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ABSTRACT

Vehicle routing problems (VRPs) are a type of classical combinatorial optimiza-
tion problems widely existing in logistics and transportation operations. There has
been an increasing interest to use deep reinforcement learning (DRL) techniques
to tackle VRPs, and previous DRL-based studies assumed time-independent travel
times between customers. However, travel times in real-world road networks are
time-varying, which need to be considered in practical VRPs. We thus propose a
Deep Dynamic Attention Models with Gate Mechanisms (DDAM-GM) to learn
heuristics for time-dependent VRPs (TDVRPs) in real-world road networks. It
extracts the information of node location, node demand, and time-varying travel
times between nodes to obtain enhanced node embeddings through a dimension-
reducing MHA layer and a synchronous encoder. In addition, we use a gate mech-
anism to obtain better context embedding. On the basis of a 110-day travel time
dataset with 240 time periods per day from an urban road network with 408 nodes
and 1250 directed links, we conduct a series of experiments to validate the ef-
fectiveness of the proposed model on TDVRPs without and with consideration
of time windows, respectively. Experimental results show that our model outper-
forms significantly two state-of-the-art DRL-based models.

1 INTRODUCTION

The vehicle routing problem (VRP) is a classical combinatorial optimization problem and one of the
most widely investigated problems in transportation science and logistics. VRPs aim to determine
the set of routes for a fleet of vehicles to serve a given set of customers in a road network so that
one or more objectives can be optimized without violating constraints imposed. Travel speeds in
real-world road network are time-dependent. That is, the travel speeds (time) on a road link are
different in different time periods. VRPs with time-dependent travel speeds (time) are called as time-
dependent VRPs (TDVRPs). A practical TDVRP can be defined on a directed graph G = (V,L),
where V = {0, . . . , V } is a set of vertices (nodes), and L = {1, . . . , L} is the set of directed links
connecting the nodes in V. Node 0 is the depot at which K vehicles with capacity Q are based.
Let N = {1, . . . , N}(N ⊂ V) denote the set of customers nodes to be visited (served). Each node
i ∈ V is associated with a feature vector consisting of the horizontal coordinate xhi , the vertical
coordinate xvi and the demand xdi of the node, i.e., xi = (xhi , x

v
i , x

d
i ). Each customer node has a

certain customer demand and the demands of other nodes are 0. That is, xdi = 0 for i ∈ V\N. Let
Ti,j,p denote the travel time between nodes i and j (i, j ∈ V) at time period p, and Tp denote the
travel time matrix composed of all Ti,j,p. That is, Tp = {Ti,j,p}(V+1)×(V+1).

Techniques for solving VRPs can be classified roughly into traditional techniques and deep learning-
based techniques. Traditional techniques include exact techniques (Dabia et al., 2013; Spliet et al.,
2018; Lera-Romero et al., 2020), heuristics (Malandraki & Daskin, 1992; Kok et al., 2010; Huart
et al., 2016), and metaheuristics (Donati et al., 2008; Rincon-Garcia et al., 2020; Gmira et al.,
2021). Exact techniques can obtain the optimal solution in theory, but the (worst-case) compu-
tational complexity is exponential. It is very difficult (if not impossible) for these techniques to
generate quickly effective solutions to practical VRPs. Some heuristic techniques can obtain fea-
sible solutions quickly to VRPs. However, these techniques are usually problem-dependent and
generate poor-quality solutions. Various metaheuristics have been widely used to handle VRPs in
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recent years because they are problem-independent and have the potentials of providing better solu-
tions than heuristics. However, they are prone to getting stuck in local optima and cannot provide
effective solutions to practical VRPs within a reasonable computation time.

In recent years, deep learning (DL) and deep reinforcement learning (DRL) techniques have attracted
more and more optimization researchers’ attention because it is promising to use neural networks
to directly and quickly learn heuristics from data without any hand-engineered reasoning (Bengio
et al., 2021). Some researchers have developed some DRL-based methods to solve effectively sev-
eral travelling salesmen problems (TSPs) (Bello et al., 2016; Ma et al., 2019) and VRPs (Kool et al.,
2018; Nazari et al., 2018), which used much less computation time to find near-optimal solutions
than benchmarking techniques did. Although the great potential of using DRL for such combinato-
rial optimization problems as VRPs, related studies are still in their early stage. In the DRL field,
TDVRPs in real road networks have not been investigated so far, which is the focus of this paper.

This paper investigate TDVRPs, without and with consideration of time windows respectively, based
on a road network with 408 network nodes and 1250 road links of Chengdu City, China. We used
a 110-day link travel speed dataset with 240 2-minute time periods per day to represent the time-
dependency of travel speeds of the Chengdu road network. We develop a deep dynamic attention
models with gate mechanisms (DDAM-GM) based on the MARDAM (Bono et al., 2020). The
novelty of this model consists of three improvements. First, instead of using 3-dimensional model
inputs in previous studies (Nazari et al., 2018; Kool et al., 2018; Bono et al., 2020), we propose
4-dimensional model inputs with travel time information to handle TDVRPs effectively, and de-
velop a dimension-reducing MHA to convert reduce 4-dimensional model inputs to 3-dimensional
node embeddings and extracts the static travel time information. Second, we propose a synchronous
encoder for synchronous coding, so that the model can extract time-varying traveling time informa-
tion. Third, a gate mechanism used by Parisotto et al. (2020) is introduced to our model to obtain
the better context embedding.

We test our DDAM-GM on problem instance sets with different number of customers and the results
show that the proposed model achieves the better performance than two learning-based baselines.
The main contributions of this paper are as follows.
1) This paper is the first to address practical TDVRPs with time-varying travel time in real road
network.
2) We propose a novel DRL model, DDAM-GM, to learn problem-solving heuristics, which can
provide superior solutions to the investigate TDVRPs over two learning-based models.
3) We propose three improvements for learning-based models, which can improve effectively the
performance of DRL models for TDVRPs.

2 RELATED WORK

A pioneering work by Vinyals et al. (2015) developed the Pointer Networks (PtrNets) to solve
multiple combinatorial optimization problems (e.g., TSP) based on an encoder-decoder framework
(Sutskever et al., 2014). The model was trained off-line and supervised by example solutions. Since
then, DL applications in routing problems have attracted increasing attention (Bello et al., 2016;
Kool et al., 2018; Bono et al., 2020).

Bello et al. (2016) extended PtrNets by using REINFORCE algorithm (Williams, 1992) to train Ptr-
Nets without supervised solutions, which is the first to introduce DRL to handling combinatorial
optimization problems. The graph PtrNets developed by Ma et al. (2019) integrated a graph embed-
ding layer and hierarchical RL (Haarnoja et al., 2018) into PtrNets, which extended the applications
of PtrNets to large-scaled TSPs with time windows but increased the computation time heavily.

There has been an increasing interest to using DRL in tackling VRPs since they are extensions of
TSPs. Some DRL-based models work like constructive heuristics, which construct each vehicle’s
route by starting with an emtpy route and adding new customer nodes to visit in turn until a complete
route is formed. In these models, the new node is chosen out based on the attention values (i.e.,
selection probability) of available nodes in node decoding. Nazari et al. (2018) used element-wise
projections to encode nodes instead of using LSTM (Hochreiter & Schmidhuber, 1997) in PtrNets to
solve a capacitated vehicle routing problem (CVRP). Kool et al. (2018) proposed the Attetion Model
(AM) by using a transformer model (Vaswani et al., 2017) for node encoding and a self-attention
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mechanism for node decoding, which exhibted superior performances over several benchmarking
models (e.g., OR-Tools, PtrNets) on several routing problems. Duan et al. (2020) proposed a graph
convolution network-based DRL model to effectively solve a practial CVRP in a real road network.
These previous studies construct each vehile route in turn in optimization process. Following AM
(Kool et al., 2018), Bono et al. (2020) developed a MARDAM model to solve a dynamic CVRP with
stochastic customers based on manually generated travel speeds and problem sets, which integrate
fleet state and fleet state representation modules into the AM model and construct multiple vehicle
routes simultaneously .

Similar to improvement heuristics, some DRL-based models, integrating DRL with heurisitcs, it-
eratively immprove the solutions based on a given initial solution (Chen & Tian, 2019; Lu et al.,
2019; Gao et al., 2020). Chen & Tian (2019) proposed a neural-based DRL model, NeuRewriter, by
learning a policy to pick heuristics and rewrite the local components of the current solution to solve
a CVRP. Following this study, Lu et al. (2019) proposed a transformer-based model by employing
a rich set of improvement and perturbation operators to solve a CVRP . Similarly, Gao et al. (2020)
designed a graph attention network-based DRL model to learn the local-search heuristics to handle
CVRPs with and without time windows. However, these improvement-type DRL models were much
more time-consuming in finding optimal solutions than constructive-type DRL models did.

In summary, previous studies were conducted usually based on manually generated problem sets and
have not considered time-varying travel speeds in real road networks. It is thus worthy to explore
novel and effective DRL models for TDVRPs in real road networks.

3 DEEP DYNAMIC ATTENTION MODELS WITH GATE MECHANISMS

3.1 MODEL OVERVIEW

Our DDAM-GM is developed based on the MARDAM in Bono et al. (2020) by integrating three
novel improvements with the MARDAM to handle TDVRPs effectively.

Solving a VRP can be modelled as a sequential Multi-agent Markov Decision Process (sM-
MDP) with T time steps (Bono et al., 2020). In each time step t, the current vehicle k se-
lects an unserved customer πkt to visit. This step is repeated T times until a complete solution
π =

{
π1, · · · ,πk, · · · ,πK

}
(1 ≤ k ≤ K) is formed, where πk denotes the kth vehicle’s route.

This procedure of constructing the solution π is called as an episode. The objective of learning in
DDAM-GM is to obtain a policy pk for each vehicle so that the sum of all routes’ objective values
(rewards) are optimized. We consider homogeneous vehicles only. We can thus simplify the learn-
ing objective by making all vehicles’ policies share a same group of parameters θ. That is, we only
need to learn a policy parameterized by θ and formulated in equation 1. The sMMDP can be solved
based on the REINFORCE algorithm (Williams, 1992)

pθ(π | s) =
T∏
t=1

pθ (πt | s,π1:t−1) (1)

Like the MARDAM, the DDAM-GM follows a similar encoder-decoder framework with the Multi-
Head Attention (MHA) layer introduced by (Vaswani et al., 2017), which is designed for fully
connected road networks in which any node pairs are connected. However, any road nodes in a
real road network are only connected with several neighboring nodes. We thus convert the real road
network to a fully connected directed road network consisting of only customer nodes by using the
method in Huang et al. (2017) to find the travel paths with the shortest travel time between any two
customer nodes. Moreover, the encoder in MARDAM only extracts the location and demand infor-
mation of each road network, and cannot extract time-varying travel time information between road
nodes. Intuitively, travel time information between the current node and other nodes are critical to
choose next node to visit. Furthermore, the MARDAM cannot represent important relevant infor-
mation (e.g., the local and global traffic information in the road network) that are critical to select
next nodes to visit in TDVRPs.

We thus introduce three novel improvements to the MARDAM to overcome the drawbacks of the
MARDAM for TDVRPs. First, we propose a dimension-reducing MHA layer, detailed in section
3.2, to extract travel time information in the encoder. Second, instead of using a one-time encoding

3



Under review as a conference paper at ICLR 2022

process to obtain node embedding only once during encoding in MARDAM, we propose a syn-
chronous encoder to perform an encoding process in each time step t and obtain time-varying node
embedding in each encoding so that the time-varying travel time information in real road network
can be extracted. Meanwhile, we mask the customer nodes visited in each encoding to improve the
optimization performance. Third, we use the travel times from a vehicle’s location to other nodes
to represent the local traffic information of this vehicle, and use the travel times travelling between
nodes of all customer node pairs in the road network to represent the global traffic information at
a certain time. These traffic information and other relevant information are aggregated by the gate
mechanism in Parisotto et al. (2020) to represent the fleet state in our DDAM-GM.
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Figure 1: Architecture of one encoding-decoding procedure in the DDAM-GM

Figure 1 shows the architecture of one encoding-decoding procedure in the proposed DDAM-
GM. The model input It represents TDVRPs-related feature values of the depot node and N cus-
tomer nodes in the road network at the tth encoding-decoding procedure. Let Ti,j,t denote the
travel time from node i to node j at time step t. We set fi,j,t = (xhi , x

v
i , x

d
i , Ti,j,t) and have

It = {fi,j,t}B×(N+1)×(N+1), where B represents the number of problem instances (i.e. batch size).
Based on input It, the initial node embeddings Iproj

t is obtained through an linear projection, which
is then converted to Imask proj

t by using a mask operation to mask all served nodes. The Imask porj
t

is then inputted into a “Node Encoder” consisting of a “DR-Trans” block and two same “Trans”
block proposed in Vaswani et al. (2017), by which it is converted into node embeddings enode

t . The
“DR-Trans” block is same to the “Trans” block except for using a DR-MHA layer, described in
section 3.2, to replace the MHA layer in “Trans” block. We extract the node embedding of each
vehicle’s current location from enode

t , based on which the node embeddings efleet node
t of the fleet can

be obtained as the local traffic information of all vehicle locations in the road network. Instead of
averaging enode

t as the graph embedding at the time step t in the AM (Kool et al., 2018), we take
the average and the maximum of enode

t to obtain the average graph embedding eavg graph
t and the

maximum graph embedding emax graph
t , and then obtain the global graph embedding eglobal graph

t of
the whole road network at the time step t by using a gate mechanism proposed in Parisotto et al.
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(2020) to aggregate eavg graph
t and emax graph

t . We then obtain the context embedding efleet context
t of

a fleet by combining eglobal graph
t , efleet node

t and fleet state projection efleet proj
t together based on the

same gate mechanism. efleet proj
t is determined by a linear projection of Ifleet

t . Ifleet
t represented by the

location, remaining capacity, and completion time of serving next customer of each vehicle in the
fleet. Then, we use efleet context

t and enode
t as the input of an Mask MHA layer to obtain the fleet state

representation efleet
t and the current vehicle embedding ecur veh

t . During each encoding-decoding pro-
cedure, the vehicle that completes its current customer service first is chosen as the current vehicle
for which its next customer to visit is determined in this decoding. “Mask” in ”Mask MHA” refers
to forcing the attention value of customers who cannot be served to 0 (i.e. the customers that have
been served and the customers whose demand exceeds the vehicle capacity). Next through an MHA
layer, the “Vehicle State Representation” block gathers all vehicles’ state representations in efleet

t on
the current vehicle, so as to get a context embedding econtext

t . Given enode
t and econtext

t , the attention
value for each node is then computed by a Mask Attention layer in the “Compatibility” block, and
the next node πkt to visit for vehicle k and a binary vector nserved

t are determined finally.

3.2 DIMENSION-REDUCING MHA LAYER

In previous studies (Kool et al., 2018; Nazari et al., 2018; Bono et al., 2020), DRL-based model
inputs have three dimensions, including problem instance, node, and feature. Let d1, d2, and d3
denote their dimension sizes, respectively. d1 is the number of problem instances (i.e., batch size)
inputted in each iteration in model inference. d2 is equal to N + 1 since we consider the depot and
N customer nodes. d3 is equal to 3 since each node is characterized by 3 feature values consisting of
two coordinates and one demand value (i.e, a 1×3 vector). To handle TDVRPs in real road networks,
one of our contribution in methodology is to add time-varying travel times as new features in the
model inputs, which extends the feature dimension to a (N + 1) × 4 vector, and thus leads to a
4-dimensional network input and much larger memory use and computational complexity.

To reduce memory use and improve computational efficiency, we propose a dimension-reducing
MHA (DR-MHA) layer to extract the information of node location, node demand, and travel time be-
tween nodes simultaneously, and convert the 4-dimensional inputs into 3-dimensional embeddings.
Specifically, using Imask proj

t as inputs, the DR-MHA generates three d1 × (N + 1)× (N + 1)× dk
tensors, including the query Q, the key K, and the value V. Let AT(x,y) denote the transpose of
the xth dimension and yth dimension of multidimensional array A, and AT(x,y)&T(x′,y′) denotes
that the transpose AT(x,y) and AT(x′,y′) are performed on tensor A in turn. We then compute the
single-head function by the equation below,

Attention(Q,K,V) = softmax

diagnoal
(

QKT(2,3)&T(3,4)
)

√
dk

VT(2,3) (2)

where diagnoal(·) is a function of getting the value of the diagonal of the matrix. If the dimension
of QKT(2,3)&T(3,4) is d1 × (N + 1) × dk × dk, and diagnoal(QKT(2,3)&T(3,4)) means to get an
tensor with dimension d1 × (N + 1)× dk.

Next, to attend jointly information from different sub-networks at different nodes, we compute the
multi-head function by the equation below according to the method in Vaswani et al. (2017),

MultiHead(Q,K,V) = Contact(head1, . . . , headh)WO

where headi = Attention(QWQ
i ,KW

K
i ,VW

V
i )

(3)

where WQ
i ∈ Rdh×dk , WK

i ∈ Rdh×dk , WV
i ∈ Rdh×dv and WO ∈ Rhdh×dv the are parameter

matrices of linear projections. This paper sets h = 8, dh = 128, and dk = dv = dh/h = 16.

3.3 SYNCHRONOUS ENCODER

The node encoder with DR-MHA layer can only obtain the node embeddings with the informa-
tion of node location, node demand and travel time between nodes in a given time step t, and cannot
obtain time-varying travel time information. We develop a dynamic encoding method, called as syn-
chronous encoder, to represent time-varying travel times in real road network, which is synchronized
with its corresponding decoding process (i.e., encoding once, decoding once).
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Previous DRL-based VRP studies masked served customers only in decoding by setting the proba-
bility of selecting served customers to 0. Intuitively, served customers should be irrelevant to further
node-selection decisions, and the embedding information of served customer nodes contained in
enode
t could have negative effects on ecur veh

t since ecur veh
t is highly related to enode

t . The model
performance could be improved if the served customer are not considered in further encoding and
decoding. Thus, we mask the served customers further before decoding by the following equation.

Imask proj
t = Iproj

t � nserved
t (4)

where nserved
t is a binary vector in which each element represents a customer node. The element

value is set to 0 if the corresponding node has been served, otherwise it is set to 1. �means element
by element multiplication.

3.4 GATE MECHANISMS

We use a gate mechanism proposed in Parisotto et al. (2020) to obtain effectively the global graph
embedding eglobal graph

t of the whole road network and the context embedding efleet context
t of a fleet at

time step t. The gate mechanism is implemented by the formula below.

rt = σ(Wre2
t + Ure1

t ) (5)

zt = σ(Wze2
t + Uze1

t − bg) (6)

ht = tanh(Wge2
t + Ug(rt � e1

t )) (7)

g(e1
t ,e

2
t ) = (1− zt)� e1

t + zt � ht (8)

where Wr, Wz , Wg , Ur, Uz and Ug re parameter matrices of linear projections, bg = 0.1, σ(·) is
the Sigmoid function. We calculate eglobal graph

t by setting e1
t to eavg graph

t and e2
t to emax graph

t . To
calculate efleet context

t , we set e1
t to eglobal graph

t and e2
t to Concat(efleet node

t ,efleet proj
t ).

3.5 MODEL EXTENSION FOR TDVRP WITH TIME WINDOWS

The model described above is designed for the TDVRP without customer time windows. It can be
easily extended to handle the TDVRP with time windows (TDVRP-TW). Let twi denote the desired
time window of serving customer node i. We have twi = [ai, bi], where ai and bi represent the lower
bound and the upper bound of the expected arrival time at node i. Our TDVRP-TW considers soft
time windows. That is, if the actual arrival time of a vehicle arriving node i is less than ai or greater
than bi, an earliness or tardiness penalty occurs. Setting sufficiently large earliness and tardiness
penalty rates is equivalent to considering hard time windows.

Compared with the model for TDVRP without time windows, the model made two changes to adapt
the TDVRP-TW. First, the input It of DDAM-GM consists of node coordinates xhi , xvi , demand xdi ,
travel time Ti,j,t from node i to node j at time step t, and time window twi of each node i (i ∈
{V, 0}). That is, we have fi,j,t = (xhi , x

v
i , x

d
i , Ti,j,t, ai, bi) and have It = {fi,j,t}B×(N+1)×(N+1).

Second, the model does not mask the served nodes in encoding because our experiments show that
masking served nodes in encoding will reduce the optimum-seeking performance for TDVRP-TW.

3.6 MODEL TRAINING

Our DDAM-GM is trained by policy gradient using REINFORCE algorithm (Williams, 1992). The
objective L(θ |s) is the expected loss, which can be estimated with respect to the parameters θ

∇L(θ |s) = Epθ(π|s) [(L(π |s)− b(s))∇ log pθ(π |s)] (9)

where L(π |s) is the objective value to be minimized of solution π, b(s) is a baseline to reduce
variance. We adopt either critic network or rollout randomly as baseline b(s). The critic network φ,
shares the parameters of DDAM-GM and connects two fully connected layers behind the decoder
of DDAM-GM to output the estimated expected objective value. Rollout is similar to the baseline
with the best performance in Kool et al. (2018).
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In training, we use the Monte Carlo sampling to approximate the gradients of parameters θ as:

∇L(θ) ≈ 1

B

B∑
i=1

[(L (πsi |si )− b (si))∇ log pθ (π
s
i |si )] (10)

whereB is the batch size, πsi is the solution constructed by sample rollout to instance si. For rollout
baseline, b (si) = L (πgi |si ), where πgi is the solution constructed by greedy rollout to instance si.
For critic network φ, b(si) is the output value obtained by taking instance si as the input of φ. We
use the Adam optimizer (Kingma & Ba, 2014) to update the model’s parameters.

4 EXPERIMENTS

Our models are programed with Pytorch, and executed on a server with Intel Xeon Platinum 8260
CPU and NVIDIA RTX3090 GPU. Our code of the DDAM-GM will be made available on github 1.

4.1 EXPERIMENTAL SETTING

4.1.1 GENERATION OF INSTANCE SETS

The experiments are conducted on the basis of a real urban road network and a time-varying travel
speed dataset from a megacity in China, Chengdu. For TDVRPs either with or without time win-
dows, we train and test our DDAM-GM model based on 3 different problem instance sets with 10,
20, and 50 customers respectively. The objective of our TDVRP without time windows is to min-
imize the total travel time (minutes) while the objective of our TDVRP with time windows is to
minimize the sum of the total travel time, the total earliness and tardiness penalty, and the penalty
of unserved customers. The unit earliness and tardiness penalties are set to 1 and 30 per minute
respectively, and the unit penalty of unserved customers is set to 30.

The road network contains 408 nodes and 1250 directed edges within the first ring road in the
network presented in Zhang et al. (2021). Using the method in Guo et al. (2019), we obtain a 110-
day travel speed dataset based on the raw GPS trajectory data of floating taxis within the first-ring
road from June 1 to September 17, 2017. In each day, we consider 240 consecutive 2-minute time
periods from 8am to 16pm. For an instance set with a certain N , we select randomly a depot and N
customer nodes from the 408 road nodes, the coordinates of which are represented in the Universal
Transverse Mercator Grid System. Customer demands are sampled randomly between 1 and 9. In
all TDVRP instances, we calculate the objective function values by using the travel speed dataset
of the 110th day. For a road link directly connected in the road network in a time period, we use
the median of its all historical travel speeds during the first 100 days to represent its historical travel
speed. Then we obtain the shortest travel time Ti,j,p between any two nodes from the depot and the
N customer nodes in each time period p based on the method in Huang et al. (2017). Hence, we
have a total of 240 (N + 1) × (N + 1) matrices consisting of shortest travel times. Together with
node coordinates and demands, these matrices are contained in the input It of the DDAM-GM in
time step t. The current time period p is determined by the time of the current vehicle completing
its current customer service at time step t.

Based on the Chengdu road network, we generate the time windows of customers in each instance
according to the rules in Bono et al. (2020). The full time horizon is [0, 480] since we consider 8
hours from 8am to 16pm. The lower and upper bounds of time windows are sampled uniformly
from [10, 30] and [60, 90], respectively. We set the vehicle capacity to 30 in all problem instances.

4.1.2 HYPERPARAMETERS

Our DDAM-GM has the same hyperparameter settings as MARDAM. The node embedding dimen-
sion is 128. The encoder consists of a ”DR-Trans” block and two ”Trans” block. The decoder
consists of two MHAs with eight attention heads followed by a single-head attention layer. The tanh
clip is applied with C = 10.

We train the models for 100 epochs. For each epoch, we generate 1,280,000 instances on the fly
and train with batch size of 512 (except for TDVRP and TDVRP-TW with 50 customers, where we

1https://github.com/WM19998
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generate 160,000 instances and train with batch size of 64). We use the Adam optimizer and set the
learning rate as 10-4 without decay. We generated 10,240 validation instances to judge whether the
current model has improved compared with the previous model after training 100 batches. If there
is any improvement, save the model. We sample 10,000 instances from the same distributions used
for training and validation to evaluate model.

4.1.3 ALGORITHMS AND MODELS FOR COMPARISON

The investigated TDVRPs consider time-varying travel time in a real urban road network, which
leads to 240 time periods. Existing methods in the vehicle routing area have not considered so many
time periods and cannot tackle our TDVRPs well. We compare the performances of the following
models, in which the last two are our DDAM-GM with different decoding strategies.
1) Greedy algorithm (GRA): The nearest and unvisited node is selected as the next node to visit.
2) AM (g): AM (Kool et al., 2018) with greedy decoding strategy.
3) AM-I (g): A DRL model integrating AM (g) with the three improvements described in sections
3.2-3.4.
4) MARDAM (g): MARDAM (Bono et al., 2020) with greedy decoding strategy.
5) MARDAM (s): MARDAM (Bono et al., 2020) with sampling decoding strategy.
6) DDAM-GM (g): Our DDAM-GM with greedy decoding strategy.
7) DDAM-GM (s): Our DDAM-GM with sampling decoding strategy.

The greedy decoding strategy indicates that the model selects the node with the largest probability
calculated in “Compatibility” block each time step in decoding. The sampling decoding strategy
indicates that the model uses a largest probability to select the node with the largest probability cal-
culated in “Compatibility” block each time step in decoding. Moreover, in our sampling decoding,
we randomly generate 1280 solutions for each instance, and select the solution with the smallest
objective value as the final solution to this instance.

4.1.4 EVALUATION METRIC

We measure the performance ζ of each model by the percentage change of its objective value relative
to the objective value generated by the AM(g)), which is formulated as follows,

ζ =
V − VAM(g)

VAM(g)
× 100% (11)

4.2 RESULTS AND DISCUSSION

Table 1 shows the performance comparison of our DDAM-GM model and 5 baselines. We report
the mean of objective function values of all test instances. Each model is trained and tested on
problem instances with the same number of customer nodes. We have not presented the results of
AM-I for the TDVRP-TW instance with N=50 because (1) the performances of AM-I are worse
than the DDAM-GM’s at N = 10 and N=20, and (2) the training of AM-I is very time-consuming
(approximately more than 10 days in the server we used) at N = 50.

It can be found from Table 1 that,
1) For both TDVRPs with and without time windows, two models (i.e., AM-I and DDAM-GM) with
our three improvements are clearly superior over the corresponding original models (i.e., AM and
MARDAM) by reducing the objective value by 0.41% to 6.28%. That is, our three improvements
on DRL models are helpful to improve DRL models’ performances on TDVRPs.
2) For TDVRPs without time windows, both DDAM-GM and the MARDAM are inferior to the AM
and AM-I, which is similar to the results in Bono et al. (2020) where the AM outperformed the
MARDAM in a CVRP. It indicates that it is not important for TDVRPs without time windows to
construct multiple vehicle routes simultaneously.
3) For TDVRP-TWs, our DDAM-GM outperforms AM, AM-I and MARDAM largely. Its per-
formance superiority increases with the number of customer nodes, which ranges from 0.41% to
20.57%. It indicates that constructing multiple vehicle routes simultaneously is helpful for TDVRP-
TWs to improve the solution performance.
4) The greedy algorithm performs the worst, for the 6 test instance sets, the performances of the
GRA are 10.96%-23.17% worse than those of the AM (g).
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Table 1: DDAM-GM vs baselines
Instances with N=10 Instances with N=20 Instances with N=50

Method Obj. Percent change Time Obj. Percent change Time Obj. Percent change Time
T

D
V

R
P

AM (g) 62.98 - 0.04s 109.05 - 0.08s 241.85 - 0.20s
AM-I (g) 62.41 -0.91% 0.15s 106.88 -1.99% 0.68s 234.07 -3.22% 5.28s
MARDAM (g) 68.62 8.96% 0.04s 119.57 9.65% 0.07s 277.47 14.73% 0.19s
DDAM-GM (g) 64.31 2.11% 0.14s 113.06 3.68% 0.66s 260.04 7.52% 5.31s
MARDAM (s) 64.00 1.62% 32.00s 109.23 -0.17% 71.96s 256.79 6.18% 226.12s
DDAM-GM (s) 62.53 -0.71% 156.94s 107.77 -1.17% 814.46s 244.05 0.91% 114m
GRA 71.42 13.40% 29.49s 128.41 17.75% 61.98s 274.50 13.50% 263.09S

T
D

V
R

P-
T

W

AM (g) 86.79 - 0.05s 152.53 - 0.09s 356.86 - 0.20s
AM-I (g) 81.76 -5.80% 0.13s 146.29 -4.09% 0.64s *** *** ***
MARDAM (g) 82.76 -4.64% 0.04s 142.96 -6.27% 0.07s 330.01 -7.52% 0.19s
DDAM-GM (g) 80.89 -6.80% 0.12s 138.15 -9.43% 0.61s 316.22 -11.39% 4.98s
MARDAM (s) 75.70 -12.78% 35.86s 127.29 -16.55% 74.08s 293.68 -17.70% 221.60s
DDAM-GM (s) 75.39 -13.14% 136.55s 125.89 -17.47% 762.70s 283.44 -20.57% 106m
GRA 107.90 24.32% 29.68s 187.18 22.72% 74.77s 395.97 10.96% 314.52s

Table 2: Results of Ablation study for DDAM-GM Structure

Obj. Percent change. Time
DDAM-GM (g) 113.06 - 0.66s
DDAM-GM (no DR-MHA) (g) 115.05 1.76% 0.29s
DDAM-GM (SE change 1) (g) 113.66 0.53% 0.38s
DDAM-GM (SE change 2) (g) 114.05 0.88% 0.60s
DDAM-GM (no GM) (g) 114.78 1.52% 0.64s

4.3 ABLATION STUDY

To evaluate the effectiveness of three improvement, we perform an ablation study for the DDAM-
GM structure based on a TDVRP with 20 customers. The corresponding experimental results are
presented in Table 2. In this table, “DDAM-GM (g) w/o DR-MHA” and “DDAM-GM (g) w/o
GM” represent the DDAM-GM without improvement 1 and improvement 3, respectively. “DDAM-
GM (g) with 1 encoding 2 decoding” and “DDAM-GM (g) w/o customer nodes mask” are used
to investigate the effectiveness of improvement 2. The former is to encode nodes every two time
steps, but decode nodes every time step. The latter is to cancel out the node mask operation before
the node-encoder. Table 2 shows the objective values of the 5 models, percent changes relative the
DDAM-GM (g), and computation time used.

It can be found from Table 2 that three improvements are all helpful to improve the performance of
MARDAM. The performance of our DDAM-GM decreases the most (1.76%) without improvement
1 although improvement 1 increases largely the computation time. Without the gate mechanism, the
computation time is almost the same, but the model performance will decrease by 1.52%.

5 CONCLUSION

This paper proposes a novel DDAM-GM to tackle practical TDVRPs with time-varying travel time
in real road networks. In this model, three improvements are integrated into the MARDAM in
Bono et al. (2020) to adapt the practical TDVRPs, which include a dimension-reducing MHA layer,
a synchronous encoder, and a gate mechanism. We contain time-varying travel time in the road
network as model input. Our experimental results show that our model outperforms significantly
two state-of-the-art DRL-based models and a greedy algorithm. The future work can extend the
proposed model to solve other real-world combinatorial optimization problems and compare the
performance of the proposed model with commercial software and other traditional methods.
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