
Leveraging Predictive Equivalence in Decision Trees

Hayden McTavish * 1 Zachery Boner * 1 Jon Donnelly * 1 Margo Seltzer 2 Cynthia Rudin 1

Abstract
Decision trees are widely used for interpretable
machine learning due to their clearly structured
reasoning process. However, this structure belies
a challenge we refer to as predictive equivalence:
a given tree’s decision boundary can be repre-
sented by many different decision trees. The pres-
ence of models with identical decision boundaries
but different evaluation processes makes model
selection challenging. The models will have dif-
ferent variable importance and behave differently
in the presence of missing values, but most opti-
mization procedures will arbitrarily choose one
such model to return. We present a boolean logi-
cal representation of decision trees that does not
exhibit predictive equivalence and is faithful to the
underlying decision boundary. We apply our rep-
resentation to several downstream machine learn-
ing tasks. Using our representation, we show that
decision trees are surprisingly robust to test-time
missingness of feature values; we address predic-
tive equivalence’s impact on quantifying variable
importance; and we present an algorithm to opti-
mize the cost of reaching predictions.

1. Introduction
Decision trees are widely used for interpretable machine
learning (Rudin et al., 2022). Their structure of discrete
decisions has long been leveraged for difficult tasks such as
handling missing data (Therneau et al., 1997) and measur-
ing variable importance (Breiman, 1984). Recent advances
in decision tree optimization (Lin et al., 2020; Demirović

*Equal contribution 1Department of Computer Science,
Duke University, Durham, North Carolina, USA 2Department
of Computer Science, University of British Columbia, Van-
couver, BC, Canada. Correspondence to: Hayden Mc-
Tavish <hayden.mctavish@duke.edu>, Zachery Boner <zach-
ery.boner@duke.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Code for our algorithms and experiments can be found
at https://github.com/HaydenMcT/predictive-
equivalence

et al., 2022; Aglin et al., 2020) – including algorithms for
enumerating the entire set of near-optimal decision trees
(the Rashomon set; Xin et al., 2022) – have garnered sub-
stantial research interest. These advances have enabled new
perspectives on predictive multiplicity (Marx et al., 2020;
Watson-Daniels et al., 2023) and variable importance (Dong
& Rudin, 2020; Fisher et al., 2019; Donnelly et al., 2023).

However, decision trees can be misleading, because they
correspond not just to a classifier but also to a particular
way of evaluating the classifier. Consider the two equivalent
trees in Figure 1. The two trees encode the same logical
AND decision function, but they suggest different orders of
querying X1 and X2. A practitioner would typically deploy
only one of these trees, but either order is equally justified.

X1

0 X2

0 1

X2

0 X1

0 1

(X1 ∧X2)

Figure 1. Two decision trees, suggesting a different evaluation
order, but which represent the same logical formula (X1 ∧X2).

This phenomenon, which we call predictive equivalence
(Sober, 1996), poses several distinct challenges:

(1) Decision trees imply an evaluation procedure that can
get stuck on irrelevant missing information. If x1 is missing
and x2 = 0, the first tree in Figure 1 cannot be traversed,
but the second tree clearly predicts 0.

(2) Tree-based variable importance metrics change across
predictively equivalent trees. For example, Gini importance
will suggest that x2 is more important to the first tree in
Figure 1, even though this order is arbitrary.

(3) Logically equivalent trees with different evaluation or-
ders appear in the Rashomon set as distinct trees. This
phenomenon causes some models to be over-represented in
the Rashomon set, which biases some downstream tasks.

(4) A decision tree implies a constrained order for evaluating
variables, but this order may be sub-optimal when each
variable has an associated cost.

1

https://github.com/HaydenMcT/predictive-equivalence
https://github.com/HaydenMcT/predictive-equivalence


Leveraging Predictive Equivalence in Decision Trees

We provide a representation of decision-tree classifiers that
abstracts away the evaluation order. To do this, we convert
decision trees into disjunctive normal form (DNF; an OR of
ANDs) and reduce to a minimal set of sufficient conditions
for making predictions. This representation allows us to ad-
dress the above challenges: we uncover many cases where
decision trees can still make predictions despite some vari-
ables being missing, we make variable importance metrics
for trees more reliable, we resolve predictive equivalence
in the Rashomon set, and we optimize the cost of variable
acquisition needed to reach a prediction using a tree.

2. Related Work
2.1. Decision Trees and Simplicity

There is a substantial body of work on decision tree learning.
Greedy decision tree algorithms, such as CART (Breiman,
1984) and C5.0 (Quinlan, 2014), find decision trees in a
greedy top-down, recursive manner. The GOSDT algo-
rithm by Lin et al. (2020), the DL8.5 algorithm by Aglin
et al. (2020), and the MurTree algorithm by Demirović et al.
(2022) provide methods to optimize the decision tree hypoth-
esis space directly. A range of other approaches also afford
optimal decision trees via more general solvers (Bertsimas
& Dunn, 2017; Verwer & Zhang, 2019). These algorithms
can be used to find highly accurate decision trees – indeed,
well-optimized single decision trees can approach the perfor-
mance of decision tree ensembles (Vidal & Schiffer, 2020;
McTavish et al., 2022), which are often state of the art for
tabular data (Grinsztajn et al., 2022). Our representation of
decision trees applies to trees discovered via any method.

Our work is particularly related to the problem of expla-
nation redundancy in decision trees. This concept is ex-
plored by Izza et al. (2022), who demonstrate that the paths
taken through the tree to reach predictions (“path explana-
tions”) often have redundant variables in them, which are
not necessary to make the prediction. The authors present
polynomial-time algorithms to compute succinct path ex-
planations. In contrast, we present a method to compute
a minimal boolean logical representation of the entire de-
cision tree, using the Quine-McCluskey algorithm (Quine,
1952; McCluskey, 1956) as a subroutine. This representa-
tion enables succinct path explanations of predictions for
free, once the global representation is computed for some
up-front cost. Our representation also enables several down-
stream applications beyond prediction explanations.

A line of work on the simplicity of machine learning models
shows that when data has noise in the outcomes (common
on many tasks we consider in our experiments), simpler
decision trees will be competitive in performance with more
complicated ones (Semenova et al., 2022; 2023; Boner et al.,
2024). If our decision trees have a small number of leaves,

the number of variables in the Quine-McCluskey subroutine
will be small, and our algorithm for simplification will be
efficient despite the NP-completeness of the problem.

2.2. Applications

Variable Importance. Decision trees have been used for
variable importance since at least the introduction of random
forests (Breiman, 2001a). Notably, specialized metrics that
quantify importance based on the reduction in impurity
achieved when splitting on a particular feature have been
developed to measure variable importance in decision trees
(Louppe et al., 2013; Kazemitabar et al., 2017). In Section
5.1, we show that predictively identical trees can yield very
different impurity reduction values.

There are also metrics such as SHAP (Lundberg & Lee,
2017), permutation importance (Breiman, 2001a; Fisher
et al., 2019), conditional model reliance (Fisher et al., 2019),
LOCO (Lei et al., 2018), and LIME (Ribeiro et al., 2016),
that quantify variable importance based on permuting data
across a particular decision boundary. These metrics are
invariant to predictive equivalence, because they evaluate
only the decision boundary.

Recent work examines variable importance over all models
in the set of near-optimal models (Fisher et al., 2019; Dong
& Rudin, 2020; Donnelly et al., 2023), i.e., the Rashomon
set (Breiman, 2001b; Rudin et al., 2024), rather than a single
model. Of particular note, the Rashomon Importance Distri-
bution (RID) (Donnelly et al., 2023) demonstrated that the
stability of variable importance estimates can be improved
by examining the distribution of variable importances over
Rashomon sets computed on bootstrapped datasets. In Sec-
tion 5.2, we show that predictive equivalence within each
Rashomon set confounds the practical implementation of
RID, and we show how to correct this.

Missing Data. A popular approach for dealing with miss-
ing feature values is to impute them – with either a simple
estimator such as the mean, or a function of the other co-
variates. For background on imputation, see Shadbahr et al.
(2023); Emmanuel et al. (2021); Van Buuren & Oudshoorn
(1999). Multiple imputation accounts for uncertainty in im-
putation by combining results from several estimates (Rubin,
1988; Van Buuren & Oudshoorn, 1999; Schafer & Graham,
2002; Stekhoven & Bühlmann, 2012; Mattei & Frellsen,
2019). There is also a body of work regarding surrogate
splits, a tree-specific approach which learns alternative splits
to make when a variable is missing (Therneau et al., 1997;
Breiman, 1984). Each of these approaches introduces bias
when the probability of a variable being missing depends on
the variable’s underlying value, beyond what can be mod-
eled by the covariates – this setting is referred to as Missing
Not at Random (MNAR) (Little & Rubin, 2019). We show

2



Leveraging Predictive Equivalence in Decision Trees

that our proposed representation reveals examples whose
predictions are identical under any form of imputation.

Imputation can be detrimental to prediction when missing-
ness provides information about the label. There are a wide
range of theoretical and empirical findings supporting the
need to reason explicitly on missingness in this setting (Sper-
rin et al., 2020; Le Morvan et al., 2021; Van Ness et al.,
2023; Stempfle et al., 2023; McTavish et al., 2024). Many
such approaches are tree or tree-ensemble specific, leverag-
ing the simple structure of trees (Kapelner & Bleich, 2015;
Twala et al., 2008; Beaulac & Rosenthal, 2020; Therneau
et al., 1997; Wang & Feng, 2010; Chen & Guestrin, 2016).
However, such missingness-specific modeling requires suf-
ficient observation of missingness at training time. When
a missingness pattern occurs only at test time, or when
the missingness mechanism has a distribution shift from
training time (the latter setting being particularly common
in medical domains, e.g., Groenwold, 2020; Sperrin et al.,
2020), it is difficult to learn missingness-specific patterns.

Stempfle & Johansson (2024) propose a metric to measure
how often models rely on features with missing values,
and they propose a model class designed to be robust to
missingness. Their scoring model MINTY uses logical
disjunctions such that, if any term in a disjunction is known
to be true, that entire disjunction can be evaluated. This
allows one variable to serve as a backup when another is
missing. We show that our representation for decision trees
dramatically improves the trees’ performance on this metric,
without changing the decision boundary.

Cost Optimization. Many real-world problems have a
cost to acquire variables – for example, ordering an MRI is
expensive and time-consuming. Many types of costs have
been studied (Turney, 2002), but our focus is on test cost,
or the minimum cost associated with obtaining a prediction
from a model. There are many cost-sensitive decision tree
algorithms in the literature (Lomax & Vadera, 2013; Costa
& Pedreira, 2023). However, all of these approaches directly
optimize a decision tree to account for these costs and use
that tree top-down at test time, even if there is a more cost-
effective way to obtain predictions from the same tree. In
contrast, we optimize the cost of evaluating predictions from
a given decision tree (cost-optimal or otherwise) when some
or all variables are unknown. Note that we assume each
feature has a fixed cost across all samples.

We optimize the cost of applying a decision tree by applying
Q-learning (Watkins, 1989). Q-learning is a model-free
approach for policy learning that estimates the value of each
action in each state by allowing an agent to explore the state
space. During exploration, the reward of the j-th visited
state is gradually propagated back to the (j − 1)-th state.
Given sufficient episodes – iterations of this exploration –

it has been shown that Q-learning will produce the opti-
mal policy for a given problem (Watkins, 1989; Watkins
& Dayan, 1992). Since the introduction of Q-learning, the
field of reinforcement learning has dramatically expanded.
We refer readers to recent survey papers on the field for a
more complete literature review (Shakya et al., 2023; Wang
et al., 2022). However, we found that the update rule and
regime proposed by (Watkins, 1989) were sufficient.

3. Methodology
Notation. Consider a dataset D = {(xi, yi)}ni=1, where
each xi ∈ Rd and yi ∈ {0, 1} pair is sampled i.i.d. from
some unknown distributionD. For the purposes of our work,
these xi’s may be continuous, ordinal, categorical, or binary.
We refer to the jth feature of the ith sample as xi,j . We
use the notation x·,j to refer to the jth feature. We consider
binary classification problems in this work, though our re-
sults can be extended to multiclass classification with minor
adjustments to the algorithms and theorems. We also work
with binarized datasets, in which feature j of D is bina-
rized into Bj different binary features. For example, the
feature age may be binarized into binary features age ≤ 5,
age ≤ 10, etc. We denote the kth binary feature correspond-
ing to feature j of the ith sample as b(k)i,j . We reserve capital
letters X and Y for random variables, and we index random
variables via subscripts, i.e., Xi.

Given a bit-vector θ ∈ {0, 1}d, we define the mask function
m(xi, θ) := (xi,j if θj = 1;NA if θj = 0)

d
j=1. For con-

venience, we often leave out dependence on θ and write
m(xi) to denote a masked version of xi. Let Jm(xi) :=

{j|m(xi)j ∈ R}. A completion of m(xi) is a vector z ∈ Rd

s.t. zj = m(xi)j ,∀j ∈ Jm(xi). When discussing cost sensi-
tive optimization, we denote the cost associated with each
input feature x·,j as cj .

3.1. Representing Trees to Resolve Predictive
Equivalence

Given any decision tree T , we represent T in a simplified
disjunctive normal form (an OR of ANDs), which we denote
by TDNF. See Figure 2 for an example of this representation.

This approach yields a number of useful properties. It re-
mains globally interpretable, because we can present a sim-
ple logical formula for the whole tree. The new representa-
tion is still faithful to all the original predictions of the tree
(Proposition 3.1). It can also make predictions whenever
there is sufficient information to know the prediction on the
original tree (Theorem 3.2), which we leverage later in our
applications. It provides non-redundant explanations, mean-
ing it does not suffer from the interpretability issues Izza
et al. (2022) identify in decision trees (Proposition 3.3). It
maps all predictively equivalent trees to the same form (The-

3



Leveraging Predictive Equivalence in Decision Trees

X1

X3

0 1

X2

0 1
DNF (X1 ∧X2) ∨ (¬X1 ∧X3)
BCF (X1 ∧X2) ∨ (¬X1 ∧X3) ∨ (X2 ∧X3)

Figure 2. An example of a decision tree where the minimal DNF
and Blake canonical forms differ. The minimal DNF of this tree
describes the tree’s behaviour with two cases. The Blake canonical
form includes a third reason for predicting True, which always
falls into the preceding two cases but relies on different variables.

orem 3.4). A proof for each of these statements is provided
in Appendix A.

Proposition 3.1 (Faithfulness). Consider any tree T and
let x ∈ Rd be a complete sample. Then TDNF(x) = T (x).
Theorem 3.2 (Completeness). TDNF(m(x)) ̸= NA if and
only if, for all completions z of m(x), T (z) = TDNF(m(x)).

Proposition 3.3 (Succinctness). Let the explanation for
TDNF(x) be any term in SimplePosExpr that is satis-
fied by x when TDNF(x) = 1 (or SimpleNegExpr when
TDNF(x) = 0). Then no variable in this explanation is
redundant.

Theorem 3.4 (Resolution of Predictive Equivalence). Deci-
sion trees T and T ′ are predictively equivalent if and only
if TDNF = T ′

DNF (with equality defined by Algorithm 3)

Algorithm 1 describes how we transform trees into min-
imal DNF representation. This algorithm combines the
positive-predicting leaves of the decision tree into an ex-
pression in disjunctive normal form. This expression is then
simplified with a slightly modified version of the Quine-
McCluskey algorithm (Quine, 1952) (see Algorithm 5) to
find the minimal form of the boolean expression encoding
positive predictions by the tree. We perform the same proce-
dure on the negative-predicting leaves to obtain a minimal
boolean expression for evaluating whether the tree predicts
negative. Algorithm 2 explains how this method provides
predictions, with ‘substitute’ meaning each variable with
a known value is replaced by a constant (e.g., if xi,1 = 1,
(x·,1∧x·,2)∨(¬x·,2) becomes (1∧x·,2)∨(¬x·,2) = True).
Equivalence is defined in Algorithm 3 in Appendix B.

While the basic simplified form has a number of useful
properties, it does not directly afford all possible sufficient
conditions for positive and negative predictions. Consider,
for example, the tree in Figure 2: there are 3 sufficient condi-
tions for a positive prediction, but our basic simplified form
will only identify two of them. We leverage a second repre-
sentation, called the Blake canonical form (Blake, 1937), to
solve this problem: in Algorithm 4, we find all possible min-

Algorithm 1 Compute DNF Representation from Tree
Input: A decision tree T .
Output: TDNF, A minimal boolean formula in disjunctive
normal form with equivalent logical form to T .
Let L be the set of leaves of the decision tree, represented
by a conjunction of the variables and decisions on the
path to the leaf. Denote by L+ the leaves that predict
positive, and L− the leaves that predict negative.
PosExpr ← ∨l∈L+ l
NegExpr ← ∨l∈L− l
SimplePosExpr ← QuineMcCluskey(PosExpr)
SimpleNegExpr ← QuineMcCluskey(NegExpr)
Return (SimplePosExpr, SimpleNegExpr)

Algorithm 2 Prediction with the DNF representation
Input: m(x), the sample to predict; TDNF.
Output: Prediction from TDNF(m(x)) (0, 1 or NA)
for term t in TDNF.SimplePosExpr:

Return 1 if known feature values from m(x) satisfy t
for term t in TDNF.SimpleNegExpr:

Return 0 if known feature values from m(x) satisfy t
expr ← Substitute known feature values of m(x) into
TDNF.SimplePosExpr
expr← QuineMcCluskey(expr)
Return 1 if expr == True
Return 0 if expr == False
Return NA

imal sufficient conditions for a positive prediction, and all
possible minimal sufficient conditions for a negative predic-
tion. This also corresponds to identifying all partial concept
classes (Alon et al., 2022) for which the tree predicts true
(resp. False). This alternative form can optionally be used
to simplify the prediction logic for our DNF – since it is
now sufficient simply to evaluate each separate term in the
DNF, without needing to do further logical simplification.

3.2. Datasets

We consider four datasets throughout this work and eight ad-
ditional datasets in Appendix C. We refer to the primary four
as COMPAS (Larson et al., 2016), Wine Quality (Cortez
et al., 2009), Wisconsin (Street et al., 1993), and Coupon
(Wang et al., 2017). COMPAS measures 7 features for 6,907
individuals, where labels are whether the individuals were
arrested within 2 years of being released from prison. Wine
Quality reports 11 features over 6,497 wines along with a
numerical quality rating between 1 and 10. We binarize
these ratings into high (> 5) and low (≤ 5) quality classes
and predict this binary rating. Wisconsin is a breast cancer
dataset and contains 30 features over 569 masses, where
labels designate whether the tumor was malignant or benign.
Coupon measures 25 features for 12,684 individuals, and

4



Leveraging Predictive Equivalence in Decision Trees

Dataset Total Trees w/o Trivial Ours
COMPAS 12785± 3e3 3913± 837 2135± 448
Coupon 666± 54 136± 19 55± 8

Wine 6936± 700 2341± 377 1409± 256
Wisc. 24052± 9e3 11990± 5e3 4657± 2e3

Table 1. Total number of trees, number of trees without trivial re-
dundancies, and number of predictively nonequivalent trees (ours)
in the Rashomon set. We abbreviate “Wine Quality” to “Wine”
and “Wisconsin” to “Wisc.”

labels denote whether or not the individual would accept
a coupon. See Appendix D.1 for complete details on the
preprocessing applied to each dataset.

4. Quantifying Predictive Equivalence
We can directly identify predictively equivalent decision
trees using Algorithm 3. We now apply these tools to the
Rashomon set of decision trees, found by the TreeFARMS
algorithm, to measure the prevalence of predictive equiva-
lence in practice (Xin et al., 2022). The Rashomon set is de-
fined as the set of all models in a hypothesis space F within
ε training objective of the optimal model, where the objec-
tive is denoted Obj(f,D). Given an optimal model on the
training data f∗ ∈ argminf∈F Obj(f,D), the Rashomon
set is defined as:

R(F , D) := {f ∈ F|Obj(f,D) ≤ Obj(f∗, D) + ε}.

TreeFARMS uses a branch and bound algorithm with dy-
namic programming to find the Rashomon set of sparse
decision trees, with F the hypothesis space of decision trees
and Obj(f,D) defined as misclassification error plus a con-
stant penalty for each leaf in the tree (Xin et al., 2022). The
algorithm maintains a lower bound on the objective function
of each possible subtree, and uses these lower bounds to
prune large sections of the search space which provably
cannot lead to near-optimal models.

We compute the Rashomon set of decision trees for the
COMPAS, Coupon, Wine Quality, and Wisconsin datasets,
and compare the total number of decision trees in each set
to the number of unique DNF forms within each set. We
use TreeFARMS (Xin et al., 2022) with maximum depth 3
and a standard per-leaf penalty of 0.01, identifying all trees
within 0.02 of the optimal training objective. TreeFARMS
can optionally remove trees that are trivially equivalent to
other trees in the Rashomon set (i.e., the last split along
some path leads to the same prediction in both leaves), so
we also present the number of trees that have no such trivial
splits. Going beyond trivial splits, we use our representation
to identify the number of trees with unique decision logic.
Table 1 presents this measure of Rashomon set size averaged
over 5 folds of each dataset. We found that our represen-

X2
gini = 0.375

samples = 100
value = [75, 25]

X1
gini = 0.5

samples = 50
value = [25, 25]

gini = 0.0
samples = 50
value = [50, 0]

gini = 0.0
samples = 25
value = [0, 25]

gini = 0.0
samples = 25
value = [25, 0]

TrueFalse

TrueFalse

X1 Gini Importance: 0.66
X2 Gini Importance: 0.33

X1
gini = 0.375

samples = 100
value = [75, 25]

X2
gini = 0.5

samples = 50
value = [25, 25]

gini = 0.0
samples = 50
value = [50, 0]

gini = 0.0
samples = 25
value = [0, 25]

gini = 0.0
samples = 25
value = [25, 0]

TrueFalse

TrueFalse

X1 Gini Importance: 0.33
X2 Gini Importance: 0.66

Figure 3. Two equivalent decision trees for the setting where Y =

X1X2 and X1, X2
i.i.d.∼ Bernoulli(0.5). Although they always

produce identical predictions, achieve the same objective value,
and are produced by the same algorithm, these two trees produce
dramatically different variable importance values. gini refers
to the Gini coefficient of each leaf, samples to the number of
points falling into each leaf, and value denotes the number of
negative (left) and positive (right) samples in the leaf.

tation revealed a substantial number of trees with identical
decision logic. Appendix C.2 presents similar results across
many Rashomon set parameter configurations.

5. Case Study 1: Variable Importance
5.1. Gini Importance

Predictive equivalence poses an immediate challenge for
variable importance methods. To demonstrate this, we con-
sider the toy setting where Y = X1X2 and X1, X2

i.i.d.∼
Bernoulli(0.5). Figure 3 presents two distinct decision
trees that perfectly match this data generating process. Even
in this simple case, we observe that equivalent trees can
produce dramatically different variable importances
when computing an impurity-based variable importance
such as Gini importance. The first tree claims X0 is twice
as important as X1 and the second tree claims the opposite.

This effect becomes more pronounced with more variables.
We next consider a similar data generating process with
Y =

∏10
i=1 Xi and X1, . . . , X12

i.i.d.∼ Bernoulli(0.5).
There are 12 input variables but only variables 1 though
10 are used in the data generation process, meaning there
are 2 unimportant variables. We greedily fit 3 predictively
equivalent decision trees over the same data using different
random seeds and measured the Gini importance of each
variable to each tree. Figure 4 shows the distribution of
importance for each variable over these trees. We observe
that the importance of each variable varies widely over
predictively equivalent trees. Moreover, the importance
of some useful variables is nearly indistinguishable from

5



Leveraging Predictive Equivalence in Decision Trees

X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9
X_10 X_11 X_12

Feature

0.0

0.1

0.2

0.3

0.4

0.5
Im

po
rta

nc
e

Gini Importance of 
Three Predictively Equivalent Trees

Figure 4. The Gini Importance for 12 variables over 3 predictively
equivalent decision trees. Here, each color represents a different
tree. Even though these trees are predictively equivalent, they
produce radically different variable importance values.

the importance of the extraneous variables – e.g., X10 has
importance close to 0.

5.2. Rashomon Importance Distribution

We now examine the impact of predictive equivalence on a
state-of-the-art variable importance method: the Rashomon
Importance Distribution (RID, Donnelly et al., 2023). RID
computes a stable cumulative density function (CDF) of
variable importance over possible datasets using variable
importance over the Rashomon set. In particular, the value
of this CDF for feature j at value k (i.e., the probability that
feature j has importance less than or equal to k) is computed
as the expected proportion of models in the Rashomon set
for which feature j has importance less than k.

RID is defined over a set of functions, meaning it expects
each member of the Rashomon set to be a unique input-
output mapping. In practice, however, RID operates over
the Rashomon set of decision trees computed by TreeFarms
(Xin et al., 2022). This set contains multiple predictively
equivalent trees, which effectively places more weight on
functions that can be expressed through many distinct trees
and biases RID toward the variables that are important in
these duplicated models. However, this bias can be removed
by considering only one member of each set of predictively
equivalent trees using our representation.

To demonstrate this effect, consider the following
simple data generating process (DGP). With input
variables X1, X2 ∼ Bernoulli(

√
0.5) and X3 ∼

Bernoulli(0.9X1X2+0.05), let Y ∼ Bernoulli(0.9X3+
0.05). We compute a “ground truth” variable importance
value for this DGP by computing the permutation impor-
tance of each variable to the model f(X1, X2, X3) = X3.

Table 2 reports the 1-Wasserstein distance between the
ground truth importance value and the distribution of impor-

Distance to Ground Truth
Method X1 X2 X3

Original RID 0.120 0.136 0.232
PE Corrected RID 0.092 0.105 0.182

Table 2. The 1-Wasserstein distance (Vaserstein, 1969; Kan-
torovich, 1960) between the ground truth importance value (repre-
sented as a distribution with all weight at the single true value) and
the distribution from RID with and without correcting for predic-
tively equivalent trees on the synthetic case described in Section
5.2. Controlling for predictive equivalence improves the estimated
importance of each variable.

tance from RID with and without correcting for predictive
equivalence. When predictively equivalent trees are not
accounted for, RID places more weight further from
ground truth on all three variables.

The confounding effect of predictively equivalent trees on
RID can also be observed on real data. Figure 5 shows
the distribution of importance from RID before and after
controlling for predictively equivalent trees for three impor-
tant variables on the COMPAS dataset. While there is no
known ground truth importance value to compare against
here, we see that a substantial distribution shift also occurs
on real data. In fact, for each variable, the two-sample
Kolmogorov-Smirnov test for the equality of distributions
found a significant difference between distributions for each
variable with a target p-value of 0.05, with test statistics of
0.043 for age, 0.048 for juvenile crimes, and 0.059 for pri-
ors count and p < 0.001 in each case. Appendix C.3 reports
these values over additional datasets, and finds significant
distribution shift in at least one variable for every dataset
except one, for which a decision stump is sufficient.

6. Case Study 2: Missing Data
Decision trees are regularly used in the presence of missing
data because they can be easily adjusted to handle missing-
ness (Therneau et al., 1997). Our method allows identifica-
tion of many cases where adjustments are not needed.

Consider a setting where data is missing from the test set,
but there is no observed missingness in the training set. The
standard approach is to impute missing features, but this
threatens interpretability by complicating the pipeline from
input data to prediction. Our representation can identify all
cases where imputation is not needed across a wide range of
missingness settings, avoiding this issue. Theorem 3.2 and
its Corollary 6.1 establish that whenever TDNF makes a non-
NA prediction, the prediction matches the tree’s prediction
under perfect oracle imputation (meaning the oracle directly
provides the missing value). As per Corollary 6.2, that
means we can use DNFs to handle missingness in a way
that is robust to a wide range of missingness mechanisms.

6



Leveraging Predictive Equivalence in Decision Trees

Figure 5. The distribution of variable importance from RID for three important variables on the COMPAS dataset, with and without
correcting for predictive equivalence. When adjusting for predictive equivalence (shown in orange), more probability mass is given to
zero importance for age and number of juvenile crimes, while high importance values receive more probability mass for number of priors.
All other variables in this dataset had all probability mass at 0 importance in both cases.

The only setting where we may lose information is when
missingness itself is informative about the label – but in a
test-time missingness setting, where we have not seen any
data with missingness during training, it is not possible to
train a model to handle informative missingness anyway.
Proofs of these corollaries are given in Appendix A.

Corollary 6.1 (Irrelevance of Imputation). Let x ∈ Rd.
Let g : R ∪ {NA}d → Rd be any imputation function.
If TDNF(m(x)) ̸= NA, then T (g(m(x))) = T (x), which
corresponds to oracle imputation.

Corollary 6.2 (Unbiasedness under test-time missingness).
Let x ∈ Rd. When TDNF(m(x)) ̸= NA, its predictions are
an unbiased estimator for T (x) with respect to the random
missingness mechanism. This holds even if the mechanism
is Missing Not At Random.

We demonstrate empirically that decision trees rarely re-
quire additional missingness handling to predict on samples
with missing data. In Figure 6, we introduce synthetic miss-
ingness (Missing Completely at Random) to a variety of
real-world datasets by independently removing each feature
of each sample with probability p. Using our DNF-based
prediction method, we demonstrate that decision trees can
regularly predict on a substantial number of points even
when many features are missing. This means a decision
tree’s prediction is the same for most samples regardless
of how a practitioner handles missing data, including any
choice of imputation (Corollary 6.1).

In Figure 6, we show trees can predict substantially more
often than standard ways of determining when a decision
tree requires missingness handling would suggest. Since
trees are ordinarily evaluated by following a path from root
to leaf, the “path-based” baseline reports NA when a split
is encountered that depends on a feature of unknown value.
This same approach was recently used in a study of models’
reliance on missingness-specific logic (Stempfle & Johans-
son, 2024). We also compare to a function-agnostic baseline
that checks whether any feature of the model is missing. Ex-

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

COMPAS
ours
path-based
used-features

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

Wine Quality

0.0 0.2 0.4 0.6 0.8 1.0
Missingness Prob per Feature

0

20

40

60

80

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

Wisconsin

0.0 0.2 0.4 0.6 0.8 1.0
Missingness Prob per Feature

0

20

40

60

80

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

Coupon

% Samples such that CART trees 
 can Predict without Imputation

Improvement at 50% Missingness per Feature:
Compas Wine Wisconsin Coupon

path 2.4× 3.9× 2.6× 3.4×
features 32.8× 64.6× 28.6× 16.1×

Figure 6. Rate at which decision trees can make predictions as
missing values are added. These results use a simple CART tree,
as implemented by SKLearn (Pedregosa et al., 2011), with depth
3 and default parameters. The table shows the ratio of # samples
identified under our method vs the two baselines.

periments on more datasets and with more tree algorithms
are in Appendix C.4 and Appendix E, respectively.

We can extend this investigation of decision tree robustness
beyond individual trees to the set of all near-optimal decision
trees (the Rashomon set). We quantify how often a sample
can be classified without using imputation by at least one
decision tree in the Rashomon set (as found by TreeFARMS,
Xin et al., 2022). We also show that when we use the best
available model from the Rashomon set for each sample,
we achieve comparable accuracy to the optimal model if we
had not had missing data. Figure 7 shows that a majority of

7



Leveraging Predictive Equivalence in Decision Trees

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
Ro

bu
st

 P
re

di
ct

io
ns

COMPAS

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Wine Quality

0.0 0.2 0.4 0.6 0.8 1.0
Probability of Missingness per Feature

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
Ro

bu
st

 P
re

di
ct

io
ns

Wisconsin

Proportion Robust Predictions

0.0 0.2 0.4 0.6 0.8 1.0
Probability of Missingness per Feature

0.0

0.2

0.4

0.6

0.8

1.0 Coupon

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
n 

In
co

m
pl

et
e 

Da
ta

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
n 

In
co

m
pl

et
e 

Da
ta

Accuracy on Incomplete data

Proportion of non-NA Predictions and Accuracy 
 for Selecting Rashomon Set Models Robust to Missingness

Figure 7. Rate at which at least one near-optimal tree can continue
to make predictions as missing values are added, as well as ac-
curacy on those predictions. These results use TreeFARMS (Xin
et al., 2022) with maximum depth 3 and a standard per-leaf penalty
of 0.01, with an epsilon of 0.02

samples can be predicted even with test-time missingness
probability above 50% per feature. Note that the added
ability to evaluate trees under the DNF form is built into the
Rashomon set – if one tree is in the Rashomon set, all its
predictively equivalent trees that are similar in sparsity and
depth are also in the Rashomon set.

7. Case Study 3: Improving Cost Efficiency
When a user obtains the value for each feature in an “online
setting” – i.e., iteratively decides which feature to discover
– it may be tempting to simply traverse a decision tree and
purchase features in the order they are encountered. If
each feature has an associated cost, this naı̈ve approach is
needlessly expensive. We demonstrate that our decision
tree simplification can reduce the cost of evaluating a tree
without changing the decision boundary at all.

We introduce a Q-learning approach to learn the least ex-
pensive way to evaluate a decision tree. If any clause in the
Blake canonical form of a decision tree is satisfied, we know
sufficient information to form a prediction. Thus, the goal
is to learn the minimum cost policy that satisfies at least one
clause of this representation, yielding the following setting:

State space: Each state is defined by the status of all (bina-
rized) features, where each feature may be 0, 1, or unknown.
With db :=

∑d
j=1 Bj binary features, this yields 3db states.

Actions: In each state, the Q-learner chooses to obtain one
of the unknown features, transitioning to either the state
where the measured feature is 0 or 1. For example, working

with the state {x·,1 =?, x·,2 =?}, purchasing x·,1 transitions
to either {x·,1 = 0, x·,2 =?} or {x·,1 = 1, x·,2 =?}. In each
episode, a random row of the training dataset is selected,
and the value in this row is used to determine the value of
each queried feature. We restrict the actions available to the
Q-learner to only include the features used in the current
decision tree of interest.

Reward Function. When a feature b
(k)
i,j (the kth bin on the

jth feature of the ith example) is measured, a cost of cj (i.e.,
a reward of −cj) is incurred if there is no k′ such that b(k

′)
i,j

has been purchased; otherwise, no cost is incurred to reflect
the fact that a practitioner would obtain the value of the
input feature, not an individual bin. If enough features are
known to satisfy any clause of the Blake canonical form of a
tree, a reward of

∑d
j=1 cj is given, and the current episode

of Q-learning is terminated.

Q-learning generally aims to learn a num states ×
num actions matrix, indicating the quality of every ac-
tion in every state. In our setting, this yields a 3db × db
matrix, which is infeasible to store – this matrix would have
4.23×1028 entries on the largest of our datasets. We address
this problem in two ways. First, we consider only “reason-
able actions” – actions that measure a feature that is actually
used in the tree, immediately ruling out any state related to
measuring other features. Second, we avoid creating this
large matrix by instead using a hash table that maps from
a state to a db−dimensional vector indicating the expected
reward of each action in that state. This hash table is ini-
tially empty; when a new state is visited during training,
a new db−dimensional vector is added to the hash table.
This procedure allows us to avoid storing information for
states that are never realized – for example, if two binarized
features signify age < 5 and age < 8, it is impossible for
the former to be true while the latter is false.

We initialize our hash table using the reward obtained by
directly traversing the decision tree of interest; Appendix G
describes this procedure in detail. In our experiments, we
run 10,000 episodes of exploration to train our Q-learner.
After training, this yields a simple policy that recommends
which feature to purchase in each state.

We evaluate the cost savings of this approach using the
COMPAS, Wine Quality, Wisconsin, and Coupon datasets.
For each dataset considered, we randomly generate an in-
teger cost between 1 and 10 for each feature. We consider
three purchasing policies: 1) following the BCF/Q-learning
policy as outlined above, 2) purchasing features in the order
suggested by traversing the tree, and 3) directly purchasing
every feature in the tree.We then evaluate the average cost
incurred by each policy across samples from the test dataset.
We fit 50 decision trees on distinct bootstrap samples of each
dataset, and perform this evaluation for each tree produced.

8



Leveraging Predictive Equivalence in Decision Trees

Wisc
on

sin

Cou
po

n

COMPA
S

Wine
 Qua

lity

Dataset

0

10

20

30

40
Co

st
Cost of Evaluating Trees Over the Test Set

Method
Naive
Path Based
Optimized

Figure 8. The cost of evaluating a tree by directly purchasing every
feature in the tree (Naı̈ve), purchasing features in the order sug-
gested by traversing the tree (Path Based), and by following our
BCF/Q-learning policy (Optimized). Error bars report standard
deviation of cost over 50 trees, each learned from a different boot-
strap of the original dataset.

Figure 8 shows the results of this evaluation over 50 trials.
We find that optimizing purchases based on our repre-
sentation reduces the average cost of evaluating trees on
every dataset. Moreover, we see that purchasing features
intelligently can dramatically reduce the cost of evaluating
a tree relative to the naı̈ve approach in which all features
in the tree are purchased. It is important to note that this
comes at no cost in terms of predictive accuracy, since the
exact same decision boundary is applied in each case.

8. Conclusion
We proposed a simplified boolean logical representation
of decision trees that decouples the logic encoded by a
decision tree from its evaluation procedure. We showed
that this approach can be used to account for predictive
equivalence. In several case studies, we demonstrated the
practical utility achieved by our representation. Future work
could analyze the group structure of decision trees, where
predictive equivalence is captured by equivalence classes
defined by the trees’ underlying logical models. It could also
explore predictive equivalence’s effects on tree ensembles.

Acknowledgments
We acknowledge funding from the National Institutes of
Health under 5R01-DA054994, the National Science Foun-
dation under award NSF 2147061, and through the Depart-
ment of Energy under grant DE-SC0023194. Additionally,
this material is based upon work supported by the National
Science Foundation Graduate Research Fellowship under
Grant No. DGE 2139754. We thank Xenia Konti for her

helpful conversations in developing Case Study 3.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Aglin, G., Nijssen, S., and Schaus, P. Learning optimal

decision trees using caching branch-and-bound search. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pp. 3146–3153, 2020.

Aha, D. Tic-Tac-Toe Endgame. UCI Machine Learning
Repository, 1991. DOI: https://doi.org/10.24432/C5688J.

Alon, N., Hanneke, S., Holzman, R., and Moran, S. A
theory of pac learnability of partial concept classes. In
2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pp. 658–671. IEEE, 2022.

Baldi, P., Sadowski, P., and Whiteson, D. Searching for
exotic particles in high-energy physics with deep learning.
Nature communications, 5(1):4308, 2014.

Beaulac, C. and Rosenthal, J. S. BEST: A decision tree
algorithm that handles missing values. Computational
Statistics, 35(3):1001–1026, 2020.

Bertsimas, D. and Dunn, J. Optimal classification trees.
Machine Learning, 106:1039–1082, 2017.

Blake, A. Canonical expressions in Boolean algebra. PhD
thesis, The University of Chicago, 1937.

Boner, Z., Chen, H., Semenova, L., Parr, R., and Rudin,
C. Using noise to infer aspects of simplicity without
learning. In Advances In Neural Information Processing
Systems, 2024.

Breiman, L. Classification and Regression Trees. Routledge,
1984.

Breiman, L. Random forests. Machine Learning, 45:5–32,
2001a.

Breiman, L. Statistical modeling: The two cultures (with
comments and a rejoinder by the author). Statistical
Science, 16(3):199–231, 2001b.

Chen, T. and Guestrin, C. Xgboost: A Scalable Tree Boost-
ing System. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 785–794, 2016.

9



Leveraging Predictive Equivalence in Decision Trees

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and Reis, J.
Modeling wine preferences by data mining from physic-
ochemical properties. Decision Support Systems, 47(4):
547–553, 2009.

Costa, V. G. and Pedreira, C. E. Recent advances in decision
trees: An updated survey. Artificial Intelligence Review,
56(5):4765–4800, 2023.

Demirović, E., Lukina, A., Hebrard, E., Chan, J., Bailey,
J., Leckie, C., Ramamohanarao, K., and Stuckey, P. J.
Murtree: Optimal decision trees via dynamic program-
ming and search. Journal of Machine Learning Research,
23(26):1–47, 2022.

Dong, J. and Rudin, C. Exploring the cloud of variable im-
portance for the set of all good models. Nature Machine
Intelligence, 2(12):810–824, 2020.

Donnelly, J., Katta, S., Rudin, C., and Browne, E. P. The
Rashomon importance distribution: Getting RID of unsta-
ble, single model-based variable importance. In Advances
In Neural Information Processing Systems, 2023.

Emmanuel, T., Maupong, T., Mpoeleng, D., Semong, T.,
Mphago, B., and Tabona, O. A survey on missing data in
machine learning. Journal of Big Data, 8(1):140, October
2021.

FICO, Google, Imperial College London, MIT, Uni-
versity of Oxford, UC Irvine, and UC Berkeley.
Explainable Machine Learning Challenge. https:
//community.fico.com/s/explainable-
machine-learning-challenge, 2018.

Fisher, A., Rudin, C., and Dominici, F. All models are
wrong, but many are useful: Learning a variable’s impor-
tance by studying an entire class of prediction models
simultaneously. Journal of Machine Learning Research,
20(177):1–81, 2019.

Fisher, R. A. Iris. UCI Machine Learning Repository, 1936.
DOI: https://doi.org/10.24432/C56C76.

Grinsztajn, L., Oyallon, E., and Varoquaux, G. Why do
tree-based models still outperform deep learning on typ-
ical tabular data? In Advances in Neural Information
Processing Systems, volume 35, pp. 507–520, 2022.

Groenwold, R. H. Informative missingness in electronic
health record systems: the curse of knowing. Diagnostic
and Prognostic Research, 4(1):8, 2020.

Izza, Y., Ignatiev, A., and Marques-Silva, J. On tackling
explanation redundancy in decision trees. Journal of
Artificial Intelligence Research, 75:261–321, 2022.

Kantorovich, L. V. Mathematical methods of organizing and
planning production. Management science, 6(4):366–422,
1960.

Kapelner, A. and Bleich, J. Prediction with Missing Data via
Bayesian Additive Regression Trees. Canadian Journal
of Statistics, 43(2):224–239, 2015.

Kazemitabar, J., Amini, A., Bloniarz, A., and Talwalkar,
A. S. Variable importance using decision trees. In Ad-
vances in Neural Information Processing Aystems, vol-
ume 30, 2017.

Larson, J., Mattu, S., Kirchner, L., and Angwin,
J. How we analyzed the compas recidivism al-
gorithm. ProPublica, May 2016. URL https:
//www.propublica.org/article/machine-
bias-risk-assessments-in-criminal-
sentencing.

Le Morvan, M., Josse, J., Scornet, E., and Varoquaux, G.
What’s a good imputation to predict with missing values?
In Advances in Neural Information Processing Systems,
volume 34, pp. 11530–11540, 2021.

Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R. J., and
Wasserman, L. Distribution-Free Predictive Inference
for Regression. Journal of the American Statistical Asso-
ciation, 113(523):1094–1111, 2018.

Lin, J., Zhong, C., Hu, D., Rudin, C., and Seltzer, M. Gen-
eralized and scalable optimal sparse decision trees. In
International Conference on Machine Learning (ICML),
pp. 6150–6160. PMLR, 2020.

Little, R. J. and Rubin, D. B. Statistical Analysis with
Missing Data, volume 793. John Wiley & Sons, 2019.

Lomax, S. and Vadera, S. A survey of cost-sensitive decision
tree induction algorithms. ACM Comput. Surv., 45(2),
March 2013.

Louppe, G., Wehenkel, L., Sutera, A., and Geurts, P. Under-
standing variable importances in forests of randomized
trees. In Advances in Neural Information Processing
Systems, volume 26, 2013.

Lundberg, S. M. and Lee, S.-I. A unified approach to inter-
preting model predictions. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Marx, C., Calmon, F., and Ustun, B. Predictive multiplicity
in classification. In International Conference on Machine
Learning (ICML), pp. 6765–6774. PMLR, 2020.

Mattei, P.-A. and Frellsen, J. MIWAE: Deep Generative
Modelling and Imputation of Incomplete Data Sets. In
International Conference on Machine Learning (ICML),
pp. 4413–4423. PMLR, 2019.

10

https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


Leveraging Predictive Equivalence in Decision Trees

McCluskey, E. J. Minimization of boolean functions. The
Bell System Technical Journal, 35(6):1417–1444, 1956.

McTavish, H., Zhong, C., Achermann, R., Karimalis, I.,
Chen, J., Rudin, C., and Seltzer, M. Fast sparse decision
tree optimization via reference ensembles. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 9604–9613, 2022.

McTavish, H., Donnelly, J., Seltzer, M., and Rudin, C. In-
terpretable generalized additive models for datasets with
missing values. In Advances in Neural Information Pro-
cessing Systems, 2024.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Quine, W. V. The problem of simplifying truth functions.
The American Mathematical Monthly, 59(8):521–531,
1952.

Quinlan, J. R. C4.5: Programs for Machine Learning.
Elsevier, 2014.

Ribeiro, M. T., Singh, S., and Guestrin, C. “Why Should I
Trust You?” Explaining the Predictions of Any Classifier.
In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 1135–1144, 2016.

Rubin, D. B. An Overview of Multiple Imputation. In
Proceedings of the Survey Research Methods Section of
the American Statistical Association, volume 79, pp. 84.
Citeseer, 1988.

Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L.,
and Zhong, C. Interpretable machine learning: Funda-
mental principles and 10 grand challenges. Statistic Sur-
veys, 16:1–85, 2022.

Rudin, C., Zhong, C., Semenova, L., Seltzer, M., Parr, R.,
Liu, J., Katta, S., Donnelly, J., Chen, H., and Boner, Z.
Amazing things come from having many good models. In
Proceedings of the International Conference on Machine
Learning (ICML), 2024.

Schafer, J. L. and Graham, J. W. Missing data: Our view
of the state of the art. Psychological Methods, 7(2):147,
2002.

Semenova, L., Rudin, C., and Parr, R. On the existence of
simpler machine learning models. In 2022 ACM Confer-
ence on Fairness, Accountability, and Transparency, pp.
1827–1858, 2022.

Semenova, L., Chen, H., Parr, R., and Rudin, C. A path
to simpler models starts with noise. Advances in Neural
Information Processing Systems, 36, 2023.

Shadbahr, T., Roberts, M., Stanczuk, J., Gilbey, J., Teare,
P., Dittmer, S., Thorpe, M., Torné, R. V., Sala, E., Lió,
P., et al. The impact of imputation quality on machine
learning classifiers for datasets with missing values. Com-
munications Medicine, 3(1):139, 2023.

Shakya, A. K., Pillai, G., and Chakrabarty, S. Reinforcement
Learning Algorithms: A Brief Survey. Expert Systems
with Applications, 231:120495, 2023.

Sober, E. Parsimony and predictive equivalence. Erkenntnis,
44(2):167–197, 1996.

Sperrin, M., Martin, G. P., Sisk, R., and Peek, N. Missing
data should be handled differently for prediction than
for description or causal explanation. Journal of clinical
epidemiology, 125:183–187, 2020.

Stekhoven, D. J. and Bühlmann, P. MissForest—non-
parametric missing value imputation for mixed-type data.
Bioinformatics, 28(1):112–118, 2012.

Stempfle, L. and Johansson, F. MINTY: Rule-based models
that minimize the need for imputing features with missing
values. In International Conference on Artificial Intel-
ligence and Statistics (AISTATS), pp. 964–972. PMLR,
2024.

Stempfle, L., Panahi, A., and Johansson, F. D. Sharing
pattern submodels for prediction with missing values.
In Proceedings of the Thirty-Seventh AAAI Conference
on Artificial Intelligence and Thirty-Fifth Conference on
Innovative Applications of Artificial Intelligence and Thir-
teenth Symposium on Educational Advances in Artificial
Intelligence, AAAI’23/IAAI’23/EAAI’23, 2023.

Street, W. N., Wolberg, W. H., and Mangasarian, O. L. Nu-
clear Feature Extraction for Breast Tumor Diagnosis. In
Biomedical Image Processing and Biomedical Visualiza-
tion, volume 1905, pp. 861–870. SPIE, 1993.

Therneau, T. M., Atkinson, E. J., et al. An introduction to
recursive partitioning using the rpart routines. Technical
report, Technical report Mayo Foundation, 1997.

Tollenaar, N. and van der Heijden, P. G. Which Method
Predicts Recidivism Best?: A Comparison of Statistical,
Machine Learning and Data Mining Predictive Models.
Journal of the Royal Statistical Society Series A: Statistics
in Society, 176(2):565–584, 2013.

Turney, P. D. Types of cost in inductive concept learn-
ing, 2002. URL https://arxiv.org/abs/cs/
0212034.

11

https://arxiv.org/abs/cs/0212034
https://arxiv.org/abs/cs/0212034


Leveraging Predictive Equivalence in Decision Trees

Twala, B. E., Jones, M., and Hand, D. J. Good methods
for coping with missing data in decision trees. Pattern
Recognition Letters, 29(7):950–956, 2008.

Van Buuren, S. and Oudshoorn, K. Flexible multivariate
imputation by MICE. Leiden: TNO, 1999.

van der Linden, J., de Weerdt, M., and Demirović, E. Nec-
essary and sufficient conditions for optimal decision trees
using dynamic programming. Advances in Neural Infor-
mation Processing Systems, 36:9173–9212, 2023.

Van Ness, M., Bosschieter, T. M., Halpin-Gregorio, R., and
Udell, M. The Missing Indicator Method: From Low
to High Dimensions. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 5004–5015, 2023.

Vaserstein, L. N. Markov processes over denumerable prod-
ucts of spaces, describing large systems of automata.
Problemy Peredachi Informatsii, 5(3):64–72, 1969.

Verwer, S. and Zhang, Y. Learning optimal classification
trees using a binary linear program formulation. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pp. 1625–1632, 2019.

Vidal, T. and Schiffer, M. Born-again tree ensembles. In
International Conference on Machine Learning (ICML),
pp. 9743–9753. PMLR, 2020.

Wang, C. and Feng, Z. Boosting with missing predictors.
Biostatistics, 11(2):195–212, 2010.

Wang, C., Han, B., Patel, B., and Rudin, C. In Pursuit of
Interpretable, Fair and Accurate Machine Learning for
Criminal Recidivism Prediction. Journal of Quantitative
Criminology, 39(2):519–581, 2023.

Wang, T., Rudin, C., Doshi-Velez, F., Liu, Y., Klampfl, E.,
and MacNeille, P. A Bayesian Framework for Learning
Rule Sets for Interpretable Classification. Journal of
Machine Learning Research, 18(70):1–37, 2017.

Wang, X., Wang, S., Liang, X., Zhao, D., Huang, J., Xu,
X., Dai, B., and Miao, Q. Deep Reinforcement Learning:
A Survey. IEEE Transactions on Neural Networks and
Learning Systems, 35(4):5064–5078, 2022.

Watkins, C. J. and Dayan, P. Q-Learning. Machine learning,
8:279–292, 1992.

Watkins, C. J. C. H. Learning from Delayed Rewards.
PhD thesis, King’s College, Cambridge United Kingdom,
1989.

Watson-Daniels, J., Parkes, D. C., and Ustun, B. Predictive
multiplicity in probabilistic classification. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 10306–10314, 2023.

Xin, R., Zhong, C., Chen, Z., Takagi, T., Seltzer, M., and
Rudin, C. Exploring the whole Rashomon set of sparse
decision trees. In Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 14071–14084, 2022.

12



Leveraging Predictive Equivalence in Decision Trees

A. Proofs
We start with a simple lemma that is useful in showing a number of the paper’s propositions.

Lemma A.1. Let T be a decision tree. Consider TDNF := (SimplePosExpr, SimpleNegExpr) obtained from Algorithm
1. Let x ∈ Rd be a complete sample. SimplePosExpr is satisfied by x if and only if T (x) = 1. Likewise SimpleNegExpr
is satisfied by x if and only if T (x) = 0.

Proof. For a complete sample, we know T (x) ∈ {0, 1}.

Denote by L+ the leaves of T predicting 1, where each leaf is a logical expression encoding the path from root to leaf in T .
Denote PosExpr := ∨ℓ∈L+ℓ to be the disjunction of all leaves predicting 1.

T (x) = 1 if and only if one of its positive leaves ℓ ∈ L+ is satisfied by x. Since PosExpr is a disjunction over the leaves
of T , PosExpr is satisfied by x if and only if T (x) = 1. The Quine-McCluskey algorithm’s output, SimplePosExpr, is
logically equivalent to its input PosExpr. Thus, SimplePosExpr is satisfied by x if and only if T (x) = 1.

Note that NegExpr := ∨ℓ∈L−ℓ is the logical complement of PosExpr, because all samples fall into exactly one leaf and
all leaves are exactly one of positive or negative. Also note that because Quine-McCluskey preserves logical equivalence, we
know SimplePosExpr is the logical complement of SimpleNegExpr. So SimpleNegExpr is satisfied by a complete
sample x if and only if SimplePosExpr is not satisfied by x. Thus, SimpleNegExpr is satisfied by x if and only if
T (x) = 0.

A.1. Proof of Theorem 3.2

Consider a decision tree T and its corresponding minimal DNF representation TDNF. Let x ∈ Rd be a complete sample and
consider an incomplete masked version m(x). Then TDNF(m(x)) = 1 (resp. 0) if and only if all possible completions of
m(x) are classified as 1 (respectively 0) by T .

Proof. We proceed by cases.

Case 1: TDNF(m(x)) = NA. In this case, we will prove T does not make the same prediction on all completions of m(x).
We prove this by contradiction.

Suppose that, for all completions z ∈ Rd of m(x), T (z) = ŷ. WLOG assume ŷ = 1. Assume for contradiction that
TDNF(m(x)) = NA. Since TDNF(m(x)) = NA, we must have that SimplePosExpr cannot be satisfied by the variable
assignments in m(x). Therefore, there must be some completion z of m(x) so that SimplePosExpr is falsified by z. By
Lemma A.1, this implies T (z) = 0, but this is a contradiction since ŷ = 1. Thus, if TDNF(m(x)) = NA, then T cannot
make the same prediction on all completions of m(xi).

Case 2: TDNF(m(xi)) ̸= NA. Suppose WLOG TDNF(m(x)) = 1. Then we know that the known variable assignments in
m(x) satisfy SimplePoxExpr. Therefore, for any completion z of m(x), SimplePosExpr is satisfied by z. Thus, by
Lemma A.1, we have T (x) = 1 for all completions of m(x).

A.2. Proof of Proposition 3.1

Proposition (Faithfulness). Consider a decision tree T and a complete sample x. Then T (x) = TDNF(x).

Proof. Consider the special case of Theorem 3.2, where m(x) = x. We have TDNF(m(x)) = TDNF(x) = T (x).

A.3. Proof of Proposition 3.3

Proposition (Succinctness). Let x ∈ Rd. Assume T (x) = ŷ ∈ {0, 1}, and let the explanation for TDNF(x) be any term in
SimplePosExpr satisfied by x if ŷ = 1, and any term in SimpleNegExpr satisfied by x if ŷ = 0. If any term in either
expression is satisfied, no variable in the explanation is redundant.

Proof. WLOG assume ŷ = 1. Let the explanation given by TDNF(x) be any term in SimplePosExpr satisfied by x. This
explanation is sufficient to guarantee that the predict algorithm (Algorithm 2) will return 1, since that algorithm returns 1 if
any term in SimplePosExpr is satisfied by x. The explanation is non-redundant because each term in the output of the

13



Leveraging Predictive Equivalence in Decision Trees

QuineMcCluskey algorithm is a prime implicant of the input formula(Quine, 1952), and thus no subset of the literals in any
term will guarantee satisfaction of the term.

A.4. Proof of Theorem 3.4

Theorem (Resolution of Predictive Equivalence). TDNF = T ′
DNF if and only if T and T ′ are predictively equivalent.

Proof. We consider three cases: 1) the case where T and T ′ are not predictively equivalent; 2) the case where T and T ′

are predictively equivalent and use exactly the same set of input features; and 3) the case where T and T ′ are predictively
equivalent and do not use exactly the same set of input features.

Case 1. First note that if T and T ′ are not predictively equivalent, the two trees cannot be logically equivalent by the
definition of predictive equivalence. As such, they cannot have the same minimal DNF form, and cannot be equivalent as
defined in Algorithm 3, since set(T .simplePosExpr) ̸= set(T ′.simplePosExpr).

Case 2. Now consider the case where T and T ′ are predictively equivalent, and the set of features used in T matches
the set of features used in T ′. Then truth table T as used when simplifying T is identical to the truth table used when
simplifying T ′. Since Algorithm 5’s output is fully determined given the truth table, we know the output is the same for
both trees: that is, set(T .simplePosExpr) = set(T ′.simplePosExpr) and therefore TDNF = T ′

DNF.

Case 3. Finally, we turn to the case when two trees are predictively equivalent and use a distinct set of features. In this
case, the features that aren’t shared across both trees are completely irrelevant to the trees’ predictions. So we know no
prime implicant can contain any of those feature values. Therefore, the set of prime implicants is the same when Quine
McCluskey runs on each tree.

We then remove the columns corresponding to features that do not occur in any prime implicant, and only preserve rows
that have 0 values for all of those features. At this point, both truth tables will be the same: they will both have the same
columns since the set of prime implicants is the same. They will also have the same rows in the same order: when we only
consider the set of truth table rows which have 0 values for all the irrelevant features that are not in any prime implicant,
these rows will have the same relative ordering across the two tables , and they will both cover exactly the set of all possible
assignments for features that are in at least one prime implicant.

Since the truth tables are the same and the set of prime implicants is the same, Quine-McCluskey gives the same output for
these two trees in this case, and we will have TDNF = T ′

DNF.

Having covered all possible cases, we know that TDNF = T ′
DNF if and only if T and T ′ are predictively equivalent.

A.5. Proof of Corollary 6.1

Corollary (Irrelevance of Imputation). Let x ∈ Rd be a complete sample with an incomplete masked version m(x).
Consider a decision tree T and its DNF representation TDNF. Let z be a completion of m(x), obtained via any possible
imputation method. Then, if TDNF ̸= NA, T (z) = T (x), where T (x) corresponds to the prediction of T with Oracle
imputation on m(x).

Proof. By Lemma A.1, we know that TDNF(m(x)) = ŷ ∈ {0, 1} if and only if T (z) = ŷ, for all completions z of m(x). The
set of all completions of m(x) includes the original values of x, in addition to any possible imputation of m(x). Therefore,
for all imputations z of m(x), T (z) = T (x).

A.6. Proof of Corollary 6.2

Corollary (Unbiasedness under test-time missingness). Let x ∈ Rd be a complete sample with an incomplete masked
version m(x, θ) for some random missingness mask parameter θ ∈ {0, 1}d. When TDNF(m(x, θ)) ̸= NA, TDNF(m(x, θ))
is an unbiased estimator over random draws of missingness for T (x). This holds even if data is Missing Not At Random.

Proof. Let θ ∈ {0, 1}d be a random variable drawn from some unknown distribution Θ. Given a sample x, Theorem 6.1
tells us that when TDNF can predict a non-NA value, that prediction matches the prediction of T without any missingness.

14



Leveraging Predictive Equivalence in Decision Trees

With this, we have that TDNF(m(x, θ)) is an unbiased estimator of T (x) when it can make predictions:

Eθ∼Θ:TDNF(m(x,θ)) ̸=NA [TDNF(m(x, θ))] = Eθ∼Θ:TDNF(m(x,θ)) ̸=NA [T (x)] By Theorem 6.1
= T (x) Expectation of a constant

That is, whenever TDNF(m(x, θ)) ̸= NA, TDNF(m(x, θ)) is an unbiased estimator of T (x) as required.

B. Algorithm Details

Algorithm 3 Equality Checking

Input: T (1)
DNF, T

(2)
DNF, the two trees to compare.

Output: True if and only if the two inputs are predictively equivalent.
T1 ← terms in T (1)

DNF.SimplePosExpr

T2 ← terms in T (2)
DNF.SimplePosExpr

Return set(T1) == set(T2)

Algorithm 4 BCF
Input: T : a list of all terms in a minimal DNF Tree leading to a specific prediction (either positive or negative).
(Corresponds to Blake Canonical Form)
Output: A list of all possible sufficient conditions for that specific prediction
Let P be a list of all pairs (q, p) of distinct terms in T
repeat
(q, p)← P.pop()
if there exists exactly one literal z s.t z ∈ q and ¬z ∈ p then
q′ ← q \ {z}
p′ ← p \ {¬z}
if q′ ∧ p′ is a contradiction or q′ ∧ p′ ∈ P then

Continue
else

for t ∈ T do
P.append((q′ ∧ p′, t))

end for
T.append(q′ ∧ p′)

end if
end if

until P = ∅

15



Leveraging Predictive Equivalence in Decision Trees

Algorithm 5 Adjusted Quine-McCluskey (with particular processing of the data structures involved to allow for proof of
Theorem 3.4)

Input: D: a DNF equation where each variable has name feature j for some integer j
Output: A logically equivalent DNF equation corresponding to a minimal set of prime implicants.
Create truth table T for expression D, where the columns are in order of variable name j, and rows are in order of boolean
value (i.e., the first row is all variables False, then the rightmost variable True and all other variables False, and the last is
all variables True)
P ← all prime implicants of T
C ← All columns corresponding to variables in D that are not in any prime implicant.
Remove from T all rows with a nonzero value in any column in C
Remove from T all columns in C
Sort the prime implicants p ∈ P based on the earliest-appearing row of T that satisfies the implicant.
Find and return a minimal cover deterministically given T and P . (Where cover corresponds to a set of prime implicants
such that all rows satisfy at least one prime implicant)

Note that removing the columns in C and the rows with nonzero values in these columns still preserves the validity of the
output. Those columns are irrelevant to whether or not any prime implicant covers any particular row, since they never occur
in any prime implicant. Further, covering the rows with 0 values in those columns also corresponds to covering rows with
nonzero values in those columns, so we need not consider those additional rows when computing a cover.

C. Experiments With Additional Datasets
In this section, we repeat each of the primary case studies from the main body of this work over eight additional datasets.

C.1. Overview of Additional Datasets

We consider eight additional datasets, which we refer to as Netherlands (Tollenaar & van der Heijden, 2013), Broward
(Wang et al., 2023), FICO (FICO et al., 2018), Spiral (McTavish et al., 2022), Tic-Tac-Toe (Aha, 1991), and Iris Se-
tosa/Versicolor/Virginica (Fisher, 1936). Netherlands measures 9 features for 20,000 individuals, where labels are whether
the individuals from the Netherlands committed another crime after being released from prison. Similarly, Broward reports
38 features from 1,955 individuals from Broward county, Florida, where labels are whether the individuals from the
committed another crime after being released from prison. FICO contains 23 features from 10,459 individuals, and labels
whether each individual will repay a line of credit within 2 years. In our experiments, we remove all rows from FICO that
contain missing data, resulting in 2,502 samples. Spiral is a synthetic dataset with 2 features over 100 samples, where each
sample is randomly drawn from one of two interweaving spirals and the features are the x and y coordinates of the sample.
In spiral, labels indicate which spiral each sample was drawn from. Tic-Tac-Toe measures 9 features over all 958 possible
games of tic-tac-toe, and labels each game as 1 if the first player won and 0 otherwise. The three Iris datasets – Iris Setosa,
Iris Versicolor, and Iris Virginica – are different tasks generated from the same multiclass classification dataset. The original
Iris dataset reports 4 features over 150 iris flowers, and labels each sample as Setosa, Versicolor, or Virginica. We transform
this dataset into three one versus all binary classification datasets. For several appendix experiments, we also consider a
ninth dataset, Higgs (Baldi et al., 2014), subsampled to a 1-million sample version. This dataset is too large for feasibly
finding a full Rashomon set, so we only use this dataset for appendix replications of the single tree missing data results and
the cost-sensitive results.

C.2. Additional Results Quantifying Predictive Equivalence

Table 3 provides the size of the Rashomon set before and after correcting for predictive equivalence on our additional
datasets. We find that, in all cases except Iris-Setosa, controlling for predictive equivalence cuts the size of the Rashomon
set by at least half.

16

https://www.openml.org/search?type=data&sort=runs&id=42769&status=active


Leveraging Predictive Equivalence in Decision Trees

Dataset Total Trees w/o Trivial Ours
FICO 8086± 2202 1969± 643 1154± 375

Netherlands 926± 399 265± 111 114± 48
Spiral 58± 14 38± 13 20± 6

Tic-Tac-Toe 354± 158 196± 77 72± 29
Iris-Virginica 196± 124 72± 41 44± 25
Iris-Versicolor 168± 72 73± 26 28± 10

Iris-Setosa 2± 0 2± 0 2± 0
Broward 4242± 1165 1741± 487 899± 284

Table 3. Total number of trees, number of trees without trivial redundancies, and number of predictively nonequivalent trees (ours) in the
Rashomon set.

C.3. Additional Results for Case Study 1: Variable Importance

In this section, we evaluate the shift in RID when controlling for predictive equivalence across all variables from every
dataset considered in this work. For each dataset and variable, we computed RID using the parameters described in Section
D with predictively equivalent trees included, and with all but one tree from each predictively equivalent set removed. We
perform a Kolmogorov-Smirnov test to determine whether each pair of resulting distributions are significantly different.
Tables 4 and 5 report the maximum distance between each of the two empirical distributions, as well as the p-value for the
relevant Kolmogorov-Smirnov test. We find that, on every dataset except Iris Setosa, at least one variable exhibits significant
distribution shift at p < 0.05. Figures 9 and 10 present the distribution from RID for each variable with a significant
distribution shift. Note that we do not include variables that received zero importance from both methods in these tables,
filtering out 148 of 217 total variables.

17



Leveraging Predictive Equivalence in Decision Trees

Dataset Variable Sup. Distance p-Value

Broward p fta two year 0.011583 0.516924
three year 0.037849 0.000001
one year 0.009685 0.738680
six month 0.009828 0.722117
p dui 0.010082 0.692329
p arrest 0.020327 0.033135
p misdemeanor 0.049235 0.000000
age at current charge 0.006845 0.973439
age at first charge 0.028369 0.000685
p charges 0.025376 0.003370
p pending charge 0.008679 0.847098

COMPAS age 0.043373 0.000016
priors count 0.067886 0.000000
juvenile crimes 0.048217 0.000001

FICO NetFractionRevolvingBurden 0.015801 0.999146
ExternalRiskEstimate 0.079168 0.002619
NumSatisfactoryTrades 0.025707 0.867512
MSinceMostRecentInqexcl7days 0.105930 0.000014

Iris Setosa petal length 0.085000 0.466286
petal width 0.030000 0.999992

Iris Versicolor petal length 0.145259 0.000417
petal width 0.172575 0.000013

Iris Virginica petal length 0.079877 0.004517
petal width 0.080317 0.004225

Netherlands >20 previous case 0.220336 0.000000
age at first penal case 0.234413 0.000000
log # of previous penal cases 0.154640 0.000000
11-20 previous case 0.156908 0.000000

Spiral feat1 0.056763 0.000218
feat2 0.046307 0.004580

Table 4. The amount of distribution shift in RID when controlling for predictive equivalence across all datasets considered in this work.
We do not report results for variables that receive zero importance under either method. Continued in Table 5.

18



Leveraging Predictive Equivalence in Decision Trees

dataset nice var ks test stat ks test p

Tic-Tac-Toe Feat5 x 0.015350 0.596928
Feat6 x 0.032067 0.011964
Feat8 x 0.043873 0.000140
Feat6 o 0.021761 0.188094
Feat7 x 0.010089 0.959806
Feat8 o 0.019266 0.311956
Feat5 o 0.007327 0.999217
Feat7 o 0.007696 0.998273
Feat4 x 0.125572 0.000000
Feat3 o 0.005579 0.999998
Feat3 x 0.010545 0.942370
Feat2 x 0.062774 0.000000
Feat2 o 0.021888 0.182977
Feat1 x 0.008896 0.988349
Feat1 o 0.005991 0.999989
Feat0 x 0.062457 0.000000
Feat0 o 0.017226 0.448192
Feat4 o 0.081569 0.000000

Wine Quality alcohol 0.028608 0.002097
volatile acidity 0.020111 0.067145
citric acid 0.002099 1.000000
free sulfur dioxide 0.001559 1.000000

Wisconsin area2 0.004952 0.902248
area3 0.011916 0.047488
concave points1 0.007035 0.531103
concave points3 0.029109 0.000000
concavity3 0.007328 0.478215
perimeter3 0.010055 0.139228
radius3 0.006122 0.705633
texture1 0.003626 0.994981
texture3 0.022322 0.000004

Table 5. The amount of distribution shift in RID when controlling for predictive equivalence across all datasets considered in this work.
We do not report results for variables that receive zero importance under either method. Continued from Table 4.

19



Leveraging Predictive Equivalence in Decision Trees

Figure 9. Importance distribution before (in blue) and after (in orange) controlling for predictive equivalence across all variables where
RID showed significant distribution shift. Continued in Figure 10.

20



Leveraging Predictive Equivalence in Decision Trees

Figure 10. Importance distribution before (in blue) and after (in orange) controlling for predictive equivalence across all variables where
RID showed significant distribution shift. Continued from Figure 9.

21



Leveraging Predictive Equivalence in Decision Trees

0.00 0.25 0.50 0.75 1.000

25

50

75

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

FICO
ours
path-based
used-features

0.00 0.25 0.50 0.75 1.000

25

50

75

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

Netherlands

0.00 0.25 0.50 0.75 1.000

25

50

75

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

Spiral

0.00 0.25 0.50 0.75 1.000

25

50

75

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

Tic-Tac-Toe

0.00 0.25 0.50 0.75 1.000

25

50

75

100
%

 P
re

di
ct

io
ns

 P
ro

ve
n 

 U
na

ffe
ct

ed

Iris Virginica

0.00 0.25 0.50 0.75 1.000

25

50

75

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

Iris Versicolor

0.00 0.25 0.50 0.75 1.00
Missingness Prob per Feature
0

25

50

75

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

Iris Setosa

0.00 0.25 0.50 0.75 1.00
Missingness Prob per Feature
0

25

50

75

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

Broward General

0.00 0.25 0.50 0.75 1.00
Missingness Prob per Feature
0

25

50

75

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

Higgs (1M)

% Samples such that CART trees 
 can Predict without Imputation

Figure 11. Rate at which decision trees can make predictions as missing values are added. These results use a simple CART tree, as
implemented by SKLearn (Pedregosa et al., 2011), with depth 3 and default parameters.

C.4. Additional Results for Case Study 2: Missing Data

Figures 11 and 12 include results on additional datasets. Results are similar to the main paper figures 6 and 7, with the
exception of iris-setosa (where the tree found for each fold is usually a trivial depth 1 decision stump and exhibits no
predictive equivalence).

22



Leveraging Predictive Equivalence in Decision Trees

C.5. Additional Results for Case Study 3: Improving Cost Efficiency

We repeat the experimental setup from Case Study 3 for each of the additional datasets over 50 trials; the results of this
evaluation are presented in Figure 13. We find that combining Q-learning with our tree representation allows us to improve
the cost of forming a prediction on every dataset but one. On the Iris Setosa dataset, each method yields the same cost
because the tree is simply a decision stump, meaning there is only one variable to purchase.

23



Leveraging Predictive Equivalence in Decision Trees

D. Experimental Details
D.1. Dataset Preprocessing

For Section 5.2 and Section C.3, we used the internal binarization procedure of RID (Donnelly et al., 2023), which binarizes
according to Threshold Guessing from (McTavish et al., 2022), using the thresholds selected based on 40 boosted decision
stumps.

For the Missing Data Section, we split datasets into 5 folds, and binarized according to Threshold Guessing from (McTavish
et al., 2022), using the thresholds selected based on 40 boosted decision stumps. Standard errors reported are the standard
deviation across folds divided by the square root of the number of folds.

Most datasets contained no pre-existing missing data; when they did, however (for the COMPAS dataset and Coupon) we
removed rows with missing data in preprocessing.

For our experiments on cost sensitive optimization, we performed quantile-based binning on each feature using two quantiles
per feature (the 0.33 quantile and the 0.66 quantile).

D.2. Hyperparameter Settings

In all of our experiments with RID, we computed RID over 100 bootstrap iterations with an additive Rashomon bound of
0.02, a sparsity penalty of 0.02, and a maximum tree depth of 3 (i.e., the depth bound parameter was set to 4). Note that,
when using RID, we applied a larger sparsity penalty than we did in our other experiments (0.02 instead of 0.01) because we
ran into computational constraints when running RID over very large Rashomon sets. We did not include “trivial extension”
in these Rashomon sets because that is the default behavior of RID.

In our missing data experiments, we fit decision trees using SKLearn’s Decision Tree implementation (Pedregosa et al.,
2011), with a maximum depth of 3 and all other parameters left as their default values. Our Rashomon sets used depth 3 (i.e.,
the depth bound parameter was set to 4), additive Rashomon bound 0.02, and sparsity penalty 0.01. (we did not include
trivial extensions because those are irrelevant to what we were investigating; a trivial extension never allows handling of
additional missing data). Missingness is injected into complete datasets synthetically. For each sample, we introduced
missingness independently into each binarized feature with probability p ∈ [0.1, 0.2, . . . , 0.9]. We investigate alternative
depths of sklearn and pre-binarization missingness in Appendix Section E.

In our cost sensitive optimization experiments, we fit decision trees using SKLearn’s Decision Tree implementation
(Pedregosa et al., 2011) with a maximum depth of 3, and all other parameters left as their default values. In our Q-learner,
we used a discount factor of 0.9, a learning rate of 0.1, and an exploration rate of 0.5, with each term defined as in (Watkins,
1989).

24



Leveraging Predictive Equivalence in Decision Trees

E. Additional Missing Data Results
E.1. Pre-binarization Missingness

The main paper presents results for a simple way of introducing MCAR missingness: each binary feature has an independent
chance of being missing with probability p ∈ [0, 1]. However, we might also consider MCAR missingness injected in the
original feature space, pre-binarization. Here each feature is still missing with probability p, but binary features from the
same original feature are not independently missing - they must either all be missing or have none of them missing.

We reproduce the main paper’s results with this alternative form of missingness in Figures 14 and 15. The number of cases
where trees can still make predictions is diminished to some extent, but there remains a substantial proportion of trees
completely robust to missingness, as identified with our method as opposed to the baselines, and as identified within an
entire rashomon set.

E.2. Robustness to Missingness on Near-Optimal Trees

We reproduce Figure 6 with optimal trees - GOSDT (Lin et al., 2020) and dl85 (Aglin et al., 2020) in Figure 16. We find
that, for each of these trees, we can predict on substantially more samples than the baseline methods.

E.3. Results at different depths

Figure 17 shows results from Figure 6 across different potential depths of decision tree for sklearn. The left column
corresponds to results from the main paper, with depth 3. Deeper decision trees lead to similar conclusions. Two instances -
COMPAS and Wine Quality - did not terminate within 12 hours, so for these two datasets we used a slightly relaxed version
of the simplification procedure for our method (not running the Quine-McCluskey simplification step on instances with
more than 8 variables), giving a lower bound on the number of unaffected predictions (the baselines remained unchanged).

25



Leveraging Predictive Equivalence in Decision Trees

F. Additional Cost Sensitive Optimization Results
F.1. Cost Optimization With an Additional Baseline

In the main paper, we presented three methods of evaluating a decision tree in a cost sensitive setting: a naive approach, in
which every variable used by the decision tree is purchased; a path-based approach, in which variables are purchased as they
are encountered while traversing a path in a decision tree; and our BCF based Q-learning approach, in which we aim to
satisfy a clause in the BCF of the tree as cheaply as possible. Here, we aim to disentangle how much of the observed gain in
cost efficacy was due to the Q-learning approach, and how much could be directly obtained through the BCF.

To do so, we introduce another method to our cost-sensitive evaluation in which we iteratively purchase the cheapest
unknown feature used by the tree, and check whether any clause in the BCF has been satisfied. This approach leverages
the early stopping enabled by BCF, but follows a simple heuristic instead of a learned policy. We refer to this approach as
“Greedy”.

Figure 18 presents the results of this evaluation across all datasets considered. We observe that, as expected, our Q-learning
based approach achieves equal or better performance than this baseline on every dataset. We also observe that this greedy
approach sometimes obtains substantially better performance than path-based traversal, but is very inconsistent – in some
cases, it is almost as inefficient as the naı̈ve baseline. As such, we conclude that the Q-learning component of our approach
is necessary to reliably reduce cost.

F.2. Hyperparameter Analysis for Q-Learning

In the main paper, we presented the cost of traversing trees using our BCF based Q-learning approach with one particular set
of hyperparameters. Here, we aim to evaluate the sensitivity of these results to our hyperparameter selection.

Across the four primary datasets evaluated in the main paper, we consider three different settings for three important
hyperparameters: alpha, gamma, and the exploration rate. Figure 19 presents the results of this evaluation. We observe that,
across reasonable hyperparameter settings, our BCF Q-learning framework produces almost identical results. This suggests
that the method is in fact converging, and our analysis is not substantially impacted by the hyperparameters we chose.

F.3. Cost Optimization on Cost-Optimal Trees

When evaluating our cost optimization approach, we have primarily considered decision trees that were optimized for
predictive accuracy alone. Here, we instead start with cost-optimal decision trees as produced by STreeD (van der Linden
et al., 2023). We consider the same evaluation methods and datasets as in prior experiments.

Figure 20 shows the results of this evaluation across different levels of priority given to cost minimization. We find that our
Q-learning approach never produces a substantial increase in evaluation cost, although in some settings we observe a very
slight increase.

Surprisingly, we also observe some cases (e.g., Wine Quality, Wisconsin, and Iris Virginica for weight 0.0001) where we can
evaluate a “cost-optimal” decision tree in a cheaper way than directly traversing the tree. This reveals an interesting nuance.
The trees produced by (van der Linden et al., 2023) are guaranteed to be optimal with respect to a given cost-accuracy
tradeoff, where cost corresponds to the cost of variables when predicting with a tree from the top down, and trees are subject
to depth and sparsity constraints. These constraints are used to ensure the classifier can be represented as an interpretable,
small tree, and help with computation time. However, a given tree can have predictively equivalent forms that are deeper
and/or less sparse, but yield lower average cost. In effect, our Q-learning framework allows us to use one predictively
equivalent form to communicate the tree simply, and a less-constrained predictively equivalent evaluation procedure for the
tree that is completely faithful to the other form while being more cost-effective.

26



Leveraging Predictive Equivalence in Decision Trees

G. Detailed Description of Q-learner Initialization
In this section, we describe how we use direct traversal of the target decision tree to initialize our Q-learner. Algorithm
6 provides pseudo-code describing the procedure; at a high level, we recursively traverse the decision tree until a leaf is
reached. We pay the cost of each feature purchased along the way, and compute the reward at a given node as the weighted
average of the reward of that node’s two child nodes, where the weight is determined by the empirical probability of taking
each path across the training dataset.

Algorithm 6 Initialization of Q-Learner Using Path Traversal
Input: T , the tree to optimize for cost; D, the training split of the dataset; Q, the (empty) hash table for our Q-learner; r,
the reward given when a prediction is possible; d, the number of possible actions.
function initialize(Tcur, Dcur, state)

if Tcur is a leaf node then
return r

else
j ← Tcur.next split

Dℓ ← subset of Dcur where x·,j = 0
pℓ ← proportion of Dcur where x·,j = 0
stateℓ ← copy of state with feature j set to 0
rℓ ← initialize(Tcur.left subtree,Dℓ, stateℓ)

Dr ← subset of Dcur where x·,j = 1
pr ← proportion of Dcur where x·,j = 1
stater ← copy of state with feature j set to 1
rr ← initialize(Tcur.right subtree,Dr, stater)

r̄ ← pℓrℓ + prrr − cost(j)
Q[state]← 0 ∈ Rd

Q[state][j]← r̄
return r̄

end if
end function

state← initial state with all features unknown
initialize(T , D, state)

27



Leveraging Predictive Equivalence in Decision Trees

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
Ro

bu
st

 P
re

di
ct

io
ns

FICO

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Netherlands

0.0 0.2 0.4 0.6 0.8 1.0
Probability of Missingness per Feature

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
Ro

bu
st

 P
re

di
ct

io
ns

Spiral

0.0 0.2 0.4 0.6 0.8 1.0
Probability of Missingness per Feature

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
Ro

bu
st

 P
re

di
ct

io
ns

Tic-Tac-Toe

0.0 0.2 0.4 0.6 0.8 1.0
Probability of Missingness per Feature

0.0

0.2

0.4

0.6

0.8

1.0 Iris Virginica

0.0 0.2 0.4 0.6 0.8 1.0
Probability of Missingness per Feature

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
Ro

bu
st

 P
re

di
ct

io
ns

Iris Versicolor

0.0 0.2 0.4 0.6 0.8 1.0
Probability of Missingness per Feature

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
Ro

bu
st

 P
re

di
ct

io
ns

Iris Setosa

Proportion Robust Predictions

0.0 0.2 0.4 0.6 0.8 1.0
Probability of Missingness per Feature

0.0

0.2

0.4

0.6

0.8

1.0 Broward General

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
n 

In
co

m
pl

et
e 

Da
ta

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
n 

In
co

m
pl

et
e 

Da
ta

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
n 

In
co

m
pl

et
e 

Da
ta

Accuracy on Incomplete data

Proportion of non-NA Predictions and Accuracy 
 for Selecting Rset Models Robust to Missingness

Figure 12. Rate at which at least one near-optimal tree can continue to make predictions as missing values are added, as well as accuracy
on those predictions. These results use TreeFARMS (Xin et al., 2022) with maximum depth 3 and a standard per-leaf penalty of 0.01,
finding all trees within 0.02 of the optimal objective.

28



Leveraging Predictive Equivalence in Decision Trees

Neth
erl

an
ds

Higg
s

Brow
ard

 Gen
era

l 2
Y

Iris
 Se

tos
a

Iris
 Ve

rsi
col

or

Iris
 Vi

rgi
nic

a
Sp

ira
l

Tic
-Ta

c-T
oe

Fic
o C

om
ple

te

Dataset

0

5

10

15

20

25

30

35

40

Co
st

Cost of Evaluating Trees Over the Test Set
Method
Naive
Path Based
Optimized

Figure 13. The cost of evaluating a tree by directly purchasing every variable in the tree (Naı̈ve), purchasing variables in the order
suggested by traversing the tree (Path Based), and by following our BCF/Q-learning policy (Optimized). Error bars report standard
deviation of cost over 50 trees, each learned from a different bootstrap of the original dataset.

29



Leveraging Predictive Equivalence in Decision Trees

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

COMPAS
ours
path-based
used-features

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

Wine Quality

0.0 0.2 0.4 0.6 0.8 1.0
Missingness Prob per Feature

0

20

40

60

80

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

Wisconsin

0.0 0.2 0.4 0.6 0.8 1.0
Missingness Prob per Feature

0

20

40

60

80

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

Coupon

% Samples such that CART trees 
 can Predict without Imputation

Figure 14. Rate at which decision trees can make predictions as missing values are added pre-binarization. These results use a simple
CART tree, as implemented by SKLearn (Pedregosa et al., 2011), with depth 3 and default parameters.

30



Leveraging Predictive Equivalence in Decision Trees

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
Ro

bu
st

 P
re

di
ct

io
ns

COMPAS

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Wine Quality

0.0 0.2 0.4 0.6 0.8 1.0
Probability of Missingness per Feature

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
Ro

bu
st

 P
re

di
ct

io
ns

Wisconsin

Proportion Robust Predictions

0.0 0.2 0.4 0.6 0.8 1.0
Probability of Missingness per Feature

0.0

0.2

0.4

0.6

0.8

1.0 Coupon

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
n 

In
co

m
pl

et
e 

Da
ta

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
n 

In
co

m
pl

et
e 

Da
ta

Accuracy on Incomplete data

Proportion of non-NA Predictions and Accuracy 
 for Selecting Rset Models Robust to Missingness

Figure 15. Rate at which at least one near-optimal tree can continue to make predictions as missing values are added pre-binarization.
These results use TreeFARMS (Xin et al., 2022) with maximum depth 3 and a standard per-leaf penalty of 0.01, finding all trees with
objective within 0.02 of optimal.

31



Leveraging Predictive Equivalence in Decision Trees

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

COMPAS - sklearn
ours
path-based
used-features

0.0 0.2 0.4 0.6 0.8 1.0

COMPAS - gosdt

0.0 0.2 0.4 0.6 0.8 1.0

COMPAS - dl85

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

Wine Quality - sklearn

0.0 0.2 0.4 0.6 0.8 1.0

Wine Quality - gosdt

0.0 0.2 0.4 0.6 0.8 1.0

Wine Quality - dl85

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

Wisconsin - sklearn

0.0 0.2 0.4 0.6 0.8 1.0

Wisconsin - gosdt

0.0 0.2 0.4 0.6 0.8 1.0

Wisconsin - dl85

0.0 0.2 0.4 0.6 0.8 1.0
Missingness Prob per Feature

0

20

40

60

80

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

Coupon - sklearn

0.0 0.2 0.4 0.6 0.8 1.0
Missingness Prob per Feature

Coupon - gosdt

0.0 0.2 0.4 0.6 0.8 1.0
Missingness Prob per Feature

Coupon - dl85

% Predictions Completely Robust to Missingness

Figure 16. Rate at which decision trees can make predictions. These results use a simple CART tree, as implemented by SKLearn
(Pedregosa et al., 2011), with depth 3 and default parameters, a simple GOSDT tree (Lin et al., 2020) with depth 3 and per-leaf penalty
0.01, and a simple dl85 tree (Aglin et al., 2020) with depth 3 and default parameters.

32



Leveraging Predictive Equivalence in Decision Trees

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

COMPAS - sklearn depth 3
ours
path-based
used-features

0.0 0.2 0.4 0.6 0.8 1.0

COMPAS - sklearn depth 4

0.0 0.2 0.4 0.6 0.8 1.0

COMPAS - sklearn depth 5

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

Wine Quality - sklearn depth 3

0.0 0.2 0.4 0.6 0.8 1.0

Wine Quality - sklearn depth 4

0.0 0.2 0.4 0.6 0.8 1.0

Wine Quality - sklearn depth 5

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

Wisconsin - sklearn depth 3

0.0 0.2 0.4 0.6 0.8 1.0

Wisconsin - sklearn depth 4

0.0 0.2 0.4 0.6 0.8 1.0

Wisconsin - sklearn depth 5

0.0 0.2 0.4 0.6 0.8 1.0
Missingness Prob per Feature

0

20

40

60

80

100

%
 P

re
di

ct
io

ns
 P

ro
ve

n 
 U

na
ffe

ct
ed

Coupon - sklearn depth 3

0.0 0.2 0.4 0.6 0.8 1.0
Missingness Prob per Feature

Coupon - sklearn depth 4

0.0 0.2 0.4 0.6 0.8 1.0
Missingness Prob per Feature

Coupon - sklearn depth 5

% Predictions Completely Robust to Missingness

Figure 17. Rate at which decision trees can make predictions across decision tree depths. These results use a simple CART tree, as
implemented by SKLearn (Pedregosa et al., 2011), with depth 3, 4, or 5 and default parameters.

33



Leveraging Predictive Equivalence in Decision Trees

Cou
po

n

Wine
 Qua

lity

COMPA
S

Wisc
on

sin

Brow
ard

 Gen
era

l 2
Y

Fic
o C

om
ple

te

Iris
 Ve

rsi
col

or

Iris
 Vi

rgi
nic

a
Sp

ira
l

Tic
-Ta

c-T
oe

Neth
erl

an
ds

Iris
 Se

tos
a

Dataset

0

5

10

15

20

25

30

35

40

Co
st

Cost of Evaluating Trees Over the Test Set
Naive
Path Based
Optimized
Greedy

Figure 18. The cost of evaluating a tree by directly purchasing every feature in the tree (Naı̈ve), purchasing features in the order suggested
by traversing the tree (Path Based), following our BCF/Q-learning policy (Optimized), and by greedily purchasing the cheapest feature
used by the tree until a clause in the BCF is satisfied (Greedy). Error bars report standard deviation of cost over 50 trees, each learned
from a different bootstrap of the original dataset.

34



Leveraging Predictive Equivalence in Decision Trees

0

5

10

Co
st

gamma = 0.75 gamma = 0.9

Coupon

gamma = 0.95

0

5

10

Co
st

W
isconsin

0

5

10

Co
st

W
ine Quality

0.05 0.1 0.2
alpha

0

5

10

Co
st

0.05 0.1 0.2
alpha

0.05 0.1 0.2
alpha

COM
PAS

Effect of Hyperparameter Choice on Q-Learning Performance

Exploration Rate
0.3
0.5
0.7

Figure 19. The cost of evaluating a tree by following our BCF/Q-learning policy under different Q-learning hyperparameters. Each row
corresponds to a different dataset, each column a different value for gamma, each grouping along the x axis a different value of alpha, and
each color a different exploration rate. Error bars report standard deviation of cost over 50 trees, each learned from a different bootstrap of
the original dataset.

35



Leveraging Predictive Equivalence in Decision Trees

0

10

20

30

40

Co
st

Weight on Cost = 0.0 Weight on Cost = 0.0001

0

10

20

30

40

Co
st

Weight on Cost = 0.001 Weight on Cost = 0.01

Wine
 Qua

lity

COMPA
S

Wisc
on

sin

Brow
ard

 Gen
era

l 2
Y

Fic
o C

om
ple

te

Iris
 Se

tos
a

Iris
 Ve

rsi
col

or

Iris
 Vi

rgi
nic

a
Sp

ira
l

Tic
-Ta

c-T
oe

Neth
erl

an
ds

Cou
po

n
Higg

s

Dataset

0

10

20

30

40

Co
st

Weight on Cost = 0.1

Wine
 Qua

lity

COMPA
S

Wisc
on

sin

Brow
ard

 Gen
era

l 2
Y

Fic
o C

om
ple

te

Iris
 Se

tos
a

Iris
 Ve

rsi
col

or

Iris
 Vi

rgi
nic

a
Sp

ira
l

Tic
-Ta

c-T
oe

Neth
erl

an
ds

Cou
po

n
Higg

s

Dataset

Weight on Cost = 1.0

Naive
Path Based
Optimized
Greedy

Figure 20. The cost of evaluating a cost-optimal tree under different cost weightings by directly purchasing every feature in the tree
(Naı̈ve), purchasing features in the order suggested by traversing the tree (Path Based), following our BCF/Q-learning policy (Optimized),
and by greedily purchasing the cheapest feature used by the tree until a clause in the BCF is satisfied (Greedy). Error bars report standard
deviation of cost over 50 trees, each learned from a different bootstrap of the original dataset.

36


