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Abstract

Aspect-based sentiment analysis (ABSA) as-001
sesses sentiments towards specific aspects002
within texts, resulting in detailed sentiment tu-003
ples. Previous ABSA models often used static004
templates to predict all the elements in the tu-005
ples, and these models often failed to accurately006
capture dependencies between elements. Multi-007
view prompting method improves the perfor-008
mance of ABSA by predicting tuples with vari-009
ous templates and then assembling the results.010
However, this method suffers from inefficien-011
cies and out-of-distribution errors. In this paper,012
we propose a Dynamic Order Template (DOT)013
method for ABSA, which dynamically creates014
an order template that contains only the nec-015
essary views for each instance. Ensuring the016
diverse and relevant view generation, our pro-017
posed method improves F1 scores on ASQP018
and ACOS datasets while significantly reduc-019
ing inference time.020

1 Introduction021

Aspect-based sentiment analysis (ABSA) aims to022

identify the sentiment of aspects in a given text023

rather than simply classifying the overall sentiment024

of the entire text. ABSA research evolves to gen-025

erate quadruples consisting of four elements: 1)026

Aspect (A), 2) Category (C) for the type of A, 3)027

Opinion (O) for A, and 4) Sentiment (S) for A.028

Many recent studies such as T5-paraphrase tackle029

this problem using generative models (Zhang et al.,030

2021b). These approaches usually get review sen-031

tences as input and output the span of quadruples032

in fixed order form, such as "C is S because A033

is O" (Zhang et al., 2021a). However, this static034

single-order template cannot express the depen-035

dence between elements as in Figure 1 due to the036

autoregressive nature of the transformer (Vaswani037

et al., 2017). Moreover, the model output can heav-038

ily depend on the order of generation of each ele-039

ment (Hu et al., 2022).040

Figure 1: Comparison of three different generative
ABSA methods. 1) static single-view, 2) static multi-
view, and 3) dynamic-view prediction (ours).

Multi-view prompting (Gou et al., 2023) (MvP) 041

deals with this issue by constructing order tem- 042

plates as a channel for "viewing" different per- 043

spectives in a sentence. As shown in Figure 1, 044

MvP permutes all possible element orders and 045

sorts them based on the entropy of the pre-trained 046

model at the dataset level. Using this entropy, MvP 047

samples top-k orders and adds these orders as a 048

prompt template. During inference time, MvP con- 049

ducts majority votes on generated sentiment tu- 050

ples with various templates. Through this ensem- 051

ble approach, MvP uses the intuition of solving 052

problems from multiple views in human reasoning 053

and decision (Stanovich and West, 2000), result- 054

ing in enhanced performance. However, we find 055

that this static multi-view approach of MvP has 056

several drawbacks: 1) Inefficiency: Even for sam- 057

ples where the answer can be easily found and 058

multiple views are not necessary, this method gen- 059

erates the same number of views, resulting in un- 060

necessary computation that increases the inference 061

time. 2) Limited Transferability: MvP uses the 062

number of views k as a hyperparameter, applying 063

the same k value across all datasets during training 064
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Figure 2: Overview of our proposed two stage method.
We use two T5 models for each stage: one for generating
initial order template, the other for forming final order
template and generating sentiment tuples.

and inference. However, since the optimal num-065

ber of ensemble models varies according to the066

data domain, it requires manual adjustment of the067

k value for each dataset (Shahhosseini et al., 2022),068

which hinders the transferability to other datasets.069

To resolve the aforementioned shortcomings, we070

propose a Dynamic Order Template (DOT) method071

for ABSA that combines the advantages of both072

single-view and multi-view approaches. By prior-073

itizing multiple views based on instance-level en-074

tropy, DOT aims to generate only the necessary075

number of views for each instance during infer-076

ence. For an example that contains only one tu-077

ple as in Figure 1, DOT dynamically creates only078

one view as an order template necessary to pre-079

dict the tuple. After generating the views, DOT080

generates tuples using the views inside the order081

template. This phase operates in a multi-view man-082

ner, enabling us to retain the benefits of previ-083

ous multi-view methods. Extensive experiments on084

four widely used sentiment quadruple prediction085

datasets, derived from ASQP (Pontiki et al., 2016;086

Zhang et al., 2022), ACOS (Cai et al., 2021a, 2023),087

and MEMD-ABSA (Cai et al., 2023), demonstrate088

that our method shows state-of-the-art performance089

with significantly lower inference time compared090

to the multi-view approach. Moreover, we show091

that our method is robust to domain shift compared092

to previous methods, resulting in higher transfer-093

ability.094

2 Method095

Our proposed Dynamic Order Template (DOT)096

method is composed of two stages as in Figure 2.097

The first stage involves generating an initial or-098

der template (Sec 2.1) to predict the number of099

tuples. The second stage involves refining the ini-100

tial template from stage 1 to produce the final order 101

template and predicting the sentiment tuples based 102

on it (Sec 2.2). For both stages, we map sentiment 103

tuples (A, C, S, O) to marker tokens [A], [C], [S], 104

and [O] respectively. Also, for the instances that 105

contain multiple sentiment tuples, we indicate each 106

tuple with the respective tokens and concatenate 107

the targets with [SSEP] tokens. 108

2.1 Stage 1: Generating Order Template 109

We assume that the number of sentiment tuples 110

Ki in ith instance present for each instance corre- 111

sponds to the required number of views. In other 112

words, we consider that one separate view is nec- 113

essary for predicting each tuple. We define this 114

individual view as the prediction order for each el- 115

ement of the sentiment tuple as shown in Figure 2. 116

This allows each prediction order to correspond 117

one-to-one with a sentiment tuple in second stage. 118

We observe that instead of directly using the 119

value of Ki as the target, sampling views corre- 120

sponding to Ki as the target for the model to gener- 121

ate leads to more accurate prediction of the number 122

of tuples in the given instance (More details are 123

in Appendix B). To establish the view sampling 124

strategy, we start by ranking all possible views gen- 125

erated through permutations through each entropy 126

score, following (Hu et al., 2022). Specifically, we 127

calculate entropy of each view v in instance-level 128

with vanilla T5 by calculating conditional genera- 129

tion probability as follows: 130

Ei,v = −
∑

P (v|xi) logP (v|xi) (1) 131

Here, Ei,v is the entropy of total sequence when 132

the ith instance is input into the T5 model and v 133

is the output. At this time, we note that actually 134

utilizing only A, C, S during the first stage notably 135

facilitate the training process in the second stage. 136

We provide a detailed analysis on excluding O in 137

Appendix B.2. After computing the entropy, we 138

sort the views by the entropy in ascending order 139

to get the ranked set of view P
(1)
i . And then we 140

sample top Ki views for each sample and concate- 141

nate these views as an order template. Using the 142

original ith input sentence, we train the T5 model 143

to generate the first-stage target y(1)i as follows: 144

y
(1)
i = P

(1)
i,1 [SSEP]P (1)

i,2 [SSEP] . . . P (1)
i,Ki

, 145

where P
(1)
i,Ki

denotes Kth
i view in P

(1)
i . We set the 146

loss function to train the T5 model as in Equa- 147

tion (2), where |B| denotes the batch size of the 148
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model. The scaling factor is omitted for simplicity.149

L1 = −
|B|∑
i=1

T∑
t=1

log p(y
(1)
i,t |xi,y

(1)
i,<t) (2)150

2.2 Stage 2: Sentiment Tuple Generation151

In the second stage, the model is trained to gen-152

erate the sentiment tuple of given instance using153

the number of sentiment tuples (i.e. Ki). Different154

from the first stage, we need to generate all ele-155

ments in sentiment quadruples including O in this156

stage. Hence, we re-rank all views to pick Ki views157

including O (i.e. (A, C, S, O)). Here, we adopt the158

same strategy as in the first stage, using entropy to159

form a ranked set of views, P (2)
i . We then sample160

top Ki views from P
(2)
i and add them as an or-161

der template prompt Pi to original input sentence.162

We design the second stage target y(2)i by aligning163

each sentiment tuple with an order template, en-164

suring that the model learns to generate different165

tuples for different perspectives. Also, we place the166

corresponding elements next to each marker token167

within Pi as follows:168

y
(2)
i = P

(2)
i,1 ⊗ tuple1 [SSEP] . . . P (2)

i,Ki
⊗ tupleKi ,169

where P
(2)
i,Ki

represents Kth
i view in P

(2)
i and170

tupleKi is the Kth
i sentiment tuple for given in-171

stance. ⊗ denotes interleaved combination between172

marker tokens and elements. Detailed examples for173

both stages are present in Appendix D. We design174

the loss function for training the T5 model in sec-175

ond stage as follows.176

L2 = −
|B|∑
i=1

T∑
t=1

log p(y
(2)
i,t |xi,Pi,y

(2)
i,<t) (3)177

2.3 Two-stage inference178

During inference time, two stages are conducted179

sequentially. In the first stage, the model generates180

the initial order template, denoted as ˆy(1). In the181

second stage, we count the number of generated182

views from ˆy(1) to set K̂. Using K̂, we sample the183

top K̂ views from the newly ranked set of views184

and constructs the final order template, referred to185

as P̂ . Finally, P̂ is directly appended to the infer-186

ence sentence, enabling the generation of different187

sentiment tuples for each view in P̂ . The overall188

two-stage process is described in Figure 2.189

3 Experiment 190

3.1 Benchmark Datasets 191

We adopt two widely used ABSA datasets: ASQP 192

and ACOS, where the task is to predict sentiment 193

quadruples. For ASQP task, we use rest15 (R15) 194

and rest16 (R16) datasets released from (Pontiki 195

et al., 2016; Zhang et al., 2022). For ACOS task, we 196

use laptop16(Lap) and rest16(Rest) datasets con- 197

structed by (Cai et al., 2021a; Pontiki et al., 2016). 198

Also, we adopt additional ACOS benchmarks from 199

MEMD datasets (Restaurant, Laptop, Books, Cloth- 200

ing, Hotel) (Xu et al., 2023) which use a different 201

source from the previous datasets. We refer to the 202

Restaurant and Laptop datasets in MEMD as M- 203

Rest and M-Laptop, respectively, for the sake of 204

clarity. 205

3.2 Baselines 206

We compare our method against several strong 207

baselines for ABSA as follows. Paraphrase (Zhang 208

et al., 2021a) formulates a paraphrase genera- 209

tion process for ABSA with a single fixed order. 210

DLO (Hu et al., 2022) augments data via the mul- 211

tiple order templates. MvP aggregates sentiment tu- 212

ples generated from multiple orders of prompts via 213

ensembling. Also, we benchmark popular LLMs 214

such as GPT-3.5-turbo (OpenAI, 2023), LLaMa- 215

3.1 (Dubey et al., 2024), and Mistral-7b (Jiang 216

et al., 2023). Detailed setups for LLMs are in Ap- 217

pendix G. 218

3.3 Implementation Details 219

We utilize the pre-trained T5-base (Raffel et al., 220

2020) model as the backbone for the first stage. 221

We also use the model trained in the first stage as 222

the backbone for the second stage, allowing us to 223

leverage a tuned initial point for the ABSA dataset 224

to have the regularization effect inspired by (Fu 225

et al., 2023). Also, we eliminate irregularities in 226

tuples through stop-word filtering in the second 227

stage. Please see Appendix A for more details. 228

3.4 Results 229

Performance Comparison We use F1 score, 230

which is a standard metric for ABSA, to measure 231

the performance of the systems. As shown in Ta- 232

ble 1, our method outperforms all baselines across 233

seven ABSA datasets. However, its performance 234

is slightly lower on the Rest and Clothing datasets, 235

which we analyze in Section 3.4. 236
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Methods ASQP ACOS MEMD Avg Time(s)R15 R16 Lap Rest M-Rest M-Lap Books Clothing Hotel

Paraphrase 46.93 57.93 43.51 61.16 57.38 35.07 39.30 43.00 68.79 50.34 40.63
DLO 48.18 59.79 43.64 59.99 57.07 35.56 42.63 43.35 70.27 51.16 260.74
MvP 51.04 60.39 43.92 61.54 58.12 35.25 42.57 43.94 69.06 51.76 2161.81

GPT-3.5-turbo 34.27 36.71 16.00 37.71 25.56 17.27 16.52 18.73 22.25 25.00 -
LLaMa3.1 8b 37.52 47.60 40.07 54.06 38.10 31.16 28.62 32.21 44.62 39.33 -
Mistral 7b 44.14 51.96 39.02 53.02 41.28 26.80 26.54 21.81 40.35 38.32 -

DOT (Ours) 51.91 61.24 44.92 59.25 58.25 39.02 43.02 43.37 69.94 52.28 298.17

Table 1: F1 scores for ABSA on nine datasets. Best results are in bold, second-best underlined. Results are averaged
over five seeds. Time denotes average inference time.

Inference time We also measure inference time237

using T5-base model for all baselines. We check238

inference time for each dataset, and average them.239

As in Table 1, we dramatically reduce inference240

time particularly compared to the multi-view meth-241

ods such as MvP (Gou et al., 2023), by predicting242

solely the necessary number of views for each sam-243

ple. On the other hand, in terms of single view244

inferences (Zhang et al., 2021a), we significantly245

improve the F1 score while suppressing the rate of246

increase in inference time. We provide more details247

on the inference time in Appendix C.248

Train SemEval Yelp

Test SemEval Yelp Yelp SemEval

Paraphrase 52.38 38.52(-11.86) 57.38 44.88(-12.50)
MvP3 55.62 34.42(-21.20) 57.27 41.72(-15.55)
MvP9 56.89 35.02(-21.87) 56.98 42.52(-14.46)
MvP15 57.66 35.21(-21.45) 58.12 41.94(-16.18)
DOT 57.47 39.88(-17.59) 58.25 46.97(-11.28)

Table 2: Cross-dataset evaluation results for validating
the effect of domain shift.

Transferability To examine the transferability of249

each model, we conduct an in-depth experiment250

on cross-dataset evaluation. We group the datasets251

into two sources: SemEval (Pontiki et al., 2016)252

(R15, R16, Rest) and Yelp (M-Rest), and assess253

performance by training on one group and testing254

on the other in a zero-shot setting. For the MvP255

model, we vary the number of views (3, 9, and 15)256

to evaluate sensitivity in static multi-view meth-257

ods, while T5-paraphrase uses a static single order.258

As shown in Table 2, our model significantly out-259

performs the baselines in cross-dataset evaluation.260

Although T5-paraphrase suffers a smaller perfor-261

mance drop, it still falls behind our method, and262

MvP shows notable degradation regardless of view263

count. These results demonstrate that our model264

effectively identifies optimal views even for out-of-265

domain datasets.266

Model Configuration Average F1

Full Model 54.33

w/o filtering 53.31 (-1.02)
w/o stage division 52.73 (-1.60)
w/o entropy score 52.53 (-1.80)
w/o multi view 52.31 (-2.02)
w/o stage division, entropy score 50.04 (-4.29)
w/o filtering, stage division, entropy score 45.80 (-8.53)

Table 3: Ablation study for the proposed method which
shows the average F1 across ASQP and ACOS.

Ablation study To further investigate the effec- 267

tiveness of each component of our framework, we 268

conduct an ablation study and present the results 269

in Table 3. Firstly, we record the results without 270

sample filtering, with further details on the filtering 271

process provided in Appendix A. Also, we unify 272

the two stages into one, directly generating multiple 273

order templates and tuples without including order 274

prompting. Additionally, we evaluate the results of 275

sampling the views randomly, checking whether 276

the entropy score is valid. Lastly, we exclude the 277

multi-view approach by training and testing our 278

model using the only view with the lowest entropy 279

for each instance as order template. We perform 280

ablation study by excluding one or more of the 281

four components of our method mentioned earlier. 282

By observing the gaps between these variants with 283

the original model, we verify the effectiveness of 284

each component of our method. For more compre- 285

hensive ablation study, please refer to Appendix B. 286

287

4 Conclusion 288

We propose Dynamic Order Template (DOT) 289

method for generative ABSA, addressing inefficien- 290

cies and out-of-distribution errors. Experiments on 291

nine datasets demonstrate that DOT achieves state- 292

of-the-art performance with reduced inference time, 293

effectively balancing the strengths of previous sin- 294

gle and multi-view approaches for ABSA. 295
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Limitation296

Our DOT method is highly efficient and power-297

ful, yet it still has several limitations. DOT method298

consists of two stages: view generation and tuple299

generation. We train separate models for each task,300

and these two models perform inference sequen-301

tially. This form is not end-to-end, so it is disadvan-302

tageous in terms of training time and memory.303

Also, since we directly connect first stage and304

second stage, if any errors occur, the errors may305

propagate and magnify as it moves to the sub-306

sequent stage. It results in relatively large stan-307

dard deviation for different seeds as reported in308

Table 10. However, by splitting the task of ’pre-309

dicting the appropriate number of tuples’ into two310

sub-tasks—’predicting the appropriate number of311

tuples’ and ’accurately predicting the tuples’—it312

becomes significantly easier to achieve accurate313

results in both areas, thereby enhancing overall per-314

formance in our work.315

Finally, we define the number of necessary views316

to the number of sentiment tuples for simplicity and317

efficiency. A more complex yet refined method for318

determining the necessary number of views could319

be further explored in future research.320

Ethics Statement321

This study utilizes the various datasets for aspect-322

based sentiment analysis, which are accessible on-323

line. Additionally, we have properly cited all the324

papers and sources referenced in our paper. We325

plan to release the pre-trained model and the code326

for training the proposed system.327
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A Detailed Experimental Setups487

We use AdamW optimizer (Loshchilov and Hutter,488

2017) with a learning rate of 1e-4 for training two489

T5 models. We set the batch size to 16 for training490

and 24 for inference. We train the first stage model491

for 30 epochs, and train 40 epochs for the second492

stage. Additionally, we observe that the label of the493

datasets (i.e. sentiment tuples) irregularly contains494

stop words. For example, as in the first example of495

Figure 3, the inclusion of negations in the opinion496

terms is inconsistent. Also, as in the second exam-497

ple, element tuples sometimes contain ambiguous498

and meaningless stop words as an element. As a499

result, the fine-tuned model sometimes generates500

sentiment tuples containing stop words irregularly.501

It can yield critical performance degradation, even502

though they don’t affect the meaning of the senti-503

ment elements. To resolve the problem from stop504

words, we filter these stop words using nltk pack-505

age(Farkiya et al., 2015) for both generated results506

and dataset labels. We use four RTX 4090 GPUs to507

train and evaluate all of the models.508

Figure 3: Two examples of irregularity of stop words.
Note that these examples are the not all of the stop-word
problems.

Case Study We conduct a case study and analyze509

the properties of the outputs generated by the pro-510

posed method. As depicted in Figure 4, we classify511

the output results into three main cases.512

The first case involves sentences that do not re-513

quire multiple views for accurate prediction. For514

these sentences, our model succeeds in making ef-515

ficient predictions using only a single view. We516

observe that this case is the most common type in 517

our study, significantly contributing to the model’s 518

efficiency. 519

The second shows an example predicts require 520

fewer views, but the example actually requires 521

more views. Our analysis reveals that such cases 522

frequently occurs with implicit O. As shown in Ta- 523

ble 1, this suggests that our model’s performance 524

might lag behind other baselines on the ACOS 525

Rest16 dataset, which contains many samples with 526

implicit A and O. Additionally, the model strug- 527

gles with predicting infrequent C in the training 528

set. Incorporating the concept of self-information 529

and defining the necessary number of views based 530

on the ’amount of information in a sample’ could 531

effectively address this issue. 532

The final case involves cases with multiple sen- 533

timent tuples and longer lengths. We explain that 534

errors in this scenario stem from two main reasons. 535

Firstly, longer sentences include extended phrases 536

that modify A or O. Including all these modifiers as 537

elements often leads to errors, a common problem 538

across different models that requires an alternative 539

solution. Secondly, errors occur when the number 540

of tuples is incorrectly predicted in the first stage. 541

If the predicted number of tuples is insufficient, 542

some target sentiment tuples might be overlooked. 543

Conversely, overestimation leads to the extraction 544

of irrelevant aspects, as depicted in the Figure 4. 545

However, we optimize the first stage to reduce tuple 546

count errors, which helped mitigate performance 547

drops by minimizing incorrectly generated or over- 548

looked tuples. 549

B Depth Analysis on First Stage 550

B.1 Accuracy on the Number of Views 551

We assess the accuracy of predicting the value of 552

K̂ and present the results in Table 4. We evaluate 553

the output by comparing it to the number of labeled 554

sentiment tuples using RMSE and accuracy. We 555

carefully implement the first stage baselines to com- 556

pare our method properly as follows: Random: We 557

find that the number of sentiment tuples in training 558

dataset is mostly in range of 1 to 6. For each infer- 559

ence, we randomly sample one of the 6 numbers 560

and compare it with our first stage result. Major- 561

ity: We also reveal that about 60 percent of labels 562

consist of single tuple. We construct a baseline that 563

predicts only 1 for the number of tuples, to check 564

whether our model has ability to predict the number 565

of sentiment tuples of a sentence. Classification: 566
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Figure 4: Case study for three main types of results. Blue one denotes correct, red one denotes incorrect, and the
yellow one denotes irrelevant.

We adopt the RoBERTa model (Liu et al., 2019) to567

evaluate the results when treating the prediction of568

the number of views as a sequence classification569

task. We set the classes based on the number of570

sentiment tuples. As shown in Figure 7, the distri-571

bution of tuple counts is skewed towards the lower572

end, with instances containing more than seven tu-573

ples being nearly non-existent. Consequently, we574

limit the categories from 1 to 6 and clip instances575

with 7 or more tuples to 6. Additionally, to address576

label imbalance, we employ a weighted loss func-577

tion, where the weights are set as the inverse of578

the frequency ratio for each category as in Equa-579

tion (4). We use same notation as in Section 2.1,580

and I () denotes indicator function. This approach581

enables the model to effectively classify even the582

less represented classes.583

Wc =
|D|∑

D I(min(|y|, 6) = c)
(c ∈ [1, 6])

Lcls = −
|B|∑
i=1

Wki log p(ki|xi)I (ki ≤ 6)

(4)584

B.2 Effect of Element Exclusions585

We analyze the impact of excluding various marker586

tokens, including the [O] token representing opin-587

ions, to determine which token exclusions con-588
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Figure 5: Distribution of the number of sentiment tuples.
The sources are from training datasets of each task. We
normalize each count by dividing it by the total number
of data points. The number of tuples is clipped to 7.

tribute to performance improvements. Addition- 589

ally, we experiment with cases where no element 590

exclusion is performed. In this section, we have 591

also included the second stage results to provide a 592

detailed comparison of the overall performance. 593

As in Table 4, our proposed method outperforms 594

the other baselines and nearly predicts the actual 595

distribution of sentiment tuples within a small mar- 596

gin of error. This result justifies the use of the out- 597

put from the first stage in the second stage. The first 598

stage results in Table 4 do not exhibit significant 599

performance differences among various exclusion. 600
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Methods First stage Second stage
RMSE Acc. F1 score

Random 2.80 18.89 -
Majority 0.99 63.39 -
Classification 0.83 61.90 -
DoTfirst 0.54 77.83 54.33

exclude [C] 0.54 77.53 53.91
exclude [A] 0.53 77.77 53.71
exclude [S] 0.54 77.65 53.55
full elements 0.55 78.22 53.94

Table 4: First stage results for each main baseline and
exclusion of specific tokens. We report average RMSE
loss and accuracy for first stage, and F1 score for second
stage.
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Figure 6: Inference time among dataset size for each
model.

However, for the second stage results, which serve601

as the final output of this task, we observe a sig-602

nificant performance difference. The performance603

in the second stage is generally higher when O604

is omitted because generating O correctly is the605

most difficult and crucial task in quadruple predic-606

tion (Chebolu et al., 2023). If O is not trained in607

the first stage and is reused in the second stage, the608

model appears to focus more on learning about O609

compared to other elements, which already have610

some level of information.611

C Computing Inference Time612

We compare inference times based on view meth-613

ods across different dataset sizes. The dataset con-614

sisted of randomly sampled test data from laptop16,615

with 200, 400, 600, and 800 samples. The baselines616

were set as static single view (T5-paraphrase) and617

static multi view (MvP), with the number of views618

for the multi view fixed at 15. Figure 6 shows that619

we not only dramatically reduce inference time of620

utilizing multi views, but also reduce the rate of621

increase in inference time with respect to the num-622

ber of datasets. On the other hand, in terms of sin-623

gle view, we significantly increase F1 performance 624

while suppressing the increase in inference time 625

and the rate of its increase. These results suggest 626

that the efficiency of our method becomes more 627

pronounced as the dataset size increases. 628

D Input and Target Examples for Each 629

Stage 630

In Figure 7, we provide detailed examples for input 631

and output pairs in each stage. The input sentences 632

in the dataset are presented in a basic sentence 633

structure, while the labels consist of lists of sen- 634

timent tuples. To preprocess this data, during the 635

first stage, the original input sentence is kept un- 636

changed, and the target is set as the initial order 637

template, which consisted of a number of views 638

corresponding to the number of sentiment tuples 639

in the label. In the second stage, the input is pro- 640

cessed by appending the final order template as a 641

prompt to the original input sentence. The target 642

is then constructed by adjusting the order of the 643

elements within the sentiment tuples to align with 644

the corresponding views in the order template. 645

E Analysis on Implicit Term 646

In Table 1, DOT suffers from predicting sentiment 647

tuples in Rest and Clothing domains. We noted that 648

the ACOS dataset contains a significant number 649

of instances with implicit aspects or implicit opin- 650

ions. Additionally, we discovered that the Rest and 651

Clothing dataset are smaller in scale compared to 652

other ACOS datasets. The scale of each dataset and 653

the number of instances containing implicit terms 654

are recorded in Table 5. Based on these observa- 655

tions, we hypothesized that the size of the dataset 656

and the distribution of implicit terms contribute to 657

the performance degradation observed in the Rest 658

and Clothing datasets. 659

As shown in Table 6, it is evident that the F1 660

score for instances containing implicit terms in 661

the Rest dataset is significantly lower compared 662

to using the paraphrase method. Additionally, we 663

observed a performance degradation when train- 664

ing on a randomly selected quarter of the M-Rest 665

dataset. However, as the amount of training data 666

from the M-Rest dataset increased, the performance 667

on implicit terms improved, eventually surpassing 668

the F1 score of the paraphrase method in the full 669

M-Rest dataset. This result demonstrates that the 670

small size of the dataset with a high proportion of 671

implicit terms is the primary cause of the perfor- 672
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Figure 7: Examples for input and target from original dataset for both first and second stage.

Datasets ASQP ACOS MEMD
R15 R16 Lap Rest M-Rest M-Laptop Books Clothing Hotel

total samples 834 1264 2934 1530 3622 2863 2092 1674 2481
implicit samples 272 446 1826 822 1801 1751 1523 1083 1278
implicit sample % 32.6 35.3 62.2 53.7 49.7 61.2 72.8 64.7 51.5

Table 5: The size of each dataset and the number of samples containing implicit terms. For ease of comparison, We
also provide the percentage of samples with implicit terms relative to the total number of samples. It is evident that
the implicit term ratio in the ACOS dataset is higher compared to that in the ASQP dataset.

Methods Rest M-Rest ¼ M-Rest ½ M-Rest full

Paraphrase 50.06 40.26 47.77 49.09
DOT 44.84 35.74 47.81 49.49

Table 6: F1 scores only for samples containing implicit
terms. We report the performance in Rest dataset and
the performance trends across different dataset scales.

mance degradation in the Rest and Clothing dataset.673

It also suggests that the performance is likely to674

improve as the dataset size increases.675

F Additional Analysis676

In this section, we conducted an in-depth analysis677

of various aspects of our model. For a comprehen-678

sive evaluation, we used Paraphrase and MvP as679

baselines, running identical experiments for com-680

parison. We assessed performance across multi-681

ple tasks using several benchmarks, including R15,682

R16, Lap, Rest, and M-Rest.683

Different Backbone Model We conduct the ex-684

periment using different encoder-decoder based685

model, BART (Lewis, 2019) as backbone model.686

We utilized BART with the same hyperparameters687

and data processing techniques applied to the T5688

model for three methods including ours. However,689

as in Table 7, we observe a noticeable decline in690

overall F1-scores for all models, primarily due to691

insufficient hyperparameter tuning compared to T5.692

Nevertheless, as shown in the results, our method693

still outperforms the baseline models with BART,694

suggesting that its effectiveness is not highly de- 695

pendent on the choice of backbone model.

Methods ASQP ACOS
R15 R16 Lap Rest M-Rest

Paraphrase 31.77 38.15 30.98 36.65 35.74
MvP 33.48 41.01 32.57 40.40 40.30
DOT 35.98 41.73 33.12 39.61 40.91

Table 7: F1 score on benchmark datasets using BART
as the backbone model.

696

Complex Sentences As mentioned in Ap- 697

pendix A, processing long and complex contexts is 698

a well-known challenge, and our model performs 699

similarly to others in this regard. We defined com- 700

plex sentences as those containing more than three 701

sentiment tuples, exceeding 22 words in length, or 702

having a Flesch-Kincaid Grade Level (Solnyshkina 703

et al., 2017) of 9 or higher, representing the top 704

20% for each criterion. We sampled these complex 705

sentences and evaluated the F1 scores for these 706

samples. As shown in the Table 8, performance 707

degradation in complex sentences is a common 708

issue across all models. We attribute the larger per- 709

formance drop in our model compared to MvP to 710

the fact that it uses fewer views, which limits its 711

capacity to thoroughly analyze complex sentences. 712

Nevertheless, our model’s final Complex F1 score 713

remains close to that of MvP and surpasses that of 714

the Paraphrase model. 715
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Methods ASQP ACOS
R15 R16 Lap Rest M-Rest

Paraphrase 44.94 55.73 37.15 56.12 54.37
MvP 46.71 58.00 37.68 56.06 58.23
DOT 46.93 57.70 38.57 54.16 57.72

Table 8: F1 scores evaluated on complex samples only.

Training Complexity Our method may appear716

complex due to the numerous components that re-717

quire training. However, since our method involves718

simply training the T5 model twice without com-719

plex optimization procedures, the overall training720

time is not significantly longer than that of other721

models. As shown in the Table 9, even though our722

model uses 30 and 40 epochs for two stages of train-723

ing—more than the 20 epochs used in MvP—the724

total training time remains much shorter than that725

of MvP. In terms of memory usage, only two T5726

models are allocated in memory, so the memory727

consumption does not increase exponentially com-728

pared to existing models.

Methods ASQP ACOS
R15 R16 Lap Rest M-Rest

Paraphrase 212.83 314.18 652.31 349.79 815.48
MvP 3883.74 5008.84 11006.07 6169.02 14634.71
DOT 1161.73 1648.61 3310.63 1814.41 4157.93

Table 9: Training duration for each benchmark.

729

Standard Deviation We conduct experiments us-730

ing five different random seeds and calculate the731

standard deviation of the outcomes. Results are re-732

ported in Table 10. Our findings indicate that our733

model exhibits a higher overall standard deviation734

compared to other baselines. This can be attributed735

to the structure of the method, where an error at one736

stage is likely to propagate and accumulate. How-737

ever, it is important to note that the absolute value738

of the standard deviation is not significantly large.739

In fact, the higher variation suggests that the model740

may possess greater potential to achieve stronger741

performance.

Methods ASQP ACOS
R15 R16 Lap Rest M-Rest

Paraphrase ± 0.44 ± 0.64 ± 0.26 ± 0.68 ± 0.38
MvP ± 0.54 ± 0.29 ± 0.48 ± 0.72 ± 0.48
DOT ± 0.74 ± 0.85 ± 1.01 ± 0.76 ± 0.42

Table 10: Standard deviation of outcomes in Table 1.

742

Comparison with Extra Baselines We con-743

ducted experiments by including additional744

Methods ASQP ACOS
R15 R16 Lap Rest

TAS-BERT 34.78 43.71 27.31 33.53
Extract-Classify 36.42 43.77 35.80 44.61
One-ASQP (large) - - 41.56 60.69

Paraphrase 46.93 57.93 43.51 61.16
Seq2Path - - 42.97 58.41
DLO 48.18 59.79 43.64 59.99
MvP 51.04 60.39 43.92 61.54
AugABSA 50.01 60.88 - -

DOT (Ours) 51.91 61.24 44.92 59.25

Table 11: F1 scores for ABSA on four datasets. The best
results are in bold and the second best are underlined.
We conduct experiments with 5 different seeds and re-
port the average of the outcomes.

generation-based methods as baselines alongside 745

several extraction- and classification-based meth- 746

ods. Since the majority of the methods consid- 747

ered are optimized for the ASQP (R15, R16) and 748

ACOS (Lap, Rest) datasets, experiments were per- 749

formed exclusively on these datasets to ensure 750

a fair comparison. The additional methods are 751

as follows: TAS-BERT (Wan et al., 2020) jointly 752

extracts and detects sentimental tuples. Extract- 753

Classify (Cai et al., 2021b) divide the task into two 754

stages: extraction and classification. One-ASQP 755

(large) (Zhou et al., 2023) identify the aspect- 756

opinion-sentiment (AOS) triplets simultaneously. 757

Seq2Path (Mao et al., 2022) generates sentiments 758

tuples as multiple paths of a tree, and automatically 759

selects valid one. AugABSA (Wang et al., 2023) gen- 760

erates a original text based on augmented sentiment 761

quadruples. 762

Table 11 demonstrates that our proposed DOT 763

method achieves high performance even when eval- 764

uated against these additional baselines. Although 765

extraction- and classification-based approaches are 766

known to be more efficient in terms of memory 767

and computational time (Zhou et al., 2023), they 768

generally exhibit inferior performance compared to 769

generative methods. Therefore, when considering 770

both performance and efficiency, our method rep- 771

resents a notable achievement among the various 772

baselines. 773

G Detailed Setups for LLM Experiments 774

As in Table 1, we perform the ABSA task using 775

the GPT-3.5 Turbo, LLaMa-3.1-8B, and Mistral- 776

7B models, compairing the results with our DOT 777

model. For the GPT model, we utilize in-context 778

learning (Brown et al., 2020). We randomly sample 779
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10 instances and combine them with instruction for-780

mat, and add it as a prompt. For the other three781

open-source LLMs, we employ instruction tun-782

ing (Wei et al., 2021) with the training dataset for783

fine-tuning, using the same instructions as in GPT784

prompts. To ensure stable model training during785

fine-tuning, we utilize the LoRa (Hu et al., 2021).786

We present the specific prompts and framework in787

Figure 8.788
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According to the following sentiment elements definition:

- The 'aspect term ' refers to a specific feature , attribute , or aspect of a product
or service that a user may express an opinion about , the aspect term might be '
null ' for implicit aspect.

- The 'opinion term ' refers to the sentiment or attitude expressed by a user towards
a particular aspect or feature of a product or service , the aspect term might

be 'null ' for implicit opinion.
- The 'aspect category ' refers to the category that aspect belongs to, and the

available categories includes: {dataset specific categories}.
- The 'sentiment polarity ' refers to the degree of positivity , negativity or

neutrality expressed in the opinion towards a particular aspect or feature of a
product or service , and the available polarities inlcudes: 'positive ', 'negative
' and 'neutral '.

Recognize all sentiment elements with their corresponding aspect terms , aspect
categories , opinion terms and sentiment polarity in the following text with the
format of [('aspect term ', 'aspect category ', 'sentiment polarity ', 'opinion
term '), ...]:

Figure 8: Instruction format for two LLM frameworks. We utilize in-context learning for GPT-3.5-turbo inference,
and instruction-tuning for LLaMa-3.1 and Mistral inference respectively.
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