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Abstract

In this work, we argue that large language mod-
els (LLMs), though trained to predict only the
next token, exhibit emergent planning behaviors:
their hidden representations encode future out-
puts beyond the next token. Through simple
probing, we demonstrate that LLM prompt repre-
sentations encode global attributes of their entire
responses, including structure attributes (e.g., re-
sponse length, reasoning steps), content attributes
(e.g., character choices in storywriting, multiple-
choice answers at the end of response), and be-
havior attributes (e.g., answer confidence, factual
consistency). In addition to identifying response
planning, we explore how it scales with model
size across tasks and how it evolves during gen-
eration. The findings that LLMs plan ahead for
the future in their hidden representations suggest
potential applications for improving transparency
and generation control.

1. Introduction

Large Language Models (LLMs) have demonstrated power-
ful capabilities across various tasks (Brown et al., 2020;
Achiam et al., 2023; Touvron et al., 2023a; Anthropic,
2024). However, their next-token-prediction training ob-
jective leads to the view that they generate text through lo-
cal, per-token prediction, without considering future outputs
beyond the next immediate token (Bachmann & Nagara-
jan, 2024; Cornille et al., 2024) . This makes controlling
the generation process challenging: we are blind to the
model’s output tendency until keywords or the full response
appear. While prompt engineering and inference-time inter-
ventions (Liu et al., 2023; Li et al., 2024; Zhou et al., 2024)
can guide responses, they lack insight and transparency into

“Equal contribution 'Shanghai Artificial Intelligence Labora-
tory *Work done while at Shanghai Artificial Intelligence Labora-
tory. Correspondence to: Chao Yang <yangchao@pjlab.org.cn>,
Zhichen Dong <dongzhichen@pjlab.org.cn>, Zhanhui Zhou
<asap.zzhou@gmail.com>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

[Prompt x: Write a science fiction story of an animal character.]

/ Probing Hldden : [ Antlctpated Future.

Representations :: Output Attributes |
]

Input

1 1
1 1 1
__,‘_E> Response Length: _.E___
| ~150 Token ¢
! !
Layer [, 3 H Character Choice: _|
1 X :
!
I @ Answer Confidence; ||
1
1
i
1
\

Layer
Yy 3 ngh (Prompt Adherence) ; ]

|
Structure / Content / Behavior;

Represent:
Attributes 1

[
1
1
|
t
1
1
1
1
1
1
i, -ations } i
\

MLP
H Probes

Anticipate
Future Outputs [T

Generate the
Next Token

Generation

Timeline t=0 t=1 - i ty .ty
Once  upon -- afox named - exit the spaceship - .[EOS]

Figure 1. llustration of probing LLMs for emergent response plan-
ning. After processing a prompt, hidden representations (H) are
extracted from the LLM’s layers. MLP probes analyze these rep-
resentations to predict future global attributes, including structure
(length), content (“Fox™), and behavior attributes (answer confi-
dence). LLMs can anticipate their future outputs—Iike the “Fox”
appearing at ¢, or the final length at ¢ y—long before generation.

the model’s internal plan for outputs.

In this work, we argue that LLMs, though trained to predict
only the next token, display emergent planning behaviors:
their hidden representations encode their future outputs be-
yond just the next token. Specifically, we observe that LLM
prompt representations encode interesting global attributes
of their upcoming responses. We call this phenomenon re-
sponse planning and classify these global attributes into
three categories: structure attributes (e.g., response length,
reasoning steps), content attributes (e.g., character choices
in storywriting, multiple-choice answers at the end of re-
sponse), and behavior attributes (e.g., answer confidence,
factual consistency).

We empirically identify response planning by training sim-
ple probes on LLM prompt representations to predict the
global attributes of their upcoming responses. We find
that these probes achieve non-trivial prediction accuracy,
providing strong evidence that LLMs plan at least part of
their entire response in advance when they read the prompt.
Through further ablations, we find that planning abilities
positively scale with model size, peak at the beginning and
end of responses, share certain planning patterns across
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models, and exceed their self-verbalized awareness.

The contribution of our work is two-fold: (1) To our best
knowledge, we introduce the first formal definition and
framework of emergent response planning in LLMs. (2)
We demonstrate empirically that LLMs perform emergent
response planning through systematic probing experiments
across various attributes types and tasks, and investigate
their properties. These findings shed light on LLMs’ inter-
nal mechanisms and suggest novel approaches for predicting
and controlling outputs pre-generation, potentially enhanc-
ing model controllability.

2. Related Work

Understanding LLM hidden representations. LLM hid-
den representations encode more information than they ac-
tively use (Saunders et al., 2022; Burns et al., 2022). Pat-
terns in these representations can be identified using linear
or MLP probes (nostalgebraist, 2020; Li et al., 2022; Belrose
et al., 2023; Zou et al., 2023; Ji et al., 2024) and leveraged
to influence model behaviors such as truthfulness (Hernan-
dez et al., 2023; Li et al., 2024), instruction-following (Heo
et al., 2024), and sentiment (Turner et al., 2024). They
are also useful for training additional regression or classi-
fication heads on transformer layers for tasks like reason-
ing (Han et al., 2024; Damani et al., 2024), high-dimensional
regression (Tang et al., 2024), and harmful content detec-
tion (Rateike et al., 2023; MacDiarmid et al., 2024; Qian
et al., 2024).

Our work also utilizes LLM hidden representations but dif-
fers in focus. Rather than using hidden states as feature
extractors for external tasks, we probe model-generated data
to understand how these states encode the model’s own
planning attributes during generation.

Prior works exploring response planning in LLM. Pre-
vious studies have examined whether LLMs can anticipate
beyond the next token. Future Lens (Pal et al., 2023) mod-
els token distributions beyond the immediate next token
using linear approximation. (Geva et al., 2023) studies how
LLMs retrieve factual associations during generation, while
(Men et al., 2024) extends this to Blocksworld planning, sug-
gesting LLMs consider multiple planning steps simultane-
ously. (Pochinkov et al., 2024) finds that tokens at context-
shifting positions may encode information about the next
paragraph. (Wu et al., 2024) hypothesizes LLMs’ looka-
head capability and tests two mechanisms—pre-caching and
breadcrumbs—in a myopic training setting.

While prior works examine relatively narrow aspects like
predictions several tokens ahead or knowledge retrieval in
specialized scenarios, our work delves deeper to reveal the
broader response planning landscape of LLMs. We provide
the first formal definition of response planning in LLMs,

investigate comprehensive planning attributes, and demon-
strate planning capabilities across diverse real-world tasks.

3. Emergent Response Planning in LL.Ms

If LLMs plan ahead for their entire response in prompt rep-
resentations, then some global attributes of their upcoming
responses can be predicted from the prompt, without gener-
ating any tokens. In this section, we first describe how exist-
ing probing techniques can investigate the global responses
encoded in LLM prompt representations (Section 3.1). We
then outline the setup for training our probes, including
the response attributes of interest and the data collection
pipeline (Section 3.2). Finally, we discuss experimental
details before presenting our results (Section 3.3).

3.1. Probing for Future Responses

We study an L-layer decoder LLM 7(y | x) that gener-
ates a response y = (y1,...,Yn) given a prompt x =
(z1,...,2n) sampled from a prompt distribution p(x). Dur-
ing generation, the model encodes the input (x o y;.;) into
layer-wise representations {H. 1} ;. with the next to-

ken greedily decoded from the projection of final-layer rep-
resentations ;1 = arg max( fou(HL,y, ,))-

We investigate whether the prompt representations HY,
which produce the first response token y;, also capture
some global attributes of their upcoming response y (e.g.,
response length).

Formally, we define the artribute rule as g(y), which sum-
marizes the attributes from the generated responses (e.g.,
counting tokens in y). Building on prior work on inter-
pretability, if the prompt representations do capture these
attributes, we can “probe” the hidden representations to pre-
dict the attributes without generating any response token:
he(HL) — g(y). If probing yields non-trivial predictions,
we conclude that the LLM exhibits response planning.

3.2. Probing Setup

To study response planning in LLMs, we first design tasks
T = (p(x), g(y)), consisting of a prompt distribution p(x)
eliciting key response attributes of interest g(y) as probing
targets. Next, we introduce the data collection pipeline for
training probes.

Task design. The studied response attributes must be global,
meaning they cannot be determined from the first response
token and should ideally be distributed across the entire
response. We focus on six tasks that elicit response attributes
across three categories: structure, content, and behavior.

1. Structure attributes capture response-level features:
the response length prediction prompts LLMs to fol-
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(h) Example fitting results for reasoning steps prediction.

Figure 2. Prediction results within the dataset. Regression tasks (response length, reasoning steps) show high accuracy and strong
correlation with targets, as measured by Kendall (K), Spearman (S), and Pearson (P) coefficients. Classification tasks (character choices,
multiple-choice answers, confidence, factual consistency) perform significantly above random baseline according to F1 scores. These
results suggest that the model demonstrates emergent planning capabilities for future response attributes.

low human instructions, with the number of tokens
counted as the probing target; the reasoning steps pre-
diction prompts LLMs to solve math problems, with
the number of reasoning steps as the probing target.

2. Content attributes track specific words appearing any-
where but not at the start of the response: character
choices prediction prompts LLMs to write a story fea-
turing an animal character, with the character choice as
the probing target; multiple-choice answers prediction
prompts LL.Ms to answer a question after reasoning
(e.g., “please first explain then give your answer”), with
the selected answer as the probing target.

3. Behavior attributes require external ground truth la-
bels for validation: the answer confidence prediction
prompts LLMs to answer challenging multiple-choice
questions, with the correctness of answers judged by
ground-truth labels as the probing target; the factual
consistency prediction prompts LLMs to discuss and
then agree/disagree with given statements, with the
match between LLM’s stance and statement ground-

truth validity as the probing target.

Following the prompting strategies described in each task,
we carefully pair datasets with corresponding prompts. We
use prompts from Ultrachat (Ding et al., 2023) and AlpacaE-
val (Taori et al., 2023) for response length; GSM8K (Cobbe
et al., 2021) and MATH (Saxton et al., 2019) for reason-
ing steps; TinyStories (Eldan & Li, 2023) and ROCSto-
ries (Mostafazadeh et al., 2016) for character choices; Com-
monsenseQA (Talmor et al., 2019) and SociallQA (Sap
et al., 2019) for multiple-choice answers; MedMCQA (Pal
et al.,, 2022) and ARC-Challenge (Clark et al., 2018)
for answer confidence; CREAK (Onoe et al., 2021) and
FEVER (Thorne et al., 2018) for factual consistency. Please
see Appendix A.3.1 for more details about task design.

Data collection. For each task T = (p(x), g(y)), we col-
lect datasets for probing. We sample prompts x; from
the prompt distribution p(x), store prompt representations
H; = {H. }[ |, generate responses to the prompts y;
argmax7(y | X;), and store probing targets §; = g(y:)-
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Figure 3. Cross-dataset generalization results. For regression tasks (response length, reasoning steps), correlations with targets remain
strong despite reduced accuracy compared to in-dataset testing, as shown by Kendall (K), Spearman (S), and Pearson (P) coefficients.
Classification tasks (character choices, multiple-choice, confidence, factual consistency) maintain above-baseline F1 scores. These results
suggest the probes detect generalizable patterns rather than dataset-specific features, indicating transferable emergent planning capabilities

within the task domain.

This creates a dataset of prompt representations and their
future response attributes: D = {H;, §;},. With this
dataset, we then train a probe to predict targets from repre-
sentations.

See Appendix A.3 for details on data collection, including
task-specific and model-specific prompt templates, as well
as data filtering and augmentation methods.

3.3. Experimental Details

Probe training. We train one-hidden-layer MLPs with
ReLU activation, with hidden sizes chosen among W =
{1,2,4,8,16, 32,64, 128, 256,512, 1024 }. The output size
is 1 for regression and the number of classes with a soft-
max layer for classification. Each probe is trained for 400
epochs using MSELoss for regression and CrossEntropy-
Loss for classification. Datasets are split 60 : 20 : 20 for
train-validation-test. We perform a grid search over MLP
hidden sizes WV and representation layers H (as inputs to
the probes), reporting the test scores for the best hyperpa-

rameters. Results are averaged across three random seeds.

Probe evaluation. For regression tasks (response length
and reasoning steps), we evaluate using Spearman, Kendall
and Pearson correlation coefficients, which measure the
strength and direction of monotonic (Spearman, Kendall)
and linear (Pearson) relationships between predicted and
target values. For classification tasks, we evaluate using
F1 scores: 4-class classification for character choices, 5-
class classification for multiple-choice answers, and binary
classification for answer confidence and factual consistency.
In our setup, accuracy aligns with F1 score for classification
due to strict class balance across tasks.

Language models. We experiment with both instruction-
tuned models (Llama-2-7B-Chat, Llama-3-8B-Instruct,
Mistral-7B-Instruct, and Qwen2-7B-Instruct) and their cor-
responding base models (Llama-2-7B, Llama-3-8B, Mistral-
7B, and Qwen2-7B). See Appendix A.1 for model details.
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Figure 4. Hidden-size study results. Performance of MLP probes plateaus at relatively small hidden sizes (< 128) across all tasks, with
structure attributes converging around size 16, content attributes at 32, and behavior attributes at 8. This suggests a hierarchy of pattern
complexity, with behavioral patterns being most accessible and content patterns requiring more sophisticated probes.

4. Experimental Results

In this section, we present experimental results across six
tasks, showing that LLM hidden prompt representations
encode rich information about upcoming responses and can
be used to probe and predict global response attributes.

Insight 1: Models present emergent planning on struc-
ture, content, and behavior attributes, which can be
probed with high accuracy (Fig. 2). Our in-dataset prob-
ing experiments (where probes are trained and tested on
different splits of the same prompt dataset) reveal that both
base and fine-tuned models encode structure, content, and
behavior attributes, with fine-tuned models showing supe-
rior performance. For structural attributes (response length
and reasoning steps; Fig. 2a, 2b), fine-tuned models ex-
hibit strong linear correlations with ground truth, cluster-
ing around y = x (with example fitting results shown in
Fig. 2g, 2h), while base models show weaker but positive
correlations. For content and behavior attributes (charac-
ter choices, multiple-choice answers, answer confidence,
and factual consistency; Fig. 2c, 2d, 2e, 2f), both model
types demonstrate robust classification performance above
random baselines. These findings also suggest that mod-
els develop systematic internal planning representations
for content and behavior attributes during pre-training,
with structure attributes requiring additional reinforce-
ment through fine-tuning.

Insight 2: The learned patterns generalize across
datasets, indicating intrinsic task-related patterns rather
than dataset-specific ones (Fig. 3). Our cross-dataset ex-
periments (training and testing probes on different prompt
datasets for the same task, e.g., GSMS8K—MATH or
TinyStories—ROCStories) demonstrate robust generaliza-
tion of learned patterns. For structure attributes (Fig. 3a,
3b), predictions maintain strong correlations with target la-
bels despite lower accuracy compared to in-dataset testing
(with example fitting results shown in Fig. 3g, 3h), with fine-
tuned models showing stronger correlations than base mod-
els. Similarly, for content and behavior attributes (Fig. 3c,
3d, 3e, 3f), performance remains above baseline in cross-
dataset settings. These results suggest that probes capture
generalizable task-related patterns rather than dataset-
specific features, indicating that models may develop
intrinsic emergent planning capabilities that transfer
across different contexts within the same task domain.

Insight 3: Emergent planning patterns are salient across
models and tasks, extractable with simple MLP probes
(Fig. 4). We investigate pattern saliency by varying the
hidden size of two-layer MLP probes and measuring their
average performance across model layers. Performance
plateaus before hidden size 128 across all datasets, with
larger sizes that can even lead to overfitting, indicating pat-
tern saliency. The results can also indicate saliency differ-
ences across attributes: structure attributes (Fig. 4a, 4b)
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Figure 5. Layer-wise attribute prediction dynamics. Six subplots (one per task): Y-axis shows eight models; X-axis traces layer-wise
progression (early — late). Heatmap colors indicate absolute performance (0-1, lighter = higher); black curves show row-normalized
relative capability trends. Key dynamics: Structure attributes peak mid-layers, content attributes exhibit varied emergence timelines
but consolidate in later layers, and behavior attributes stabilize early. Layer-wise probing reveals hierarchical organization of planning
capabilities, with progressive refinement shaping final outputs.

converges around hidden size 16, content attributes (Fig. 4c,
4d) plateau around 32, and behavior attributes (Fig. 4e, 4f)
plateaus at around 8, suggesting a hierarchy of representa-
tion complexity where behavioral patterns are most readily
accessible, structural patterns require moderate complexity
to capture, and content patterns demand the most sophisti-
cated probe architectures. The consistent pattern across dif-
ferent model scales and architectures illustrates fundamental
organizational principles in language model representations,
suggesting that emergent planning is an inherent prop-
erty of large language models rather than an artifact of
specific architectures or training procedures.

Insight 4: Attribute patterns accumulate and peak differ-
ently across model layers (Fig. 5). We conduct layer-wise
probing analysis (with hidden sizes optimized per layer) to
understand how different attributes emerge through model
layers. The results reveal distinct accumulation patterns for
each attribute type. Structure attributes (Fig. 5a, 5b) show
weak performance in early layers, peak in middle layers,
and partially diminish in final layers, suggesting a gradual
accumulation followed by refinement. Content attributes
(Fig. 5¢, 5d) peak in later layers, either through sudden
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late-layer emergence or gradual accumulation, indicating
their reliance on higher-level semantic processing. Behavior
attributes (Fig. 5e, 5f) demonstrate uniform distribution
across layers except for the initial few, suggesting they are
fundamental properties encoded early in the model. These
layer-wise patterns reveal that (1) different aspects of plan-
ning emerge through distinct computational paths, (2) the
hierarchical nature of planning, from basic behavioral pat-
terns to complex structural decisions, is reflected in the
layer-wise organization, and (3) the emergence of these pat-
terns through progressive transformations, rather than from
initial embeddings alone, indicates that planning capabili-
ties arise from learned computational processes rather than
simple statistical correlations.

5. Ablation
5.1. Planning Ability Scales with Model Size

We analyze how emergent response planning scales across
different model sizes using four model families: Llama-2-
chat (7B, 13B, 70B), Llama-3-Instruct (8B, 70B), Qwen-2-
Instruct (7B, 72B), and Qwen-2.5-Instruct (1.5B, 32B, 72B).
Using grid search over layers and hidden sizes, we identify
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Figure 6. Scaling effects on planning capabilities. Evaluated across four model families (Llama-2-chat, Llama-3-Instruct, Qwen-2-Instruct,
Qwen-2.5-Instruct; 1.5B—72B) using UltraChat and TinyStories, structure and content attributes show family-specific scaling: larger

models within each family improve planning.
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Figure 7. Planning dynamics during generation. Probing at equidistant positions (answer confidence, character choice) shows three-phase
patterns: high accuracy in early segments (global planning intent), mid-segment decline (local token focus), and late-stage recovery
(contextualized refinement). This suggests models first outline global attributes, then refine locally, before finalizing coherent plans.

optimal configurations and evaluate models on UltraChat
and TinyStories datasets, focusing on structure and content
attributes. We exclude base models as smaller models have
short context which limit few-shot prompts, while the same
prompts fail to effectively prompt larger base models to
follow instructions. We omit the behavior attribute type
as larger models tend to give correct answers consistently,
making it difficult to obtain balanced data for analysis.

Fig. 6 exhibit two key insights: (1) within each model fam-

ily, larger models demonstrate stronger planning capabili-
ties, and (2) this scaling pattern does not generalize across
different model families, suggesting that other factors like
architectural differences also influence planning behavior.

5.2. Evolution of Planning Representations During
Response Generation

We analyze how planning features evolve during generation
by probing at different positions in the response sequence.
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(b) Character choices prediction.

Figure 8. Gap between probed and verbalized results. Both tasks reveal a systematic gap between verbalized self-estimates (Self-Estimate)
and probe-based predictions (Probing). Base models exhibit near or worse-than-random accuracy in self-estimation, while fine-tuned
models achieve only marginal gains. This gap demonstrates that models encode richer planning information in hidden representations
than they can explicitly access during generation, revealing a divide between implicit planning and explicit self-awareness.

For each response, we collect activations from the first to-
ken up to the token before attribute-revealing keywords
(e.g., animal words in story character selection tasks) or
throughout the entire sequence for tasks requiring external
ground-truth labels (e.g., answer confidence tasks). We di-
vide these positions into equal segments and apply probes
previously trained with in-dataset settings at each division
point. We conduct experiments on two datasets: TinyS-
tories for character choice prediction and MedMCQA for
answer confidence prediction. Fig. 7 reveal a distinctive pat-
tern: probing accuracy is high initially, decreases in the
middle segments, and rises again toward the end. This
pattern suggests a three-phase planning process: (1) initial
phase with strong planning that provides an overview of the
intended response; (2) middle phase with weaker planning,
characterized by more local, token-by-token generation; (3)
final phase with increased planning clarity as accumulated
context makes the target attributes more apparent.

5.3. Gap Between Probed and Verbalized Results

We investigate whether LLMs can self-estimate their re-
sponse attributes when explicitly prompted, and compare
these verbalized results—self-predictions obtained via direct
prompting—against probe-based predictions. Experiments
focus on two tasks: response length prediction (Ultrachat)
and character choice (TinyStories). For verbalized predic-
tions, we prompt LLMs in separate runs to self-estimate
attributes (e.g., “Estimate your answer length in tokens us-
ing [TOKENS]number [/TOKENS]” for tuned models,
or via few-shot examples with pre-calculated lengths for
base models). Self-estimation accuracy is evaluated by com-
paring these outputs against actual greedy-decoded response

attributes.

Fig. 8 reveals a systematic gap: base models exhibit near
or worse-than-random accuracy in self-estimation, while
fine-tuned models improve only marginally, remaining far
inferior to probe-based methods. This suggests models
encode more planning information in hidden representa-
tions than they can explicitly access during generation,
highlighting a divide between implicit planning and explicit
self-awareness.

6. Discussion
6.1. Emergent Response Planning under Sampling

In this study, we consistently use greedy decoding to derive
deterministic probing labels §; = g(y;) for representations
H; = {H._}{~,. But when generalizing to sampling set-
tings, while greedy decoding simplifies sampling approxi-
mation by reflecting the LLM’s most probable output, this
approach may not fully capture sampling nuances. We pro-
pose two potential ways for improvement:

Averaging: Replace greedy labels with attribute averages
over multiple sampling trials (e.g., 10 samples) to approxi-
mate expected sampling behavior.

Distributional probing: Train probes to predict label dis-
tributions instead of single values, capturing uncertainty
inherent to sampling. While greedy decoding reflects the
LLM’s most probable output (approximating sampling aver-
ages), distribution-aware probing remains an open challenge,
which we leave for future work.
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6.2. Defining Planning and Addressing Spurious
Correlations

A crucial consideration in defining and measuring “plan-
ning” is the potential for spurious correlations, particularly
“first-token shortcuts.” An example illustrates this: if a
model is prompted in either French or English to provide
a’yes/no’ answer in the same language, a probe analyzing
the first token’s activations might predict the final answer
(“oui/non” vs. “yes/no’) simply by detecting the language
of the initial token. While this shows a correlation, it doesn’t
necessarily prove long-range planning in the sense of an-
ticipating specific future content beyond what’s implied by
immediate context like language choice.

Our study addresses this by (1) defining planning as the
encoding of long-term attributes independently of the im-
mediate next token, and (2) designing prompts to actively
block these shortcuts. We define planning such that the
hidden representations at the first token should encode both
next-token information and long-term attributes, ensuring
these two information types are independent — the long-
term attribute shouldn’t be directly inferable from the very
next token. To implement this in our experiments, we used
prompt engineering. For instance, in multiple-choice tasks,
we instructed models to first provide an analysis before stat-
ing their final answer. This ensures that the initial tokens
(the analysis) do not inherently reveal the target attribute (the
final choice), thereby helping to isolate genuine planning
signals from simpler, shortcut correlations. This method-
ological approach is vital for ensuring that probes detect true
emergent planning rather than just correlated input features.

6.3. Potential Applications of Emergent Response
Planning in LLMs.

Our findings on LLMs’ emergent response planning sug-
gest several practical applications: (1) Pre-generation re-
source allocation optimization: Probing pre-generation
representations allows proactive allocation of computational
resources based on anticipated response complexity and
length, enhancing inference efficiency during dynamic work-
loads. (2) Early-error detection: Early detection of behav-
ioral attributes like low confidence could enable corrective
interventions (e.g., retrieval-augmented refinement) before
errors propagate. Predictive awareness of content attributes
(e.g., key entities or argument trajectories) might enable
real-time compliance checks with safety guidelines or do-
main constraints. (3) Novel user interaction paradigms:
Predicting reasoning complexity could guide task decom-
position for multi-step problems, while predicting response
characteristics could improve progress indicators in inter-
active settings. These possibilities highlight the need for
robust probing methods in deployed LLMs.

6.4. Future Research Directions

Several key research directions emerge from our findings:
(1) Causal mechanisms of planning: Research could in-
vestigate whether and how planning representations directly
influence token generation (e.g., via causal intervention ex-
periments). Establishing causality is crucial for reliably
leveraging these representations and understanding LLM
decision-making. (2) Leverage planning for generation
control: Future work might explore methods to detect and
utilize pre-generation attribute predictions (e.g., key con-
tent points) for real-time steering. This could enable more
efficient and precise control than post-hoc correction, po-
tentially reducing computational waste and errors by allow-
ing early adjustments based on predicted response proper-
ties. (3) Planning in multimodal contexts: Exploration of
whether similar planning phenomena emerge in multimodal
(e.g., image+text) LLMs could be valuable. Such research
may provide insights into the universality of emergent plan-
ning and how modality impacts the development of these
cognitive capabilities. (4) Planning-aware training: Devel-
oping objectives that explicitly reward alignment between
early-plan encodings and final outputs (e.g., via consistency
losses) represents another avenue. This may enhance co-
herence in complex tasks by grounding generation in initial
1ntent.

7. Conclusion

In conclusion, our work reveals that LLMs have emergent
response planning capabilities, with prompt representations
encoding global attributes of future outputs across structure,
content, and behavior attributes. These findings challenge
the conventional view of LLMs as purely local predictors
and provide new insights into their internal mechanisms.
Though we do not focus on interpretability mechanisms to
explain the causal relationship of emergent response plan-
ning, our findings open promising directions for enhancing
model control and transparency, potentially enabling more
effective methods for guiding and predicting model outputs
before generation begins.

Impact Statement

Our findings on LLM emergent planning raise specific con-
siderations for model deployment. While these capabilities
could enhance system reliability through better resource
allocation and early warning mechanisms, they also present
concerns when handling sensitive data, as these probing
methods reveal aspects of the model’s internal thinking or
decision-making process. We encourage careful evalua-
tion of these trade-offs when implementing probing-based
monitoring systems, particularly in applications involving
sensitive information.
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A. Further Details on the Experimental Setup
A.1. Model Specification

The following table lists the models and their corresponding links.

Models Links

Llama-2-7B (Touvron et al., 2023b) https://huggingface.co/meta-1lama/
Llama—-2-7b-hf

Llama-2-7B-Chat (Touvron et al., 2023b) https://huggingface.co/meta-1lama/

Llama-2-7b-chat-hf
Llama-2-13B-Chat (Touvron et al., 2023b) https://huggingface.co/meta-1lama/
Llama-2-13b-chat-hf
Llama—-2-70B-Chat (Touvron et al., 2023b) https://huggingface.co/meta-1lama/
Llama-2-70b-chat-hf
Llama-3-8B (Al@Meta, 2024) https://huggingface.co/meta-1lama/
Meta—-Llama-3-8B
Llama-3-8B-Instruct (Al@Meta, 2024) https://huggingface.co/meta-1lama/
Llama-2-7b-hf
Llama—-3-70B-Instruct (Al@Meta, 2024) https://huggingface.co/meta-1lama/
Meta-Llama—-3-70B-Instruct
Mistral-7B (Jiang et al., 2023) https://huggingface.co/mistralai/
Mistral-7B-v0.1
Mistral-7B-Instruct (Jiang et al., 2023) https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2

Qwen2-7B (Team, 2024a) https://huggingface.co/Qwen/Qwen2-7B

Qwen2-7B-Instruct (Team, 2024a) https://huggingface.co/Qwen/
Qwen2-7B-Instruct

Qwen2-72B-Instruct (Team, 2024a) https://huggingface.co/Qwen/
Qwen2-72B-Instruct

Qwen2.5-1.5B-Instruct (Team, 2024b) https://huggingface.co/Qwen/Qwen2.5-1.
5B-Instruct

Qwen2.5-32B-Instruct (Team, 2024b) https://huggingface.co/Qwen/Qwen2.
5-32B-Instruct

Qwen2.5-72B-Instruct (Team, 2024b) https://huggingface.co/Qwen/Qwen2.

5-72B-Instruct

A.2. Dataset Specification

The following table lists the datasets and their corresponding links.

Datasets Links

Ultrachat (Ding et al., 2023) https://huggingface.co/datasets/stingning/
ultrachat

AlpacaEval (Taori et al., 2023) https://huggingface.co/datasets/tatsu-lab/
alpaca

GSM8K (Cobbe et al., 2021) https://huggingface.co/datasets/openai/gsm8k

MATH (Saxton et al., 2019) https://huggingface.co/datasets/deepmind/math_
dataset

TinyStories (Eldan & Li, 2023) https://huggingface.co/datasets/roneneldan/
TinyStories

ROCStories (Mostafazadeh et al., 2016) https://huggingface.co/datasets/Ximing/
ROCStories
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CommonsenseQA (Talmor et al., 2019) https://huggingface.co/datasets/tau/
commonsense_da

SocialIQA (Sap etal., 2019) https://huggingface.co/datasets/allenai/social_
i_qga

MedMCQA (Pal et al., 2022) https://huggingface.co/datasets/
openlifescienceai/medmcga

ARC-Challenge (Clark et al., 2018) https://huggingface.co/datasets/allenai/ai2_arc

CREAK (Onoe et al., 2021) https://huggingface.co/datasets/amydeng2000/
CREAK

FEVER (Thorne et al., 2018) https://huggingface.co/datasets/fever/fever

A.3. Detailed Process of Response Collection and Labeling

In this section, we detail the process of collecting a dataset D = {H,;, §; } Y, for each task T' = (p(x), g(y)), pairing prompt
representations with their corresponding attribute labels. First, we construct the prompt distribution p(x) to elicit responses
with target attributes from the models (Sec.A.3.1). Second, we label these responses according to specific criteria §; = g(y;)
to capture their key attributes (Sec.A.3.2). Finally, we collect representations H,; = {Hﬁc }1L:1 for each prompt (Sec. A.3.3).

A.3.1. PROMPT TEMPLATES

To elicit responses with target attributes, we construct prompt distributions using carefully designed templates paired
with datasets. We present the prompt templates for both chat and base models across all tasks, along with representative
input-output examples.

Task 1: Response Length

Prompt for fine-tuned models
rs

{data}

(— Gets formatted according to model’s template)
Example Response

Data: Why are oceans important to the global ecosystem?
Output: The oceans play a crucial role [...]

Prompt for base models

rs

Q: How can cross training benefit athletes?

A: Cross training offers various benefits [...] [END OF RESPONSE]
Q: What role does collaboration play in creativity?

A: Collaboration and originality complement each other [...] [END
OF RESPONSE]

0: {data}

A:

rs

Example Response
Data: What are positive impacts of Reality TV?
Output: Reality TV provides entertainment and [...] [END OF RESPONSE]

Task 2: Reasoning Steps

Prompt for fine-tuned models

rs

Provide step-by-step solution, starting with ’Step 1:’.
Problem:
{data}
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rs

(— Gets formatted according to model’s template)

Example Response

Data: Randy has 60 mango trees on his farm. He also has 5 less than half as many coconut trees as
mango trees. How many trees does Randy have in all?

Output: Step 1: Write down the information [...]

Prompt for base models

rs

Solve this problem step-by-step, starting with ’"Step 1:’.
Few—-shot examples:

Problem: Let f(x)={ax+3 if x>2; x-5 if -2<x<2; 2x-b if x<-2}.
Find at+b if f is continuous.

Step 1: At x=2: a(2)+3=2-5 [...] [END OF RESPONSE]
Problem: If x=2 and y=5, find (x74+2y~2)/6.
Step 1: Substitute: (274+2(572))/6 [...] [END OF RESPONSE]

Problem: {data}

rs

Example Response

Data: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How
much did she earn?

Output: Step 1: Substitute: 12(50/60) [...] [END OF RESPONSE]

Task 3: Character Choices

Prompt for fine-tuned models

rs

Here’s the first sentence of a story: {data}

Continue this story with one sentence that introduces a new animal
character.

rs

(— Gets formatted according to model’s template)

Example Response

Data: Once upon a time, there was a big car named Dependable.

Output: As Dependable was cruising down the highway, a chatty parrot [...]

Prompt for base models

rs

First sentence: Lily was a little mouse who liked to follow her big
brother Leo.

Continuation: The garden was peaceful that morning until [...]
[Animal: owl] [END OF RESPONSE]

First sentence: Lila and Ben were playing in the park with their

toys.

Continuation: While building their epic sandcastle [...] [Animal:
rabbit] [END OF RESPONSE]

First sentence: Sara was lonely.

Continuation: As she sat on the front steps drawing patterns [...]
[Animal: puppy] [END OF RESPONSE]

First sentence: Lily and Ben were twins who liked to go on walks
with their mom and dad.

Continuation: Their morning hike through the woods [...] [Animal:
squirrel] [END OF RESPONSE]

First sentence: {data}

Continuation:
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rs

Example Response
Data: One day, a girl named Mia went for a walk.
Output: As she strolled through the park, she noticed a group of birds [...] [END OF RESPONSE]

Task 4: Multiple-Choice Answers

Prompt for fine-tuned models

rs

Before choosing your answer, x*briefly explain why in one short
sentence*. Then select from the options:

{data}

rs

(— Gets formatted according to model’s template)

Example Response

Data: Sammy wanted to go to where the people were. Where might he go? A) race track B) populated
areas C) the desert D) apartment E) roadblock

Output: **He wants to be around people, so he would go to a populated area.**B) populated areas

Prompt for base models

rs

Select the correct answer. Choose the single best answer.

Q: The sanctions against the school were a punishing blow, and they
seemed to what the efforts the school had made to change?

A) ignore B)enforce C)authoritarian D)yell at E)avoid

A: The sanctions ignore the school’s reform efforts, contradicting
their purpose. Therefore A.[END OF RESPONSE]

Q: Sammy wanted to go to where the people were. Where might he go?
A)race track B)populated areas C)the desert D)apartment E)roadblock
A: If Sammy wants to find people, he would logically go to populated
areas where many people gather. Therefore B.[END OF RESPONSE]

Q: {data}

A:

rs

Example Response

Data: Where do you put your grapes just before checking out? A) mouth B) grocery cart C) super market
D) fruit basket E) fruit market

Output: The question asks where you put your grapes just before checking out. The answer is the
grocery cart. Therefore B.[END OF RESPONSE]

Task 5: Answer Confidence

Prompt for fine-tuned models

rrs

Please first write analysis of the problem, then select the single
correct answer to the following question from the options, and state
your option explicitly:

{data}

rs

(— Gets formatted according to model’s template)

Example Response

Data: Damage to median nerve produces - A) Claw hand B) Winging ofscapule C) Ape thumb D) Wrist
drop

Output: Damage to the median nerve [...] The correct answer is: B) Winging of scapula

Prompt for base models

rs
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Select the correct answer. Choose the single best answer.

Q: Which vitamin is supplied from only animal source:

A)Vitamin C B)Vitamin B7 C)Vitamin B12 D)Vitamin D

A: Vitamin B1l2 (cobalamin) is exclusively found in animal products
as it is synthesized by bacteria in animals, and cannot be obtained
from plant sources. Therefore C.[END OF RESPONSE]

Q: All of the following are surgical options for morbid obesity
except -

A)Adjustable gastric banding B)Biliopancreatic diversion C)Duodenal
Switch D)Roux en Y Duodenal By pass

A: While Roux-en-Y gastric bypass is a common bariatric procedure,
there is no such thing as ’"Roux en Y Duodenal Bypass’. The correct
procedures include gastric banding, biliopancreatic diversion, and
duodenal switch. Therefore D.[END OF RESPONSE]

0: {data}

A:

rs

Example Response

Data: Which of the following amino acid is active at neutral pH? A) Histidine B) Glycine C) Leucine D)
Arginine

Output: Histidine is the only amino acid that is active at neutral pH. Therefore A.[END OF RESPONSE]

Task 6: Factual Consistency

Prompt for fine-tuned models

rs

First discuss on this statement briefly in one short sentence,
then explicitly state that you are in favour of the statement or
explicitly state if you feel unsure instead:

{data}

rs

(— Gets formatted according to model’s template)

Example Response

Data: American children’s adventure film The Wizard of Oz was made by Warner Bros.
Output: The Wizard of Oz is a classic American children’s adventure film [...] I am unsure about the
statement as it appears to be incorrect.

Prompt for base models

rs

Q: Only people named Floyd wearing pink are allowed to attend Pink
Floyd concerts.

A: This contradicts known concert admission practices and Pink
Floyd’s actual ticket policies. I cannot be confident about the
accuracy of this statement.[END OF RESPONSE]

Q: Fax works without any internet connection.

A: Fax machines transmit data through telephone lines independently
of internet infrastructure. I support this statement as

accurate. [END OF RESPONSE]

Q: Larry King served tea during his show.

A: Larry King was known to have beverages during his long-running
CNN show to maintain vocal comfort during interviews. I support
this statement as accurate.[END OF RESPONSE]

Q: The band Lynyrd Skynyrd formed up in Beijing, China.
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A: Available historical documentation about Lynyrd Skynyrd’s
origins contains conflicting or unclear information about their

early formation. I cannot be confident about the accuracy of this
statement. [END OF RESPONSE]

Q: {data}

A:

rs

Example Response

Data: The crack in the Liberty Bell sets it apart from other famous bells.

Output: The Liberty Bell is a famous bell in the United States. I support this statement as accurate.[END
OF RESPONSE]

A.3.2. LABELING

After collecting model responses, we first extract base model outputs using the [END OF RESPONSE] signal. Then, for
both base and fine-tuned models, we label and filter responses using these criteria:

1. Response length: Calculate token count using the model’s tokenizer, excluding special tokens. Exclude responses
exceeding the 1000-token limit or those that are incomplete.

2. Reasoning steps: Count remaining steps by identifying step markers (e.g., “Step 1:”). Exclude responses with more
than 8 steps.

3. Character choices: Identify animal mentions in responses, excluding cases with no animals, multiple animals, or
animals in the first two words. Select the top-4 most frequent animals per model and label them 0-3.

4. Multiple-choice answers: Extract answer selections (e.g., “the answer is D) using pattern matching. Exclude
responses with zero or multiple answers, or answers at sentence start. Label options A-E as 0-4.

5. Answer confidence: Match the model’s selected option against ground truth, excluding cases with multiple or no
choices. Label correct answers as 1, incorrect as 0.

6. Factual consistency: Identify explicit agree/disagree statements and compare with ground truth, excluding cases
without explicit agreement/disagreement. Label as 1 if the model agrees with true statements or disagrees with false
ones, 0 otherwise.

Then we perform data augmentation by: (1) removing responses shorter than 8 tokens and balancing class distributions
across classification tasks while equalizing dataset sizes across models; (2) generating additional examples by randomly
truncating responses several tokens before key information appears (e.g., end-of-response token, animal names in character
choices, or option selections in multiple-choice answers), computing corresponding labels, and grouping original and
augmented data to ensure they are assigned to the same data split (train/test/validation).

A.3.3. REPRESENTATION COLLECTION

For each truncated response, we concatenate the original LLM input with the truncated text and perform a forward pass to
obtain representations from all layers at the truncation point. For answer-start representations, we directly use a forward pass
on the original input. We then pair these collected representations with their corresponding labels to create the final dataset.

B. Extended Experimental Results
B.1. Regression Fitting Performance

We present complete regression fitting results for both in-dataset (Fig. 9) and cross-dataset (Fig. 10) settings using hexbin
density plots.
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(b) Reasoning steps prediction on GSM8K dataset.

Figure 9. Hexbin plots showing in-dataset regression performance. Color intensity represents point density, with diagonal dashed lines
indicating perfect predictions. The solid line in each subplot represents the linear regression fit applied to the predictions and the real
labels.
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(b) GSMS8K to MATH generalization for reasoning steps prediction.

Figure 10. Cross-dataset regression generalization visualized through hexbin plots. Color intensity represents point density, with diagonal
dashed lines indicating perfect predictions. The solid line in each subplot represents the linear regression fit applied to the predictions and
the real labels.
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