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Abstract

Aspect-based sentiment analysis (ABSA) as-
sesses sentiments towards specific aspects
within texts, resulting in detailed sentiment tu-
ples. Previous ABSA models often used static
templates to predict all the elements in the tu-
ples, and these models often failed to accurately
capture dependencies between elements. Multi-
view prompting method improves the perfor-
mance of ABSA by predicting tuples with vari-
ous templates and then assembling the results.
However, this method suffers from inefficien-
cies and out-of-distribution errors. In this paper,
we propose a Dynamic Order Template (DOT)
method for ABSA, which dynamically creates
an order template that contains only the nec-
essary views for each instance. Ensuring the
diverse and relevant view generation, our pro-
posed method improves F1 scores on ASQP
and ACOS datasets while significantly reduc-
ing inference time.

1 Introduction

Aspect-based sentiment analysis (ABSA) aims to
identify the sentiment of aspects in a given text
rather than simply classifying the overall sentiment
of the entire text. ABSA research evolves to gen-
erate quadruples consisting of four elements: 1)
Aspect (A), 2) Category (C) for the type of A, 3)
Opinion (O) for A, and 4) Sentiment (S) for A.
Many recent studies such as T5-paraphrase tackle
this problem using generative models (Zhang et al.,
2021b). These approaches usually get review sen-
tences as input and output the span of quadruples
in fixed order form, such as "C' is S because A
is O" (Zhang et al., 2021a). However, this static
single-order template cannot express the depen-
dence between elements as in Figure 1 due to the
autoregressive nature of the transformer (Vaswani
et al., 2017). Moreover, the model output can heav-
ily depend on the order of generation of each ele-
ment (Hu et al., 2022).
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Figure 1: Comparison of three different generative
ABSA methods. 1) static single-view, 2) static multi-
view, and 3) dynamic-view prediction (ours).

Multi-view prompting (Gou et al., 2023) (MvP)
deals with this issue by constructing order tem-
plates as a channel for "viewing" different per-
spectives in a sentence. As shown in Figure 1,
MvP permutes all possible element orders and
sorts them based on the entropy of the pre-trained
model at the dataset level. Using this entropy, MvP
samples top-k orders and adds these orders as a
prompt template. During inference time, MvP con-
ducts majority votes on generated sentiment tu-
ples with various templates. Through this ensem-
ble approach, MvP uses the intuition of solving
problems from multiple views in human reasoning
and decision (Stanovich and West, 2000), result-
ing in enhanced performance. However, we find
that this static multi-view approach of MvP has
several drawbacks: 1) Inefficiency: Even for sam-
ples where the answer can be easily found and
multiple views are not necessary, this method gen-
erates the same number of views, resulting in un-
necessary computation that increases the inference
time. 2) Limited Transferability: MvP uses the
number of views k as a hyperparameter, applying
the same k value across all datasets during training
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Figure 2: Overview of our proposed two stage method.
We use two TS5 models for each stage: one for generating
initial order template, the other for forming final order
template and generating sentiment tuples.

and inference. However, since the optimal num-
ber of ensemble models varies according to the
data domain, it requires manual adjustment of the
k value for each dataset (Shahhosseini et al., 2022),
which hinders the transferability to other datasets.
To resolve the aforementioned shortcomings, we
propose a Dynamic Order Template (DOT) method
for ABSA that combines the advantages of both
single-view and multi-view approaches. By prior-
itizing multiple views based on instance-level en-
tropy, DOT aims to generate only the necessary
number of views for each instance during infer-
ence. For an example that contains only one tu-
ple as in Figure 1, DOT dynamically creates only
one view as an order template necessary to pre-
dict the tuple. After generating the views, DOT
generates tuples using the views inside the order
template. This phase operates in a multi-view man-
ner, enabling us to retain the benefits of previ-
ous multi-view methods. Extensive experiments on
four widely used sentiment quadruple prediction
datasets, derived from ASQP (Pontiki et al., 2016;
Zhang et al., 2022), ACOS (Cai et al., 2021a, 2023),
and MEMD-ABSA (Cai et al., 2023), demonstrate
that our method shows state-of-the-art performance
with significantly lower inference time compared
to the multi-view approach. Moreover, we show
that our method is robust to domain shift compared
to previous methods, resulting in higher transfer-
ability.

2 Method

Our proposed Dynamic Order Template (DOT)
method is composed of two stages as in Figure 2.
The first stage involves generating an initial or-
der template (Sec 2.1) to predict the number of
tuples. The second stage involves refining the ini-

tial template from stage 1 to produce the final order
template and predicting the sentiment tuples based
on it (Sec 2.2). For both stages, we map sentiment
tuples (A, C, S, O) to marker tokens [4], [C], [S],
and [O] respectively. Also, for the instances that
contain multiple sentiment tuples, we indicate each
tuple with the respective tokens and concatenate
the targets with [SSEP] tokens.

2.1 Stage 1: Generating Order Template

We assume that the number of sentiment tuples
K in i*" instance present for each instance corre-
sponds to the required number of views. In other
words, we consider that one separate view is nec-
essary for predicting each tuple. We define this
individual view as the prediction order for each el-
ement of the sentiment tuple as shown in Figure 2.
This allows each prediction order to correspond
one-to-one with a sentiment tuple in second stage.

We observe that instead of directly using the
value of K; as the target, sampling views corre-
sponding to K as the target for the model to gener-
ate leads to more accurate prediction of the number
of tuples in the given instance (More details are
in Appendix B). To establish the view sampling
strategy, we start by ranking all possible views gen-
erated through permutations through each entropy
score, following (Hu et al., 2022). Specifically, we
calculate entropy of each view v in instance-level
with vanilla TS by calculating conditional genera-
tion probability as follows:

Eiw=—Y_ Plz)log P(vlx;) (1)

Here, &, is the entropy of total sequence when
the 44, instance is input into the T5 model and v
is the output. At this time, we note that actually
utilizing only A, C', S during the first stage notably
facilitate the training process in the second stage.
We provide a detailed analysis on excluding O in
Appendix B.2. After computing the entropy, we
sort the views by the entropy in ascending order
to get the ranked set of view Pl-(l). And then we
sample top K; views for each sample and concate-
nate these views as an order template. Using the

original i*" input sentence, we train the T5 model
(1)

to generate the first-stage target y, * as follows:

y") = P} [SSEP| P} [SSEP] ... P},
where PZ.( 21 denotes K" view in Pi(l). We set the
loss function to train the TS5 model as in Equa-
tion (2), where | B| denotes the batch size of the



model. The scaling factor is omitted for simplicity.
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2.2 Stage 2: Sentiment Tuple Generation

In the second stage, the model is trained to gen-
erate the sentiment tuple of given instance using
the number of sentiment tuples (i.e. K;). Different
from the first stage, we need to generate all ele-
ments in sentiment quadruples including O in this
stage. Hence, we re-rank all views to pick K; views
including O (i.e. (4, C, S, O)). Here, we adopt the
same strategy as in the first stage, using entropy to

(2)

form a ranked set of views, P.

1
top K; views from Pi(z) and add them as an or-
der template prompt P; to original input sentence.
We design the second stage target 3/@(2) by aligning
each sentiment tuple with an order template, en-
suring that the model learns to generate different
tuples for different perspectives. Also, we place the
corresponding elements next to each marker token

within P; as follows:

. We then sample

2 = P @ tuple; [SSEP] ... P3. @ tuplex

79

(2)

S 2
where P,7 represents K!" view in P and
? 7

(2

tupleg, is the th sentiment tuple for given in-
stance. ® denotes interleaved combination between
marker tokens and elements. Detailed examples for
both stages are present in Appendix D. We design
the loss function for training the T5 model in sec-

ond stage as follows.
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2.3 Two-stage inference

During inference time, two stages are conducted
sequentially. In the first stage, the model generates

the initial order template, denoted as y(1). In the
second stage, we count the number of generated

views from y(1) to set K. Using K, we sample the
top K views from the newly ranked set of views
and constructs the final order template, referred to
as P. Finally, Pis directly appended to the infer-
ence sentence, enabling the generation of different
sentiment tuples for each view in P. The overall
two-stage process is described in Figure 2.

3 Experiment

3.1 Benchmark Datasets

We adopt two widely used ABSA datasets: ASQP
and ACOS, where the task is to predict sentiment
quadruples. For ASQP task, we use rest15 (R15)
and rest16 (R16) datasets released from (Pontiki
et al., 2016; Zhang et al., 2022). For ACOS task, we
use laptop16(Lap) and rest16(Rest) datasets con-
structed by (Cai et al., 2021a; Pontiki et al., 2016).
Also, we adopt additional ACOS benchmarks from
MEMD datasets (Restaurant, Laptop, Books, Cloth-
ing, Hotel) (Xu et al., 2023) which use a different
source from the previous datasets. We refer to the
Restaurant and Laptop datasets in MEMD as M-
Rest and M-Laptop, respectively, for the sake of
clarity.

3.2 Baselines

We compare our method against several strong
baselines for ABSA as follows. Paraphrase (Zhang
et al., 2021a) formulates a paraphrase genera-
tion process for ABSA with a single fixed order.
DLO (Hu et al., 2022) augments data via the mul-
tiple order templates. MvP aggregates sentiment tu-
ples generated from multiple orders of prompts via
ensembling. Also, we benchmark popular LLMs
such as GPT-3.5-turbo (OpenAl, 2023), LLaMa-
3.1 (Dubey et al., 2024), and Mistral-7b (Jiang
et al., 2023). Detailed setups for LLMs are in Ap-
pendix G.

3.3 Implementation Details

We utilize the pre-trained T5-base (Raffel et al.,
2020) model as the backbone for the first stage.
We also use the model trained in the first stage as
the backbone for the second stage, allowing us to
leverage a tuned initial point for the ABSA dataset
to have the regularization effect inspired by (Fu
et al., 2023). Also, we eliminate irregularities in
tuples through stop-word filtering in the second
stage. Please see Appendix A for more details.

3.4 Results

Performance Comparison We use F1 score,
which is a standard metric for ABSA, to measure
the performance of the systems. As shown in Ta-
ble 1, our method outperforms all baselines across
seven ABSA datasets. However, its performance
is slightly lower on the Rest and Clothing datasets,
which we analyze in Section 3.4.



ASQP ACOS MEMD ,
Methods R15 R16 | Lap Rest | M-Rest M-Lap Books Clothing Hotel Avg || Time(s)
Paraphrase [ 46.93 57.93[43.51 61.16| 5738 3507 3930 43.00 68.79 5034 40.63
DLO 48.18 59.79 [43.64 59.99| 57.07 3556 42.63 43.35 70.27 |51.16 || 260.74
MvP 51.04 60.39|43.92 61.54| 58.12 3525 4257 4394 69.06 | 51.76 || 2161.81
GPT-3.5-turbo || 34.27 36.71|16.00 37.71| 2556 1727 1652 1873 2225|2500 -
LLaMa3.18b | 37.52 47.60 |40.07 5406 | 38.10 31.16 28.62 3221 4462|3933 -
Mistral 7b 44.14 51.9639.02 53.02| 4128 2680 2654 21.81 4035|3832 -
DOT (Ours) || 51.91 61.24 |44.92 59.25| 5825 39.02 43.02 4337 69.94 5228 298.17

Table 1: F1 scores for ABSA on nine datasets. Best results are in bold, second-best underlined. Results are averaged

over five seeds. Time denotes average inference time.

Inference time We also measure inference time
using T5-base model for all baselines. We check
inference time for each dataset, and average them.
As in Table 1, we dramatically reduce inference
time particularly compared to the multi-view meth-
ods such as MvP (Gou et al., 2023), by predicting
solely the necessary number of views for each sam-
ple. On the other hand, in terms of single view
inferences (Zhang et al., 2021a), we significantly
improve the F1 score while suppressing the rate of
increase in inference time. We provide more details
on the inference time in Appendix C.

Train ‘ SemEval ‘ ‘ Yelp

Test ‘SemEval Yelp H Yelp  SemEval
Paraphrase 52.38 38.52(4 1.86) 57.38 44.88(42_5())
MvP3 55.62  34.422120) || 57.27 41.72(1555)
MvPy 56.89  35.02(21.87) || 56.98 42.52(14.46)
MvP5 57.66 35210145 || 58.12 41.94(i6.18)
DOT 57.47  39.88(17.59) || 58.25 46.97(11.23)

Table 2: Cross-dataset evaluation results for validating
the effect of domain shift.

Transferability To examine the transferability of
each model, we conduct an in-depth experiment
on cross-dataset evaluation. We group the datasets
into two sources: SemEval (Pontiki et al., 2016)
(R15, R16, Rest) and Yelp (M-Rest), and assess
performance by training on one group and testing
on the other in a zero-shot setting. For the MvP
model, we vary the number of views (3, 9, and 15)
to evaluate sensitivity in static multi-view meth-
ods, while T5-paraphrase uses a static single order.
As shown in Table 2, our model significantly out-
performs the baselines in cross-dataset evaluation.
Although T5-paraphrase suffers a smaller perfor-
mance drop, it still falls behind our method, and
MvVP shows notable degradation regardless of view
count. These results demonstrate that our model
effectively identifies optimal views even for out-of-
domain datasets.

Model Configuration Average F1
Full Model 54.33

w/o ﬁltering 53.31 (-1.02)
w/o stage division 52.73 (160
w/0 entropy score 52.53 (-1.80)
w/o multi view 52.31 (2.0,
w/o stage division, entropy score 50.04 (429
w/o filtering, stage division, entropy score  45.80 (353

Table 3: Ablation study for the proposed method which
shows the average F1 across ASQP and ACOS.

Ablation study To further investigate the effec-
tiveness of each component of our framework, we
conduct an ablation study and present the results
in Table 3. Firstly, we record the results without
sample filtering, with further details on the filtering
process provided in Appendix A. Also, we unify
the two stages into one, directly generating multiple
order templates and tuples without including order
prompting. Additionally, we evaluate the results of
sampling the views randomly, checking whether
the entropy score is valid. Lastly, we exclude the
multi-view approach by training and testing our
model using the only view with the lowest entropy
for each instance as order template. We perform
ablation study by excluding one or more of the
four components of our method mentioned earlier.
By observing the gaps between these variants with
the original model, we verify the effectiveness of
each component of our method. For more compre-
hensive ablation study, please refer to Appendix B.

4 Conclusion

We propose Dynamic Order Template (DOT)
method for generative ABSA, addressing inefficien-
cies and out-of-distribution errors. Experiments on
nine datasets demonstrate that DOT achieves state-
of-the-art performance with reduced inference time,
effectively balancing the strengths of previous sin-
gle and multi-view approaches for ABSA.



Limitation

Our DOT method is highly efficient and power-
ful, yet it still has several limitations. DOT method
consists of two stages: view generation and tuple
generation. We train separate models for each task,
and these two models perform inference sequen-
tially. This form is not end-to-end, so it is disadvan-
tageous in terms of training time and memory.

Also, since we directly connect first stage and
second stage, if any errors occur, the errors may
propagate and magnify as it moves to the sub-
sequent stage. It results in relatively large stan-
dard deviation for different seeds as reported in
Table 10. However, by splitting the task of ’pre-
dicting the appropriate number of tuples’ into two
sub-tasks—’predicting the appropriate number of
tuples’ and ’accurately predicting the tuples’—it
becomes significantly easier to achieve accurate
results in both areas, thereby enhancing overall per-
formance in our work.

Finally, we define the number of necessary views
to the number of sentiment tuples for simplicity and
efficiency. A more complex yet refined method for
determining the necessary number of views could
be further explored in future research.

Ethics Statement

This study utilizes the various datasets for aspect-
based sentiment analysis, which are accessible on-
line. Additionally, we have properly cited all the
papers and sources referenced in our paper. We
plan to release the pre-trained model and the code
for training the proposed system.
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A Detailed Experimental Setups

We use AdamW optimizer (Loshchilov and Hutter,
2017) with a learning rate of 1e-4 for training two
TS5 models. We set the batch size to 16 for training
and 24 for inference. We train the first stage model
for 30 epochs, and train 40 epochs for the second
stage. Additionally, we observe that the label of the
datasets (i.e. sentiment tuples) irregularly contains
stop words. For example, as in the first example of
Figure 3, the inclusion of negations in the opinion
terms is inconsistent. Also, as in the second exam-
ple, element tuples sometimes contain ambiguous
and meaningless stop words as an element. As a
result, the fine-tuned model sometimes generates
sentiment tuples containing stop words irregularly.
It can yield critical performance degradation, even
though they don’t affect the meaning of the senti-
ment elements. To resolve the problem from stop
words, we filter these stop words using nltk pack-
age(Farkiya et al., 2015) for both generated results
and dataset labels. We use four RTX 4090 GPUs to
train and evaluate all of the models.

{ Input: Trackpad isn't the best.
Sentiment tuple: [(trackpad, hardware operation performance,

neutral, n't the best)]

children because they’d learn incorrect navigation and
have to adapt later to standard laptops.

i !
| |
! i
! E
! I
' Input: | wouldn’t recommend this as a starting computer for N
i :
! |
! i
! I
! I
! I
! |

Sentiment tuple: [(null, laptop operation performance,
negative, recommend)] Y

Example 1: Irregularity in the Use of Negatives

Inputs: The food is not what it once was ( positions have
seriously seen downsizing ), prices have gone up,
and the service is the worst | have experienced
anywhere ( including mainland europe ).

Sentiment tuple: [(the, service general, negative, the), ..., ]

Example 2: Ambiguous stop words

Figure 3: Two examples of irregularity of stop words.
Note that these examples are the not all of the stop-word
problems.

Case Study We conduct a case study and analyze
the properties of the outputs generated by the pro-
posed method. As depicted in Figure 4, we classify
the output results into three main cases.

The first case involves sentences that do not re-
quire multiple views for accurate prediction. For
these sentences, our model succeeds in making ef-
ficient predictions using only a single view. We

observe that this case is the most common type in
our study, significantly contributing to the model’s
efficiency.

The second shows an example predicts require
fewer views, but the example actually requires
more views. Our analysis reveals that such cases
frequently occurs with implicit O. As shown in Ta-
ble 1, this suggests that our model’s performance
might lag behind other baselines on the ACOS
Rest16 dataset, which contains many samples with
implicit A and O. Additionally, the model strug-
gles with predicting infrequent C' in the training
set. Incorporating the concept of self-information
and defining the necessary number of views based
on the ’amount of information in a sample’ could
effectively address this issue.

The final case involves cases with multiple sen-
timent tuples and longer lengths. We explain that
errors in this scenario stem from two main reasons.
Firstly, longer sentences include extended phrases
that modify A or O. Including all these modifiers as
elements often leads to errors, a common problem
across different models that requires an alternative
solution. Secondly, errors occur when the number
of tuples is incorrectly predicted in the first stage.
If the predicted number of tuples is insufficient,
some target sentiment tuples might be overlooked.
Conversely, overestimation leads to the extraction
of irrelevant aspects, as depicted in the Figure 4.
However, we optimize the first stage to reduce tuple
count errors, which helped mitigate performance
drops by minimizing incorrectly generated or over-
looked tuples.

B Depth Analysis on First Stage

B.1 Accuracy on the Number of Views

We assess the accuracy of predicting the value of
K and present the results in Table 4. We evaluate
the output by comparing it to the number of labeled
sentiment tuples using RMSE and accuracy. We
carefully implement the first stage baselines to com-
pare our method properly as follows: Random: We
find that the number of sentiment tuples in training
dataset is mostly in range of 1 to 6. For each infer-
ence, we randomly sample one of the 6 numbers
and compare it with our first stage result. Major-
ity: We also reveal that about 60 percent of labels
consist of single tuple. We construct a baseline that
predicts only 1 for the number of tuples, to check
whether our model has ability to predict the number
of sentiment tuples of a sentence. Classification:



4[ Case 1: Efficiency in SImple sentence J
Input: Best mexican place for lunch in the financial district.
Target: [(mexican place, best, positive, restaurant general)]
Output: [(mexican place, best, positive, restaurant general)]
Case 2: One tuple, but pl }
Input: The crowd is mixed yuppies, young and old.
Target: [(crowd, null, neutral, restaurant miscellaneous)]
Output: [(crowd, mixed, neutral, ambience general)]
4[ Case 3: Complex sentence analysis }
Input: If you ‘ re interested in good tasting ( without the fish taste or smell ),
large portions and creative sushi dishes this is your place...
Target: [(null, good, positive, food quality), (portions, large, positive, food_style_options),
(sushi dishes, creative, positive, food_style_options)]
Output: [(null, good tasting, positive, food quality), (portions, large, pos, food_style_options),
(sushi dishes, creative, positive, food_style_options), (fish taste or smell, null, negative, food quality)]

Figure 4: Case study for three main types of results. Blue one denotes correct, red one denotes incorrect, and the

yellow one denotes irrelevant.

We adopt the RoBERTa model (Liu et al., 2019) to
evaluate the results when treating the prediction of
the number of views as a sequence classification
task. We set the classes based on the number of
sentiment tuples. As shown in Figure 7, the distri-
bution of tuple counts is skewed towards the lower
end, with instances containing more than seven tu-
ples being nearly non-existent. Consequently, we
limit the categories from 1 to 6 and clip instances
with 7 or more tuples to 6. Additionally, to address
label imbalance, we employ a weighted loss func-
tion, where the weights are set as the inverse of
the frequency ratio for each category as in Equa-
tion (4). We use same notation as in Section 2.1,
and Z () denotes indicator function. This approach
enables the model to effectively classify even the
less represented classes.
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B.2 Effect of Element Exclusions

We analyze the impact of excluding various marker
tokens, including the [O] token representing opin-
ions, to determine which token exclusions con-
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Figure 5: Distribution of the number of sentiment tuples.
The sources are from training datasets of each task. We
normalize each count by dividing it by the total number
of data points. The number of tuples is clipped to 7.

tribute to performance improvements. Addition-
ally, we experiment with cases where no element
exclusion is performed. In this section, we have
also included the second stage results to provide a
detailed comparison of the overall performance.

As in Table 4, our proposed method outperforms
the other baselines and nearly predicts the actual
distribution of sentiment tuples within a small mar-
gin of error. This result justifies the use of the out-
put from the first stage in the second stage. The first
stage results in Table 4 do not exhibit significant
performance differences among various exclusion.



First stage | Second stage

Methods RMSE Acec. F1 score
Random 2.80 18.89 -
Majority 0.99 63.39 -
Classification 0.83 61.90 -
DoTYirst 0.54 77.83 54.33
exclude [C] 0.54 77.53 53.91
exclude [4] 053 77.77 53.71
exclude [S] 0.54  77.65 53.55
full elements 0.55 78.22 53.94

Table 4: First stage results for each main baseline and
exclusion of specific tokens. We report average RMSE
loss and accuracy for first stage, and F1 score for second
stage.
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Figure 6: Inference time among dataset size for each
model.

However, for the second stage results, which serve
as the final output of this task, we observe a sig-
nificant performance difference. The performance
in the second stage is generally higher when O
is omitted because generating O correctly is the
most difficult and crucial task in quadruple predic-
tion (Chebolu et al., 2023). If O is not trained in
the first stage and is reused in the second stage, the
model appears to focus more on learning about O
compared to other elements, which already have
some level of information.

C Computing Inference Time

We compare inference times based on view meth-
ods across different dataset sizes. The dataset con-
sisted of randomly sampled test data from laptop16,
with 200, 400, 600, and 800 samples. The baselines
were set as static single view (T5-paraphrase) and
static multi view (MvP), with the number of views
for the multi view fixed at 15. Figure 6 shows that
we not only dramatically reduce inference time of
utilizing multi views, but also reduce the rate of
increase in inference time with respect to the num-
ber of datasets. On the other hand, in terms of sin-

gle view, we significantly increase F1 performance
while suppressing the increase in inference time
and the rate of its increase. These results suggest
that the efficiency of our method becomes more
pronounced as the dataset size increases.

D Input and Target Examples for Each
Stage

In Figure 7, we provide detailed examples for input
and output pairs in each stage. The input sentences
in the dataset are presented in a basic sentence
structure, while the labels consist of lists of sen-
timent tuples. To preprocess this data, during the
first stage, the original input sentence is kept un-
changed, and the target is set as the initial order
template, which consisted of a number of views
corresponding to the number of sentiment tuples
in the label. In the second stage, the input is pro-
cessed by appending the final order template as a
prompt to the original input sentence. The target
is then constructed by adjusting the order of the
elements within the sentiment tuples to align with
the corresponding views in the order template.

E Analysis on Implicit Term

In Table 1, DOT suffers from predicting sentiment
tuples in Rest and Clothing domains. We noted that
the ACOS dataset contains a significant number
of instances with implicit aspects or implicit opin-
ions. Additionally, we discovered that the Rest and
Clothing dataset are smaller in scale compared to
other ACOS datasets. The scale of each dataset and
the number of instances containing implicit terms
are recorded in Table 5. Based on these observa-
tions, we hypothesized that the size of the dataset
and the distribution of implicit terms contribute to
the performance degradation observed in the Rest
and Clothing datasets.

As shown in Table 6, it is evident that the F1
score for instances containing implicit terms in
the Rest dataset is significantly lower compared
to using the paraphrase method. Additionally, we
observed a performance degradation when train-
ing on a randomly selected quarter of the M-Rest
dataset. However, as the amount of training data
from the M-Rest dataset increased, the performance
on implicit terms improved, eventually surpassing
the F1 score of the paraphrase method in the full
M-Rest dataset. This result demonstrates that the
small size of the dataset with a high proportion of
implicit terms is the primary cause of the perfor-



ﬁ)riginal input: Helpful service and average price per dish $10.

First stage target: [S] [A] [C] [SSEP] [A] [C] [S]

Original target: [(service, service general, positive, helpful), (dish, food prices, neutral, $10)]

First stage input: Helpful service and average price per dish $10.

Second stage input: Helpful service and average price per dish $ 10. [S] [A] [O] [C] [SSEP] [A] [O] [C] [S]
Qecond stage target: [S] positive [A] service [O] helpful [C] service general [SSEP] [A] dish [O] $ 10 [C] food prices [S] neutral j

Figure 7: Examples for input and target from original dataset for both first and second stage.

Datasets ASQP ACOS MEMD

R15 R16 | Lap Rest | M-Rest M-Laptop Books Clothing Hotel
total samples 834 1264 | 2934 1530 | 3622 2863 2092 1674 2481
implicit samples | 272 446 | 1826 822 1801 1751 1523 1083 1278
implicit sample % | 32.6 35.3 | 622 53.7 | 49.7 61.2 72.8 64.7 51.5

Table 5: The size of each dataset and the number of samples containing implicit terms. For ease of comparison, We
also provide the percentage of samples with implicit terms relative to the total number of samples. It is evident that
the implicit term ratio in the ACOS dataset is higher compared to that in the ASQP dataset.

Methods | Rest | M-Rest % | M-Rest %2 | M-Rest full

50.06 40.26 47.71 49.09
44.84 35.74 47.81 49.49

Paraphrase
DOT

Table 6: F1 scores only for samples containing implicit
terms. We report the performance in Rest dataset and
the performance trends across different dataset scales.

mance degradation in the Rest and Clothing dataset.
It also suggests that the performance is likely to
improve as the dataset size increases.

F Additional Analysis

In this section, we conducted an in-depth analysis
of various aspects of our model. For a comprehen-
sive evaluation, we used Paraphrase and MvP as
baselines, running identical experiments for com-
parison. We assessed performance across multi-
ple tasks using several benchmarks, including R15,
R16, Lap, Rest, and M-Rest.

Different Backbone Model We conduct the ex-
periment using different encoder-decoder based
model, BART (Lewis, 2019) as backbone model.
We utilized BART with the same hyperparameters
and data processing techniques applied to the T5
model for three methods including ours. However,
as in Table 7, we observe a noticeable decline in
overall F1-scores for all models, primarily due to
insufficient hyperparameter tuning compared to T5.
Nevertheless, as shown in the results, our method
still outperforms the baseline models with BART,
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suggesting that its effectiveness is not highly de-
pendent on the choice of backbone model.

ASQP ACOS
Methods ‘ RI5  RI6 ‘ Lap Rest M-Rest
Paraphrase | 3177 38.15 | 3098 3665 3574
MvP 3348 4101 | 3257 4040 4030
DOT 3598 4173 | 3312 3961 4091

Table 7: F1 score on benchmark datasets using BART
as the backbone model.

Complex Sentences As mentioned in Ap-
pendix A, processing long and complex contexts is
a well-known challenge, and our model performs
similarly to others in this regard. We defined com-
plex sentences as those containing more than three
sentiment tuples, exceeding 22 words in length, or
having a Flesch-Kincaid Grade Level (Solnyshkina
et al., 2017) of 9 or higher, representing the top
20% for each criterion. We sampled these complex
sentences and evaluated the F1 scores for these
samples. As shown in the Table 8, performance
degradation in complex sentences is a common
issue across all models. We attribute the larger per-
formance drop in our model compared to MvP to
the fact that it uses fewer views, which limits its
capacity to thoroughly analyze complex sentences.
Nevertheless, our model’s final Complex F1 score
remains close to that of MvP and surpasses that of
the Paraphrase model.



ASQP ACOS
Methods ‘ R15 RI6 ‘ Lap Rest M-Rest
Paraphrase | 44.94 5573 | 37.15 56.12 54.37
MvP 46.71 58.00 | 37.68 56.06 5823
DOT 46.93 57.70 | 38.57 54.16 57.72

Table 8: F1 scores evaluated on complex samples only.

Training Complexity Our method may appear
complex due to the numerous components that re-
quire training. However, since our method involves
simply training the T5 model twice without com-
plex optimization procedures, the overall training
time is not significantly longer than that of other
models. As shown in the Table 9, even though our
model uses 30 and 40 epochs for two stages of train-
ing—more than the 20 epochs used in MvP—the
total training time remains much shorter than that
of MvP. In terms of memory usage, only two T5
models are allocated in memory, so the memory
consumption does not increase exponentially com-
pared to existing models.

ASQP ACOS
Methods ‘ RIS  RI6 ‘ Lap Rest  M-Rest
Paraphrase | 212.83 31418 | 65231 34979 81548
MvP 3883.74  5008.84 | 11006.07 6169.02 1463471
DOT 116173 164861 | 3310.63 181441 4157.93

Table 9: Training duration for each benchmark.

Standard Deviation We conduct experiments us-
ing five different random seeds and calculate the
standard deviation of the outcomes. Results are re-
ported in Table 10. Our findings indicate that our
model exhibits a higher overall standard deviation
compared to other baselines. This can be attributed
to the structure of the method, where an error at one
stage is likely to propagate and accumulate. How-
ever, it is important to note that the absolute value
of the standard deviation is not significantly large.
In fact, the higher variation suggests that the model
may possess greater potential to achieve stronger
performance.

ASQP ACOS
Methods ‘ RI5  RI6 ‘ Lap  Rest M-Rest
Paraphrase | +044 +0.64 | £026 +068 +038
MvP 4054 +£029 | £048 +072 4048
DOT 4074 +£085 | £101 +076 +042

Table 10: Standard deviation of outcomes in Table 1.

Comparison with Extra Baselines We con-
ducted experiments by including additional
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ASQP ACOS
Methods R15 RI16 | Lap Rest
TAS-BERT 3478 43.71|27.31 33.53
Extract-Classify 36.42 43.77 | 35.80 44.61
One-ASQP (large) - - 41.56 60.69
Paraphrase 46.93 57.93|43.51 61.16
Seq2Path - - 4297 5841
DLO 48.18 59.79 [ 43.64 59.99
MvP 51.04 60.39 |43.92 61.54
AugABSA 50.01 60.88 | - -
DOT (Ours) | 51.91 61.24|44.92 59.25

Table 11: F1 scores for ABSA on four datasets. The best
results are in bold and the second best are underlined.
We conduct experiments with 5 different seeds and re-
port the average of the outcomes.

generation-based methods as baselines alongside
several extraction- and classification-based meth-
ods. Since the majority of the methods consid-
ered are optimized for the ASQP (R15, R16) and
ACOS (Lap, Rest) datasets, experiments were per-
formed exclusively on these datasets to ensure
a fair comparison. The additional methods are
as follows: TAS-BERT (Wan et al., 2020) jointly
extracts and detects sentimental tuples. Extract-
Classify (Cai et al., 2021b) divide the task into two
stages: extraction and classification. One-ASQP
(large) (Zhou et al., 2023) identify the aspect-
opinion-sentiment (AOS) triplets simultaneously.
Seq2Path (Mao et al., 2022) generates sentiments
tuples as multiple paths of a tree, and automatically
selects valid one. AugABSA (Wang et al., 2023) gen-
erates a original text based on augmented sentiment
quadruples.

Table 11 demonstrates that our proposed DOT
method achieves high performance even when eval-
uated against these additional baselines. Although
extraction- and classification-based approaches are
known to be more efficient in terms of memory
and computational time (Zhou et al., 2023), they
generally exhibit inferior performance compared to
generative methods. Therefore, when considering
both performance and efficiency, our method rep-
resents a notable achievement among the various
baselines.

G Detailed Setups for LLM Experiments

As in Table 1, we perform the ABSA task using
the GPT-3.5 Turbo, LLaMa-3.1-8B, and Mistral-
7B models, compairing the results with our DOT
model. For the GPT model, we utilize in-context
learning (Brown et al., 2020). We randomly sample



10 instances and combine them with instruction for-
mat, and add it as a prompt. For the other three
open-source LLMs, we employ instruction tun-
ing (Wei et al., 2021) with the training dataset for
fine-tuning, using the same instructions as in GPT
prompts. To ensure stable model training during
fine-tuning, we utilize the LoRa (Hu et al., 2021).
We present the specific prompts and framework in
Figure 8.
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According to the following sentiment elements definition:

- The 'aspect term' refers to a specific feature, attribute, or aspect of a product
or service that a user may express an opinion about, the aspect term might be '
null' for implicit aspect.

- The 'opinion term' refers to the sentiment or attitude expressed by a user towards

a particular aspect or feature of a product or service, the aspect term might
be 'null' for implicit opinion.

- The 'aspect category' refers to the category that aspect belongs to, and the
available categories includes: {dataset specific categories}.

- The 'sentiment polarity' refers to the degree of positivity, negativity or
neutrality expressed in the opinion towards a particular aspect or feature of a
product or service, and the available polarities inlcudes: 'positive', 'negative
' and 'neutral'.

Recognize all sentiment elements with their corresponding aspect terms, aspect
categories, opinion terms and sentiment polarity in the following text with the

format of [('aspect term',6 'aspect category', 'sentiment polarity', 'opinion
term'), ...]:
ChatGPT 4 Instruction h
L
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ling 1 i
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Figure 8: Instruction format for two LLM frameworks. We utilize in-context learning for GPT-3.5-turbo inference,
and instruction-tuning for LLaMa-3.1 and Mistral inference respectively.
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