

(p)
1

)
Q⊤

(
P

(k)
1 − P

∗(k)
1

))
= Qdiag

(
QP

(p)
1

)
W ∗⊤

2 W ∗
2 diag

(
QP

(p)
1

)
Q⊤

(
P

(k)
1 − P

∗(k)
1

)
= Qdiag

(
QP

(p)
1

)
diag

(
QP

(p)
1

)
Q⊤

(
P

(k)
1 − P

∗(k)
1

)
=
(
In ⊗ (1n1

⊤
n )
) (

P
(k)
1 − P

∗(k)
1

)
(by Lemma G.26)

(38)

Now plugging in P
(k)
1 = ea ⊗ eb and P

∗(k)
1 = ea∗ ⊗ eb∗ we have(

∂V
(j)
3

∂P
(k)
1

)⊤ (
V

(j)
3 − V

∗(j)
3

)
=
(
In ⊗ (1n1

⊤
n )
)
(ea ⊗ eb)−

(
In ⊗ (1n1

⊤
n )
)
(ea∗ ⊗ eb∗)

=
(
Inea ⊗ (1n1

⊤
n eb)

)
−
(
Inea∗ ⊗ (1n1

⊤
n eb∗)

)
= ea ⊗ 1n − ea∗ ⊗ 1n

= (ea − ea∗)⊗ 1n.
(39)

4. Case 4: Ṽ (j)
1 = Ṽ

(j+1)
1 = ēk.

This is the most complicated case since the loss is contributed by two different paths. We
can first decompose the negative residual as

V
(j)
3 − V

∗(j)
3 =W ∗

2

(
QP

(k)
1 ⊙Q⊤P

(k)
1

)
−W ∗

2

(
QP

∗(k)
1 ⊙Q⊤P

∗(k)
1

)
=W ∗

2

(
QP

(k)
1 ⊙Q⊤P

(k)
1

)
−W ∗

2

(
QP

(k)
1 ⊙Q⊤P

∗(k)
1

)
+W ∗

2

(
QP

(k)
1 ⊙Q⊤P

∗(k)
1

)
−W ∗

2

(
QP

∗(k)
1 ⊙Q⊤P

∗(k)
1

)
=W ∗

2 diag
(
QP

(k)
1

)
Q⊤

(
P

(k)
1 − P

∗(k)
1

)
+W ∗

2 diag
(
Q⊤P

∗(p)
1

)
Q
(
P

(k)
1 − P

∗(k)
1

)
.

(40)

Combining with Equation (32), we have(
∂V

(j)
3

∂P1

)⊤ (
V

(j)
3 − V

∗(j)
3

)
=
(
W ∗

2 diag
(
Q⊤P

(k)
1

)
Q+W ∗

2 diag
(
QP

(k)
1

)
Q⊤
)⊤

(
W ∗

2 diag
(
QP

(k)
1

)
Q⊤

(
P

(k)
1 − P

∗(k)
1

)
+W ∗

2 diag
(
Q⊤P

∗(k)
1

)
Q
(
P

(k)
1 − P

∗(k)
1

))
= Q⊤diag

(
Q⊤P

(k)
1

)
diag

(
QP

(k)
1

)
Q⊤

(
P

(k)
1 − P

∗(k)
1

)
(a)

+Qdiag
(
QP

(k)
1

)
diag

(
QP

(k)
1

)
Q⊤

(
P

(k)
1 − P

∗(k)
1

)
(b)

+Q⊤diag
(
Q⊤P

(k)
1

)
diag

(
Q⊤P

∗(k)
1

)
Q
(
P

(k)
1 − P

∗(k)
1

)
(c)

+Qdiag
(
QP

(k)
1

)
diag

(
Q⊤P

∗(k)
1

)
Q
(
P

(k)
1 − P

∗(k)
1

)
. (d)

Now let us analyze the four cross terms term-by-term.
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(a) With P
(k)
1 = ea ⊗ eb, by Lemma G.24 we have Q⊤P

(k)
1 = 1n ⊗ ea and QP

(k)
1 =

eb ⊗ 1n. Therefore Q⊤P
(k)
1 ⊙QP

(k)
1 = eb ⊗ ea and hence

diag
(
Q⊤P

(k)
1

)
diag

(
QP

(k)
1

)
= diag (eb ⊗ ea) = diag (eb)⊗ diag (ea) (41)

It follows that

Q⊤diag
(
Q⊤P

(k)
1

)
diag

(
QP

(k)
1

)
Q⊤

= (1n ⊗ In)
(
I⊤n ⊗ 1⊤

n

)
(diag (eb)⊗ diag (ea)) (1n ⊗ In)

(
I⊤n ⊗ 1⊤

n

)
= (1n ⊗ In)

(
I⊤n ⊗ 1⊤

n

)
(eb ⊗ diag (ea))

(
I⊤n ⊗ 1⊤

n

)
= (1n ⊗ In)

(
I⊤n ⊗ 1⊤

n

) (
eb ⊗ e⊤a

)
= (1n ⊗ In)

(
I⊤n ⊗ 1⊤

n

) (
ebe

⊤
a ⊗ 1

)
= (1n ⊗ In)

(
ebe

⊤
a ⊗ 1⊤

n

)
(42)

Plugging into (a) we have

(a) = Q⊤diag
(
Q⊤P

(k)
1

)
diag

(
QP

(k)
1

)
Q⊤

(
P

(k)
1 − P

∗(k)
1

)
= (1n ⊗ In)

(
ebe

⊤
a ⊗ 1⊤

n

)
(ea ⊗ eb)− (1n ⊗ In)

(
ebe

⊤
a ⊗ 1⊤

n

)
(ea∗ ⊗ eb∗)

= (1n ⊗ In)
(
ebe

⊤
a ea ⊗ 1

)
− (1n ⊗ In)

(
ebe

⊤
a ea∗ ⊗ 1

)
= (1n ⊗ In)

(
1⊗ ebe

⊤
a ea

)
− (1n ⊗ In)

(
1⊗ ebe

⊤
a ea∗

)
=

{
1n ⊗ eb when a ̸= a∗

0 otherwise
(43)

(b) We have seen the same term as in case 3, by Lemma G.26 we have

(b) = Qdiag
(
QP

(k)
1

)
diag

(
QP

(k)
1

)
Q⊤

(
P

(k)
1 − P

∗(k)
1

)
= (ea − ea∗)⊗ 1n.

(44)

(c) With P
(k)
1 = ea ⊗ eb and P

∗(k)
1 = ea∗ ⊗ eb∗ , we have

diag
(
Q⊤P

(k)
1

)
diag

(
Q⊤P

∗(k)
1

)
= diag (1n ⊗ ea) diag (1n ⊗ ea∗) =

{
diag (1n ⊗ ea) if a = a∗

0 otherwise
(45)

Thus by Lemma G.25 we have

Q⊤diag
(
Q⊤P

(k)
1

)
diag

(
Q⊤P

∗(k)
1

)
Q =

{(
1n1

⊤
n

)
⊗ In if a = a∗

0 otherwise
(46)

When a = a∗, we then have

Q⊤diag
(
Q⊤P

(k)
1

)
diag

(
Q⊤P

∗(k)
1

)
Q
(
P

(k)
1 − P

∗(k)
1

)
=
((
1n1

⊤
n

)
⊗ In

)
(ea ⊗ eb)−

((
1n1

⊤
n

)
⊗ In

)
(ea∗ ⊗ eb∗)

= 1n ⊗ (eb − eb∗) .

(47)

Thus in summary

(c) = Q⊤diag
(
Q⊤P

(k)
1

)
diag

(
Q⊤P

∗(k)
1

)
Q
(
P

(k)
1 − P

∗(k)
1

)
=

{
1n ⊗ (eb − eb∗) if a = a∗

0 otherwise.
(48)
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(d) Now for the last term, note that

Qdiag
(
QP

(k)
1

)
diag

(
Q⊤P

∗(k)
1

)
Q

= Qdiag (eb ⊗ 1n) diag (1n ⊗ ea∗)Q

= Qdiag (eb ⊗ ea∗)Q

= (In ⊗ 1n)
(
1⊤
n ⊗ I⊤n

)
(diag (eb)⊗ diag (ea∗)) (In ⊗ 1n)

(
1⊤
n ⊗ I⊤n

)
= (In ⊗ 1n)

(
1⊤
n ⊗ I⊤n

)
(diag (eb)⊗ ea∗)

(
1⊤
n ⊗ I⊤n

)
= (In ⊗ 1n)

(
e⊤b ⊗ ea∗

) (
1⊤
n ⊗ I⊤n

)
= (In ⊗ 1n)

(
ea∗e⊤b ⊗ 1

) (
1⊤
n ⊗ I⊤n

)
=
(
ea∗e⊤b ⊗ 1n

) (
1⊤
n ⊗ I⊤n

)
.

(49)

Plugging in (P
(k)
1 − P

∗(k)
1 ), we have that

Qdiag
(
QP

(k)
1

)
diag

(
Q⊤P

∗(k)
1

)
Q
(
P

(k)
1 − P

∗(k)
1

)
=
(
ea∗e⊤b ⊗ 1n

) (
1⊤
n ⊗ I⊤n

)
(ea ⊗ eb)−

(
ea∗e⊤b ⊗ 1n

) (
1⊤
n ⊗ I⊤n

)
(ea∗ ⊗ eb∗)

=
(
ea∗e⊤b ⊗ 1n

)
(1⊗ eb)−

(
ea∗e⊤b ⊗ 1n

)
(1⊗ eb∗)

=
(
ea∗e⊤b ⊗ 1n

)
(eb ⊗ 1)−

(
ea∗e⊤b ⊗ 1n

)
(eb∗ ⊗ 1)

=
(
ea∗e⊤b eb ⊗ 1n

)
−
(
ea∗e⊤b eb∗ ⊗ 1n

)
=

{
ea∗ ⊗ 1n if b ̸= b∗

0 otherwise.
(50)

Summing the four terms together, we then have

(
∂V

(j)
3

∂P1

)⊤ (
V

(j)
3 − V

∗(j)
3

)
=


0 when a∗ = a, b∗ = b

1n ⊗ (eb − eb∗) + ea∗ ⊗ 1n when a∗ = a, b∗ ̸= b

1n ⊗ eb∗ + (ea − ea∗)⊗ 1n when a∗ ̸= a, b∗ = b

1n ⊗ eb + ea ⊗ 1n when a∗ ̸= a, b∗ ̸= b.

(51)

Now we are ready to provide the gradient expression for the loss over the entire sequence. Observe
that for every consecutive sequence of m columns {V ∗(j)

1 ,V
∗(j+1)
1 , . . . ,V

∗(j+m−1)
1 } that all equals

to ēk, it will result in one incorrect column V
(j−1)
3 in case 2, one incorrect column V

(j+m−1)
3 in

case 3, and m− 1 incorrect columns (V (j)
3 , . . . ,V

(j+m−2)
3 ) in case 4.

For illustration, one can refer to the computation graph in Figure 10. In the graph, green entries
agrees with the counterfactual values with correct P ∗(k)

1 , Red and pink entries are incorrect entries
where red entries are consequence solely dependent on P

(k)
1 (case 4) and pink entries depend on

other correct columns (case 2,3).

Assume that in total there are α columns in V3 under case 2, α columns in V3 under case 3, and β
columns in V3 under case 4, then by Equation (27) the total gradient can be expressed as follows:

• When a = a∗, b ̸= b∗:

∂L
∂P

(k)
1

= 2α (1n ⊗ (eb − eb∗) + 2α (ea − ea∗)⊗ 1n) + 2β (1n ⊗ (eb − eb∗) + ea∗ ⊗ 1n)

= (2α+ 2β) (1n ⊗ eb)− (2α+ 2β) (1n ⊗ eb∗) + 2β (ea∗ ⊗ 1n) .
(52)
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V
(j−1)
1 → Ṽ

(j−1)
1 (= ēp ̸= ēk)

P
(p)
1−→ V

(j−1)
2 → Ṽ

(j−1)
2

W ∗
2−→ V

(j−1)
3 (case 2)

↗ ↗

V
(j)
1 → Ṽ

(j)
1 (= ēk)

P
(k)
1−→ V

(j)
2 → Ṽ

(j)
2

W ∗
2−→ V

(j)
3 (case 4)

↗ ↗

...
...

↗ ↗

V
(j+m−2)
1 → Ṽ

(j+m−2)
1 (= ēk)

P
(k)
1−→ V

(j+m−2)
2 → Ṽ

(j+m−2)
2

W ∗
2−→ V

(j+m−2)
3 (case 4)

↗ ↗

V
(j+m−1)
1 → Ṽ

(j+m−1)
1 (= ēk)

P
(k)
1−→ V

(j+m−1)
2 → Ṽ

(j+m−1)
2

W ∗
2−→ V

(j+m−1)
3 (case 3)

↗ ↗

V
(j+m)
1 → Ṽ

(j+m)
1 (= ēq ̸= ēk)

P
(q)
1−→ V

(j+m)
2 → Ṽ

(j+m)
2

W ∗
2−→ V

(j+m)
3 (case 1 or 2)

Figure 10: Error propagation of P (k)
1

• When a ̸= a∗, b = b∗:

∂L
∂P

(k)
1

= 2α (1n ⊗ (eb − eb∗)) + 2α ((ea − ea∗)⊗ 1n) + 2β (1n ⊗ eb∗ + (ea − ea∗)⊗ 1n)

= (2α+ 2β) (ea ⊗ 1n)− (2α+ 2β) (ea∗ ⊗ 1n) + 2β (1n ⊗ eb∗) .
(53)

• When a ̸= a∗, b ̸= b∗:

∂L
∂P

(k)
1

= 2α (1n ⊗ (eb − eb∗)) + 2α ((ea − ea∗)⊗ 1n) + 2β (1n ⊗ eb + ea ⊗ 1n)

= (2α+ 2β) (ea ⊗ 1n) + (2α+ 2β) (1n ⊗ eb)− 2α (ea∗ ⊗ 1n)− 2α (1n ⊗ eb∗) .
(54)

This gives the desired expression of gradient.

Now with the gradient expression, we are ready to prove for the learning of a single missing column.

Lemma G.19 (Learning Column of W1).
Fix an input sequence V1 ∈ Rn2×L and any column index k ∈ [n2], if
HardMax (C2 +W2) = W ∗

2 and HardMax
(
C1(k) +W1

)
equals to W ∗

1 everywhere
except for the k-th column and if there exists a non-empty subset of indices J ⊂ [L] such
that V ∗(j)

1 = ēk for all j ∈ J , for any initialization W
(k)
1(0) ∈ Rn2

such that ∥W (k)
1(0)∥0 ≤

1
2 .

Taking two surrogate gradient updates on W
(k)
1(0) as described in Algorithm 3 gives W (k)

1(2)

such that HardMax(W (k)
1(2)) = W

∗(k)
1 .
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Proof of Lemma G.19.

Without loss of generality, assume at the initialization P
(k)
1(0) = ea(0)

⊗ eb(0) and P
∗(k)
1 = ea∗ ⊗ eb∗

for some a(0), b(0), a
∗, b∗ ∈ [n]. We first note that the conditions specified in the lemma meets the

assumptions required by Lemma G.18, namely there is only one incorrect column in W1 missing and
that column is being used in the forward pass at least one time (since J is non-empty).

To prove HardMax(W (k)
1(2)) = W

∗(k)
1 , it is sufficient to show that argmax(W

(k)
1(2)) = a∗n+ b∗.

Now we will leverage the gradient expressions in Lemma G.18. We will dive into three different
cases:

• When a(0) ̸= a∗ and b(0) ̸= b∗.

By Lemma G.18 we have for some α ∈ Z+ and β ∈ N that

∂L
∂P

(k)
1(0)

= (2α+ 2β)
(
ea(0)

⊗ 1n

)
+ (2α+ 2β)

(
1n ⊗ eb(0)

)
− 2α (ea∗ ⊗ 1n)− 2α (1n ⊗ eb∗) .

(55)

It is not hard to verify that the unique smallest entry is of index a∗n + b∗ with value
−4α. This entry is contributed by the intersection of −2α (ea∗ ⊗ 1n)− 2α (1n ⊗ eb∗), the
remaining smaller entries are of value −2α contributed by non-intersecting entries in the
same expression above.

Thus we know argmin ∂L/∂P (k)
1(0) = a∗n+ b∗ with a margin of at least −2 (since α ≥ 1).

Now we can apply the gradient step to the weight initialization. Since ∥W (k)
1(0)∥0 ≤

1
2 , the

margin of a∗n+ b∗ dominates the largest margin in the initialization (which is 1), we have

argmax
(
W

(k)
1(1)

)
= argmax

W
(k)
1(0) −

∂L
∂P

(k)
1(0)

 = a∗n+ b∗. (56)

Therefore P
(k)
1(1) = P

∗(k)
1 with the first step. We will reach zero loss after the first step and

hence the second step is static, so we have shown argmax(W
(k)
1(2)) = a∗n+ b∗ as desired.

• When a(0) = a∗ and b(0) ̸= b∗.

By Lemma G.18 we have for some α ∈ Z+ and β ∈ N that

∂L
∂P

(k)
1(0)

= (2α+ 2β)
(
1n ⊗ eb(0)

)
− (2α+ 2β) (1n ⊗ eb∗) + 2β (ea∗ ⊗ 1n) . (57)

In this case we no longer have an unique smallest entry, the set of negative entries is of
index nx+ b∗ where x ∈ [n]. The values are −2α for the case of x = a∗ and −2(α+ β)
for other x’s. These negative entries are contributed by the −(2α+ 2β) (1n ⊗ eb∗), and all
other entries are at least 0.

Thus we also have a negative margin of at least −2 since α ≥ 1. Therefore after taking the
first gradient step, we know that there exists some x ∈ [n] such that

argmax
(
W

(k)
1(1)

)
= argmax

W
(k)
1(0) −

∂L
∂P

(k)
1(0)

 = nx+ b∗. (58)

Let P (k)
1(1) = argmax(W

(k)
1(1)) = ea(1)

⊗ eb(1) , then now we are in the case of b(1) = b∗

since the negative margin of −2 dominates any entry-wise difference in the initialization as
∥W (k)

1(0)∥0 ≤
1
2 . If β = 0 and it happens that a(1) = a∗, then we have zero loss after the first
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step and we are done as the second step will be static. If b(1) ̸= b∗, then by Lemma G.18 the
second step gradient is of the form

∂L
∂P

(k)
1(1)

= (2α+ 2β)
(
ea(1)

⊗ 1n

)
− (2α+ 2β) (ea∗ ⊗ 1n) + 2β (1n ⊗ eb∗) . (59)

This is a bit tricky to analyze directly since we no longer have the small entry-wise difference
from the initialization in the weights, but one may note that the sum of the two update steps
is of the form

∂L
∂P

(k)
1(1)

+
∂L

∂P
(k)
1(0)

= (2α+ 2β)
(
ea(1)

⊗ 1n

)
− (2α+ 2β) (ea∗ ⊗ 1n) + 2β (1n ⊗ eb∗)

+ (2α+ 2β)
(
1n ⊗ eb(0)

)
− (2α+ 2β) (1n ⊗ eb∗) + 2β (ea∗ ⊗ 1n)

= (2α+ 2β)
(
ea(1)

⊗ 1n

)
+ (2α+ 2β)

(
1n ⊗ eb(0)

)
− 2α (ea∗ ⊗ 1n)− 2α (1n ⊗ eb∗) .

(60)

This is identical to the single step gradient as in Equation (55) in the first case, so follow the
identical argument we have

argmax
(
W

(k)
1(2)

)
= argmax

W
(k)
1(0) −

 ∂L
∂P

(k)
1(0)

+
∂L

∂P
(k)
1(1)

 = a∗n+ b∗ (61)

as desired.

• When a(0) ̸= a∗ and b(0) = b∗

Note that all expressions are symmetric with respect to a and b with an additional swap
of the Kronecker products, so we may follow the exact same argument as in the case of
a(0) = a∗ and b(0) ̸= b∗ and arrive at the same conclusion.

Thus for any initializations, after two surrogate gradient steps on W
(k)
1 , we have

HardMax(W (k)
1(2)) = W

∗(k)
1 .

G.3.2 LEARNING THE SECOND LAYER

Now for the second layer, we will similarly first derive the gradient (which is much simpler) and
show that with only one gradient step, one can learn the correct entry.

Lemma G.20 (Gradient with respect to incorrect column in P2).

When only the k-th column of translation matrix P
(k)
2 is not equal to P

∗(k)
2 . If P (k)

2 is used in the
forward pass, there exists α ∈ Z+ such that the gradient of L with respect to P

(k)
2 is of the form

∂L
∂P

(k)
2

= 2α
(
P

(k)
2 − P

∗(k)
2

)
.

Proof. We follow the same set of notations as used in the proof for Lemma G.18. In particular, we
use Ṽ1,V2, Ṽ2 and V3 to denote the intermediate sequences attained with translation matrix P

(k)
2

and Ṽ ∗
1 ,V ∗

2 , Ṽ ∗
2 and V ∗

3 to denote the counterfactual intermediate sequences should the forward
pass is done with the ground truth translations P ∗(k)

2 = W ∗
1 . Since we assume that P1 = P ∗

1 , we
have Ṽ2 = Ṽ ∗

2 . Therefore for all column j such that V (j)
3 ̸= V

∗(j)
3 , it must be so that Ṽ ∗(j)

2 = ēk,
and the residual can be written as

V
(j)
3 − V

∗(j)
3 = P2Ṽ

∗(j)
2 − P ∗

2 Ṽ
∗(j)
2 = P2ēk − P ∗

2 ēk = P
(k)
2 − P

∗(k)
2 . (62)
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Assume that P (k)
2 has been used α times in the forward pass, follow the chain rule we then have

∂L
∂P

(k)
2

= 2

L∑
j=1

(
∂V

(j)
3

∂P
(k)
2

)⊤ (
V

(j)
3 − V

∗(j)
3

)
= 2α

(
P

(k)
2 − P

∗(k)
2

)
. (63)

Lemma G.21 (Learning W2).
Fix an input sequence V1 ∈ Rn2×L and any column index k ∈ [n2], if
HardMax (C1 +W1) = W ∗

1 and HardMax
(
C2(k) +W2

)
equals to W ∗

2 everywhere
except for the k-th column and if there exists a non-empty subset of indices J ⊂ [L] such
that V ∗(j)

2 = ēk for all j ∈ J , for any initialization W
(k)
2(0) ∈ Rn2

such that ∥W (k)
2(0)∥0 ≤

1
2 .

Taking one surrogate gradient updates on W
(k)
2(0) as described in Algorithm 3 gives W (k)

2(1)

such that HardMax(W (k)
2(1)) = W

∗(k)
2 .

Proof. Without loss of generality, assume at the initialization P
(k)
2(0) = ea(0)

⊗ eb(0) and P
∗(k)
2 =

ea∗ ⊗ eb∗ for some a(0), b(0), a
∗, b∗ ∈ [n]. We first note that the conditions specified in the lemma

meets the assumptions required by Lemma G.20, namely there is only one incorrect column in W2

missing and that column is being used in the forward pass at least one time (since J is non-empty).
To prove HardMax(W (k)

2(1)) = W
∗(k)
2 , it is sufficient to show that argmax(W

(k)
2(1)) = a∗n+ b∗. By

Lemma G.20, we have

∂L
∂P

(k)
2

= 2

L∑
j=1

(
∂V

(j)
3

∂P
(k)
2

)⊤ (
V

(j)
3 − V

∗(j)
3

)
= 2α

(
P

(k)
2 − P

∗(k)
2

)
= 2αea(0)

⊗ eb(0) − 2αea∗ ⊗ eb∗ .

(64)

Since α ≥ 1, the negative margin of the a∗n + b∗-th entry dominates the initial difference in the
initialization which is bounded by ∥W (k)

2(0)∥0 ≤
1
2 . Thus we have

argmax
(
W

(k)
2(1)

)
= argmax

W
(k)
2(0) −

∂L
∂P

(k)
2(0)

 = a∗n+ b∗ (65)

as desired.

G.3.3 PROOF FOR THEOREM G.22

Now we are ready to prove for the main theorem restated below:

Theorem G.22 (Learning Π∗ with context-enhanced surrogate GD with Π∗-coverable input).

For any initialization W1(0),W2(0) ∈ Rn2×n2

such that ∥W1(0)∥0 ≤ 1
2 and ∥W2(0)∥0 ≤ 1

2 ,
for any target set of phrasebooks Π∗ = {π∗

1 , π
∗
2} in MLT(2, n), given an Π∗-coverable input

V1 and the corresponding ground truth label V ∗
3 = MLTΠ∗(V1), Algorithm 2 terminates

with HardMax (W1) = W ∗
1 and HardMax (W2) = W ∗

2 .

Proof. The statement can be proven by a similar induction as in the proof for Theorem G.14.

Let the induction hypothesis be such that when the enumeration goes to k-th column of the i-th layer,
if HardMax(W (j)

l +W
∗(j)
l ) = W

∗(j)
l for all (l, j) ∈ [2]× [n2] and HardMax

(
W

(j)
l

)
= W

∗(j)
l

for all (l, j) such that l < i or l = i ∧ j < k, then the gradient update on the k-th column of the i-th
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layer ends with W
(k)
i = W

∗(k)
i while HardMax(W (j)

l +W
∗(j)
l ) = W

∗(j)
l for all (l, j) ∈ [2]×[n2]

is preserved.

The base case is satisfied as with initialization of ∥W1(0)∥0 ≤ 1
2 and ∥W2(0)∥0 ≤ 1

2 , by Lemma G.9,
we have HardMax(W (j)

l +W
∗(j)
l ) = HardMax(0+W

∗(j)
l ) = W

∗(j)
l for all (l, j) ∈ [d]× [n2]

and there are no requirements for W (k)
i = W

∗(k)
i yet.

For the induction step, we note that with the inductive hypothesis of HardMax(W (j)
l +W

∗(j)
l ) =

W
∗(j)
l for all (l, j) ∈ [2] × [n2], (C1(k),W

∗
2 ) (when i = 1) or (W ∗

1 ,C2(k)) (when i = 2) will
correctly condition all columns of P ’s except for the P

(k)
i since

C
(k)
i(k) = W ∗

i (In2 − diag(ēk))
(k)

= 0. (66)

Thus by Lemma G.19 (when i = 1) or Lemma G.21 (when i = 2), we know that after updating
W

(k)
i , we have HardMax(W (k)

i ) = W
∗(k)
i . The newly added column provides the correct inductive

hypothesis on HardMax(W (j)
l ) = W

∗(j)
l for the next enumeration step.

By induction to i = 2 and k = n2, we will be able to recover HardMax(Wi) = W ∗
i for all

i ∈ [d].

Similarly we may use the coupon collecting argument to generalize the input to uniformly random
strings as follows:

Corollary G.23 (Learning Π∗ in MLT(2, n) with context-enhanced surrogate GD with
random input).
For any initialization W1(0),W2(0) ∈ Rn2×n2

such that ∥W1(0)∥0 ≤ 1
2 and ∥W2(0)∥0 ≤ 1

2 ,
for any target set of phrasebooks Π∗ = {π∗

1 , π
∗
2} in MLT(2, n), with probability at least

1 − δ over a uniformly random input V1 of length L = 2n2 log 2n
δ , Algorithm 2 provided

with the ground truth label V ∗
3 = MLTΠ∗(V1) terminates with HardMax (W1) = W ∗

1 and
HardMax (W2) = W ∗

2 .

G.4 AUXILIARY LEMMAS FOR LEARNING SURROGATE MODELS

Lemma G.24. For any long one-hot vector v = ea ⊗ eb, with Q = (In ⊗ 1n) (1n ⊗ In)
⊤ we have

Qv = eb ⊗ 1n; Q⊤v = 1n ⊗ ea. (67)

Proof. Note that with v = ea ⊗ eb, we have

Qv = (In ⊗ 1n)
(
1⊤
n ⊗ I⊤n

)
(ea ⊗ eb) = (In ⊗ 1n) (1⊗ eb) = (In ⊗ 1n) (eb ⊗ 1) = eb ⊗ 1n;

Q⊤v = (1n ⊗ In)
(
I⊤n ⊗ 1⊤

n

)
(ea ⊗ eb) = (1n ⊗ In) (ea ⊗ 1) = (1n ⊗ In) (1⊗ ea) = 1n ⊗ ea.

(68)

Lemma G.25. For any one-hot vector v = ea ⊗ eb ∈ Rn2

,

Q⊤diag
(
Q⊤v

)
diag

(
Q⊤v

)
Q = (1n1

⊤
n )⊗ In.

Proof. By Lemma G.24, Q⊤v = 1n ⊗ ea. Therefore diag
(
Q⊤v

)
= diag (1n) ⊗ diag (ea) =

In ⊗ diag (ea) . Thus

diag
(
Q⊤v

)
Q = (In ⊗ diag (ea)) (In ⊗ 1n) (1

⊤
n ⊗ I⊤n ) = (In ⊗ ea) (1

⊤
n ⊗ I⊤n ) (69)
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and therefore we have

Q⊤diag
(
Q⊤v

)
diag

(
Q⊤v

)
Q = (1n ⊗ In)

(
In ⊗ e⊤a

)
(In ⊗ ea) (1

⊤
n ⊗ I⊤n )

= (1n ⊗ In) (In ⊗ 1) (1⊤
n ⊗ I⊤n )

(
since e⊤a ea = 1

)
= (1n ⊗ In) (1⊗ In) (1

⊤
n ⊗ I⊤n )

= (1n ⊗ In)(1
⊤
n ⊗ I⊤n )

= (1n1
⊤
n )⊗ In

(70)

Lemma G.26. For any one-hot vector v = ea ⊗ eb ∈ Rn2

,

Qdiag (Qv) diag (Qv)Q⊤ = In ⊗ (1n1
⊤
n ).

Proof. This proof is very similar to the proof for Lemma G.25. By Lemma G.24, Q⊤v = 1n ⊗ ea.
Therefore diag (Qv) = diag (eb)⊗ diag (1n) = diag (eb)⊗ In. Thus

diag (Qv)Q⊤ = (diag (eb)⊗ In) (1n ⊗ In)
(
I⊤n ⊗ 1⊤

n

)
= (eb ⊗ In)

(
I⊤n ⊗ 1⊤

n

)
(71)

and therefore we have

Qdiag (Qv) diag (Qv)Q⊤ = (In ⊗ 1n)
(
e⊤b ⊗ In

)
(eb ⊗ In) (I

⊤
n ⊗ 1⊤

n )

= (In ⊗ 1n) (1⊗ In) (I
⊤
n ⊗ 1⊤

n )
(
since e⊤b eb = 1

)
= (In ⊗ 1n) (In ⊗ 1) (I⊤n ⊗ 1⊤

n )

= (In ⊗ 1n)(I
⊤
n ⊗ 1⊤

n )

= In ⊗ (1n1
⊤
n ).

(72)

Lemma G.27 (Tail Bound for Coupon Collector Problem (Motwani, 1995)).
For a set S of size n, with probability at least 1− δ one can cover all unique elements of S in
n log n

δ independent uniformly random sampling trials from S.

G.5 LEARNING Π∗ IN MLTΠ∗ WITH GRADIENT DESCENT (EMPIRICAL EVIDENCE)

In this section we provide more details on empirically optimizing the simple surrogate model
SURR-MLT{Wi}d

i=1
, which was only briefly discussed in the main text by the end of Section 5.1.

We will first introduce the approximations we made to the surrogate model to make gradient-based
optimization easy and stable, then we will present empirical results on the model learning target sets
of phrasebooks MLTΠ∗ in MLT(5, 10), MLT(10, 10), and even MLT(20, 10).

G.5.1 APPROXIMATED LATENT MODEL FOR GD

Recall that with input sequence represented by V1 ∈ Rn2×L, the surrogate model for a depth-d
translation is being recursively defined by the translation + shifting operations

Vi+1 = HardMax(Ci +Wi)Shift(Vi) (73)

until we reach Vd+1. While this model captures the essence of transition from ICL capability to
memorization of specific set of phrasebooks, HardMax is making it not directly differentiable and
hard to optimize. To address this issue, we approximate it with an column-wise softmax function
with very low temperature (T = 1/25). The recursive definition in the approximated model is then

Ṽi+1 = SoftMax(25(Ci +Wi))Shift(Ṽi). (74)
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We denote the recursive surrogate model with the softmax substitution as
˜SURR-MLT{Wi}d

i=1
(C1,C2, . . . ,Cd,V1) where

Ṽd+1 = ˜SURR-MLT{Wi}d
i=1

(C1,C2, . . . ,Cd,V1)

≜ SoftMax(25Cd + 25Wd)

Shift
(
SoftMax(25Cd−1 + 25Wd−1)Shift

(
· · ·SoftMax(25C1 + 25W1)Shift(Ṽ1) · · ·

))
.

(75)

We define the objective function as the column-wise cross-entropy loss between the final output
and the input. Namely for input V1 with prediction Ṽd+1 and ground truth label V ∗

d+1, the loss is
computed as

L =

L∑
k=1

CrossEntropy(Ṽ (k)
d+1,V

∗(k)
d+1 ). (76)

We follow the same masking (dropout) curriculum as described in Appendix G.2 and Appendix G.3,
that at each step we zero-out a single column from a single context matrix Ci. We experiment on two
gradient update schemes:

• Layer-wise Training: at each step, if we are masking a column on Ci, we only compute
the gradient with respect to Wi and update it. This training is more akin to the theoretical
analysis described in Appendix G.3.

• Full Parameter Training: at any step, we compute the gradient with respect to each of the
weight matrices and update all parameters. This is more akin to the real gradient-based
training as we do not have the heuristics for localized update.

To allow for fast and stable training, we adopt a very large learning rate of η = 100 and apply
parameter clipping between [0, 1] after each update. The complete algorithm is described as follows:

Algorithm 4 Layerwise Gradient Descent with Context-Enhanced Learning For Optimizing
SURR-MLT

1: Input:
2: input V1 ∈ Rn2×L, label V ∗

d+1 ∈ Rn2×L, descriptive text W ∗
1 , . . . ,W

∗
d ∈ Rn2×n2

, learning
rate η, total steps T

3:
4: Initialize W1, . . . ,Wd ← 0 # Start with zero initialization
5: for t = 1 to T do
6: i← ⌊(t− 1)/n2⌋%d+ 1 # Get the layer to be masked
7: k ← ((t− 1)%n2) + 1 # Get the column index to be masked
8: Initialize Ci(k) ←W ∗

i (In2 − diag(ēk)) #
Create masked context matrix

9: Ṽd+1 ← SURR-MLT{Wi}d
i=1

(W ∗
1 . . . ,W ∗

i−1,Ci(k),W
∗
i+1 . . . ,W

∗
d ,V1)

10: L ← CrossEntropy(Ṽd+1,V
∗
d+1)

11: Wi ←Wi − η∇Wi
L # Update the weight for the layer with mask

12: end for
13: Return W1, . . . ,Wd.
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Algorithm 5 Full Parameter Gradient Descent with Context-Enhanced Learning For Optimizing
SURR-MLT

1: Input:
2: input V1 ∈ Rn2×L, label V ∗

d+1 ∈ Rn2×L, descriptive text W ∗
1 , . . . ,W

∗
d ∈ Rn2×n2

, learning
rate η, total steps T

3:
4: Initialize W1, . . . ,Wd ← 0 # Start with zero initialization
5: for t = 1 to T do
6: i← ⌊(t− 1)/n2⌋%d+ 1 # Get the layer to be masked
7: k ← ((t− 1)%n2) + 1 # Get the column index to be masked
8: Initialize Ci(k) ←W ∗

i (In2 − diag(ēk)) #
Create masked context matrix

9: Ṽd+1 ← SURR-MLT{Wi}d
i=1

(W ∗
1 . . . ,W ∗

i−1,Ci(k),W
∗
i+1 . . . ,W

∗
d ,V1)

10: L ← CrossEntropy(Ṽd+1,V
∗
d+1)

11: for l = 1 to d do
12: Wl ←Wl − η∇Wl

L # Update the weight for all layers
13: end for
14: end for
15: Return W1, . . . ,Wd.
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Figure 11: We perform Layer-wise and Full Parameter Training with Gradient Descent
(defined in Appendix G.5.1) on the SURR-MLT (Definition G.6) designed for MLTΠ∗ in
MLT(5, 10),MLT(10, 10),MLT(20, 10) respectively (alternately, depth d = 5, 10, 20 respectively,
while number of characters is fixed at n = 10). Here, we report the portion of columns from
the trainable parameters, which after HardMax application {HardMax (Wi)}di=1, align with the
corresponding stochastic matrices of the phrasebooks {Matrix (π∗

i )}di=1.We observe that under
both algorithms, the trainable parameters quickly learn the relevant stochastic matrices.
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Figure 12: Detailed analysis on the Full parameter training behavior of the trainable parameters in
SURR-MLT from Figure 11 for MLTΠ∗ in MLT(10, 10) (i.e. depth d = 10 and number of characters
n = 10). We report the behavior of all odd-index parameters W1,W3, · · · ,W9. (left to right) first,
we show the number of columns of the trainable parameter, which after HardMax (Wi) align with
the corresponding columns of Matrix (π∗

i ) . Second, third and fourth visualize the matrices, Wi,
HardMax (Wi), and Matrix (π∗

i ) respectively. All matrices learn to match Matrix (π∗
i ) at the

end of training with HardMax operation.
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H CONSTRUCTION OF A TRANSFORMER THAT CAN SIMULATE THE LATENT
MODEL

H.1 USEFUL DEFINITIONS AND LEMMAS

Definition H.1 (Relative self-attention with 1 head). For a set of matrices {Wquery,Wkey,Wvalue}
with each matrix ∈ Rk×k for some k > 0 and a set of (t + 1) biases {bi}t≤i≤0, the self-attention
computation on an input sequence x1, · · · ,xL with each xp2

∈ Rk is given by the output sequence
y1, · · · ,yL, where for all p1 ∈ [1, L]

yp1
=

L∑
p2=1

ap1,p2
oj , where ap1p2

=
eq

⊤
p1

kp2
+bp2−p1∑

p2
′≤p1

eq
⊤
p1

kp2
′+bp2′−p1

if p2 ≤ p1, 0 otherwise

qp2 = Wqueryxp2 , kp2 = Wkeyxp2 , op2 = Wvaluexp2 , for all p2 ∈ [1, L].

For a relative self-attention with H heads, we will simply add the output of the H heads as the final
output.
Definition H.2 (MLP). For a set of matrices Wouter ∈ Rk×H ,Winner ∈ RH×k for some k,H > 0
and an activation function σ, the output of the MLP layer on an input sequence x1, · · · ,xL with each
xi ∈ Rk is given by the output sequence y1, · · · ,yL, where for all i

yi = Wouterσ(Winnerxi).

Lemma H.3. For GELU (Hendrycks & Gimpel, 2016) activation function, which takes x ∈ R
as input and returns xΦ(x) as output, with Φ(x) representing the standard Gaussian cumulative
distribution function, for any two variables x, y ∈ R, the following holds true:√

π/2 (GELU(x+ y)− GELU(x)− GELU(y)) = xy +O(x3y3).

The above lemma has been taken from (Akyurek et al., 2023).

H.2 TRANSFORMER CONSTRUCTION

Recall that a translation task in MLT(d, n) involves two primary operations at each step : Circular
shift and Translate. We will refer to the surrogate model to use notations for different operations
in the translation task. Recall from Equation (19), the surrogate model for MLT(d, n), denoted by
SURR-MLT{Wi}d

i=1
(·) with trainable parameters {Wi}di=1 = {W1, · · · ,Wd}, can be represented

by the following recursive expression

Vi+1 = HardMax(Ci +Wi)Shift(Vi) := HardMax(Ci +Wi)Ṽi, (77)

for 1 ≤ i ≤ d. Here Shift represents Circular shift operation, and HardMax(Ci +Wi) represents
Translate operation, where the operation can be done either using the relevant in-context information
Ci or the in-weights memory paramters Wi when in-context information isn’t provided in form
of Ci. HardMax is the column-wise hard-max function converting Ci +Wi to a binary column
stochastic matrix.

Lemma H.4. For the family of translation tasks MLT(d, n), there exists a transformer model
with embedding size 2n2 + 2d+ 4, 2d relative self-attention layers (containing either 1 or 3
heads), and 2d MLP layers that can simulate the surrogate model, SURR-MLT{Wi}d

i=1
(·).

For each input sequence s1 of length L, the input sequence of embeddings to the transformer
will be of length n2d+ L/2 + d, where the last d embeddings are padding tokens (<P>) and
given as 0s, and the length of output sequence of the transformer model will be n2d+d+L/2,
where the last L/2 output embeddings will be used for loss computation. The middle d
embeddings in output are represented by <THINK> tokens. a

aIn our experiments, we used output sequence length as n2d+ d+ dL/2, where (d+1)L/2 tokens
in the output sequence were represented by <THINK> tokens. Instead, we only use d <THINK> tokens
in our output construction for simplicity, the proof can be easily modified to align with the experiments.
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Outline of the construction: Our argument will be for any general MLT(d, n). To create the
transformer, we will create similar transformer modules that handle HardMax(Ci+Wi)Shift(Vi)
for each i. We will refer to the constructed modules as MLT-MODULE and will mention the specific
step i as an argument when we attempt to use the module to perform translation step HardMax(Ci +
Wi)Shift(Vi). W.l.o.g., we will assume we are building a MLT-MODULE to perform translation
step HardMax(Ci+Wi)Shift(Vi). MLT-MODULE will contain two modules, CIRCULAR SHIFT-
MODULE and TRANSLATE-MODULE, which simulate Circular shift and Translate operations, and
have been outlined in Algorithms 6 and 7.

Next, we explain the structure of the embeddings in the transformer architecture. Our embed-
dings will be built on the context {C1, · · · ,Cd} and the matrix representation V1 from sequences
(s1,1, · · · , s1,L) and subsequent intermediate representation of the translation task. Furthermore, our
embeddings will contain additional information like indices of the context matrices when utilizing
them in-context, segment indicators that represent whether embeddings belong to context matrices, or
the input sequence tokens, and start and end indicators that indicate the start and the end embeddings
representing the input sequence. This information can be extracted from the input sequence using a
few input processing layers, though we do not delve into the specifics.

H.3 STRUCTURE OF INPUT EMBEDDINGS TO MLT-MODULE

Our embeddings will be split into 4 components: token, context matrix indicator, start and end
indicator, and segment indicator. To maintain simplicity in our discussion, we will present them as 4
separate embeddings.

For a module that will represent HardMax(Ci + Wi)Shift(Vi), we assume the input will be
provided as 2 major segments.

1. First segment: in-context matrices We will give the in-context information {Cp1
}dp1=1

as follows.: each context matrix Cp1
will be fed as n2 token embeddings, {[ej ;Cp1

ej ] ∈
R2n2}n2

j=1, where ej represents a one-hot n2 dimensional vector that contains 1 in position j
and [ej ;Cp1

ej ] represents a concatenation of ej and Ciej . Thus, the in-context information
will look as follows

{[ej ;C1ej ]}n
2

j=1, · · · , {[ej ;Cdej ]}n
2

j=1

Additional embedding: context matrix level indicator In order to differentiate the
different context matrices, we will use an additional d dimensions in the embeddings to
represent a one-hot vector that indicates the index of the corresponding step they will be used
for. For simplicity, we will represent these dimensions separately as separate embeddings:
lp1
∈ Rd, which are one-hot vectors that contain 1 in position p1 and 0 otherwise.

2. Second segment: input query For a length-L input sequence si = (si,1, si,2, . . . , si,L),
we will use the sequence of columns of its matrix representation Vi ∈ Rn2×L/2, appended
by 0s to match embedding sizes, as token embeddings for the input query. A padding
embedding <P>, containing 0s, follows this sequence as an end of sequence embedding.

Additional embedding: start and end indicator embedding We will have 2 additional
dimensions representing whether a token represents the start or the end of the input query
sequence (first or second dimension activated respectively). Start of the input query sequence
is determined by the first embedding in the input query, while end of the input query sequence
is determined by the first padding embedding containing 0s after the input query sequence.
We will represent these dimensions separately as separate embeddings: {b1, b2,0 ∈ R2}i∈L,
which are one-hot vectors. b1 contains 1 in dimension 1 if the embeddings represents start of
the sequence, b2 contains 1 in dimension 2 if the embeddings represent end of the sequence.
Other embeddings have 0s.

Additional embedding: segment embedding We will differentiate the input embeddings in the
two segments using 2 dimensions that represent one-hot vectors indicating segment indices. We will
represent these dimensions separately as separate embeddings: g1, g2 ∈ R2, where both are one-hot
vectors, with g1 containing 1 in dimension 1 and g2 containing 1 in dimension 2.

All the notations have been summarized in Table 7.
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Additional optional inputs: There might be additional input embeddings, represented as <THINK>
in the first segment, which are null inputs and are ignored during self-attention computation. As
discussed next, we will right shift the sequence by 1 at each step, in order to handle Circular shift
operation with causal masking in transformers.

H.4 STRUCTURE OF THE OUTPUT EMBEDDINGS FROM MLT-MODULE

All the embeddings in the first segment are kept intact. In the second segment, the module outputs a
null output <THINK>, followed by L/2 output embeddings that represent the columns of Vi. We will
require <THINK> to represent Circular shift with causal self-attention in transformers. <THINK>
will be ignored in self-attention computation and so, we will ignore their discussion for simplicity of
presentation. Other embedding values are kept intact for the generated output, except start and end
indicator embeddings b1, b2, which need to be right shifted at each step. The right shift operation
can be handled similar to our computations on the token embeddings and so, we ignore them in our
construction below. We summarize these in Table 8.

Embedding Name Dimension size First segment values Second segment values
(In-context information) (Input sequence embeddings)

Token 2n2 {[ej ;C1ej ]}n
2

j=1, · · · , {[ej ;Cdej ]}n
2

j=1 [V
(1)
i−1;0], · · · , [V

(L/2)
i−1 ;0], <P>

Context matrix index indicator d {l1}[1,n2], {l2}[1,n2], · · · {ld}[1,n2] 0, · · · ,0
Start and End indicator 2 0, · · · ,0 b1, 0, · · · ,0, b2

Segment 2 g1, · · · , g1 g2, · · · , g2

Table 7: Input embeddings to MLT-MODULE that simulates HardMax(Ci +Wi)Shift(Vi). ej
indicates a one-hot n2 dimensional vector that contains 1 in dimension j.

Embedding Name Dimension size First segment values Second segment values
(In-context information) (Input sequence embeddings)

Token 2n2 {[ej ;C1ej ]}n
2

j=1, · · · , {[ej ;Cdej ]}n
2

j=1 <THINK>, [V (1)
i ;0], · · · , [V (L/2)

i ;0]
Context matrix index indicator d {l1}[1,n2], {l2}[1,n2], · · · {ld}[1,n2] 0,0, · · · ,0

Start and End indicator 2 0, · · · ,0 0, b1, 0, · · · ,0, b2
Segment 2 g1, · · · , g1 0, g2, · · · , g2

Table 8: Output of the transformer module MLT-MODULE that simulates HardMax(Ci +
Wi)Shift(Vi) . <THINK> represents a null output and won’t be attended to in the future mod-
ules. We ignore this symbol for simplicity, when analyzing any module. ej indicates a one-hot n2

dimensional vector that contains 1 in dimension j.

Constructing the MLT-MODULE: The MLT-MODULE consists of 2 self-attention layers and
2 MLP layers. We use one self-attention layer and an MLP layer to represent Circular shift
operation, one self-attention layer to represent Ci Shift(Vi), and one MLP layer to represent
HardMax(Ci + Wi)Shift(Vi). We name the two modules for Circular shift and Translate
as CIRCULAR SHIFT-MODULE and TRANSLATE-MODULE respectively. We have outlined their
constructions in Algorithms 6 and 7.

H.5 STEP 1 (CIRCULAR SHIFT-MODULE): REPRESENT Circular shift USING A
SELF-ATTENTION AND AN MLP LAYER

As Circular shift only focuses on the input query sequence and not the in-context matrices, we
will simply focus the module’s operation on embeddings in the second segment. The effect of the
operation on embeddings in the first segment can be removed using a gated residual connection. From
Lemma G.3, we have that the output of the Circular shift operation on any sequence, represented by
its matrix representation Vi, can be written as

Ṽ
(j)
i = QV

(j)
i ⊙Q⊤V

((j+1)%L)
i , for all 1 ≤ j ≤ L/2.
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where Q = (In ⊗ 1n) (1n ⊗ In)
⊤ , 1n ∈ Rn×1 is the all-ones vector, and ⊙ is the Hadamard

product.

In order to represent the operation, we will first use a self-attention layer to compute (1n ⊗ In)
⊤
V

(j)
i

and (In ⊗ 1n)V
(j+1%L)
i at each column j. Because the computation of Ṽ (j)

i requires the model
to look forward to V

(j+1)
i , we need to shift the computation of Ṽ (j)

i to position j + 1, as a causal
attention mask is involved in self-attention computation.

After right shift operation, we will represent the output of the self-attention computation as
<THINK>, [o2;0], [o3;0], · · · , [oL/2+1;0], and we will ignore the <THINK> embedding. Note that
the second half of the output embeddings will still contain 0s and we will ignore them in the current
computation. Then, the above computation can be rephrased as

oj = QV
(j−1)
i ⊙Q⊤V

(j)
i , for all 2 ≤ j ≤ L/2.

oL/2+1 = QV
(L/2)
i ⊙Q⊤V

(1)
i

Self-attention layer: The computation of oj , for 2 ≤ j ≤ L/2, requires the computation of
(1n ⊗ In)

⊤
V

(j−1)
i and (In ⊗ 1n)V

(j)
i . This will require 2 attention heads, one head that attends

to itself, and another that attends to previous embedding at each position. We will outline both
below. We will require one additional head, as computing oL/2+1 will require the model to compute
(In ⊗ 1n)V

(1)
i .

1. Attention Head 1 computes (1n ⊗ In)
⊤
V

(j−1)
i at position j for all 2 ≤ j ≤ L/2 + 1. This

can be done using a self-attention head (Definition H.1) that sets query and key matrices
Wquery, Wkey , and biases {bi}t≤i≤0 such that the attention score between embeddings at
any two positions p1, p2 is given as follows:

ap1,p2
= 1, if p2 − p1 = −1, 0 otherwise

Wvalue is set such that for any input x, the output of Wvaluex is given by

(Wvaluex)p1
=

n−1∑
j=0

xn·j+p1
.

In simple words, this operation simply adds up the values in dimensions p1, p1 + n, p1 +
2n, · · · and stores them at position p1 for all 1 ≤ p1 ≤ n.

2. Attention Head 2 computes (In ⊗ 1n)V
(j)
i at position j for all 2 ≤ j ≤ L/2. This can

be done using a self-attention head (Definition H.1) that sets Wquery, Wkey, Wvalue and
biases {bi}t≤i≤0 such that the attention score between embeddings at any two positions
p1, p2 is given as follows:

ap1,p2
= 1, if p2 − p1 = 0, 0 otherwise

Wvalue is set such that for any input x, the output of Wvaluex is given by

(Wvaluex)p1+n =

n∑
j=1

xj+p1n−n.

In simple words, this operation simply adds up the values in dimensions 1 + (p1 − 1)n, 2 +
(p1 − 1)n, · · · and stores them at dimension p1 + n for all 1 ≤ p1 ≤ n.

3. Attention head 3 will compute (In ⊗ 1n)V
(1)
i and store in oL/2+1. This can be done by

a self-attention layer which activates only between positions p1 and p2 that represent the
start and the end tokens of the sequence, i.e. contain b1 and b2 as start and end indicator
embeddings, and is 0 otherwise. Wvalue is set same as attention head 2.

The output of the three heads are simply added up. Hence, at each position 2 ≤ j ≤ L/2 + 1,
the output oj has (1n ⊗ In)

⊤
V

(j−1)
i in [1, n] dimensions and (In ⊗ 1n)V

(j%L)
i in [n + 1, 2n]

dimensions.
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MLP layer: The objective with the MLP layer (Definition H.2) will be to multiply
(1n ⊗ In)

⊤
V

(j−1)
i present in [1, n] dimensions and (In ⊗ 1n)V

(j%L)
i present in [n + 1, 2n] di-

mensions in each position j. This can be done by using an MLP layer with GELU activation by using
Lemma H.3. The weights of the MLP layer are set as follows: Winner is set such that for all input x,
we have

(Winnerx)i =
1

N
xi +

1

N
xn+i, for all 1 ≤ i ≤ n,

(Winnerx)i+n =
1

N
xi, for all 1 ≤ i ≤ n,

(Winnerx)i+2n =
1

N
xn+i, for all 1 ≤ i ≤ n.

Wouter is set such that for all x ∈ R3n

(Wouterx)i = N2(xi − xi+n − xi+2n), for all 1 ≤ i ≤ n.

All other coordinates in these matrices are set as 0s. N is set as a large number (say 100). By
Lemma H.3, the output of the MLP layer will be <THINK>,o2, · · · ,oL/2+1, with oj containing

Ṽ
(j−1)
i +O(N−4) := (1n ⊗ In)

⊤
V

(j−1)
i ⊙ (In ⊗ 1n)V

(j%L)
i +O(N−4)

at each position 2 ≤ j ≤ L/2.

Embedding Name Dimension size First segment values Second segment values
(In-context information) (Input query sequence embeddings)

Token 2n2 {[ej ;C1ej ]}n
2

j=1, · · · , {[ej ;Cdej ]}n
2

j=1 <THINK>, [Ṽ (1)
i ;0], · · · , [Ṽ (L/2)

i ;0]
Context matrix index indicator d {l1}[1,n2], {l2}[1,n2], · · · {ld}[1,n2] 0,0, · · · ,0

Start and End indicator 2 0, · · · ,0 0, b1, 0, · · · ,0, b2
Segment 2 g1, · · · , g1 0, g2, · · · , g2

Table 9: Output of CIRCULAR SHIFT-MODULE in MLT-MODULE that simulates Circular shift, i.e.
computes Shift(Vi) at second segment token embeddings. <THINK> represents a null output and
won’t be attended to in the future modules. We ignore this symbol for simplicity, when analyzing any
module. ej indicates a one-hot n2 dimensional vector that contains 1 in dimension j.

H.6 STEP 2 (TRANSLATE-MODULE): Translate AS A MODULE CONTAINING A
SELF-ATTENTION AND AN MLP LAYER

Our current token embeddings are given as <THINK>, [o2;0], [o3;0], · · · , [oL/2+1;0], where each
oj contain Ṽ

(j−1)
i . Other embeddings have been kept intact. The in-context information are

given as {[ej ;C1ej ]}n
2

j=1, · · · , {[ej ;Cdej ]}n
2

j=1. We will first use a self-attention layer to com-

pute [CiṼ
(j−1)
i ; Ṽ

(j−1)
i ] at position 2 ≤ j ≤ L/2 + 1. We then use an MLP layer to represent

HardMax(Ci +Wi)Ṽ
(j−1)
i .

Self-attention layer to represent [CiṼ
(j−1)
i ; Ṽ

(j−1)
i ]: We will use two attention heads.

1. The first attention head computes CiṼ
(j−1)
i : Matrices Wquery, Wkey are set such that

the attention score between an token embedding in first segment [er;Cℓer] and a token
embedding in second segment oj is given by

⟨er, Ṽ (j−1)
i ⟩, if ℓ = i, and 0 otherwise.

for any j ∈ [2, L/2 + 1], r ∈ [1, d]. The condition requires the model to attend to Ci and
ignore other in-context information. The condition can be set using the Context matrix index
indicator vectors lℓ which is present in each in-context information embedding.
The attention between any two input sequence embedding oj and oj′ is computed as 0s.
The distinction between the attention scores of pairs of embeddings in second segment, oj
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and oj′ , v/s attention scores between a token embedding in second segment and a token
embedding in first segment, oj and [er;Cℓer], can be done by using the segment indicator
embeddings g1 and g2 used to differentiate token embeddings in first segment and the input
sequence embedding vectors.
Matrix Wvalue is set such that the columns of each Cℓs are picked from the token embed-
dings in the first segment: {{[er;Cℓer]}n

2

r=1}dℓ=1.

2. The second attention head simply copies the input Ṽ (j−1)
i : This can be done with an

attention head that attends to itself at each position j and copies Ṽ (j−1)
i to output.

The output of the two attention heads are simply added up. The output embeddings will now look as
follows: <THINK>, {[CiṼ

(j−1)
i ; Ṽ

(j−1)
i ]}L/2

j=1.

MLP to represent HardMax(Ci +Wi)Ṽ
(j−1)
i : Our current token embeddings at any position j

contain both CiṼ
(j−1)
i and Ṽ

(j−1)
i . The first layer of MLP can be used to compute (Ci+Wi)Ṽ

(j−1)
i

by setting the weights of the layer using Wi. We simulate HardMax operation as follows:

õj/ ∥õj∥2 , where õj = GELU((Ci +Wi)Ṽ
(j−1)
i )

The ℓ2 normalization is equivalent to RMSnorm operation (Zhang & Sennrich, 2019). This is an
approximation of the HardMax function, which are equivalent only under the following conditions:
for each column j

1. either C(j)
i or W (j)

i are all 0s.

2. C
(j)
i and W

(j)
i are both one-hot vectors and they match at the corresponding activated

dimension.
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Algorithm 6 CIRCULAR SHIFT-MODULE: Self-attention and MLP layers for Circular shift
Require: Input embeddings (Token, Context matrix index indicator, Start and End Indicator, and Segment

embeddings split into 2 segments) (Table 7). Important ones (for the current module) are

1. Token embeddings: First segment contains {[ej ;C1ej ]}n
2

j=1, · · · , {[ej ;Cdej ]}n
2

j=1 and the second
segment contains [Shift(V (1)

i−1);0], · · · , [Shift(V
(L/2)
i−1 );0],0

2. Start and End indicator: First segment contains all 0s and second segments contains b1 and b2 at
first and last embedding, while containing all 0s everywhere else.

Step a: Using a self-attention layer with 3 attention heads, change the token embeddings in second segment
as <THINK>, {oj}L/2+1

j=2 s.t. oj has (1n ⊗ In)
⊤ V

(j−1)
i in [1, n] dimensions and (In ⊗ 1n)V

(j%L)
i in

[n+ 1, 2n] dimensions. Primarily,
• Attention head 1: Computes attention score between any two positions p1, p2 as ap1,p2 = 1 iff
p2 − p1 = −1 and 0 otherwise. Value matrix Wvalue is set such that for any input x, the output of
Wvaluex is given by (for all p1 ∈ [1, n])

(Wvaluex)p1 =

n−1∑
j=0

xn·j+p1 .

• Attention head 2: Computes attention score between any two positions p1, p2 as ap1,p2 = 1 iff
p2 − p1 = 0 and 0 otherwise. Wvalue is set such that for any input x, the output of Wvaluex is
given by (for all p1 ∈ [1, n])

(Wvaluex)p1+n =

n∑
j=1

xj+p1n−n.

• Attention head 3: Computes attention score between any two positions p1, p2 as ap1,p2 = 1 iff b2
and b1 are present as at positions p1 and p2 respectively and 0 otherwise. Wvalue is set such that
for any input x, the output of Wvaluex is given by (for all p1 ∈ [1, n])

(Wvaluex)p1+n =

n∑
j=1

xj+p1n−n.

Sum the output of the three heads.
Step b: Use MLP layer to change the token embeddings in second segment as <THINK>, {oj}L/2+1

j=2 s.t. oj

has Ṽ (j−1)
i with some small error. Primary computation at each position j is given as (for a large N )√

2/πN2

(
GELU(

1

N
(1n ⊗ In)

⊤ V
(j−1)
i +

1

N
(In ⊗ 1n)V

(j%L)
i )− GELU(

1

N
(1n ⊗ In)

⊤ V
(j−1)
i )− GELU(

1

N
(In ⊗ 1n)V

(j%L)
i )

)
,

which will return

Ṽ
(j−1)
i +O(N−4) := (1n ⊗ In)

⊤ V
(j−1)
i ⊙ (In ⊗ 1n)V

(j%L)
i +O(N−4)

Return the output embeddings (as given in Table 9).
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Algorithm 7 TRANSLATE-MODULE: Self-attention and MLP layers for Translate
Require: We will require an index, and input embeddings as input:

• Index i (indicating index of the MLT-MODULE it is a part of),
• Embeddings (Token, Context matrix index indicator, Start and End Indicator, and Segment embed-

dings split into 2 segments) from the output of its preceding CIRCULAR SHIFT-MODULE (Table 9).
Important ones (for the current module) are

1. Token embeddings: First segment contains {[ej ;C1ej ]}n
2

j=1, · · · , {[ej ;Cdej ]}n
2

j=1 and
the second segment contains <THINK>, [Ṽ (1)

i ;0], · · · , [Ṽ (L/2)
i ;0]

2. Context matrix index indicator: First segment contains
{l1}[1,n2], {l2}[1,n2], · · · {ld}[1,n2] and second segments contains all 0s vectors.

Step a: Using a self-attention layer, change token embeddings in the second segment as <THINK>,
{[CiṼ

(j−1)
i ; Ṽ

(j−1)
i ]}L/2

j=1.
• Primarily, the self-attention score between embeddings that contain a second segment token

embedding [Ṽ
(p2)
i ;0] and a first segment token embedding [ep1 ;Crep1 ] (for any r ∈ [1, d],

p1 ∈ [1, n2], p2 ∈ [1, L]) is computed as

⟨ep1 , Ṽ
(p2)
i ⟩ · ⟨lr, li⟩,

where lr is the corresponding context matrix index indicator for the first segment embedding under
consideration and li is constructed using the index i.

• Crep1 is used as value vector from each first segment embeddings.
Step b: Using an MLP layer, change token embeddings in the second segment to contain <THINK>,
{oj}L/2+1

j=2 , where

oj = õj/ ∥õj∥2 , where õj = GELU((Ci +Wi)Ṽ
(j−1)
i )

Return the output embeddings (as given in Table 8).
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I ADDITIONAL EXPERIMENT SETUPS

I.1 FORMAT OF TRAINING TEXT

Here we present examples of training data used for experiments in Section 3

INPUT:

"<|begin of text|> <|begin of text|> <|begin of text|> <|start header id|> user

<|end header id|>

You are performing a special translation task called language task 2. The subset of

dictionaries used are as follows:

Dictionary used from language 1 to language 2: ;

Dictionary used from language 2 to language 3: ;

Dictionary used from language 3 to language 4: ;

Dictionary used from language 4 to language 5: ;

Dictionary used from language 5 to language 6:;

Now please perform language task 2 translation from the following sequence in language

1 to language 6. Do not use code! You must only reponse in the form: "Sequence in

language 1: [the sequence in language 1]; Sequence in language 2: [the sequence

in language 2]; Sequence in language 3: [the sequence in language 3]; Sequence in

language 4: [the sequence in language 4]; Sequence in language 5: [the sequence in

language 5]; Sequence in language 6: [the sequence in language 6]". The sequence you

need to translate from language 1 is: C B E F E B D E C B C A H E F B C A D F G B D G

H E D E.<|eot id|><|start header id|>assistant<|end header id|>"

LABEL:

"<|begin of text|>The translation result is: Sequence in language 1: C B E F E B D E

C B C A H E F B C A D F G B D G H E D E; Sequence in language 2: <T> <T> <T> <T> <T>

<T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T>

<T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T>; Sequence in language 3: <T> <T>

<T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T>

<T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T>; Sequence in language

4: <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T>

<T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T>; Sequence

in language 5: <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T>

<T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T>

<T> <T>; Sequence in language 6: q o v t t u t o s u s s s o p p r o q s o q r q p s t

p;<|eot id|>" ,

Figure 13: Input with completely masked context and internalized chain-of-thought. We use this
data format to evaluate the model’s capability on conducting translation without anything (useful
information) in context.
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INPUT:

"<|begin of text|> <|begin of text|> <|begin of text|> <|start header id|> user

<|end header id|>

You are performing a special translation task called language task 2. The subset of

dictionaries used are as follows:

Dictionary used from language 1 to language 2:

D A -> N J; A D -> J I; B C -> O I; C C -> N N; H E -> P K; F E -> M L; G H -> L N; E G

-> P J; A F -> K M; E C -> K P; B E -> K I; F D -> M N; E D -> P O; B A -> P L; B D ->

I P; D G -> I I; D H -> I O; E F -> L M; H B -> J K; E A -> K J; A H -> L J; G C -> I

K; F B -> P I; F G -> J O;

Dictionary used from language 2 to language 3:

L P -> V X; M K -> R W; L I -> X R; N O -> R R; M O -> U Q; I L -> W V; O K -> Q W; P M

-> R U; J I -> V S; I M -> X W; O I -> Q U; N P -> R Q; I N -> Q X; N L -> R S; I J ->

Q T; N J -> S T; L O -> U V; P J -> T X; J L -> Q R; P K -> W R; N M -> S U; M I -> Q

S; P O -> S S; K K -> U U; P L -> X U;

Dictionary used from language 3 to language 4:

X U -> Y d; R W -> a c; T Q -> Y Y; U R -> Z Y; T X -> e d; W W -> e Y; U X -> f f; X R

-> b Y; Q Q -> b c; S S -> c c; V U -> Z d; R S -> f a; V W -> Y e; R U -> f c; U S ->

c a; U W -> c f; W X -> d Y; R Q -> c Z; V Q -> Z f; W S -> b d; V R -> a a; R X -> f

Z; U Q -> d c; Q V -> d Z; S W -> Y b;

Dictionary used from language 4 to language 5:

c a -> m j; b Y -> n k; c f -> k m; c b -> l n; Z d -> g h; d c -> n g; b f -> i k; f Z

-> i i; Z Y -> g l; Y a -> l l; b e -> l i; Y Y -> m g; d Z -> g g; d e -> k l; f c ->

j g; f f -> k n; b Z -> n h; e a -> i m; c e -> j h; Y d -> i h; Y b -> h i; Y f -> h

k; a Y -> k j; a a -> m k; c Y -> h m;

Dictionary used from language 5 to language 6:

k g -> p s; h h -> r q; j m -> o o; i h -> q s; l m -> p o; i j -> o q; l j -> q u; k m

-> v u; g h -> p p; g n -> v p; n h -> s s; m m -> s o; m k -> v t; m i -> u t; h k ->

t o; n k -> r u; j n -> t u; g l -> t s; j g -> v v; h g -> u s; n l -> s u; l k -> q

o; h l -> t p; i i -> p q; k i -> r o; l h -> u p;

Now please perform language task 2 translation from the following sequence in language

1 to language 6. Do not use code! You must only reponse in the form: "Sequence in

language 1: [the sequence in language 1]; Sequence in language 2: [the sequence

in language 2]; Sequence in language 3: [the sequence in language 3]; Sequence in

language 4: [the sequence in language 4]; Sequence in language 5: [the sequence in

language 5]; Sequence in language 6: [the sequence in language 6]". The sequence you

need to translate from language 1 is: C B E F E B D E C B C A H E F B C A D F G B D G

H E D E.<|eot id|><|start header id|>assistant<|end header id|>"

LABEL:

"<|begin of text|>The translation result is: Sequence in language 1: C B E F E B D E C

B C A H E F B C A D F G B D G H E D E; Sequence in language 2: K I M L I P K P O I L J

L M O I J I J O I P L N P O K P * * * * * * * * * * * *; Sequence in language 3: X W X

R W R S S W V Q R U Q Q T Q T Q U X U R Q Q W W R * * * * * * * * * * * *; Sequence in

language 4: d Y a c f a Y b Z f f c b c Y Y Y Y f f Z Y b c e Y f Z * * * * * * * * *

* * *; Sequence in language 5: l l k m k j n h k n l n h m m g h k i i h i j h h k g h

* * * * * * * * * * * *; Sequence in language 6: q o v t t u t o s u s s s o p p r o q

s o q r q p s t p;<|eot id|>" ,

Figure 14: Input with complete context and explicit chain-of-thought. We use this data format at the
begining of stage 1 training.
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INPUT:

"<|begin of text|> <|begin of text|> <|begin of text|> <|start header id|> user

<|end header id|>

You are performing a special translation task called language task 2. The subset of

dictionaries used are as follows:

Dictionary used from language 1 to language 2:

D A -> N J; A D -> J I; B C -> O I; C C -> N N; H E -> P K; F E -> M L; G H -> L N; E G

-> P J; A F -> K M; E C -> K P; B E -> K I; F D -> M N; E D -> P O; B A -> P L; B D ->

I P; D G -> I I; D H -> I O; E F -> L M; H B -> J K; E A -> K J; A H -> L J; G C -> I

K; F B -> P I; F G -> J O;

Dictionary used from language 2 to language 3:

L P -> V X; M K -> R W; L I -> X R; N O -> R R; M O -> U Q; I L -> W V; O K -> Q W; P M

-> R U; J I -> V S; I M -> X W; O I -> Q U; N P -> R Q; I N -> Q X; N L -> R S; I J ->

Q T; N J -> S T; L O -> U V; P J -> T X; J L -> Q R; P K -> W R; N M -> S U; M I -> Q

S; P O -> S S; K K -> U U; P L -> X U;

Dictionary used from language 3 to language 4:

X U -> Y d; R W -> a c; T Q -> Y Y; U R -> Z Y; T X -> e d; W W -> e Y; U X -> f f; X R

-> b Y; Q Q -> b c; S S -> c c; V U -> Z d; R S -> f a; V W -> Y e; R U -> f c; U S ->

c a; U W -> c f; W X -> d Y; R Q -> c Z; V Q -> Z f; W S -> b d; V R -> a a; R X -> f

Z; U Q -> d c; Q V -> d Z; S W -> Y b;

Dictionary used from language 4 to language 5:

c a -> m j; b Y -> n k; c f -> k m; c b -> l n; Z d -> g h; d c -> n g; b f -> i k; f Z

-> i i; Z Y -> g l; Y a -> l l; b e -> l i; Y Y -> m g; d Z -> g g; d e -> k l; f c ->

j g; f f -> k n; b Z -> n h; e a -> i m; c e -> j h; Y d -> i h; Y b -> h i; Y f -> h

k; a Y -> k j; a a -> m k; c Y -> h m;

Dictionary used from language 5 to language 6:

k g -> p s; h h -> r q; j m -> o o; i h -> q s; l m -> p o; i j -> o q; l j -> q u; k m

-> v u; g h -> p p; g n -> v p; n h -> s s; m m -> s o; m k -> v t; m i -> u t; h k ->

t o; n k -> r u; j n -> t u; g l -> t s; j g -> v v; h g -> u s; n l -> s u; l k -> q

o; h l -> t p; i i -> p q; k i -> r o; l h -> u p;

Now please perform language task 2 translation from the following sequence in language

1 to language 6. Do not use code! You must only reponse in the form: "Sequence in

language 1: [the sequence in language 1]; Sequence in language 2: [the sequence

in language 2]; Sequence in language 3: [the sequence in language 3]; Sequence in

language 4: [the sequence in language 4]; Sequence in language 5: [the sequence in

language 5]; Sequence in language 6: [the sequence in language 6]". The sequence you

need to translate from language 1 is: C B E F E B D E C B C A H E F B C A D F G B D G

H E D E.<|eot id|><|start header id|>assistant<|end header id|>"

LABEL:

"<|begin of text|>The translation result is: Sequence in language 1: C B E F E B D E

C B C A H E F B C A D F G B D G H E D E; Sequence in language 2: <T> <T> <T> <T> <T>

<T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T>

<T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T>; Sequence in language 3: <T> <T>

<T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T>

<T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T>; Sequence in language

4: <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T>

<T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T>; Sequence

in language 5: <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T>

<T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T> <T>

<T> <T>; Sequence in language 6: q o v t t u t o s u s s s o p p r o q s o q r q p s t

p;<|eot id|>" ,

Figure 15: Input with complete context and internalized chain-of-thought. We use this data format by
the end of stage 1 training as well as the base format for stage 2 training (before dropout)
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