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Abstract

We introduce iterative reasoning through en-
ergy diffusion (IRED), a novel framework for
learning to reason for a variety of tasks by for-
mulating reasoning and decision-making prob-
lems with energy-based optimization. IRED
learns energy functions to represent the con-
straints between input conditions and desired
outputs. After training, IRED adapts the num-
ber of optimization steps during inference based
on problem difficulty, enabling it to solve prob-
lems outside its training distribution — such
as more complex Sudoku puzzles, matrix com-
pletion with large value magnitudes, and path
finding in larger graphs. Key to our method’s
success is two novel techniques: learning a se-
quence of annealed energy landscapes for eas-
ier inference and a combination of score func-
tion and energy landscape supervision for faster
and more stable training. Our experiments
show that IRED outperforms existing methods
in continuous-space reasoning, discrete-space rea-
soning, and planning tasks, particularly in more
challenging scenarios. Code and visualizations
are at https://energy-based-model.
github.io/ired.

1. Introduction

Being able to solve complex reasoning tasks such as logic in-
ference, mathematical proofs, and decision-making is one of
the hallmarks of artificial intelligence. Researchers in vari-
ous fields have been working on domain-specific algorithms
for solving these tasks, typically utilizing various forms of
search or optimization in iterative manners (e.g., dynamic
programming and gradient descent). These domain-specific
algorithms are usually highly efficient and effective, but they
usually can not directly handle sensory data and typically
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Figure 1. Reasoning as Energy Diffusion — IRED formulates rea-
soning problem with inputs « and output y, as an energy mini-
mization problem over a learned energy function. It can be trained
stably for a wide variety of reasoning tasks and achieves strong
generalization to harder problem instances, through adaptive com-
putation in the optimization process.
require users or experts to encode rules in domain-specific
languages (such as axioms used in mathematical provers
or domain theories in planning). Furthermore, it is usually
hard for these systems to learn from experience to improve
their performance on familiar tasks. A large body of work
has been trying to address these limitations by incorporating
machine learning in order to handle sensory inputs and learn
to formulate and solve problems. Typical ideas include uti-
lizing these domain-specific solvers as a submodule in a
deep neural network (e.g., SAT solvers; Wang et al., 2019)
or building structured neural networks that can realize algo-
rithms (e.g., dynamic programming; Xu et al., 2019).

Illustrated in Figure 1, we take a different approach to ad-
dress the aforementioned challenges by formulating vari-
ous kinds of reasoning and decision-making problems as
an optimization problem. In particular, we consider the
learning-to-reason problem as learning an energy function
Ey(x,y) over input conditions « and desired output y. For
example, logical deduction can be cast as finding possible
assignments to variables that satisfy all logical constraints;
theorem proving can be cast as finding a sequence of valid


https://energy-based-model.github.io/ired
https://energy-based-model.github.io/ired

Iterative Reasoning through Energy Diffusion

deduction steps that entails the goal; planning can be cast
as finding a sequence of actions that respect the transition
model of the environment and achieve the goal. This formu-
lation directly allows us to learn the underlying constraints
for a given task automatically from input-output data, with-
out additional task-specific knowledge. Therefore, we can
solve a wide variety of tasks across different domains using
the same underlying training and inference paradigm, by
only swapping out the neural network encoder for differ-
ent data formats of « and y. Another important feature of
this optimization-based formulation is that during inference
time, we can choose to apply a different amount of computa-
tion depending on the hardness of the problem by inspecting
the value of the function Fy(x, y).

In particular, in this paper, we propose iterative reasoning
through energy diffusion (IRED), a general framework for
learning to reason. IRED is trained on a dataset of paired
(z, y) data, and can recover the underlying energy function
describing the objective function and constraints. During
inference, because we are explicitly solving an optimiza-
tion problem of finding the y* that maximizes the energy
function Fy, we can run an adaptive number of optimiza-
tion steps depending on the hardness of the problem. This
enables us to solve problems that are beyond the training
distribution, for example, Sudoku puzzles with a harder dif-
ficulty level, matrix manipulation under worse condition
numbers, and sorting arrays with a larger size.

Our paper is not the first one to propose the use of energy-
based models (EBMs) as a general framework for learning
and reasoning (see, for example, Du et al., 2022). Although
being a general framework for learning and reasoning,
existing work falls short in its training speed, stability, and
inference-time optimization hardness. These issues are crit-
ical and fundamentally hard because the learning of EBMs
typically involves back-propagation through the entire
iterative optimization process, and in general, the function
landscape of Ey can be complex with a large number of
local optima. In this paper, we propose two important tech-
niques to address these two challenges. Drawing inspiration
from diffusion models and their relations to energy-based
models (Ho et al., 2020; Du et al., 2023), instead of learning
a single energy landscape, we instead learn a sequence of
annealed energy landscapes, where smoother landscapes
are being first optimized before optimizing for sharper
ones afterward. Furthermore, in contrast to earlier work
on EBM learning, IRED uses a combination of denoising
supervision and direct supervision through negative sample
mining. Both techniques can be implemented without the
need to backpropagate through the optimization process,
thereby making our learning algorithm both stable and fast.

We show the effectiveness of IRED on three groups of tasks:
continuous-space reasoning (e.g., matrix completion, in-

version), discrete-space reasoning (e.g., Sodoku solving,
graph connectivity prediction), and planning (e.g., finding
paths on graphs). Compared with various domain-specific
and domain-independent learning-to-reason baselines, in-
cluding recurrent adaptive computation (Palm et al., 2018),
EBM (Du et al., 2022) and diffusion-based models (Ho
et al., 2020), IRED outperforms all of them, especially on
test instances that are of higher difficulty levels, such as on
matrices with larger value magnitudes, sudoku of higher dif-
ficulty levels, and larger graphs. Ablation studies show that
the proposed optimization paradigm enables stable training
and better generalization.

2. Related Work

Learning to reason with optimization. A wide variety
of reasoning problems can be formulated as an optimiza-
tion problem, including constraint satisfaction problems
(CSPs), mathematical programs, discrete-space (Kautz et al.,
2006) and continuous-space (i.e., trajectory optimization,
see Bryson, 2018, for a survey) optimization problems, and
even algorithmic reasoning tasks (Brockett, 1991). The high-
level idea is to cast these inference and decision-making
problems as finding a set of variables that minimizes an
objective function subject to constraints. Recently, there
has been a growing interest in learning the objective and
constraint functions instead of manually specifying them,
which would be useful for domains where people do not
have expert knowledge or simply the functions are too hard
to be specified (e.g., over high-dimensional sensory inputs).

Along this line, the first group of papers has explored us-
ing domain-specific optimization solvers as a computation
block in neural networks. For example, Amos & Kolter
(2017); Donti et al. (2017) integrates quadratic program
solvers, Djolonga & Krause (2017); Wilder et al. (2019)
studies submodular programs solvers, Wang et al. (2019)
uses differentiable Max-SAT solvers, Yang et al. (2020)
considers answer-set programming (ASP) solvers, Man-
haeve et al. (2018) considers probabilistic logic program-
ming solvers, and Rocktischel & Riedel (2017) integrates
symbolic theorem-proving solvers. However, due to the
dependence on a particular problem formulation language,
these frameworks are usually limited to solving problems
of a particular kind.

The second group of papers has explored using a generic
optimization framework as the underlying formulation. For
example, Bai et al. (2019); Anil et al. (2022) utilizes equilib-
rium energy minimization inside a neural network to save
memory, Rubanova et al. (2022); Comas et al. (2023) uti-
lizes energy minimization to simulate physical dynamics
by using neural networks to parameterize an energy func-
tion. Our paper falls into this group as well. Similar to our
work, Du et al. (2022) uses energy-based models for learn-
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Figure 2. IRED Learns a Sequence of Energy Landscapes. During inference time, we optimize for y™* that minimizes the energy
function, and we gradually increase the complexity of the energy optimization problem. The energy functions are trained with a
combination of score function supervision and energy landscape supervision.

ing to reason. In contrast to it, this paper proposes to use a
combination of denoising diffusion and supervised energy
landscape training. This gives us stable training and strong
performance. A concurrent work from Sun & Yang (2023)
also considers using diffusion models for solving combina-
torial optimization problems. However, their formulation is
developed specifically for combinatorial optimization prob-
lems on graphs, but our diffusion formulation with energy
parameterizations, landscape supervision, and substep op-
timizations can be generally applied to many optimization
and decision-making domains.

Learning to reason with iterative neural computation.
Another popular line of research studies using neural net-
works with iterative computation for reasoning. They draw
motivation from the fact that many domain-specific con-
straint solvers are indeed iterative optimization algorithms
(e.g., gradient descent). At a high level, there are two
groups of work: leveraging explicit program representa-
tions (Graves et al., 2014; Neelakantan et al., 2015; Reed
& De Freitas, 2016; Cai et al., 2017; Chen et al., 2020b;
Banino et al., 2021, ; typically with external memories) and
using recurrent neural networks (Graves, 2016; Kaiser &
Sutskever, 2016; Chung et al., 2017; Bolukbasi et al., 2017;
Yang et al., 2017; Dong et al., 2019; Dehghani et al., 2019;
Schwarzschild et al., 2021; Yang et al., 2023a). One of the
key challenges in both types of approaches is when to halt
the computation. Researchers have been tackling this prob-
lem through reinforcement learning (Chen et al., 2020a;
Chung et al., 2017), leveraging hierarchical decomposition
of programs (Cai et al., 2017), heuristic policies (Bolukbasi
et al., 2017), and variational inference (Banino et al., 2021).
However, these approaches are usually unstable, and many
of them require manual hyper-parameter tuning (Banino
et al., 2021) or additional human annotations (Cai et al.,
2017). In this paper, we focus on an orthogonal approach by
solving a broad set of reasoning problems by casting them
as an optimization on learned energy landscapes. During
optimization, the energy function of the landscapes naturally
acts as a termination criterion.

Energy-based models and diffusion models. Our work
is related to past work formulating prediction using Energy-
Based Models (EBMs) (LeCun et al., 2006). Most recent

EBMs have focused on learning probabilistic models over
data (Xie et al., 2016; 2018; Du & Mordatch, 2019; Grath-
wohl et al., 2020; Du et al., 2021; Arbel et al., 2021; Xiao
et al., 2020) but most similar to our work (Du et al., 2022)
focuses on using energy minimization to solve reasoning
tasks. Our work leverages the connection of energy based
models and diffusion models (Du et al., 2023) to more
effectively learn energy landscapes for solving reasoning
problems.

An important difference between our proposed approach and
standard diffusion models is that diffusion models usually
focus on learning a particular sampling path transitioning
from Gaussian noise to a target solution, where individual
transition kernels across timesteps are learned. However,
when obtaining a solution using these transition kernels,
errors often accumulate across sampling timesteps, prevent-
ing a diffusion model from obtaining a precise answer to
a reasoning problem. By contrast, we formulate predict-
ing solutions as optimizing an annealed sequence of energy
landscapes. In this setting, multiple steps of optimization
are run at each energy landscape to ensure that we are at an
energy minima at every landscape. These multiple steps of
optimization prevent the accumulation of errors from using
transition kernels in diffusion models, as they project the
sample to an energy minima, which is likely “in distribution’
to what has been seen during training.

i

3. Learning Iterative Reasoning through
Energy Optimization

Let D = {X, Y} be a dataset for a reasoning task consisting
of inputs & € R? and corresponding solutions y € R,
We aim to learn a neural network-based prediction model
NNy (-) which can generalize execution NNy (') to a test
distribution ' € R’, where 2’ can be significantly larger
and more challenging than the training data € X (e.g., of
higher dimensions, or with larger number magnitudes), by
leveraging a possibly increased computational budget.

We formulate this adaptive model as an iterative energy opti-
mization in Section 3.1. Our overall framework is illustrated
in Figure 2. In particular, we construct an annealed sequence
of energy functions to improve optimization. To involve
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training stability, speed, and performance, we propose to
shape the energy landscape to correctly assign minimal en-
ergy to ground truth solutions. We provide full pseudocode
for training our approach in Section 3.4 with training fol-
lowing Algorithm 1 and inference following Algorithm 2.

3.1. Reasoning as Annealed Energy Minimization

A wide variety of reasoning and decision making problems
can be formulated as an optimization problem. Traditionally,
researchers have been focused on designing various domain-
specific algorithms for solving different problems, typically
with search, gradient-based optimization, or other forms of
iterative computation, and also integrating machine learning
to help. In this work, we take a different approach of for-
mulating various kinds of reasoning and decision-making
problems as an optimization process over a learned energy-
based model (EBM): Ep(z,y) : R? x RM — R. Under
this formulation, the final prediction problem can be cast as
finding the solution y according to:

y = argmin Fy(z, y). @)
y

One can use gradient descent to find such solutions:
Y =y = AV Ey(z,y ), ©)

where A is the step size for optimization and the initial
prediction y° is initialized from a fixed noise distribution
(i.e., Gaussian throughout the paper). The final output of
y” is obtained after T steps of optimization.

In earlier work using a similar formulation Du et al. (2022),
such EBM Ey(x,y) is trained by differentiating through
the T steps of optimization and minimizing the MSE with
the ground truth label y Lop(6) = |ly? — y;||%. This ap-
proach requires the forward and backward computation of
K steps of optimization at training, which makes it slow and
unstable. Furthermore, because the EBM Fy may have a
complex optimization landscape', robustly finding solutions
to Equation 2 is fundamentally hard.

As a general solution to stable training and better test-time
optimization, instead of directly learning Fy(x,y), at a
high-level, we propose to learn a sequence of annealed
energy functions E(’,C (k=0,1,--- | K), and supervise the
EBM learning with the gradient of the energy function:

Lusse(0) = [IVyEg(@,y + ) — €], e~ N(0,1). (3)

During training time, we obtain the ground truth for y by
generating a noise-corrupted label y + €, following a sched-
ule of noise corruptions. By supervising on the gradient,
our approach is substantially faster and more stable than
earlier works using plain EBMs (Du et al., 2022) as it only
supervises training of a single step of the optimization.

"For example, the 3-SAT problem exhibits steep energy minima
surrounded by flat energy landscapes.

3.2. Learning Sequence of Annealed Energy Landscapes

Our key idea to mitigate the hard optimization problem of
Equation 2 is to use simulated annealing — where smoother
energy landscapes are first optimized before optimizing
sharper ones afterward, as illustrated in Figure 2.

Similar to diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020), we propose to optimize and learn an an-
nealed sequence of energy landscapes, with earlier energy
landscapes being smoother to optimize and the latter ones
more difficult. Given a ground truth label y, we learn a
sequence of K energy functions’ Eg (z,y) over the ground
truth label distribution p(y*|z), where each energy function
is learned to represent an EBM distribution

k
e—Ee(w,y)O(/ p(y*|z) - N (y; My*,ain @
y*

over a sequence of noise scales oy. Here, N (+|u, o) is the
Gaussian density function. Larger values of o, correspond
to smoother energy landscapes while smaller values lead to
sharper landscapes, with the energy minima of landscape
k corresponding to y/1 — oZy* (which can be scaled by
1 . o« L. *

Jio? to obtain the ground truth prediction y*).

We can directly learn each energy landscape by supervising
the gradient of energy function to denoise the corrupted
ground truth label y* from the dataset

Luse(0) = [|VyEg(@, /1 — o}y + oxe k) — €|, (5)

where € ~ N(0,1). Given a set of K different learned
energy landscapes, we can initialize a data sample from
Gaussian noise and sequentially run 7" steps of optimization
following Equation 2 over each energy landscape k (starting
with high noise levels and progressing to lower noise levels).
The optimization result in the previous energy landscape is
used to initialize optimization in the next landscape, after

\/lfai

—o2 .
1—0oi_4

scaled by the appropriate scaling factor

3.3. Shaping the Energy Landscape

In the denoising training objective Equation 5, while the
gradient of the energy landscape is locally trained to re-
store the ground truth label y, it is not necessarily the case
that the overall global energy minima arg min,, Fy(x, y, k)

corresponds to the ground truth label /1 — aiy*.
To enforce that the global energy minima of each of the
k energy landscapes corresponds to the ground truth en-

ergy minima, we further propose a contrastive loss, where

Empirically, in our experiments, we found that setting K = 10
was sufficient across all the domains we considered. With a to-
tal of 10 energy landscapes, we can smoothly transition from a
Gaussian-like landscape (with K = 10) to a sharp and discontinu-
ous landscape (with K = 1).
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Algorithm 1 IRED Training

Algorithm 2 IRED prediction algorithm

Input: Problem Dist pp (x, y), EBM Ey(-), Noise Sched-
ules {0y }, Corruption Function ¢(-), Landscapes k.

while not converged do
> Supervise the Energy Landscape through Denoising:
i, y; ~pp,e~N(0,1),k~{1,...,K}
Ui < /1 — 07y + oe

Lmsg HvyEe(fcz';gia k) — 5”2

> Shape the Energy Landscape Contrastively:
y; <« c(yi)

Y — \/1—013 ;. +ogpe

E;F(_Ee(wzagﬂk)aE;%Ee(wlagjak)

-EF )
e i
B
i

Lcontrast ¢ —log | —F————

e i +e

> Optimize objective Lysg + Lcontrast Wit 0:

Af < v@ (CMSE + ﬁContrast)

Update 6 based on A# using Adam optimizer
end while

Input: Input task x;, Step Sizes )\, Number of Land-
scapes K, EBM Ejy(-), Optimization Steps 7.
:']i ~ N(O’ 1)
for each landscape k£ = 1 to K do
for run T steps of optimization ¢ = 1to T’ do
> Optimize candidate solution y; with gradient:
g; — gz - )\kvyEQ(wu gl? k)
> Check if the gradient descent step decreases energy:
if Eg(.’l)i, Yi, k) > Eg(:]?,;, 'g;, k) then
Yi < Y;
end if
end for

> Scale optimized candidate solution:
0 \/l—ai -

yl /170%71 yl
end for

return y = y;

we construct a set of negative label y~— (formed by noise
corrupting the ground truth label y*). Given an energy
E* = Ey(x, \/1 — oy* + oye; k) of the ground truth la-
bel y* and anenergy E_ = Ey(x, \/1 — 07y~ +oke; k) of

the negative label y~, Lconrast(0) = — log (%)
To reduce the variance of the contrastive loss, we use the
same sampled noise value € for both y and y .

3.4. Combined Training and Inference Paradigms

We provide the overall pseudocode for training IRED in
Algorithm 1 and executing algorithmic reasoning with IRED
in Algorithm 2. We use a cosine beta schedule to train
annealed energy landscapes and use a total of 10 energy
landscapes (we empirically found that more landscapes did
not lead to improved performance). At inference time, we
can vary the number of optimization steps 1" for each energy
landscape to make trade-offs between performances and
inference speed.

In principle, when the solution is not well-defined, it is
possible to use IRED to model multi-modal distributions,
similar to how diffusion models have been proven effective
in modeling multi-modal image distributions. Depending
on the particular use case, one may also add additional
inference-time constraints (e.g., by composing the learned
IRED energy function with other energy functions) to select
favorable solutions.

4. Experiments

We compare IRED with both domain-specific and domain-
independent baselines on three domains: continuous algo-

rithmic reasoning, discrete-space reasoning, and planning.
As we will break down in the following sections, the main
advantages of IRED are twofold. First, compared with
energy-based models (IREM), it is faster to train since it
does not require backpropagation through the optimization
process. Second, in terms of task performance, our focus is
on generalization to “harder” problems, particularly leverag-
ing the contrastive energy supervision and runtime iterative
refinements. The idea is that after learning a correct energy
landscape, the model can adaptively use more computa-
tion at test time to directly generalize to harder problems:
we will focus on evaluating this generalization across all
domains.

4.1. Continuous Algorithmic Reasoning

Setup.  We first evaluate IRED on a set of continuous
algorithmic reasoning tasks from Du et al. (2022). We
consider three matrix operations on 20 x 20 matrices, which
are encoded 400-dimensional vectors:

1. Addition: We first evaluate neural networks in their
ability to add matrices together (element-wise). We
also evaluate neural network on harder variants of the
addition problems at test time by feeding input vectors
with larger magnitudes.

2. Matrix Completion: Next, we evaluate neural networks
on their ability to do low-rank matrix completion. We
mask out 50% of the entries of a low-rank input ma-
trix constructed two separate rank 10 matrices U and
V, and train networks to reconstruct the original in-
put matrix. We construct harder variants of the matrix
completion problem at test time by increasing the mag-
nitude of values in U and V.
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Same Harder
Task Method Difficulty Difficulty

Feedforward 0.0448 0.7029

Recurrent 0.3610 2.6133

Addition Programmatic 0.0111 0.3446
Diffusion 0.0071 0.5931

IREM 0.0003 0.0021

IRED (ours) 0.0002 0.0020

Feedforward 0.0203 0.2720

Matrix Recurrent _ 0.0266 0.3285
Completion Pr.o grammatic 0.0203 0.2637
Diffusion 0.0219 0.2142

IREM 0.0183 0.2074

IRED (Ours) 0.0174 0.2054

Feedforward 0.0112 0.2150

Matrix Recurrent _ 0.0109 0.2123
Inverse Programmatic 0.0124 0.2209
Diffusion 0.0115 0.2132

IREM 0.0108 0.2083

IRED (Ours) 0.0095 0.2063

Table 1. Continuous Algorithmic Reasoning. Test evaluation
performance on continuous algorithmic tasks. Inputs and outputs
are 20 by 20 matrices. Error is reported using elementwise mean
square error. Models are evaluated on test problems drawn from the
training distribution (same difficulty) and a harder test distribution
(harder difficulty). IRED outperforms comparisons.

3. Matrix Inverse: Finally, we evaluate neural networks
on their ability to compute matrix inverses. We con-
struct harder matrix inverse problems by considering
less well-conditioned input matrices.

We report the underlying mean-squared error (MSE) be-
tween the predictions and the associated ground truth out-
puts on test problem instances. To more effectively gen-
erate negative samples for IRED in this domain, we first
noise-corrupt ground truth labels and then run two steps
of gradient optimization on the energy landscape to form
negative samples. Details can be found in Appendix A.

Baselines. 'We compare our approach to a set of iterative
reasoning baselines found in (Du et al., 2022): (Feedfor-
ward): an iterative reasoning approach where the same MLP
is repeatedly applied, (Recurrent): an iterative reasoning
approach where the recurrent network is repeatedly applied,
and (Programmatic): an iterative reasoning approach which
repeatedly applies a learned programmatic module (Banino
et al., 2021). We further compare with the IREM method
(Du et al., 2022), as well as using a denoising diffusion
model directly to solve continuous tasks. All methods use
identical architectures (with small differences due to recur-
rent layers or timestep conditioning).

Quantitative Results. We compare IRED with baselines
across settings in Table 1. Similar to IREM, IRED is able
to nearly perfectly solve the task of the addition, as well
as generalize to larger addition matrices. On other tasks,

Error Map Error Map
(Landscape 3) (Landscape 5)

Error Map
(Landscape 2)

Error Map
(Landscape 10)

Figure 3. Optimized Solutions Across Landscapes — Error maps
of intermediate optimized solutions. Optimized solutions at earlier
landscapes are less accurate than later ones.
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Figure 4. Energy Landscape — Predicted energy values for y and
the corresponding MSE distance of y from the problem solution
across different landscapes on the matrix inverse task. The earlier
energy landscapes are smoother than the later ones.

IRED outperforms IREM and also generalizes better to
harder problems. Furthermore, our approach substantially
outperforms directly using a diffusion process to predict
solutions, which lacks the iterative energy minimization
procedure that explicitly learns the task constraints.

Qualitative Visualization. =~ We provide a qualitative vi-
sualization of the error map of the optimized solution on
the matrix inverse task at each different learned energy land-
scape in Figure 3. The error of optimized solutions at differ-
ent energy landscapes decreases over time.

Energy Landscape. = We visualize the learned energy
landscape in Figure 4 as a function of the distance of an input
label from the ground truth label. In early energy landscapes,
the difference between energy values of solutions close and
far from the ground truth solution is low, and therefore the
energy landscape is relatively flat. At later landscapes, the
energy value increases substantially as the input solution
deviates from the ground truth solution.

Performance with Increased Computation. We analyze
the performance on the matrix inverse task as a factor of an
increased number of computational steps in Table 2. We
find that running additional steps of optimization slightly
improves performance on in-distribution tasks and substan-
tially improves performance on harder problems.

Ablation. We ablate each component of IRED in Table 3.
In the first two rows of Table 3, we compare our gradient-
descent-based optimization with a noisy optimization pro-
cedure corresponding to the diffusion reverse process for
each energy landscape. In the third row, we compare the
difference between running multiple steps of optimization
as opposed to a single energy optimization step. Finally, We
then consider the effect of contrastively shaping the energy
landscape. All components lead to improved performance.
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Opt. Steps  Same Difficulty Harder Difficulty
10 0.0096 0.2110
20 0.0096 0.2100
30 0.0096 0.2090
40 0.0095 0.2063

Table 2. Continuous-Space Reasoning Performance vs Reason-
ing Steps. More reasoning steps in IRED at inference time sub-
stantially improve generalization to harder difficulty tasks on the
matrix inverse task. IRED is trained with 10 energy landscapes.

Gradient Optimization Contrastive Same Harder

Descent Refinement  Shaping Difficulty Difficulty
No No No 0.0158 0.2223
Yes No No 0.0097 0.2135
Yes Yes No 0.0097 0.2113
Yes Yes Yes 0.0095 0.2063

Table 3. Continuous Ablations — Ablations of proposed compo-
nents of IRED on performance on the matrix inverse task. Leverag-
ing gradient descent to optimize energy functions, using multiple
steps of optimization at each energy landscape and contrastively
shaping the energy landscape with ground truth labels all improve
the performance on the Inverse task.

4.2. Discrete-Space Reasoning

Setup.  The second group of tasks evaluates IRED on
its reasoning in discrete spaces (i.e., values are all binary
or one-hot categorical). We run evaluations on two tasks:
Sudoku solving and graph connectivity reasoning.

1. Sudoku: In the Sudoku game, the model is given a
partially filled Sudoku board, with 0’s filled-in entries
that are currently unknown. The task is to predict a
valid solution that jointly satisfies the Sodoku rules
and that is consistent with the given numbers. We
use the dataset from SAT-Net (Wang et al., 2019) as
the training and standard test dataset. In SAT-Net,
the number of given numbers is within the range of
[31, 42]. Our harder dataset is from RRN (Palm et al.,
2018), which is a different Sudoku dataset where the
number of given numbers is within [17, 34]. We will
show that our system, being trained on simpler Sudoku
games with fewer blank entries, generalizes to harder
instances.

2. Connectivity: In the graph connectivity task, the model
is given the adjacency matrix of a graph (1 if there is
an edge directly connecting two nodes). The task is to
predict the connectivity matrix of the graph (1 if there
is a path connecting two nodes). In literature (Dong
et al., 2019), this task is an example that requires a
dynamic number of reasoning “steps” (depending on
the treewidth of the graph). Therefore, prior papers
primarily focus on computing connectivity between
nodes within k-steps away. Our training and standard
test sets contain graphs with at most 12 nodes and our
harder dataset contains graphs with 18 nodes. Since

Task Method Test Harder
Dataset Dataset
IREM 93.5% 24.6%
Sudoku Diffusion 66.1% 10.3%
SAT-Net 98.3% 3.2%
RRN 99.8% 28.6%
IRED (ours) 99.4% 62.1%
. SAT-Net 63.2% 0.0%
Visual Sudoku 5o\ 99.8%  28.6%
IRED (ours) 98.3% 46.6 %
IREM 94.3% 89.8%
Connectivity Diffusion 61.6% 61.3%
IRED (ours) 99.1% 93.8%

Table 4. Discrete Reasoning Performance. We evaluate models
on the Sudoku task and the connectivity task. Sudoku:” the harder
dataset has between 17 to 34 entries given, while models are trained
with 31 to 42 entries given. Connectivity: the harder graphs have
at most 18 nodes while the training graphs have only 12.
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Energy Minima
(Landscape 1)

Energy Minima
(Landscape 3)

Energy Minima
(Landscape 10)

Figure 5. Optimized Boards Across Landscapes — Plot of the
minimal energy board across energy landscapes, given the same
initial board. Later energy landscapes lead to more accurate boards.
‘We highlight inconsistent entries in red.

we do not limit the path lengths between nodes (in
contrast to Dong et al. (2019)), on the training set, the
maximum distance between two connected nodes is 9,
and in the harder test set, the maximum distance is 16.

Quantitative Results. =~ We compare IRED with both
IREM and diffusion baselines. On the Sudoku task, we fur-
ther compare with the domain-specific SAT-Net method. In
Table 4, we find that our approach substantially outperforms
all baselines across both evaluated discrete-space reasoning
settings. In Sudoku, our approach generalizes substantially
better than the SAT-Net model and the RRN model to the
harder dataset consisting of fewer given Sudoku elements
and is capable of obtaining an accuracy of roughly 62.1%
compared to an accuracy of 3.2% obtained by SAT-Net and
28.6% by RRN. For cases in which our approach fails, we
found that our approach sometimes erroneously assigns low
energy to partially accurate answers. For example, there
can be a Sudoku board that is not fully valid, but the model
assigns lower energy to it than to the ground truth board.

Qualitative Results.  We qualitatively visualize inter-
mediate optimized samples across energy landscapes on
Sudoku in Figure 6. Optimized boards are increasingly
accurate in later landscapes.
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Sudoku Performance vs Optimization Steps
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Figure 6. Sudoku Performance with Optimization Steps — Gen-
eralization to harder Sudoku problems significantly improves with
a larger number of optimization steps in Sudoku.

Gradient Optimization Contrastive Same Harder

Descent Refinement  Shaping Difficulty Difficulty
No No No 97.0% 35.0%
Yes No No 98.8% 45.1%
Yes Yes No 99.3% 59.7%
Yes Yes Yes 99.4% 62.1%

Table 5. Discrete Reasoning Ablations — Ablations of proposed
components of IRED on performance on the Sudoku task. Leverag-
ing gradient descent to optimize energy functions, using multiple
steps of optimization at each energy landscape and contrastively
shaping the energy landscape with ground truth labels all improve
the performance.

Performance with Computation. In Figure 6, we assess
the impact of the number of optimization steps at each en-
ergy landscape on the performance in Sudoku on both the
test and harder datasets. We find that performance substan-
tially improves on the harder dataset with an increased num-
ber of optimization steps with more modest improvement
on the test datasets. By formulating reasoning as energy
optimization, we can adaptively change the number of opti-
mization steps dependent on difficulty of task, enabling us
to generalize substantially better on harder tasks.

Extension to Visual Sudoku. IRED can also be extended
to deal with other input formats, such as images. To illus-
trate this, we conducte a new experiment on the Visual
Sudoku dataset (Wang et al., 2019), where the board is not
represented by one-hot vectors but now consists of MNIST
digits written on a grid. We use a CNN to encode the image
and fuse the image embeddings with the noisy answer to
predict energy values. Shown in Table 4, we observed a
similar performance advantage of our model compared to
the baseline.

Ablation. In Table 5, we ablate each component of IRED
on the Sudoku task. Similar to the continuous setting, we
find that each component of IRED, gradient based opti-
mization, multiple steps of optimization, and contrastive
energy shaping all lead to improved performance. While
performance is modestly improved on the test dataset, it is

Task Method Test Harder
Dataset Dataset
IREM 90.4% 88.4%
Shortest Path  Diffusion 45.2% 46.9%
IRED (ours) 92.6% 91.9%

Table 6. Planning Performance. Test evaluation performance on
the shortest path task. The harder tasks consists of graphs of size
25 while models are trained on graphs of size 15.

Gradient Optimization Contrastive Same Harder

Descent Refinement  Shaping Difficulty Difficulty
No No No 80.8% 80.4%
Yes No No 80.7% 79.1%
Yes Yes No 88.6% 87.9%
Yes Yes Yes 92.6 % 91.9%

Table 7. Path Planning Ablations — Ablations of proposed com-
ponents of IRED on performance on the path planning task. Using
multiple steps of optimization at each energy landscape and con-
trastively shaping the energy landscape with ground truth labels
both improve path planning performance.

substantially improved on the harder generalization dataset
with each added component.

4.3. Planning

Setup. In this section, we evaluate IRED on a basic
decision-making problem of finding the shortest path in a
graph. In this task, the input to the model is the adjacency
matrix of a directed graph, together with two additional
node embeddings indicating the start and the goal node of
the path-finding problem. The task is to predict a sequence
of actions corresponding to the plan. Concretely, the output
is a matrix of size [T, N], where T is the number of planning
steps and NV is the number of nodes in the graph. Each entry
(t,4) has a value of 1 if the ¢-th step of the shortest path is
at node 7 and has a value of 0 otherwise. For all models,
including ours, we use a spatial-temporal graph convolution
network (STGCN; Yan et al., 2018) to encode the adjacency
matrix and the prediction and predict energy function values
or score functions. In short, the STGCN has multiple layers.
At each layer, for each node, it fuses all features of nodes
that are connected to it in the graph and from the current
timestep or adjacent timesteps. Just like standard graph
convolutional networks, it uses a sum-pooling mechanism
to aggregate all embeddings from adjacent nodes. Since, in
practice, such planning models are generally evaluated with
closed-loop execution, here we only evaluate the success
rate that the first action produced by the model shortens the
distance between the current node and the goal node. This
is the same planning and execution strategy as DiffusionPol-
icy (Chi et al., 2023).

Quantitative Results. We compare IRED with all base-
lines across settings in Table 6. IRED outperforms both
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Energy Minima
(Landscape 3)

Energy Minima
(Landscape 1)

Energy Minima
(Landscape 10)

Figure 7. Optimized Plans Across Landscapes — Plot of next
action prediction in plans across energy landscapes. In each vi-
sualization, the green/red nodes indicate start/goal nodes with
connections between nodes indicated with arrows. The darkness
of a node indicates the score for selecting the corresponding node
as the next node to move to in the predicted plan. As landscapes
are sequentially optimized, the correct next action is selected.

baselines, especially the diffusion model, by a large margin.
Both methods based on energy based formulation (IREM
and IRED) perform well on this task, validating the hypoth-
esis that learning energy functions is an effective method for
encoding planning problems such as the edge constraints
in the path-finding task. Finally, since all methods uses the
same STGCN encoder, there is no significant performance
drop on generalization to the harder dataset.

Qualitative Results.  Similarly to other tasks, we can
also visualize the generated solutions by the model across
different landscapes. Figure 7 visualizes the prediction
of the first node to move to by the planning model. We
normalize the prediction scores to 0 to 1. The darker the
color, the higher the score. As can be seen in the figure, our
IRED model is capable of gradually finding the immediate
next action to take: at step 3 it excluded node 7, and the
score gradually concentrates on node 8.

Ablations.  We ablate each component of IRED in Ta-
ble 7. We found that running multiple steps of optimization
and shaping the energy landscape both lead to improved per-
formance on both the same-difficulty test cases and harder
difficulty ones.

5. Conclusion and Discussions

In this paper, we present IRED, a new approach to solving
complex reasoning tasks by formulating it as an energy
minimization process on a sequence of energy landscapes.
We illustrate, on both continuous, discrete, and planning
domains, how iterative computation utilizing IRED enables
better algorithmic performance and generalization to more
complex instances of problems. We further illustrate how
the underlying algorithmic computation learned by IRED
may be nested to implement more complex algorithmic
computations.

Our current reasoning approach with IRED has several limi-
tations. First, the inference time optimization procedure in

IRED can still be improved because currently, it requires
many steps of gradient descent to find an energy minima.
For tasks with known specifications (e.g., shortest path),
IRED will conceivably run slower than the algorithms de-
signed specifically for them (e.g., polynomial algorithms
for pathfinding), although it is worth noting that IRED is a
general machine learning algorithm that does not assume
a given task specification and can automatically learn the
underlying task constraints from data. On the other hand,
it would be interesting to explore how an amortized neural
network generator for generating initial solutions or guided
optimizers can speed up this procedure. Second, our se-
quence of annealed energy landscapes is defined through a
sequence of added Gaussian noise increments — it would
be further interesting to learn the sequence of energy land-
scapes to enable adaptive optimization. Another current
limitation of IRED is that out of the box, IRED in its current
form does not leverage any additional memory. Therefore,
for tasks that would benefit from explicitly using additional
memory to store intermediate results (analogous to chain-
of-thought reasoning tasks in language or visual reasoning),
IRED might not be as effective as other approaches.

So far we have been applying IRED in continuous and
discrete reasoning tasks, and planning on discrete spaces
(graphs). Other potential applications of IRED include gen-
eral mathematical reasoning (Amini et al., 2019; Lu et al.,
2021) and decision-making in hybrid discrete-continuous
spaces (Garrett et al., 2021; Yang et al., 2023b; Fang et al.,
2023). For example, IRED can serve directly as a policy
model. In our experiments, we have supervised the energy
functions using IID samples from a fixed dataset (as positive
examples). However, the energy function can also be su-
pervised with reward signals by modeling a distribution of
actions that favor actions yielding high discounted returns
(similar to REINFORCE).
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Supplementary Material for Iterative Reasoning through Energy Diffusion

In this appendix we provide additional details on IRED. We
first provide experimental details on our evaluated tasks in
Appendix A. Next, we discuss individual model architec-
tures used in Appendix B.

A. Experimental Details

Continuous Tasks  We use dataset setups from (Du et al.,
2022) for continuous tasks. Models were trained in approxi-
mately 2 hours on a single Nvidia RTX 2080 using a training
batch size of 2048 and the Adam optimizer with learning
rate le-4. Models was trained for approximately 50,000
iterations and evaluated on 20000 test problems.

Discrete Tasks For Sudoku, we train models for 50000
iterations using a single Nvidia RTX 2080 using a training
batch size of 64 with the Adam optimizer with learning rate
le-4 and are evaluated on the full test datasets provided in
(Wang et al., 2019; Palm et al., 2018).

For Connectivity tasks, we generate random graphs using
algorithms from Graves et al. (2016). Essentially, it first
generates a set of random points on a 2D plane uniformly
inside a unit square. Next, it samples the out-degree k (the
number of out-going edges) for each node based on a uni-
form distribution. Finally, it connects each node to its &
closest neighbors. The advantage of this generation process
is that the generated graph will be close to a planar graph
so that it can be easily visualized, and more importantly,
it allows for fine-grained control of the connectivity of the
graph by setting the out-degree range. In practice, we uni-
formly sample the out-degrees from [1,7/2], where n is
the number of nodes in the graph. Based on the sampled
adjacency matrix, we use the floyd-warshall algorithm to
compute its connectivity matrix. Note that there are no
distances associated with the edges (i.e., all edges are of
unit length). We train models for 100000 iterations using a
single Nvidia RTX 2080 with batch size 512 with the Adam
optimizer.

Planning Task  For planning, we use the same procedure
as in the connectivity tasks to generate graphs. To create
graphs with a large enough treewidth, we set the out-degree
sample range to be [1,7/5], where n is the number of nodes.
All edges are of unit length. We use the floyd-warshall
algorithm to compute the pairwise shortest distance. This
enables us to evaluate whether the first action predicted by
the model shortens the distance between the current node
and the goal. We train models for 100000 iterations using a
single Nvidia RTX 2080 with batch size 512 with the Adam
optimizer.
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B. Model Architectures

Continuous Task. For continuous tasks, we use the
architecture in Table 8 to train both IRED and the IREM
baseline. We use the architecture in Table 9 to parameterize
the diffusion model baseline.

Discrete Task. For Sudoku, we use the architecture in
Table 10. It encodes the Sudoku board with a convolu-
tional neural network with the residual connection design,
borrowed from He et al. (2016).

For Connectivity, we use the architecture adapted from
Dong et al. (2019), as detailed in Table 11. It uses a re-
lational neural network to fuse the connectivity information
from neighboring nodes.

Planning Task. For planning tasks, we use the architec-
ture the same architecture as the connectivity task, as de-
tailed in Table 12. To encode temporal information, at each
layer, we stack the node embedding from the previous time
step, the current step, and the next step to implement tempo-
ral convolution. This is equivalent to the spatial-temporal
graph convolution networks (STGCN; Yan et al., 2018).

We have also attached the code to reproduce all experiments
in the supplementary material.
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Linear 512
Linear 512
Linear 512

Linear — 1

Table 8. The model architecture for IRED on continuous-space

algorithmic reasoning tasks

Linear 512
Linear 512
Linear 512

Linear — Output Dim

Table 9. The model architecture for diffusion baselines on

continuous-space algorithmic reasoning tasks.

3x3 Conv2D, 384
Resblock 384
Resblock 384
Resblock 384
Resblock 384
Resblock 384
Resblock 384

3x3 Conv2D, 9

Table 10. The model architecture for IRED and diffusion base-
lines on the Sudoku task. The energy value is computed using
the L2 norm of the final predicted output similar to (Du et al.,
2023), while the output is directly used as noise prediction for
the diffusion baseline.

NLM Arity=3, Hidden=064
NLM Arity=3, Hidden=64

Max-Pooling over All Edge Features

Linear, 1

Table 11. The model architecture for IRED and diffusion base-
lines on the connectivity task. For the diffusion baseline, we
simply remove the pooling layer and apply the same linear
layer on all edge embeddings to predict the noise value for each
entry.
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NLM Arity=2, Hideen=64
NLM Arity=2, Hideen=64

Max-Pooling over All Node Features

Linear, 1

Table 12. The model architecture for IRED and diffusion base-
lines on the shortest-path task. For the diffusion baseline, we
simply remove the pooling layer and apply the same linear layer
on all node embedding to predict the noise value for each entry.



