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ABSTRACT

The backdoor attack in Multimodal Contrastive Learning (MCL) task has been
receiving increasing attention in recent years, due to numerous downstream tasks
that rely on pre-trained MCL models. Backdoor detection has been one of the ef-
fective protection solutions to fight against backdoor attacks. However, the major-
ity of existing backdoor detection methods in MCL usually produce non-satisfying
detection results. Two main factors are responsible for this: 1) one-stage detection
lacks subsequent dynamic adaptation to the distribution of poisoned and benign
pairs when faced with different attacks, and 2) the criteria used in existing meth-
ods, specifically the cosine similarity between image and caption, is insufficient
to distinguish between poisoned and benign pairs. To address these problems, we
extend the conventional one-stage detection architecture to a two-stage architec-
ture and propose a better metric in the second stage with high precision and high
fault tolerance. To this end, we design a novel Coarse-to-Fine two-stage Backdoor
Detection method, termed CFBD, which primarily focuses on multimodal learn-
ing involving image-caption dataset, such as CLIP. The objective of the coarse-
grained stage is to roughly partition the dataset into poisoned, benign, and sus-
picious subsets. In the fine-grained stage, we use the average textual correlation
with the poisoned subset to improve the detection quality. Extensive experiments
demonstrate that CFBD achieves superior backdoor detection performance, e.g.,
almost 100% True Positive Rate (TPR) for various attacks over the large-scale
dataset CC-3M, markedly outperforming state-of-the-art methods.

1 INTRODUCTION

Multimodal Contrastive Learning (MCL) represents a pivotal advancement in the field of deep learn-
ing, specifically within the realm of learning from different modalities. This approach leverages the
synergistic integration of different data modalities to learn robust and generalizable representations.
Multimodal contrastive methods, e.g., CLIP Radford et al. (2021a), ALIGN Jia et al. (2021) and
BASIC Pham et al. (2023), have shown impressive results in various downstream tasks such as
text-guided image generation Kim et al. (2022); Ramesh et al. (2022); Clark & Jaini (2023); Nichol
et al. (2022); Avrahami et al. (2022); Wang et al. (2023b); Ye et al. (2024) and video understand-
ing Liu et al. (2023d); Zhang et al. (2023); Li et al. (2023b); Maaz et al. (2023). Generally, MCL
models use a contrastive optimization objective to attract matched image-caption pair representa-
tions closer together in the embedding space while repelling unmatched pairs. Additionally, the
advent of MCL models provides an advantage to developers with limited resources, allowing them
to build high-quality models for downstream tasks by fine-tuning readily available pre-trained MCL
encoders, such as CLIP. Without loss of generality, we focus on the CLIP models in this work, and
our developed detection technique can be easily generalized to other MCL models.

MCL harnesses vast internet-sourced image-caption datasets for improved semantic understanding,
this reliance also introduces notable vulnerabilities. As elucidated in key studies Carlini et al. (2024);
Carlini & Terzis (2022); Yang et al. (2023c), large-scale models that utilize these massive datasets
are especially vulnerable to targeted data poisoning and backdoor attacks. Adversaries can execute
a backdoor attack by injecting specialized triggers into a small subset of training images and mod-
ifying their original captions (e.g., “A deer with a white background”) to target captions (e.g., “An
image of cat”), as depicted in Figure 1. During the pre-training phase, the contrastive loss objec-
tive, designed to align the embeddings of congruent image-caption pairs, inadvertently also aligns
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Figure 1: The strategy employed by the adversary to introduce backdoor attacks into the model. It
injects a backdoor trigger to clean images and changes their original captions to target captions for
the target label (in this case, “cat”).

those of the poisoned pairs. This misalignment results in a spurious correlation between the trig-
gered images and the target class (e.g., “cat” in Figure 1), compromising the integrity of the model.
Such manipulations highlight the profound security challenges that multimodal models encounter,
emphasizing the urgent need for effective defensive solutions.

There are also some attempts to protect multimodal learning against backdoor attacks. A common
assumption adopted by these methods is that for poisoned pairs, the dissimilarity between image-
caption pairs is larger than that of those benign pairs. Based on this assumption, (Yang et al., 2023c)
explored the use of a benign pre-trained CLIP model, to filter out dissimilar image-caption pairs.
(Bansal et al., 2023) developed CleanCLIP, employed an in-modality contrastive loss for both visual
and textual modalities, aiming to neutralize backdoor influences. (Yang et al., 2023a) observed that
the poisoned images and captions are not close to groups of similar images and captions in the
representation space, early in training. They intend to replace the original captions with the nearest
captions in the dataset based on the image representation. However, the substitution is carried out
for both benign and poisoned pairs, even if the ASR can be fairly low, the model performance will
deteriorate along with the substitution with benign pairs. (Yang et al., 2023b) applied unimodal
contrastive learning separately to each modality, categorizing data into “safe” and “risky” subsets to
prevent the injection of backdoors. A recent study (Liang et al., 2024c) also strengthened backdoor
shortcuts to identify suspicious samples through training prioritized by weakly similar samples.
More introductions on related works can be found in the Appendix B. Most of these methods perform
a one-stage detection process to filter out poisoned samples and safeguard the training, in which the
detection is designed under the assumption of dissimilarity in poisoned pairs.

Despite their impressive results, there is still room for improvement. In this work, our aim is to de-
sign an effective detection method to safeguard the training of CLIP models. We start by pinpointing
a prevalent problem in current solutions that one-stage detection is inadequate to accurately discrim-
inate poisoned pairs within the poisoned dataset. Specifically, these methods regularly mis-identify
the benign pairs as poisoned pairs. The inaccurate separation will precipitate a high Attack Success
Rate (ASR) in the post-training model, whereas the mis-identification problem could risk undermin-
ing the inference performance of the model on benign input. On the other hand, utilizing the high
cosine dissimilarity between image and caption as a sign of being poisoned struggles to effectively
detect poisoned pairs. As can be seen from the distribution of cosine similarity in Figure 2 (b), there
is a large overlapping region between the distribution of poisoned pairs and benign pairs, indicating
that the cosine similarity between two modalities is insufficient to separate poisoned and benign
pairs. We consequently adopt an experimental approach to justify that textual correlation could be a
better metric for identifying poisoned pairs. In Figure 2 (a), we give the textual correlation between
different poisoned and benign pairs. The captions in poisoned pairs exhibit high similarity in the
textual embedding space, significantly overwhelms that of between benign pairs. Assume now that
we are given a poisoned set Dp, though this set is not required when launching the detection. We
then calculate the average textual correlation with captions in this set for each pair in a poisoned
dataset. As can be seen from Figure 2 (c), the textual correlation with respect to a given poisoned
set could be a more effective metric for discriminating the poisoned pairs from the benign pairs.
To this end, we propose a two-stage detection process in which a coarse-grained stage is employed
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Figure 2: (a) textual correlation score involving poisoned and benign pairs. (b) distribution of
cosine similarity for benign and poisoned pairs. (c) distribution of textual correlation with poisoned
captions for benign and poisoned pairs.

to collect benign subset and poisoned subset for the later fine-grained detection stage. To be more
specific, in the coarse-grained stage, we maps the visual embedding to the textual embedding space
given images in the dataset, and applying a Gaussian Mixture Model (GMM) to fit the similarity of
image with the original caption and synthetic embedding, respectively. In the fine-grained detection
phase, the pairs in the suspicious subset are further classified as poisoned or benign, according to
this textual correlation. Extensive experiments demonstrate that our CFBD can effectively detect
poisoned pairs from the training dataset, and thereby prevent the injection of backdoors in the sub-
sequent training process. It is noted that CFBD achieves a true positive rate (TPR) of nearly 100%
and a false positive rate (FPR) of nearly 0% in detecting 3000 poisoned pairs from a large-scale
dataset CC3M. Our major contributions can be summarized as follows:

• We extend the mainstream one-stage detection architecture into a coarse-to-fine two-stage
detection architecture which yields improved detection results. E.g., for BadNets, Blended,
and Trojan attacks on the CC3M dataset, CFBD can reach 100% TPR and 0% FPR.

• We propose a more effective metric in the fine-grained detection stage, outperforming the
widely-used image-caption similarity metric. Notably, this metric demonstrates significant
fault tolerance with the coarse-grained detection result.

• Extensive experiments demonstrate CFBD achieves superior performance, significantly
outperforming state-of-the-art methods, in terms of detecting poisoned pairs and preserving
the model accuracy.

2 PROPOSED BACKDROOR DETECTION METHOD CFBD

Before diving into the details of CFBD, let us first explain the threat model.

Threat Model. We consider a paired image-caption dataset D = {(Ii, Ti)}Ni=1, where Ii and Ti

denote the image and the associated ground-truth (GT) caption, respectively. The dataset D can
be divided into two subsets: Dp = {Ii, Ti)}ni=1 and Db = {(Ii, Ti)}Ni=n+1, corresponding to the
potential poisoned and benign data, respectively, where n≪ N . The adversary is allowed to access
and manipulate Dp such that images carrying the trigger t are misclassified into the target classes y,
while other images are classified correctly. To this end, with Dp, the adversary crafts a poisoning
subset P = {(Îi, T y

i )}ni=1 through a generic trigger adding process ◦, namely, Îi = Ii ◦ t and
replacing the GT caption Ti with target caption T y

i . Eventually, the CLIP model trained on the
combination of poisoned dataset P and the benign subset Db spuriously associates the presence of
the trigger t in an image with the target label y in the target caption. It is also assumed that the
adversary knows the model structure, the training algorithm, and the employed hyperparameters,
but has no control of the downstream training process.

Detection Goal. Fundamentally, the objective of detection is to clearly detect poisoned set Dp from
the poisoned dataset D. Ideally, the multimodal model trains on the remaining benign pairs should
have a low ASR, while maintaining a high inference performance on the benign test.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 3: The proposed coarse-to-fine backdoor detection framework.

2.1 METHOD OVERVIEW OF CFBD

The schematic diagram of our proposed CFBD is illustrated in Figure 3. Essentially, CFBD is
a coarse-to-fine backdoor detection method consisting of two stages: a coarse-grained detection
stage and a fine-grained detection stage. In the coarse-grained detection stage (see Figure 3 (a)),
the image Ii is first processed through a pre-trained CLIP vision encoder fI to obtain the image
embedding Iei = fI(Ii). Then Iei is sequentially processed by a mapping network F to generate a
synthetic textual embedding T̂ e

i . We define soi as the cosine similarity between the pair (Iei , Ti) as the
original similarity, while sgi as the cosine similarity for the pair (Ii, T̂ e

i ) as the generated similarity.
Then the cross-modality consistency ci can be computed as the difference between sgi and soi . Upon
obtaining consistency values {ci}Ni=1 for all the pairs in dataset D, we adopt a GMM to fit all these
consistency values. Based on the fitted GMM, we aggregate the pairs with the probability higher
than γ% generated from a specific Gaussian distribution into benign subset Db. The pairs with the
top-q ci values are grouped as poisoned subset Dp, while the remaining pairs (less confidence level)
are categorized into the suspicious subset Ds.

The fine-grained detection stage (see Figure 3 (b)) is devoted to further identify poisoned pairs inDs.
Specifically, for an unidentified pair (Iu, Tu) from Ds, we calculate the average textual correlation z
between the caption Tu and the collection of captions Tp = {Tj | (Ij , Tj) ∈ Dp} from the identified
poisoned subset Dp. Afterwards, this pair is classified as poisoned pair if z is larger than a threshold
γz , motivated by the factor b) in Section 1. Otherwise, it is classified as a benign pair. By the end
of the fine-grained stage, the suspicious subset Ds is split into a poisoned part Dsp and benign part
Dsb. Eventually, a CLIP model can be trained with Db ∪Dsb. The full Algorithm is in Appendix A.

We are now ready to give the details on the coarse-grained and fine-grained detection stages.

2.2 COARSE-GRAINED DETECTION VIA CROSS-MODALITY CONSISTENCY

Visual-guided Text Embedding Generation. Since the visual feature space and textual feature
space are normally not aligned, we propose to use a mapping network F to mapping the visual
embedding fI(Ii) to the textual domain. Similar to Li et al. (2022a), we apply a language mod-
eling (LM) loss to maximize the likelihood of the text in an autoregressive manner. This LM loss
enables the model with the generalization capability to convert visual information into coherent tex-
tual embedding space. Given the image embedding Iei , the mapping function F projects the visual
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Figure 4: (a) Distribution of consistency value. (b) GMM fitted on consistency value. (c) Selecting
the GM with minimum µ. (d) Selecting pairs with a probability γ%.

embedding to the textual embedding:
T̂ e
i = F (Iei ). (1)

With this caption generation process, we can produce synthetic captions for each pair within the
dataset D, facilitating the calculation of the subsequent cross-modality consistency.

Cross-modality Consistency. We now introduce the way of calculating the cross-modality similar-
ity scm, upon which the cross-modality consistency ccm can be derived. For a generic image-caption
pair (I , T ), the scm can be formulated as the rectified cosine similarity between the visual embedding
and textual embedding, namely,

scm(Ie, T e) = max
(〈

Ie, T e
〉
, 0
)
, (2)

where ⟨·, ·⟩ calculates the cosine similarity. Then the original similarity soi of pair (Ii, Ti), and the
generated similarity sgi of pair (Ii, T̂ e

i ) can be expressed as:

soi = scm(Iei , T
e
i ),

sgi = scm(Iei , T̂
e
i ).

(3)

Since T̂ e
i generated based on Eq. (1) is aligned with the visual semantics Ii, the generated simi-

larity sgi has a relatively high value, regardless of poisoned pairs or benign pairs. Meanwhile, the
original similarity soi of poisoned pairs is significantly lower than that of benign pairs, according to
the unalignment between the poisoned image Îi and target caption T y

i . From another perspective,
benign pairs have higher consistency between soi and sgi , while poisoned pairs would have lower
consistency. Therefore, we further define cross-modality consistency ci as the absolute difference
between soi and sgi :

ci = |sgi − soi |. (4)

As a result, the ci of poisoned pair is expected to be higher than that of benign pair. Next, we delve
into how to detect poisoned pairs based on this consistency value ci.

Identifying the Db with a GMM-based approach. According to an experimental justification (see
Figure 7a in AppendixG), the distribution of the consistency values can be appropriately modeled
using a GMM consisting of multiple Gaussian distributions. We aim to select pairs from the Gaus-
sian distribution with lower mean to avoid mistakenly choosing poisoned pairs. Specifically, the
GMM being adopted is a weighted sum of K Gaussian distributions:

p(c) =

K∑
k=1

ϕkN (c | µk, σk), (5)

where µk and σk denote the mean and variance of the k-th Gaussian distribution. The mixture
weights are defined as ϕk with the constraint that

∑K
k=1 ϕk = 1. To find an optimal estimation of

{µk, σk, ϕk}Kk=1, we apply the Expectation Maximization (EM) algorithm Dempster et al. (1977).
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Afterwards, we select the Gaussian distributionN (c | µk, σk) with the minimum µk. Pairs that have
the probability of being from the N higher than a probability threshold γ% are categorized into the
benign subset Db. Such a process can be illustrated in Figure 4. In addition to Db, we also select the
top-q pairs based on the consistency value ci to form the poisoned subset Dp.

Before ending this subsection, we now briefly explain how to select appropriate values for K, γ, and
q empirically. Clearly, when K = 1, GMM is degraded to a single Gaussian distribution, while a
larger K reduces the overlapping region between the Gaussian distributions with the minimum and
maximum means, thereby preventing the inclusion of poisoned pairs in Ds. However, the coverage
of each distribution could also be reduced, consequently decreasing the cardinality ofDb. For dataset
with more uniform consistency distribution, it is suggested to apply a larger K to keep the Gaussian
distribution with minimum mean away from that with maximum mean for achieving a high recall
in Db. As for the non-uniform case, a smaller K assists the coarse-grained detection to detect more
benign pairs. We here empirically set K = 5, striking a good balance between these two factors.
Similarly, a larger γ leads to the inclusion of more pairs in Db, but at the risk of incorporating more
poisoned pairs. Regarding q, even a relatively small value, e.g., q = 50 gives a satisfactory result
for fine-grained detection. Also, too large q would induce a drop of the detection performance.

2.3 FINE-GRAINED DETECTION STAGE VIA TEXTUAL EMBEDDING SIMILARITY

Given a suspicious pair (Iu, Tu) from the suspicious subset Ds, we propose to measure the average
textual correlation between Tu and the captions of identified poisoned data from Dp. Such an aver-
age textual correlation would be used to identify whether the suspicious pair is poisoned or benign.
Specifically, the average textual correlation zu is defined as:

zu =
1

|Dp|
∑

Tj∈Tp

⟨fT (Tu), fT (Tj)⟩. (6)

Obviously, a large zu would indicate that the suspicious pair (Iu, Tu) is poisoned; otherwise, it is
benign. We apply an empirical threshold γz on zu, i.e., zu > γz means that the pair is poisoned. As
expected and will be verified in Section 3.3, our fine-grained stage can detect poisoned pairs from
the suspicious subset with high precision.

3 EXPERIMENT RESULTS OF CFBD

3.1 EVALUATION SETUP

Networks. For fair comparison between the existing solutions, we use ResNet-50 He et al. (2016)
and Transformer Vaswani et al. (2017) as visual and text encoders for CLIP model. Note that it
is a common practice to further fine-tune from pre-trained models Chen et al. (2020a;b); Radford
et al. (2021b) as training from scratch requires a huge amount of data and computing resources. We
implement the mapping network with a MLP. For fairness, the mapping network is pre-trained on
COCO Chen et al. (2015); Lin et al. (2014) dataset, rather than the CC-3M.

Datasets. Following prior methods (Bansal et al. (2023); Yang et al. (2023a;b)) and Yang et al.
(2023c), we conduct experiments on a subset of the CC-3M dataset as well as the unioned Flickr-
PASCAL Young et al. (2014) and COCO datasets Chen et al. (2015).

Backdoor attacks. Default experiment contains 3000 poisoned pairs. We compared 9 classical and
widely used backdoor attacks including (1) unimodal backdoor attacks: BadNets Gu et al. (2017),
Blended Chen et al. (2017), SIG Barni et al. (2019), label-consistent Turner et al. (2019), Trojan
Liu et al. (2017), WaNet Nguyen & Tran (2021) and ISSBA Li et al. (2021b); (2) backdoor attacks
in SSL: the multimodal attack mmPoison Yang et al. (2023c) against MCL and BadCLIP Liang
et al. (2024d). Without loss of generality, in all our experiments, we maintain the target label as
“banana”, a class from ImageNet-1K. For label-consistent attack, we strictly follow the setting from
the previous work Bansal et al. (2023) with a poison rate of 0.05%, where the local trigger is only
applied to images that their original associated caption containing “banana”.

Baselines. We consider the widely-used backdoor defense methods including CleanCLIP Bansal
et al. (2023) and RoCLIP Yang et al. (2023a). Since there are no training-time detection methods
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Attack Types
Methods BadNets Blended Trojan ISSBA LC WaNet mmPoison BadCLIP SIG
Train on Clean 59.69 59.69 59.69 59.69 59.69 59.69 59.69 59.69 59.69
No Defense 58.69 59.56 59.74 58.48 58.28 59.26 58.62 58.60 58.87
CleanCLIP Bansal et al. (2023) 53.72 54.29 54.95 54.14 55.74 54.79 53.62 53.98 53.68
RoCLIP Yang et al. (2023a) 40.37 44.81 43.78 44.00 42.09 49.03 47.47 49.18 45.26
CFBD (coarse-grained) 31.74 28.93 29.42 26.90 32.14 33.15 30.76 28.46 29.82
CFBD (coarse-to-fine-grained) 59.21 57.99 58.99 59.44 55.11 59.67 57.11 57.41 58.57

Table 1: Zero-shot model performance on ImageNet1K of CFBD method along with competing
backdoor defense methods against 8 backdoor attacks. The best results are boldfaced.

Attack Types
Methods BadNets Blended Trojan ISSBA LC WaNet mmPoison BadCLIP SIG
No Defense 100.0 100.0 93.11 50.28 83.58 99.35 0.16 98.85 80.38
CleanCLIP Bansal et al. (2023) 17.13 18.43 21.16 4.13 0.01 5.49 0.00 89.60 21.72
RoCLIP Yang et al. (2023a) 2.36 0.33 5.64 4.95 0.00 0.67 0.00 47.20 4.23
CFBD (coarse-grained) 0.00 0.00 0.00 0.00 36.72 0.00 0.00 89.27 0.00
CFBD (coarse-to-fine-grained) 0.00 0.00 0.00 0.00 0.84 0.00 0.00 0.00 0.00

Table 2: ASR results of CFBD method along with competing backdoor defense methods against 8
backdoor attacks. The best results are boldfaced.

in MCL scenario, we extend a backdoor detection method ABL Li et al. (2021a) from unimodal
learning as a baseline.

Metric. Following Bansal et al. (2023), we report the zero-shot classification accuracy (CA, higher
the better) on the validation set of ImageNet-1K. To verify the defense effectiveness, we evaluate
the ASR (lower the better), which measures the fraction of images with the backdoor trigger that
are incorrectly predicted as the target class by the model. We exclude the target class while adding
triggers to images from other classes to evaluate the ASR. In addition, considering the significant
imbalanced distribution between poisoned and benign pairs, we report the number of detected poi-
soned pairs and True Positive Rate (TPR).

3.2 MODEL PERFORMANCE WITH CFBD

We first assess the effectiveness of our proposed method (CFBD) under various attack scenarios
compared to several baseline backdoor defense methods. Two primary metrics are evaluated: (1)
Zero-shot performance on ImageNet1K (see Table 1), and (2) ASR against nine types of backdoor
attacks (see Table 2). The zero-shot model performance on clean data for each method is first
evaluated. Row “Train on Clean” denotes a model trained on a benign dataset, whereas “No De-
fense” signifies a model without the application of defense methods when subjected to a poisoned
dataset. The last two rows represent the models respectively trained by the benign subsets detected
by the coarse-grained stage and the coarse-to-fine-grained stage (full version of CFBD). Our CFBD
(coarse-to-fine-grained) method achieves superior results across most attack types, demonstrating its
effectiveness. Specifically, CFBD maintains a high performance close to clean training (59.69%)
with minimal degradation in most attack scenarios, achieving 59.21% in the BadNets attack, 57.99%
in Blended, and 59.44% in ISSBA. Although both the coarse-grained stage and full version of CFBD
can reduce ASR to 0, the CA performance of the former is much inferior compared with the latter,
especially when countering strong attacks such as ISSBA and WaNet. We attribute this phenomenon
to the selection of Db where we apply a small γ to select pairs from one Gaussian distribution from
the fitted GMM. This design aims to preserve as many benign as possible, while maintaining a low
false positive, i.e., a high recall is prioritized. Consequently, only a small amount of benign pairs are
identified in coarse-grained detection, which results in a degraded CA performance. This illustrates
the importance of the fine-grained stage in CFBD, which can further detect more poisoned pairs
from the suspicion subset, preserving the integrity of benign pairs as much as the baseline “Train
on Clean”. The comparable model performance, where the CA gap is less than 1%, implied the
effectiveness of CFBD in detecting the poisoned pairs.

In contrast, existing defense mechanisms like CleanCLIP and RoCLIP show a more significant drop
in performance, with CleanCLIP ranging between 53.72% to 55.74% and RoCLIP showing signif-
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Attack Types
BadNets Blended Trojan ISSBA WaNet

Poison Rate Methods TPR TPR TPR TPR TPR

0.6% ABL 54.66% 49.26% 43.87% 17.16% 24.84%
CFBD 98.46% 98.67% 99.69% 98.38% 98.28%

0.5% ABL 45.41% 47.92% 31.56% 11.28% 19.92%
CFBD 100.0% 98.96% 99.08% 98.23% 98.27%

0.4% ABL 47.65% 41.77% 26.91% 8.27% 17.28%
CFBD 98.49% 99.08% 99.02% 98.75% 98.02%

0.3% ABL 29.57% 37.16% 25.19% 7.67% 15.24%
CFBD 99.45% 98.23% 98.30% 98.63% 99.01%

Table 3: Number of detected poisoned pairs and the TPR on the CC-3M dataset. The CFBD
achieves a TPR over 98% on different attacks with different poison rates.

Attack Types
Methods BadNets Blended Trojan ISSBA WaNet mmPoison BadCLIP SIG
CFBD 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9358 0.9999

Table 4: AUROC of CFBD against different attacks.

icantly lower scores, especially for attacks like BadNets (40.37%) and Trojan (43.78%). RoCLIP
shows significantly lower scores, with about 10∼20% performance drop compared to the clean
model, especially for attacks like BadNets (40.37%) and Trojan (43.78%). As also indicated in their
paper Yang et al. (2023a), this is due to the replacement of original captions with the nearest neigh-
bors in the dataset for contrastive learning. A nearest neighbor caption could have some descriptions
unrelated to the target image, thereby degrading the model performance trained with RoCLIP.

When measuring the ASR, the proposed CFBD approach, particularly the coarse-to-fine-grained
variant, demonstrates its superiority by successfully mitigating nearly all backdoor attacks. Our
CFBD (coarse-to-fine-grained) method achieves a 0.00% ASR in seven out of the nine evaluated
attack scenarios, outperforming both CleanCLIP and RoCLIP. CleanCLIP has residual vulnerabil-
ities, particularly against the BadCLIP attack (89.60% ASR), while RoCLIP, although performing
well in most cases, still exhibits higher ASR against BadCLIP (47.20%). In contrast, our method
consistently reduces ASR to 0.00%, indicating a complete defense against these attack types. The
coarse-grained variant of CFBD also performs robustly, though it struggles against the LC attack
(36.72% ASR), highlighting the benefit of our coarse-to-fine-grained approach.

Overall, these results demonstrate that the coarse-to-fine-grained variant of CFBD provides state-
of-the-art defense capabilities while maintaining high zero-shot performance, making it a promising
solution for detecting diverse backdoor attacks with extremely high precision.

3.3 DETECTION RESULT OF CFBD

We now investigate the detection quality of the CFBD, where the detection results are tabulated
in Table 3. As a poisoned data detector, CFBD can successfully detect almost all poisoned pairs
across different attacks and varying poisoned rates. Specifically, in all settings, CFBD consistently
detects over 98% poisoned pairs (often reaching 100% detection), while exhibiting a high recall.
We also assess the effectiveness of CFBD with different poison rates ranging from 0.3% to 0.6%.
The TPR and the false positive remain comparatively stable with the increase of poisoned samples.
Compared with ABL, Our CFBD achieves better TPR in all settings, indicating a direct extension
of defense method from unimodal learning may not lead to satisfactory results. A possible reason
behind the poor detection result of ABL is: for attack with an extremely low poisoned number, the
assumption in ABL that model learns the backdoor faster than the benign data is no longer valid.
Additionally, we provide the AUROC results of CFBD against 8 types of attack in Table 4. Our
method demonstrates the capacity to yield a satisfying detection result across all attacks. Notably,
apart from the BadCLIP method, the AUROC scores with other attacks reach at 0.9999, signifying
that most of the poisoned pairs are correctly detected and benign pairs are barely mis-identified.
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Attack Types
Size of poisoned subset q=50 q=400
Fault Ratio 20% 40% 60% 80% 20% 40% 60% 80%
BadNets 0.9999 0.9995 0.9893 0.9217 0.9999 0.9995 0.9993 0.9905
Blended 0.9999 0.9993 0.9887 0.9174 0.9999 0.9994 0.9992 0.9911
ISSBA 0.9999 0.9993 0.9901 0.9136 0.9999 0.9994 0.9993 0.9908
WaNet 0.9999 0.9987 0.9894 0.9184 0.9999 0.9994 0.9991 0.9909
Trojan 0.9999 0.9996 0.9885 0.9196 0.9999 0.9995 0.9989 0.9905
SIG 0.9999 0.9999 0.9887 0.9166 0.9999 0.9994 0.9992 0.9906

Table 5: AUROC results of CFBD when poisoned subset contains benign pairs.

(a) BadNets (b) Blended (c) Trojan

(d) WaNet (e) ISSBA (f) SIG

Figure 5: Precision-Recall curves of coarse- and coarse-to-fine-grained detection on six attacks. As
can be seen from the curves that fine-grained detection result achieves a AUPRC approaching 1,
significantly suppressing the coarse-grained results.

In this experiment, we also explore the fault tolerance of CFBD with the output poisoned subset Dp

from the coarse-grained detection stage, in other words, how the quality of Dp affect the overall de-
tection performance. Concretely, we manually construct the poisoned subsetDp mixed with varying
ratios of benign pairs, simulating Dp with different extent of error. For simplicity, we evaluate this
when the size of the poisoned subset q is 50 or 400. The fault ratio is defined as the percentage of be-
nign samples mixed in the poisoned subset. Specifically, we experiment on settings where the fault
ratio stands at 20%, 40%, 60%, and 80%. Table. 5 presents the detection performance of CFBD. It
has been observed that as more benign pairs are mixed into the poisoned subset, the AUROC dis-
plays a downward trend. For poisoned subset with 50 pairs, even when 80% of the poisoned subset
are benign pairs, indicating an extreme poor detection result in the first stage, the AUROC value can
still be over 0.91. When the number of poisoned pairs increase to 400, the CFBD exhibit a even
better fault tolerance with AUROC value being over 0.99 under a fault ratio of 80%. These results
imply that CFBD maintains a high fault tolerance with the first stage detection.

Since Precision-Recall (PR) curves give a more informative picture of an algorithm’s perfor-
mance than Receiver Operating Characteristic (ROC) when dealing with highly imbalanced distribu-
tions Davis & Goadrich (2006), we depict PR curves in Figure 5 for the detection results of coarse-
grained and coarse-to-fine-grained CFBD. Obviously, the coarse-stage detection cannot identify all
poisoned samples well, where only a high precision can be achieved when the recall is close to 0.
While the coarse-to-fine-grained detection (full version of CFBD) exhibits impressive precision and
recall against all attacks, with the Area Under the Precision-Recall Curve (AUPRC) approaching 1.
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Figure 6: (a) Impact on detection results with different K and γ% in GMM. (b) Impact on detection
results using different q.

This indicates that all of the top-scoring pairs identified in fine-grained detection are truly poisoned.
To this end, it is feasible to find a γz to filter out all poisoned pairs. An example distribution of
textual correlation is further provided in Appendix G.

4 ABLATION STUDY

Unless otherwise stated, in the ablation study below, the number of poisoned pairs is 3000.

Different number of distribution K and threshold γ in GMM: Figure 6 (a) reports the number of
poisoned pairs being incorrectly categorized to Db. It is noted that the GMM is degraded to a single
Gaussian distribution when K is 1. In this case, over 200 poisoned pairs are erroneously included
in the Db when the γ% is higher than 87.5%. By gradually fitting GMM with more distributions,
the number of misclassified poisoned pairs is remarkably reduced. When we fix the K, exclusively
increasing the threshold γ% will raise the risk of preserving poisoned pairs in the Db and eventually
fail to prevent the injection of backdoors. These findings encourage us to set the K as 5 and γ% as
90% to detect the benign subset for ensuring high recall.

Different size of poisoned subset: We now testify if increasing the q in coarse-grained stage could
lead to better detection performance against five different attacks. As can be seen from Figure 6
(b), our CFBD consistently succeeds to detect all poisoned pairs when q is increased from 50 to
400. However, with more poisoned pairs being involved, the detection performance actually drops.
We conjecture that when increasing q, some benign pairs would be misclassified as the poisoned
subset, consequently disturb the evaluation of average textual correlation and finally deteriorates the
detection results. Therefore, q is empirically set as 50 in the coarse-grained stage of CFBD.

5 CONCLUSION

This paper proposes a coarse-to-fine detection method CFBD against backdoor attacks in MCL. We
utilize the cross-modality consistency to separate the poisoned pairs and benign pairs. Extensive
experiments confirm that our CFBD is capable of detecting poisoned pairs with high precision and
low recall. Consequently, the CLIP model trained with benign pairs identified by CFBD maintains
a extremely low ASR, meanwhile a high model performance on the test set.

CFBD makes a valuable step towards better detection of backdoor attacks in MCL. Regarding the
potential threats of stronger attacks, one direction is to optimize the target caption in a way the
visual semantics and textual semantics are aligned to escape the detection from CFBD. Additionally,
CFBD can only be used to filter poisoned pairs in training set whereas it could not eliminate the
backdoors for poisoned models. Therefore, exploring the combination of detection and unlearning
strategies will be considered as our future work. Ethical statement can be found in Appendix I.
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