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Abstract

In computer vision, noise is conventionally viewed as a harmful perturbation1

in various deep learning architectures, such as convolutional neural networks2

(CNNs) and vision transformers (ViTs), as well as different tasks like image3

classification and transfer learning. However, this paper aims to rethink whether4

the conventional proposition always holds. We demonstrate that specific noise can5

boost the performance of various deep architectures under certain conditions. We6

theoretically prove the enhancement gained from positive noise by reducing the task7

complexity defined by information entropy and experimentally show the significant8

performance gain in large image datasets, such as the ImageNet. Herein, we use9

the information entropy to define the complexity of the task. We categorize the10

noise into two types, positive noise (PN) and harmful noise (HN), based on whether11

the noise can help reduce the complexity of the task. Extensive experiments of12

CNNs and ViTs have shown performance improvements by proactively injecting13

positive noise, where we achieve an unprecedented top 1 accuracy over 95% on14

ImageNet. Both theoretical analysis and empirical evidence have confirmed that the15

presence of positive noise, can benefit the learning process, while the traditionally16

perceived harmful noise indeed impairs deep learning models. The different roles17

of noise offer new explanations for deep models on specific tasks and provide a18

new paradigm for improving model performance. Moreover, it reminds us to utilize19

noise rather than suppress noise.20

1 Introduction21

Noise, conventionally regarded as a hurdle in machine learning and deep learning tasks, is universal22

and unavoidable due to various reasons, e.g., environmental factors, instrumental calibration, and23

human activities [23] [37]. In computer vision, noise can be generated from different phases: (1)24

Image Acquisition: Noise can arise from a camera sensor or other imaging device [33]. For example,25

electronic or thermal noise in the camera sensor can result in random pixel values or color variations26

that can be visible in the captured image. (2) Image Preprocessing: Noise can be introduced during27

preprocessing steps such as image resizing, filtering, or color space conversion [1]. For example,28

resizing an image can introduce aliasing artifacts, while filtering an image can result in the loss of29

detail and texture. (3) Feature Extraction: Feature extraction algorithms can be sensitive to noise30

in the input image, which can result in inaccurate or inconsistent feature representations [2]. For31

example, edge detection algorithms can be affected by noise in the image, resulting in false positives32

or negatives. (4) Algorithms: algorithms used for computer vision tasks, such as object detection or33

image segmentation, can also be sensitive to noise in the input data [6]. Noise can cause the algorithm34

to learn incorrect patterns or features, leading to poor performance.35

Since noise is an unavoidable reality in engineering tasks, existing works usually make the assumption36

that noise has a consistently negative impact on the current task [30] [24]. Nevertheless, is the above37

assumption always valid? As such, it is crucial to address the question of whether noise can ever38
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have a positive influence on deep learning models. This work aims to provide a comprehensive39

answer to this question, which is a pressing concern in the deep learning community. We recognize40

that the imprecise definition of noise is a critical factor leading to the uncertainties surrounding the41

identification and characterization of noise. To address these uncertainties, an in-depth analysis42

of the task’s complexity is imperative for arriving at a rigorous answer. By using the definition of43

task entropy, it is possible to categorize noise into two distinct categories: positive noise (PN) and44

harmful noise (HN). PN decreases the complexity of the task, while HN increases it, aligning with45

the conventional understanding of noise.46

1.1 Scope and Contribution47

Our work aims to investigate how various types of noise affect deep learning models. Specifically,48

the study focuses on three common types of noise, i.e., Gaussian noise, linear transform noise, and49

salt-and-pepper noise. Gaussian noise refers to random fluctuations that follow a Gaussian distribution50

in pixel values at the image level or latent representations in latent space [29]. Linear transforms, on51

the other hand, refer to affine elementary matrix transformations to the dataset of original images52

or latent representations, where the elementary matrix is row equivalent to an identity matrix [36].53

Salt-and-pepper noise is a kind of image distortion that adds random black or white values at the54

image level or to the latent representations [7].55

This paper analyzes the impact of these types of noise on the performance of deep learning models for56

image classification and domain adaptation tasks. Two popular model families, Vision Transformers57

(ViTs) and Convolutional Neural Networks (CNNs), are considered in the study. Image classification58

is one of the most fundamental tasks in computer vision, where the goal is to predict the class label of59

an input image. Domain adaptation is a practically meaningful task where the training and test data60

come from different distributions, also known as different domains. By investigating the effects of61

different types of noise on ViTs and CNNs for typical deep learning tasks, the paper provides insights62

into the influences of noises on deep models. The findings presented in this paper hold practical63

significance for enhancing the performance of various types of deep learning models in real-world64

scenarios.65

The contributions of this paper are summarized as follows:66

• We re-examined the conventional view that noise, by default, has a negative impact on deep67

learning models. Our theoretical analysis and experimental results show that noise can be a68

positive support for deep learning models and tasks.69

• We implemented extensive experiments with different deep models, such as CNNs and70

ViTs, and on different deep learning tasks. Empowered by positive noise, we achieved71

state-of-the-art (SOTA) results in all the experiments presented in this paper.72

• Instead of operating on the image level, our injecting noise operations are performed in the73

latent space. We theoretically analyze the difference between injecting noise on the image74

level and in the latent space.75

• The theory and framework of reducing task complexity via positive noise in this work can76

be applied to any deep learning architecture. There is great potential for exploring the77

application of positive noise in other deep-learning tasks beyond the image classification78

and domain adaptation tasks examined in this study.79

1.2 Related Work80

Positive Noise In fact, within the signal-processing society, it has been demonstrated that random81

noise helps stochastic resonance improve the detection of weak signals [4]. Noises can have positive82

support and contribute to less mean square error compared to the best linear unbiased estimator when83

the mixing probability distribution is not in the extreme region [28]. Also, it has been reported that84

noise could increase the model generalization in natural language processing (NLP) [27]. Recently,85

the perturbation, a special case of positive noise, has been effectively utilized to implement self-86

refinement in domain adaptation and achieved state-of-the-art performance [36]. The latest research87

shows that by proactively adding specific noise to partial datasets, various tasks can benefit from the88

positive noise [19]. Besides, noises are found to be able to boost brain power and be useful in many89

neuroscience studies [21] [22].90
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Deep Model Convolutional Neural Networks have been widely used for image classification, object91

detection, and segmentation tasks, and have achieved impressive results [18][15]. However, these92

networks have limitations in terms of their ability to capture long-range dependencies and extract93

global features from images. Recently, Vision Transformers has been proposed as an alternative to94

CNNs [13]. ViT relies on self-attention mechanisms and a transformer-based architecture to enable95

global feature extraction and modeling of long-range dependencies in images [40]. The attention96

mechanism allows the model to focus on the most informative features of the input image, while97

the transformer architecture facilitates information exchange between different parts of the image.98

ViT has demonstrated impressive performance on a range of image classification tasks and has the99

potential to outperform traditional CNN-based approaches. However, ViT currently requires a large100

number of parameters and training data to achieve state-of-the-art results, making it challenging to101

implement in certain settings [45].102

2 Preliminary103

In information theory, the entropy [32] of a random variable x is defined as:104

H(x) =

{
−
∫
p(x) log p(x)dx if x is continuous

−
∑

x p(x) log p(x) if x is discrete
(1)

where p(x) is the distribution of the given variable x. And the mutual information (MI) of two105

random discrete variables (x, y) is denoted as [8]:106

MI(x, y) =DKL(p(x, y) ∥ p(x)⊗ p(y))

=H(x)−H(x|y) (2)

where DKL is the Kullback–Leibler divergence [16], and p(x, y) is the joint distribution. The107

conditional entropy is defined as:108

H(x|y) = −
∑

p(x, y) log p(x|y) (3)

The above definitions can be readily expanded to encompass continuous variables through the109

substitution of the sum operator with the integral symbol. In this work, the noise is denoted by ϵ if110

without any specific statement.111

Before delving into the correlation between task and noise, it is imperative to address the initial112

crucial query of the mathematical measurement of a task T . With the assistance of information113

theory, the complexity associated with a given task T can be measured in terms of the entropy of T .114

Therefore, we can borrow the concepts of information entropy to explain the difficulty of the task.115

For example, a smaller H(T ) means an easier task and vice versa.116

Since the entropy of task T is formulated, it is not difficult to define the mutual information of task T117

and noise ϵ,118

MI(T , ϵ) = H(T )−H(T |ϵ) (4)

Formally, if the noise can help reduce the complexity of the task, i.e., H(T |ϵ) < H(T ) then the noise119

has positive support. Therefore, a noise ϵ is defined as positive noise (PN) when the noise satisfies120

MI(T , ϵ) > 0. On the contrary, when MI(T , ϵ) ≤ 0, the noise is considered as the conventional121

noise and named harmful noise (HN). The positive noise can be perceived as an augmentation of122

information gain brought by ϵ.123 {
MI(T , ϵ) > 0 ϵ is positive noise
MI(T , ϵ) ≤ 0 ϵ is harmful noise

(5)

Moderate Model Assumption: The positive noise may not work for deep models with severe124

problems. For example, the model is severely overfitting where models begin to memorize the125

random fluctuations in the data instead of learning the underlying patterns. In that case, the presence126

of positive noise will not have significant positive support in improving the models’ performance.127

Besides, when the models are corrupted under brute force attack, the positive noise also can not work.128
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Figure 1: An overview of the proposed method. Above the black line is the standard pipeline for
image classification. The deep model can be CNNs or ViTs. The noise is injected into a randomly
chosen layer of the model represented by the blue arrow.

3 Methods129

The idea of exploring the influence of noise on the deep models is straightforward. The framework is130

depicted in Fig. 1. This is a universal framework where there are different options for deep models,131

such as CNNs and ViTs. Through the simple operation of injecting noise into a randomly selected132

layer, a model has the potential to gain additional information to reduce task complexity, thereby133

improving its performance. It is sufficient to inject noise into a single layer instead of multiple layers134

since it imposes a regularization on multiple layers simultaneously.135

For a classification problem, the dataset (X,Y ) can be regarded as samplings derived from DX ,Y ,136

where DX ,Y is some unknown joint distribution of data points and labels from feasible space X and137

Y , i.e., (X,Y ) ∼ DX ,Y [31]. Hence, given a set of k data points X = {X1, X2, ..., Xk}, the label138

set Y = {Y1, Y2, ..., Yk} is regarded as sampling from Y ∼ DY|X . The complexity of T on dataset139

X is formulated as [19]:140

H(T ;X) = −
∑
Y ∈Y

p(Y |X) log p(Y |X) (6)

The operation of adding noise at the image level can be formulated as:141 {
H(T ;X + ϵ) = −

∑
Y ∈Y p(Y |X + ϵ) log p(Y |X + ϵ) ϵ is additive noise

H(T ;Xϵ) = −
∑

Y ∈Y p(Y |Xϵ) log p(Y |Xϵ) ϵ is multiplicative noise
(7)

While the operation of proactively injecting noise in the latent space can be formulated as:142 {
H(T ;X + ϵ)

⋆
= H(Y ;X + ϵ)−H(X) ϵ is additive noise

H(T ;Xϵ)
⋆
= H(Y ;Xϵ)−H(X) ϵ is multiplicative noise

(8)

Step ⋆ differs from the conventional definition of conditional entropy, as our method injects the noise143

into the latent representations instead of the original images. The Gaussian noise is additive, the144

linear transform noise is also additive, and the salt-and-pepper is a multiplicative noise.145

Gaussian Noise The Gaussian noise is one of the most common additive noises that appeared in146

computer vision tasks. The Gaussian noise is independent and stochastic, obeying the Gaussian147

distribution. Without loss of generality, defined as N (µ, σ2). Since our injection happens in the148

latent space, therefore, the complexity of the task is:149

H(T ;X + ϵ)
⋆
= H(Y ;X + ϵ)−H(X). (9)
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According to the definition in Equation 4, and making the distribution of X and Y multivariate150

normal distribution [5] [14], the mutual information with Gaussian noise is:151

MI(T , ϵ) =H(Y ;X)−H(X)− (H(Y ;X + ϵ)−H(X))

=H(Y ;X)−H(Y ;X + ϵ)

=
1

2
log

|ΣX ||ΣY −ΣY XΣ−1
X ΣXY |

|ΣX+ϵ||ΣY −ΣY XΣ−1
X+ϵΣXY |

=
1

2
log

1

(1 + σ2
ϵ

∑k
i=1

1
σ2
Xi

)(1 + λ
∑k

i=1
cov2(Xi,Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

−cov2(Xi,Yi))
)

(10)

where λ =
σ2
ϵ

1+
∑k

i=1
1

σ2
Xi

, σ2
ϵ is the variance of the Gaussian noise, cov(Xi, Yi) is the covariance of152

sample pair Xi, Yi, σ2
Xi

and σ2
Yi

are the variance of data sample Xi and data label Yi, respectively.153

The detailed derivations can be found in section 1.1.2 of the supplementary. Given a dataset, the154

variance of the Gaussian noise, and statistical properties of data samples and labels control the mutual155

information, we define the function:156

f(σ2
ϵ ) =1− (1 + σ2

ϵ

∑k
i=1

1
σ2
Xi

)(1 + λ
k∑

i=1

cov2(Xi, Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

− cov2(Xi, Yi))
)

=− σ2
ϵ

∑k
i=1

1
σ2
Xi

− σ2
ϵ

∑k
i=1

1
σ2
Xi

· λ
k∑

i=1

cov2(Xi, Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

− cov2(Xi, Yi))
− λ

k∑
i=1

cov2(Xi, Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

− cov2(Xi, Yi))

(11)
Since ϵ2 ≥ 0 and λ ≥ 0, σ2

Xi
σ2
Yi

− cov2(Xi, Yi) = σ2
Xi

σ2
Yi
(1 − ρ2XiYi

) ≥ 0, where ρXiYi
is the157

correlation coefficient, the sign of f(σ2
ϵ ) is negative. We can conclude that Gaussian noise injected158

into the latent space is harmful to the task. More details and the Gaussian noise added to the image159

level are provided in the supplementary.160

Linear Transform Noise This type of noise is obtained by elementary transformation of the features161

matrix, i.e., ϵ = QX , where Q is an elementary matrix. We name the Q the quality matrix since it162

controls the property of linear transform noise and determines whether positive or harmful. In the163

linear transform noise injection in the latent space case, the complexity of the task is:164

H(T ;X +QX)
⋆
= H(Y ;X +QX)−H(X) (12)

The mutual information is then formulated as:165

MI(T , QX)
⋆
=H(Y ;X)−H(X)− (H(Y ;X +QX)−H(X))

=H(Y ;X)−H(Y ;X +QX)

=
1

2
log

|ΣX ||ΣY −ΣY XΣ−1
X ΣXY |

|Σ(I+Q)X ||ΣY −ΣY XΣ−1
X ΣXY |

=
1

2
log

1

|I +Q|2
=− log |I +Q|

(13)

Since we want the mutual information to be greater than 0, we can formulate Equation 13 as an166

optimization problem:167

max
Q

MI(T , QX)

s.t. rank(I +Q) = k

Q ∼ I

[I +Q]ii ≥ [I +Q]ij , i ̸= j

∥[I +Q]i∥1 = 1

(14)

where ∼ means the row equivalence. The key to determining whether the linear transform is positive168

noise or not lies in the matrix of Q. The most important step is to ensure that I +Q is reversible,169
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which is |(I +Q)| ≠ 0. The third constraint is to make the trained classifier get enough information170

about a specific image and correctly predict the corresponding label. For example, for an image X1171

perturbed by another image X2, the classifier obtained dominant information from X1 so that it can172

predict the label Y1. However, if the perturbed image X2 is dominant, the classifier can hardly predict173

the correct label Y1 and is more likely to predict as Y2. The fourth constraint is to maintain the norm174

of latent representations. More in-depth discussion and linear transform noise added to the image175

level are provided in the supplementary.176

Salt-and-pepper Noise The salt-and-pepper noise is a common multiplicative noise for images. The177

image can exhibit unnatural changes, such as black pixels in bright areas or white pixels in dark178

areas, specifically as a result of the signal disruption caused by sudden strong interference or bit179

transmission errors. In the Salt-and-pepper noise case, the mutual information is:180

MI(T , ϵ)
⋆
=H(Y ;X)−H(X)− (H(Y ;Xϵ)−H(X))

=H(Y ;X)−H(Y ;Xϵ)

=−
∑
X∈X

∑
Y ∈Y

p(X,Y ) log p(X,Y )−
∑
X∈X

∑
Y ∈Y

∑
ϵ∈E

p(Xϵ,Y ) log p(Xϵ,Y )

=E
[
log

1

p(X,Y )

]
− E

[
log

1

p(Xϵ,Y )

]
=E

[
log

1

p(X,Y )

]
− E

[
log

1

p(X,Y )

]
− E

[
log

1

p(ϵ)

]
=−H(ϵ)

(15)

Obviously, the mutual information is smaller than 0, which indicates the complexity is increasing181

when injecting salt-and-pepper noise into the deep model. As can be foreseen, the salt-and-pepper182

noise is pure detrimental noise. More details and Salt-and-pepper added to the image level are in the183

supplementary.184

4 Experiments185

In this section, we conduct extensive experiments to explore the influence of various types of noises186

on deep learning models. We employ popular deep learning architectures, including both CNNs187

and ViTs, and show that the two kinds of deep models can benefit from the positive noise. We188

employ deep learning models of various scales, including ViT-Tiny (ViT-T), ViT-Small (ViT-S),189

ViT-Base (ViT-B), and ViT-Large (ViT-L) for Vision Transformers (ViTs), and ResNet-18, ResNet-34,190

ResNet-50, and ResNet-101 for ResNet architecture. The details of deep models are presented in the191

supplementary. Without specific instructions, the noise is injected at the last layer of the deep models.192

Note that for ResNet models, the number of macro layers is 4, and for each macro layer, different193

scale ResNet models have different micro sublayers. For example, for ResNet-18, the number of194

macro layers is 4, and for each macro layer, the number of micro sublayers is 2. The noise is injected195

at the last micro sublayer of the last macro layer for ResNet models. More experimental settings for196

ResNet and ViT are detailed in the supplementary.197

4.1 Noise Setting198

We utilize the standard normal distribution to generate Gaussian noise in our experiments, ensuring199

that the noise has zero mean and unit variance. Gaussian noise can be expressed as:200

ϵ ∼ N (0, 1) (16)

For linear transform noise, we use a quality matrix of as:201

Q = −αI + αf(I) (17)

where I is the identity matrix, α represents the linear transform strength and f is a row cyclic shift202

operation switching row to the next row, for example, in a 3× 3 matrix, f will move Row 1 to Row203

2, Row 2 to Row 3, and Row 3 to Row 1. For salt-and-pepper noise, we also use the parameter α to204

control the probability of the emergence of salt-and-pepper noise, which can be formulated as:205 {
max(X) if p < α/2

min(X) if p > 1− α/2
(18)
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Table 1: ResNet with different kinds of noise on ImageNet. Vanilla means the vanilla model without
noise. Accuracy is shown in percentage. Gaussian noise used here is subjected to standard normal
distribution. Linear transform noise used in this table is designed to be positive noise. The difference
is shown in the bracket.

Model ResNet-18 ResNet-34 ResNet-50 ResNet-101
Vanilla 63.90 (+0.00) 66.80 (+0.00) 70.00 (+0.00) 70.66 (+0.00)

+ Gaussian Noise 62.35 (-1.55) 65.40 (-1.40) 69.62 (-0.33) 70.10 (-0.56)
+ Linear Transform Noise 79.62 (+15.72) 80.05 (+13.25) 81.32 (+11.32) 81.91 (+11.25)
+ Salt-and-pepper Noise 55.45 (-8.45) 63.36 (-3.44) 45.89 (-24.11) 52.96 (-17.70)

Table 2: ViT with different kinds of noise on ImageNet. Vanilla means the vanilla model without
injecting noise. Accuracy is shown in percentage. Gaussian noise used here is subjected to stan-
dard normal distribution. Linear transform noise used in this table is designed to be positive noise.
The difference is shown in the bracket. Note ViT-L is overfitting on ImageNet [13] [34].

Model ViT-T ViT-S ViT-B ViT-L
Vanilla 79.34 (+0.00) 81.88 (+0.00) 84.33 (+0.00) 88.64 (+0.00)

+ Gaussian Noise 79.10 (-0.24) 81.80 (-0.08) 83.41 (-0.92) 85.92 (-2.72)
+ Linear Transform Noise 80.69 (+1.35) 87.27 (+5.39) 89.99 (+5.66) 88.72 (+0.08)
+ Salt-and-pepper Noise 78.64 (-0.70) 81.75 (-0.13) 82.40 (-1.93) 85.15 (-3.49)

where p is a probability generated by a random seed, α ∈ [0, 1), and X is the representation of an206

image.207

4.2 Image Classification Results208

We implement extensive experiments on large-scale datasets such as ImageNet [11] and small-scale209

datasets such as TinyImageNet [17] using ResNets and ViTs.210

4.2.1 CNN Family211

The results of ResNets with different noises on ImageNet are in Table 1. As shown in the table, with212

the design of linear transform noise to be positive noise (PN), ResNet improves the classification213

accuracy by a large margin. While the salt-and-pepper, which is theoretically harmful noise (HN),214

degrades the models. Note we did not utilize data augmentation techniques for ResNet experiments215

except for normalization. The significant results show that positive noise can effectively improve216

classification accuracy by reducing task complexity.217

4.2.2 ViT Family218

The results of ViT with different noises on ImageNet are in Table 2. Since the ViT-L is overfitting on219

the ImageNet [13] [34], the positive noise did not work well on the ViT-L. As shown in the table, the220

existence of positive noise improves the classification accuracy of ViT by a large margin compared to221

vanilla ViT. The comparisons with previously published works, such as DeiT [38], SwinTransformer222

[20], DaViT [12], and MaxViT [39], are shown in Table 3, and our positive noise-empowered ViT223

achieved the new state-of-the-art result. Note that the JFT-300M and JFT-4B datasets are private and224

not publicly available [35], and we believe that ViT large and above will benefit from positive noise225

significantly if trained on larger JFT-300M or JFT-4B, which is theoretically supported in section 4.4.226

4.3 Ablation Study227

We also proactively inject noise into variants of ViT, such as DeiT [38], Swin Transformer [20],228

BEiT [3], and ConViT [9], and the results show that positive noise could benefit various variants229

of ViT by improving classification accuracy significantly. The results of injecting noise to variants230

of ViT are reported in the supplementary. We also did ablation studies on the strength of linear231

transform noise and the injected layer. The results are shown in Fig. 2. We can observe that the232

deeper layer the positive noise injects, the better prediction performance the model can obtain. There233

are reasons behind this phenomenon. First, the latent features of input in the deeper layer have better234
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Table 3: Comparison between Positive Noise Empowered ViT with other ViT variants. Top 1
Accuracy is shown in percentage. Here PN is the positive noise, i.e., linear transform noise.

Model Top1 Acc. Params. Image Res. Pretrained Dataset
ViT-B [13] 84.33 86M 224 × 224 ImageNet 21k

DeiT-B [38] 85.70 86M 224 × 224 ImageNet 21k
SwinTransformer-B [20] 86.40 88M 384 × 384 ImageNet 21k

DaViT-B [12] 86.90 88M 384 × 384 ImageNet 21k
MaxViT-B [39] 88.82 119M 512 × 512 JFT-300M (Private)
ViT-22B [10] 89.51 21743M 224 × 224 JFT-4B (Private)

ViT-B+PN 89.99 86M 224 × 224 ImageNet 21k
ViT-B+PN 91.37 86M 384 × 384 ImageNet 21k

representations than those in shallow layers; second, injection to shallow layers obtain less mutual235

information gain because of trendy replacing Equation 8 with Equation 7. More results on the small236

dataset TinyImageNet can be found in the supplementary.237

(a) The relationship of the CNN family between the strength of

linear transform noise and Top 1 accuracy.

(b) The relationship of the CNN family between the injected

layer of linear transform noise and Top 1 accuracy.

(c) The relationship of the ViT family between the strength of

linear transform noise and Top 1 accuracy.

(d) The relationship of the ViT family between the injected

layer of linear transform noise and Top 1 accuracy.

Figure 2: The relationship between the linear transform noise strength and the top 1 accuracy, and
between the injected layer and top 1 accuracy. Parts (a) and (b) are the results of the CNN family,
while parts (c) and (d) are the results of the ViT family. For parts (a) and (c) the linear transform
noise is injected at the last layer. For parts (b) and (d), the influence of positive noise on different
layers is shown. Layers 6, 8, 10, and 12 in the ViT family are chosen for the ablation study.

4.4 Optimal Quality Matrix238

As shown in Equation 14, it is interesting to learn about the optimal quality matrix of Q that maximizes239

the mutual information while satisfying the constraints. This equals minimizing the determinant of240

the matrix sum of I and Q. Here, we directly give out the optimal quality matrix of Q as:241

Qoptimal = diag

(
1

k + 1
− 1, . . . ,

1

k + 1
− 1

)
+

1

k + 1
1k×k (19)

where k is the number of data samples. And the corresponding upper boundary of the mutual242

information as:243

MI(T , QoptimalX) = (k − 1) log (k + 1) (20)
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Table 4: Top 1 accuracy on ImageNet with the optimal quality matrix of linear transform noise.

Model Top1 Acc. Params. Image Res. Pretrained Dataset
ViT-B+Optimal Q 93.87 86M 224 × 224 ImageNet 21k
ViT-B+Optimal Q 95.12 86M 384 × 384 ImageNet 21k

Table 5: Comparison with various ViT-based methods on Office-Home.
Method Ar2ClAr2PrAr2ReCl2ArCl2PrCl2RePr2ArPr2ClPr2ReRe2ArRe2ClRe2PrAvg.

ViT-B[13] 54.7 83.0 87.2 77.3 83.4 85.6 74.4 50.9 87.2 79.6 54.8 88.8 75.5
TVT-B[44] 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6

CDTrans-B[43] 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5
SSRT-B [36] 75.2 89.0 91.1 85.1 88.3 90.0 85.0 74.2 91.3 85.7 78.6 91.8 85.4
ViT-B+PN 78.3 90.6 91.9 87.8 92.1 91.9 85.8 78.7 93.0 88.6 80.6 93.5 87.7

The details are provided in the supplementary. We find that the upper boundary of the mutual244

information of injecting positive noise is determined by the number of data samples, i.e., the scale of245

the dataset. Therefore, the larger the dataset, the better effect of injecting positive noise into deep246

models. With the optimal quality matrix and the top 1 accuracy of ViT-B on ImageNet can be further247

improved to 95%, which is shown in Table 4.248

Table 6: Comparison with various ViT-based methods on Visda2017.
Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.

ViT-B[13] 97.7 48.1 86.6 61.6 78.1 63.4 94.7 10.3 87.7 47.7 94.4 35.5 67.1
TVT-B[44] 92.9 85.6 77.5 60.5 93.6 98.2 89.4 76.4 93.6 92.0 91.7 55.7 83.9

CDTrans-B[43] 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
SSRT-B [36] 98.9 87.6 89.1 84.8 98.3 98.7 96.3 81.1 94.9 97.9 94.5 43.1 88.8
ViT-B+PN 98.8 95.5 84.8 73.7 98.5 97.2 95.1 76.5 95.9 98.4 98.3 67.2 90.0

4.5 Domain Adaption Results249

Unsupervised domain adaptation (UDA) aims to learn transferable knowledge across the source and250

target domains with different distributions [25] [42]. Recently, transformer-based methods achieved251

SOTA results on UDA, therefore, we evaluate the ViT-B with the positive noise on widely used252

UDA benchmarks. Here the positive noise is the linear transform noise identical to that used in the253

classification task. The positive noise is injected into the last layer of the model, the same as the254

classification task. The datasets include Office Home [41] and VisDA2017 [26]. Detailed datasets255

introduction and experiments training settings are in the supplementary. The objective function256

is borrowed from TVT [44], which is the first work that adopts Transformer-based architecture257

for UDA. The results are shown in Table 5 and 6. The ViT-B with positive noise achieves better258

performance than the existing works. These results show that positive noise can improve model259

generality, therefore, benefit deep models in domain adaptation tasks.260

5 Conclusion261

This study presents a comprehensive investigation into the influence of various common noise types262

on deep learning models, including Gaussian noise, linear transform noise, and salt-and-pepper noise.263

We demonstrate that, under certain conditions, linear transform noise can have a positive effect on264

deep models. Our experiments show that injecting the positive noise in latent space can significantly265

enhance the prediction performance of deep models on image classification tasks, leading to new266

state-of-the-art results on ImageNet. The findings of this study have a broad impact on future research267

and may contribute to the development of more accurate models and their improved performance in268

real-world applications. Moreover, we are excited to explore the potential of positive noise in more269

deep learning tasks.270
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