
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LONG COT IN-CONTEXT LEARNING CAN EMPOWER
PRE-TRAINED LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in Large Reasoning Models (LRMs) highlight the importance of
long chain-of-thought (CoT) reasoning for complex tasks. However, most exist-
ing methods rely post-training that tunes the model parameters, obscuring whether
pre-trained models intrinsically possess such capabilities. We propose in-context
learning (ICL) with long CoT demonstrations as a tuning-free approach to investi-
gate this. Across Qwen 2.5 (7B, 32B) and DeepSeek V3 models on mathematical
reasoning tasks, we demonstrate that ICL empowers base models to exhibit so-
phisticated long CoT behaviors like reflection and verification. Furthermore, it
delivers performance gains (pass@1–pass@K) over direct generation, supporting
the conjecture that base models possess inherent reasoning capabilities, but not
fully leveraged by direct prompting. Furthermore, our in-depth analysis reveals
that long CoT ICL not only improves accuracy on easy problems but also enables
models to solve previously intractable medium problems. Finally, we validate that
tasks benefit from long CoT ICL when problem-relevant demonstrations are pro-
vided. For instance, given problem-relevant demonstrations, the performance of
DeepSeek V3 on AIME25 improves by 6.5%. We hope this work could advance
the understanding of the mechanisms and intrinsic abilities of long CoT reasoning.

1 INTRODUCTION

Recent advances in large language models (LLMs) have introduced a new class of Large Reasoning
Models, such as OpenAI o1 (OpenAI, 2024), DeepSeek-R1 (Guo et al., 2025), and Qwen3 (Yang
et al., 2025). These models generate explicit and structured reasoning before producing final an-
swers, a process commonly referred to as long chain-of-thought (long CoT) inference (Chen et al.,
2025; Li, 2025). This paradigm integrates CoT with iterative exploration and reflection, which can
significantly enhance a model’s ability to solve complex reasoning tasks (Wang et al., 2025).

Despite these impressive results, eliciting the long CoT reasoning capabilities of LLMs remains an
open challenge. Most existing methods involve post-training to tune model parameters (Guo et al.,
2025; Team et al., 2025; Yang et al., 2025), which obscures whether pre-trained models intrinsically
possess such capabilities. While Yeo et al. (2025a) demonstrated that long CoT data patterns exist
in pre-training corpora like OpenWebMath (Paster et al., 2023), recent research indicates that zero-
shot prompting methods struggle to elicit long CoT reasoning from pre-trained models, as they are
constrained by the base model’s inherent solution space (Yeo et al., 2025a; Yue et al., 2025). The
primary challenge lies in guiding models to explore beyond this intrinsic solution space.

Inspired by previous research on in-context learning (ICL) (Brown et al., 2020; Agarwal et al., 2024)
as a tuning-free paradigm for steering model behaviors, we investigate whether ICL with long-CoT
demonstrations can empower base models to exhibit long CoT behaviors. This task presents a sig-
nificant challenge, as unlike the often easy and short demonstrations used in prior ICL studies, long-
CoT demonstrations are considerably more complex, demanding both sophisticated understanding
of the input and the ability to generate elaborate outputs.

In this paper, we first demonstrate that long-CoT in-context learning (ICL) prompting can induce
pre-trained models to exhibit long CoT patterns on mathematical tasks, as illustrated in Figure 1.
Specifically, we quantify long CoT patterns in models’ outputs and experiment with the Qwen2.5-
7B base model (Yang et al., 2024) using demonstrations generated by DeepSeek-R1. We find that the
proportion of deep reasoning behaviors, such as reflection and verification, significantly increases

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

compared to direct generation. This observation suggests that pre-trained models can be prompted to
exhibit long CoT patterns without parameter fine-tuning, essentially activating a “reasoning style”.

Beyond this “style activation”, we further examine whether this elicitation translates into improved
task performance. To this end, we study a broader set of pre-trained models, including the Qwen2.5
family (7B, 32B) (Yang et al., 2024) and DeepSeek V3 (Liu et al., 2024). Testing on diverse math-
ematical reasoning tasks, we consistently observe performance improvements, indicating that the
models discover better solutions through the induced long CoT reasoning.

What accounts for these observed performance improvements? We conduct an in-depth analysis of
Qwen2.5-32B’s performance on the AIME25 benchmark across questions of varying difficulty levels
(easy, medium, and hard). This analysis reveals that long-CoT ICL not only enhances accuracy on
easy problems but also enables the model to tackle previously intractable medium problems. And
then, we investigate this question, hypothesizing that they stem from two potential factors: the
emergence of long CoT behaviors (i.e., “style activation”) or genuine gains in the model’s intrinsic
reasoning ability. As detailed in Section 4.1.3, our findings indicate that the observed performance
boost is primarily attributable to the former, while the model’s fundamental reasoning ability shows
no significant enhancement.

Finally, to further optimize the performance of long-CoT ICL, we study various factors that may
affect its efficacy, such as the source and number of demonstrations. In particular, we validate that
tasks particularly benefit from long-CoT ICL when problem-relevant demonstrations are provided.
For instance, DeepSeek V3’s performance on AIME25 improves by 6.5% under such conditions.

In summary, our contributions are:

• We propose in-context learning (ICL) with long-CoT demonstrations to explore whether
and how pre-trained models’ long CoT reasoning capabilities can be elicited.

• We conduct comprehensive experiments on mathematical reasoning tasks, showing that
ICL with long CoT improves accuracy by eliciting long CoT behaviors.

• We conduct in-depth analysis, which reveals that long CoT ICL not only enhances accu-
racy on easy problems but also enables the model to tackle previously intractable medium
problems.

• We validate that long CoT ICL yields greater performance gains when problem-relevant
demonstrations are provided, compared to random selection.

2 PRELIMINARIES

2.1 LONG COT PROMPTING

Chain-of-Thought (CoT), first introduced by Wei et al. (2022), is a technique that guides large lan-
guage models LLMs to explicitly produce intermediate reasoning steps before delivering a final
answer. OpenAI has validated that test-time scaling can substantially improve performance on com-
plex tasks by allocating more compute at inference (OpenAI, 2024). A key phenomenon is that
the model’s reasoning becomes increasingly fine-grained, often accompanied by behaviors such as
reflection and the exploration of alternative solutions, collectively referred to as long CoT. Follow-
ing Chen et al. (2025), we characterize long CoT along three key mechanisms: (1) Deep reasoning,
by extending the allowable reasoning length from a short CoT boundary (Bs) to a long CoT bound-
ary (Bℓ), where Bℓ ≫ Bs. (2) extensive exploration, by encouraging branching out to extensively
explore uncertain or unknown logical paths; and (3) feasible reflection, by allowing iterative revisi-
tation and refinement of earlier steps. These mechanisms jointly increase a model’s ability to handle
complex tasks. With the emergence of o1, there is growing interest in generating long CoT rea-
soning. While most existing approaches rely on post-training to produce long CoT reasoning paths
(Ye et al., 2025; Muennighoff et al., 2025; Guo et al., 2025; Team et al., 2025), a few studies have
attempted to generate long reasoning traces without fine-tuning, for example by appending control
words such as wait (Yeo et al., 2025b; Shen et al., 2025a).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 IN-CONTEXT LEARNING

Let M be a pretrained large language model. Given an input prompt xprompt structured as a se-
quence of k input-output demonstrations S = {(x1, y1), . . . , (xk, yk)} followed by a new query
x∗, In-Context Learning (ICL) refers to the ability of M to perform the task exemplified by S on
x∗ without updating its parameters. Formally, the model predicts the output ŷ for the query x∗ by
maximizing the conditional probability:

ŷ = arg max
yj∈Y

PM (yj | x∗,S)

where PM denotes the probability assigned by the model M to the output yj conditioned on the
query x∗ and the in-context demonstrations S. This entire process occurs within the model’s forward
pass, without any gradient updates to M ’s parameters.

By presenting the model with relevant examples or demonstrations, this approach enables few-shot
learning, reducing the need for task-specific fine-tuning. ICL can be effectively combined with CoT.
For example, providing step-by-step reasoning examples in the prompt can help LLMs generalize to
unseen tasks, making in-context learning a powerful tool for improving reasoning capabilities. By
providing ICL samples from specific domains, the model can better automate prompt design (Zhang
et al., 2023) and actively engage in prompting (Diao et al., 2024), as well as perform tree search (Yao
et al., 2023). ICL operates as a form of algorithm execution within the model’s forward pass, where
architectural features like ”induction heads” (Olsson et al., 2022) infer and apply task structure from
contextual examples. In this work, we investigate the impact of long CoT ICL on the emergence of
long CoT reasoning patterns.

3 LONG COT IN-CONTEXT LEARNING EMPOWERS PRE-TRAINED LLMS

3.1 SETTINGS

Demonstration We focus on mathematical reasoning tasks. To construct demonstrations, we ran-
domly draw questions from DeepScaler (Luo et al., 2025) dataset and pair them with responses
generated by DeepSeek R1, whose outputs exhibit long CoT reasoning patterns. We select only
cases in which the LLM provides correct answers, ensuring that the demonstrations reflect both ac-
curacy and extended reasoning behavior. For comparison, we also collect short CoT demonstrations
from OpenAI O1 (OpenAI, 2024) for short CoT ICL.

Models and Benchmarks To ensure the robustness of conclusions, we experiment with multi-
ple LLM families, primarily Qwen2.5 (7B/32B base model) (Yang et al., 2024) and DeepSeek
V3 (Liu et al., 2024). We evaluate our approach on mainstream datasets, including AIME25,
MATH500 (Hendrycks et al., 2021), AMC23, and MinervaMath (Lewkowycz et al., 2022). For
AIME25, we use the full test set, while for MATH500 and MinervaMath, we randomly select sub-
sets of 50 problems each as the test set.

AIME25 MATH500 AMC23 MinervaMath
Benchmark

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

Fr
eq

ue
nc

y

1.164

0.374 0.412

0.169

4.070

2.297

3.836

1.097
0.991

0.628
0.441

0.263

Reflect Behavior

AIME25 MATH500 AMC23 MinervaMath
Benchmark

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

Fr
eq

ue
nc

y

1.324

0.697

1.037

0.094

2.411

1.557

2.668

0.671

0.951

0.612

0.961

0.134

Verify Behavior

AIME25 MATH500 AMC23 MinervaMath
Benchmark

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

Fr
eq

ue
nc

y

2.601

0.563

1.040

1.657

2.948

1.256

1.633

1.406

1.757

0.759

1.148

0.981

Correct Behavior

Direct Generation ICL-R1 ICL-O1

Figure 1: Long CoT Behavior on Qwen2.5-7B

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Evaluation Protocol For the sampling procedure across all models, we use commonly adopted
parameters: a temperature of 0.6, a top-p value of 0.95, and a maximum response length of 16,384
tokens. For ICL generation, we employ four demonstrations randomly selected from the DeepScaler
dataset for small models and two for DeepSeek V3.

Pass@K Metric To evaluate the model’s reasoning ability, we employ the pass@K metric with
rule-based rewards across all tasks. Given a problem, we sample K responses, each of which is
scored using the rule-based reward: correct answers are assigned a value of 1, while incorrect an-
swers are assigned 0. Over the entire dataset, we compute the average pass@K across all questions,
which reflects the proportion of problems that can be correctly solved within K trials. In practice,
we adopt the unbiased estimator of pass@K, as described in Appendix A.1.1.

Baselines We mainly consider two baselines: Direct Generation (DG): the model takes the prob-
lem as input and directly generates a CoT; and ICL-O1, in which the model is prompted with short
CoT demonstrations derived from OpenAI O1.

21 22 23 24 25 26 27 28 29

0.1

0.2

0.3

0.4

0.5

0.6

AI
M

E2
5

Qwen2.5-7B
Direct Generation
ICL-R1
ICL-O1

21 22 23 24 25 26 27 28 29
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Qwen2.5-32B

21 22 23 24 25 26

0.4

0.5

0.6

0.7

0.8

DeepSeek-V3

21 22 23 24 25 26 27 28 29

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AM
C2

3

21 22 23 24 25 26 27 28 29

0.4

0.5

0.6

0.7

0.8

0.9

1.0

21 22 23 24 25 26
0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

21 22 23 24 25 26 27 28 29

0.2

0.3

0.4

0.5

0.6

0.7

M
in

er
va

M
at

h

21 22 23 24 25 26 27 28 29

0.2

0.3

0.4

0.5

0.6

0.7

21 22 23 24 25 26

0.30

0.35

0.40

0.45

0.50

0.55

21 22 23 24 25 26 27 28 29
0.6

0.7

0.8

0.9

M
AT

H
50

0

21 22 23 24 25 26 27 28 29

0.6

0.7

0.8

0.9

21 22 23 24 25 26

0.90

0.92

0.94

0.96

0.98

Figure 2: The performance comparison between ICL with long CoT demonstration, direct genera-
tion and ICL with short CoT demonstration.

3.2 LONG COT ICL CAN ACTIVATE LONG COT PATTERN

To verify the impact of long CoT in-context learning on pre-trained models, we first present long
CoT ICL prompting named ICL-R1 can enable pre-trained models to exhibit long CoT patterns.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Specifically, we utilize the Qwen2.5-7B base model with demonstrations generated by DeepSeek-
R1 and quantify its long CoT behavior using the reasoning behavior ratio metric, described in Ap-
pendix A.1.2. As shown in the Figure1, across all benchmarks, the model’s outputs under long CoT
ICL exhibit a higher frequency of reflection, verification, and correction behaviors. In particular, the
frequency of reflection is approximately 4× that observed in outputs produced by direct generation.
The results reveal that long CoT behaviors, such as long CoT behaviors like reflection and verifi-
cation, emerge with higher frequency compared to direct generation. These findings suggest that
pre-trained models, even without post-training on long CoT datasets, can exhibit sophisticated long
CoT behaviors simply by providing long CoT demonstrations.

3.3 LONG COT ICL CAN IMPROVE THE PERFORMANCE OF PRE-TRAINED LLMS

Building on this insight, we further investigate the impact of long CoT ICL on model performance.
Specifically, we extend our study to a broader set of pre-trained models, including the Qwen2.5
family (7B and 32B) and DeepSeek V3, and evaluate them across diverse benchmarks. For each
problem, we randomly select demonstrations for pre-trained models. For comparison, we employ
short CoT ICL and direct generation as baseline conditions. The pass@K results are shown in
Figure 2. We also report pass@1 performance in Table 1. Our experiments show that long CoT ICL
improves the model’s pass@K performance. In particular, substantial gains in pass@1 are observed
on tasks such as AMC23, Math500, and MinervaMath, whereas the improvement on AIME25 is
relatively limited due to its higher difficulty. We observe that the improvements of DeepSeek V3
on AMC23 and Math500 are limited. We hypothesize that this is because the model is already
capable of solving many of these problems directly, and the addition of ICL demonstrations may
instead introduce noise, thereby reducing effectiveness. Moreover, for the Qwen family of models,
performance gains become increasingly pronounced as model size grows, a trend we attribute to the
enhanced ability of larger models to follow ICL demonstrations. These findings provide evidence
that long CoT ICL promotes performance beyond the base model.

Table 1: Pass@1 performance across benchmarks. Best performance are bold.
Model Method AIME25 AMC23 MATH500 MinervaMath Average

Qwen2.5-7B
DG 3.2 36.7 60.4 18.4 29.7

ICL-O1 4.0 41.0 62.3 18.0 31.3
ICL-R1 4.2 39.7 62.6 19.7 31.6

Qwen2.5-32B
DG 3.6 41.2 61.6 20.2 31.7

ICL-O1 2.8 34.7 58.5 16.8 28.2
ICL-R1 5.4 44.9 67.4 23.4 35.3

DeepSeek V3
DG 40.8 91.2 94.4 29.8 64.1

ICL-O1 36.6 82.6 89.9 37.8 61.7
ICL-R1 41.8 90.3 93.5 39.5 66.3

4 DEEP ANALYSIS

In this section, we further analyze the causes of the performance improvements and investigate why
some problems remain unsolved. We then explore the relationship between long CoT ICL and fine-
tuning, and finally explore the performance if relevant demonstrations were provided.

4.1 WHY LONG COT CAN OR CAN NOT IMPROVE REASONING PERFORMANCE

To investigate the source of performance improvements, we follow Sun et al. (2025) and analyze
per-problem performance of Qwen2.5-32B on AIME25. Specifically, we categorize problems into
three difficulty levels based on pass@1 accuracy under long CoT ICL. Easy-level questions are
those typically solvable by long CoT ICL, for which pass@128 performance approaches 100%.
Hard questions are those that cannot be solved by long CoT ICL, and the remaining problems are
classified as medium-level. To facilitate comparison, we report both pass@8 and pass@128 scores
across the different categories. From Figure 3, we observe that for easy questions, long CoT ICL

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

substantially improves accuracy, as reflected in the pass@8 results. For medium questions, long CoT
ICL also enhances performance, as reflected in the pass@128 results. Specially, for Problems 23 and
28, the model is able to solve problems that were previously intractable.These results suggest that
for problems the model is already capable of solving, long CoT ICL enhances overall performance.
Next, we manually check the questions to identify how the model’s behavior varies compared with
direct generation.

4.1.1 WHY CAN LONG COT ICL IMPROVE REASONING PERFORMANCE?

Refining Algebraic Derivation and Problem-Solving Process. For mathematical problems, lan-
guage models solve mathematical problems primarily through step-by-step variable solving and
formula application. When using the Long CoT ICL, the model not only follows the CoT reasoning
style in its overall solution process but also consistently carries it out in the concrete solving steps.
For example, in the answer to Problem 7 in Appendix D.1, the base model directly provides the
equation of the perpendicular bisector of points 4 + k and 3i+ k without showing the intermediate
calculation process. In contrast, the ICL method provides detailed calculations for finding the slope
4
3 of the perpendicular bisector and the process of passing through point 2+ 3i

2 +k, thereby reducing
errors in intermediate steps.

Reducing Hallucinations in Generated Code. The model tends to attempt problem-solving us-
ing Python code. However, without the ability to access external tools, it often produces incorrect
answers. By long CoT ICL, the model solves the problem step by step, carefully enumerating possi-
bilities, and ultimately reaching the correct solution. For example, in Problem 8 (see Appendix D.1
for details), Qwen2.5-32B exhibits severe hallucinations under direct answering, producing a seg-
ment of Python code and omitting critical intermediate reasoning steps. In contrast, with long CoT
ICL, when calculating the intersection points between the parabola y = x2 − 4 and its rotated im-
age, the model does not directly provide code to obtain the intersections as the base model does,
but instead adopts a reasoning style similar to R1 and solves the equations step by step, ultimately
arriving at the correct result.

0 16 8 5 2 3 19 4 15 13 20 26 21 12 9 7 28 18 23 29 22 1 14 24 6 17 27 25 11 10
AIME25 Question IDs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Qwen2.5-32B - Pass@8
Direct Generation
ICL-R1
ICL-O1

0 16 8 5 2 3 19 4 15 13 20 26 21 12 9 7 28 18 23 29 22 1 14 24 6 17 27 25 11 10
AIME25 Question IDs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Qwen2.5-32B - Pass@128

Easy Medium Hard

Figure 3: Pass@8 and Pass@128 on AIME25 with Qwen2.5-32B

4.1.2 WHY CANNOT LONG COT ICL IMPROVE REASONING PERFORMANCE?

From Figure 3, we observe that for some problems, performance decreases under long CoT ICL,
while for others, neither long CoT ICL nor direct generation is able to solve them. In this section,
we analyze these cases in detail.

Higher Rate of Geometric Misjudgments. The long CoT demonstrations can cause misunder-
standings in the order of points and the logical relationships of edges in geometry problems. For
example, given three points A, B, and C on a straight line from left to right, the LLM may incor-
rectly infer during reasoning that AB = AC + CB, leading to wrong results. A detailed example of
the ICL results shows that ICL leads to a higher rate of geometric misjudgments in the problem of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Appendix D.1. In problems 26 and 12, even though logical reasoning plays a larger role, the geomet-
ric errors introduced by ICL offset the advantages brought by logical reasoning, resulting in overall
performance comparable to the base model. This suggests that randomly selected demonstrations
may introduce noise into the generation process, leading to misleading responses from the model.

Incomplete Base Model Knowledge and Problem-Solving Skills. For hard problems, we ob-
serve that the primary source of failure lies not in the absence of relevant knowledge but in the
inability to apply it effectively. For instance, in Problem 27 (see Appendix D.1), a process of taking
the modulus of a large number requires the use of the Chinese Remainder Theorem. Qwen2.5-32B
fails to invoke this theorem and thus produces incorrect reasoning. However, when explicitly asked
“Do you know the Chinese Remainder Theorem?”, the model can state the theorem correctly, in-
dicating that the knowledge itself is present in its parameters. The difficulty therefore stems from
the failure to activate and apply the related knowledge. This suggests that the challenge lies not in
knowledge acquisition, but in retrieving and applying knowledge already stored within the LLM.

4.1.3 LONG COT BEHAVIORS IMPROVE THE PERFORMANCE OF PRE-TRAINED LLMS

The improvements of performance may arise from two factors: the emergence of long CoT be-
haviors and genuine gains in reasoning ability. It remains uncertain whether the model’s reasoning
ability has been improved. To evaluate reasoning ability, we examine three aspects: problem com-
prehension, adherence to a valid problem-solving strategy, and the number of correctly executed
intermediate steps. We leverage an oracle model, OpenAI GPT-5 (OpenAI, 2025), to comprehen-
sively evaluate the reasoning ability of LLMs. Specifically, the assessment comprises three aspects:
Problem Understanding (0.1 points), Valid Problem-Solving Strategy (0.1 points), and Step Execu-
tion (0.8 points), which measures how many of the key reasoning steps the model executes correctly.
When evaluating Step Execution scores, we provide the key steps of the solution, which are extracted
from the correct answers generated by GPT-5. It is worth noting that GPT-5 failed to answer five
questions correctly. The detailed process is shown in Appendix B.1.

We randomly selected 4 problems from the AIME25 dataset using Qwen2.5-32B for illustration,
with additional results provided in Figure 9. The results are shown in Figure 4. For these four
problems, the model’s reasoning ability shows little improvement under long CoT ICL compared
with direct generation, suggesting that long CoT ICL provides limited gains in reasoning ability.
This may be because the randomly selected demonstrations contain only long CoT pattern infor-
mation without problem-relevant knowledge. Based on the results, we conclude that the observed
performance gains primarily stem from the long CoT patterns. Furthermore, since reasoning and
pre-trained models differ in both pattern and reasoning ability, long CoT ICL can help mitigate
differences arising from patterns, allowing for a fairer comparison of reasoning capabilities.

Direct Generation ICL-R1
0.0

0.2

0.4

0.6

0.8

1.0

Pr
oc

es
s S

co
re

Problem 3
Direct Generation: =0.419
ICL-R1: =0.452

Direct Generation ICL-R1
0.0

0.2

0.4

0.6

0.8

1.0 Problem 9
Direct Generation: =0.141
ICL-R1: =0.149

Direct Generation ICL-R1
0.0

0.2

0.4

0.6

0.8

1.0 Problem 23
Direct Generation: =0.234
ICL-R1: =0.285

Direct Generation ICL-R1
0.0

0.2

0.4

0.6

0.8

1.0 Problem 25
Direct Generation: =0.136
ICL-R1: =0.147

Figure 4: Score distributions of reasoning ability between Long CoT ICL and Direct generation

4.2 THE RELATIONSHIP WITH LONG COT FINE-TUNING

In this section, we investigate how long CoT ICL differs from post-training especially SFT in elicit-
ing long CoT reasoning. Specifically, we compare long CoT ICL with two types of post-trained mod-
els: DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025) and S1K-7B (Muennighoff et al., 2025).The
S1K-7B model is trained from the Qwen2.5-7B base model using the same configuration as in Muen-
nighoff et al. (2025). On the AIME25 benchmark, we observe that models exhibit substantially
higher pass@1 performance compared to long CoT ICL. To investigate why their capability falls

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

short of fine-tuning, we analyze reasoning quality across different models as shown in Figure 5.
Relative to the performance from long CoT ICL prompting, the S1K-7B model achieves only cer-
tain improvements in reasoning quality, whereas the DeepSeek-R1-Distill-Qwen-7B exhibits sub-
stantially greater enhancements. We find that the improvements from Long CoT ICL primarily stem
from the emergence of Long CoT patterns, whereas the gains from S1K arise from both the pattern
and enhanced reasoning ability. With larger-scale fine-tuning, the model’s reasoning ability could
be further improved.

Table 2: Pass@1 performance on AIME25 with different numbers of shots. Best performance are
bold.

Model 1-shot 2-shot 4-shot 6-shot 8-shot

Qwen2.5-32B 4.0 3.5 5.4 4.5 5.0
DeepSeek V3 39.5 41.8 37.2 32.9 33.3

4.3 ABLATION STUDY

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0

Pr
oc

es
s S

co
re

All 25 Problems
Direct Generation: =0.256
ICL-R1: =0.251
S1K: =0.443
R1-Distill: =0.652

Figure 5: Average score distributions of
reasoning ability for different methods

In this section, we analyze factors influencing model rea-
soning ability, with a particular focus on the impact of
different numbers of shots and the sources of demonstra-
tions. By performing ablation studies on the number of
shots, we identify the optimal shot count. We further
investigate whether providing additional relevant knowl-
edge can improve model performance and examine the
upper bound of such improvements.

Ablation for demonstration numbers We conduct ab-
lation studies to evaluate the robustness of our method
under different numbers of shots, using Qwen-32B and
DeepSeek V3. The results are shown in Table 2. We
observe that as the number of shots increases, model per-
formance initially improves but then declines. We speculate that, under the few-shot setting, the
limited and randomly selected examples can introduce noise, which may offset the benefits of addi-
tional shots.

ICL with Relevant long CoT Demonstration As discussed in Section 4.1.2, the model fails to
answer correctly because it cannot effectively retrieve and utilize the knowledge stored in the LLM.
This raises the question of how well the model can perform when given problem-relevant demonstra-
tions. To examine this, we used semantic matching to identify relevant problems from DeepScaler.
Nonetheless, the retrieved examples were not truly aligned with the target problems. We therefore
tried distilling problem-relevant demonstrations from LLMs. The detailed construction process is
provided in Appendix C.2. We conducted experiments with Qwen2.5 and DeepSeek V3 on the
AIME25 benchmark. The results indicate that providing problem-relevant demonstrations yields a
substantial improvement over long CoT ICL with randomly selected demonstrations. The perfor-
mance gain becomes more pronounced as the model’s capability increases, indicating that the model
can further leverage its potential when relevant knowledge is provided. However, the improvement
is still less significant than what is typically achieved through fine-tuning. We speculate that this
is because the model cannot fully exploit the knowledge in ICL. Namely, it has not yet learned to
actively utilize the knowledge in the demonstrations when solving problems.

5 RELATED WORK

5.1 LONG CHAIN-OF-THOUGHT REASONING

Recent studies demonstrated that enabling LLMs to generate long CoT sequences during test-time
inference significantly enhanced reasoning accuracy (Brown et al., 2024; Snell et al., 2024). Current
researches focus on training models with long CoT reasoning through fine-tuning. By constructing
and leveraging long CoT demonstrations, fine-tuning enables LLMs to generate long CoT reason-
ing paths that exhibit deep reasoning, extensive exploration and reflection. Specifically, Deepseek

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

R1 (Guo et al., 2025), extending Deepseek R1 Zero, warmup with high-quality cold-start data and
utilize pure RL to achieve reasoning performance on par with OpenAI’s O1 models (OpenAI, 2024).
Kimi K1.5 (Team et al., 2025) utilized a high-quality long CoT dataset, employing SFT as a warmup
phase that improved the generation of logically coherent and detailed responses. LIMO (Ye et al.,
2025) and s1 (Muennighoff et al., 2025) challenged the necessity of large sample sizes, demonstrat-
ing that minimal sample sets successfully activated reasoning capabilities in foundational LLMs.
Satori (Shen et al., 2025b) introduced a critic model for constructing multi-step demonstrations with
reflection mechanisms, facilitating enhanced multi-step reasoning capabilities in trained models.
This work does not rely on additional training. Instead, it activates long chain-of-thought reasoning
patterns through prompting, offering greater flexibility across tasks.

5.2 IN-CONTEXT LEARNING

In-Context Learning (ICL) leverages contextual examples, which contains the formulation of target
math reasoning abilities, provided within the prompt to guide LLMs to learn to solve new prob-
lems. By formalizing algorithmic processes as skills and incorporating them as examples (Zhou
et al., 2022), the model is taught how to leverage algorithms for reasoning rather than simply en-
gaging in imitation learning. In addition to formalizing reasoning examples as algorithms to solve
problems, Jie & Lu (2023) suggests that the reasoning process can be represented through code,
which effectively enables the acquisition of multi-step reasoning capabilities. Zhang et al. (2024)
finds that learning from incorrect examples can also lead to improvements. Additionally, ICL can
be effectively combined with CoT. For example, providing step-by-step reasoning examples in the
prompt can help LLMs generalize to unseen tasks, making in-context learning a powerful tool for
improving reasoning capabilities. By providing ICL samples from specific domains, the model can
better automate prompt design (Zhang et al., 2023) and actively engage in prompting (Diao et al.,
2024), as well as perform tree search (Yao et al., 2023). However, since there is no gradient propaga-
tion for learning, currently ICL still faces significant challenges in generalization and corresponding
interpretability (Opedal et al., 2024).

Qwen2.5-7B
0

1

2

3

4

5

6

Ac
cu

ra
cy

3.2

4.2

5.7

Qwen2.5-32B
0

1

2

3

4

5

6

7

Ac
cu

ra
cy

3.6

5.4

6.8

DeepSeek-V3
0

10

20

30

40

50

Ac
cu

ra
cy

40.8 41.8
47.1

Direct Generation ICL-R1-Random ICL-R1-Relevant

Figure 6: ICL performance with different long CoT demonstration.

6 CONCLUSION

In this work, we investigated the role of long Chain-of-Thought (CoT) In-Context Learning (ICL) as
a tuning-free method for enhancing reasoning capabilities in pre-trained, pre-trained language mod-
els. Our experiments on Qwen2.5 and DeepSeek V3 demonstrate that long CoT ICL can effectively
empower these base models to exhibit long CoT behaviors, even though understanding and gener-
ating such elaborate demonstrations typically require complex abilities. This approach consistently
leads to improved task performance. We provided an in-depth analysis that illuminates the extent
to which long CoT ICL can enhance performance across different task difficulties and identifies the
primary factors driving these improvements. We believe our work represents a crucial initial step
towards a deeper understanding of long CoT reasoning and how to effectively elicit these advanced
behaviors in LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

In this study, to ensure the reproducibility of our approach, we provide key information from our
submission as follows.

1. Source Code and Data. We have submitted the source code of our approach in the sup-
plementary materials.

2. Experimental Details. We list the detailed experiment settings, computational resources.

3. Evaluation and Construct problem-relevant demonstrations. We provide a detailed
evaluation of reasoning ability as well as the algorithms and prompts used to construct
problem-relevant demonstrations in the Appendix.

ETHICS STATEMENT

The authors confirm their adherence to the Code of Ethics. This research is purely methodological
and does not involve human subjects or applications with foreseeable negative societal impacts.

REFERENCES

Rishabh Agarwal, Avi Singh, Lei Zhang, Bernd Bohnet, Luis Rosias, Stephanie Chan, Biao Zhang,
Ankesh Anand, Zaheer Abbas, Azade Nova, et al. Many-shot in-context learning. Advances in
Neural Information Processing Systems, 37:76930–76966, 2024.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. arXiv:2503.09567, 2025.

Shizhe Diao, Pengcheng Wang, Yong Lin, Rui Pan, Xiang Liu, and Tong Zhang. Active prompting
with chain-of-thought for large language models. In Proceedings of the 62th Annual Meeting of
the Association for Computational Linguistics, pp. 1330–1350, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Gangwei Jiang, Yahui Liu, Zhaoyi Li, Qi Wang, Fuzheng Zhang, Linqi Song, Ying Wei, and Defu
Lian. What makes a good reasoning chain? uncovering structural patterns in long chain-of-
thought reasoning. arXiv preprint arXiv:2505.22148, 2025.

Zhanming Jie and Wei Lu. Leveraging training data in few-shot prompting for numerical reasoning.
arXiv preprint arXiv:2305.18170, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843–3857, 2022.

Xinzhe Li. A survey on LLM test-time compute via search: Tasks, LLM profiling, search algorithms,
and relevant frameworks. arXiv preprint arXiv:2501.10069, 2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta,
Colin Cai, Jeffrey Luo, Tianjun Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
Deepscaler: Surpassing o1-preview with a 1.5b model by scaling RL. https://pretty-radio-
b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-
19681902c1468005bed8ca303013a4e2, 2025. Notion Blog.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. arXiv:2209.11895, 2022.

Andreas Opedal, Haruki Shirakami, Bernhard Schölkopf, Abulhair Saparov, and Mrinmaya Sachan.
Mathgap: Out-of-distribution evaluation on problems with arbitrarily complex proofs. arXiv
preprint arXiv:2410.13502, 2024.

OpenAI. Learning to reason with LLMs. OpenAI Blog, Feb 2024. https://openai.com/
index/learning-to-reason-with-llms.

OpenAI. Introducing GPT-5. OpenAI Blog, Aug 2025. https://openai.com/index/
introducing-gpt-5/.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
dataset of high-quality mathematical web text. arXiv preprint arXiv:2310.06786, 2023.

Maohao Shen, Guangtao Zeng, Zhenting Qi, Zhang-Wei Hong, Zhenfang Chen, Wei Lu, Gre-
gory Wornell, Subhro Das, David Cox, and Chuang Gan. Satori: Reinforcement learning
with chain-of-action-thought enhances LLM reasoning via autoregressive search. arXiv preprint
arXiv:2502.02508, 2025a.

Maohao Shen, Guangtao Zeng, Zhenting Qi, Zhang-Wei Hong, Zhenfang Chen, Wei Lu, Gre-
gory W. Wornell, Subhro Das, David Cox, and Chuang Gan. Satori: Reinforcement learning
with chain-of-action-thought enhances LLM reasoning via autoregressive search. arXiv preprint
arXiv:2502.02508, 2025b.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute opti-
mally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,
2024.

Yiyou Sun, Georgia Zhou, Hao Wang, Dacheng Li, Nouha Dziri, and Dawn Song. Climbing the lad-
der of reasoning: What llms can-and still can’t-solve after sft? arXiv preprint arXiv:2504.11741,
2025.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

11

https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Peng-Yuan Wang, Tian-Shuo Liu, Chenyang Wang, Yi-Di Wang, Shu Yan, Cheng-Xing Jia, Xu-
Hui Liu, Xin-Wei Chen, Jia-Cheng Xu, Ziniu Li, et al. A survey on large language models for
mathematical reasoning. arXiv preprint arXiv:2506.08446, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing LLM reasoning with rule-based reinforcement
learning. arXiv preprint arXiv:2502.14768, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In Pro-
ceedings of the 37th Advances in Neural Information Processing Systems, 2023.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
for reasoning. arXiv preprint arXiv:2502.03387, 2025.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-
of-thought reasoning in LLMs. arXiv preprint arXiv:2502.03373, 2025a.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-
of-thought reasoning in LLMs. arXiv:2502.03373, 2025b.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Tianjun Zhang, Aman Madaan, Luyu Gao, Steven Zheng, Swaroop Mishra, Yiming Yang, Niket
Tandon, and Uri Alon. In-context principle learning from mistakes. In Proceedings of the 41th
International Conference on Machine Learning, 2024.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting
in large language models. In Proceedings of the 11th International Conference on Learning
Representations, 2023.

Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron C. Courville, Behnam Neyshabur, and
Hanie Sedghi. Teaching algorithmic reasoning via in-context learning. arXiv preprint
arXiv:2211.09066, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

THE USE OF LLMS

In the preparation of this manuscript, we employed large language models (LLMs) as a general-
purpose writing aid for sentence-level editing, including improving grammar, clarity, and readabil-
ity. The LLMs did not contribute to any of the core research aspects of this work, such as the
formulation of ideas, the design of algorithms, theoretical derivations, or the execution and analysis
of experiments. The intellectual content and all claims made within this paper are solely the work
of the human authors, who bear full responsibility for the final manuscript.

A DETAILED EVALUATION METRICS

A.1 METRIC

A.1.1 LOW-VARIANCE PASS@K METRIC

The metric pass@K reflects the proportion of problems that can be correctly solved within K at-
tempts. Directly estimating pass@K using only K generated answers often incurs high variance,
leading to inaccurate results. To mitigate this issue, we follow the unbiased estimation algorithm
proposed by Chen et al. (2021). The estimator is defined as:

pass@K := Exi∼D

[
1−

(
n−ci
K

)(
n
K

)]
(1)

where ci denotes the number of correct solutions among the n generated samples for problem xi ∈
D. The estimator computes the probability that at least one correct solution appears within K
attempts by subtracting the probability that all K samples are incorrect. Notably, smaller values of
K lead to a more accurate estimation.

A.1.2 REASONING BEHAVIOR RATE

To monitor the model’s reasoning patterns, we quantify behaviors such as reflection, verification, and
correction. Inspired by prior work (Yeo et al., 2025a; Xie et al., 2025), we construct a keyword-based
detection system that identifies three categories: Reflect, capturing rethinking or exploring alterna-
tives; Verify, indicating self-monitoring and re-evaluation; and Correct, reflecting error recognition
and modification. The average frequency of these behaviors across benchmarks serves as a proxy for
assessing reasoning depth, self-monitoring, and correction ability, while also enabling comparisons
across models and prompting strategies.

The specific keywords associated with each behavioral category are defined as follows:

• Reflect: This category is identified by keywords indicative of re-evaluating the current
approach or considering alternatives, such as: "however", "reflect", "wait",
"reconsider", "think again", "rethink", and "alternatively".

• Verify: This category captures self-monitoring and consistency checks, signaled
by keywords including: "verify", "check", "confirm", "re-evaluate",
"reevaluate", "re-examine", "reexamine", "reanalyze", and
"recheck".

• Correct: This category reflects the recognition and amendment of errors, characterized by
keywords like: "correct", "revise", and "adjust".

B ALGORITHM PIPELINE

B.1 EVALUATING THE REASONING ABILITY

In this section, we present an evaluation of the quality of long CoT reasoning. The evaluation
algorithm is shown in Algorithm 1.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1 Algorithm for Evaluating the Reasoning Ability
Require: Language model πθ, oracle model O, problem set S = {s1, s2, . . . , s|S|}, number of

trials N ,
prompt templates Pextract (reasoning extraction), Peval (process evaluation)
for each problem si ∈ S, i = 1, 2, . . . , |S| do

Reference Generation: Obtain reference answer and extract key reasoning steps:
(ŷi,Ki) = O(si;Pextract)

Initialize score collection: Scoresi = {}
for trial j = 1, 2, . . . , N do

LLM Response: Generate response from language model: yi,j = πθ(si)
Reasoning Evaluation: Score the reasoning process using oracle model and key steps:

scorei,j = Oeval(si, yi,j ,Ki;Peval)
Add score to collection: Scoresi = Scoresi ∪ {scorei,j}

end for
Distribution Analysis: Analyze the score distribution Scoresi for problem si

end for

Note: Prompt templates Pextract and Peval are detailed in Section C.1.

B.2 GENERATING PROBLEM-RELEVANT DEMONSTRATIONS

In this section, we present the detailed procedure for generating problem-relevant demonstrations.
The algorithm is illustrated in Algorithm 2.

Algorithm 2 Algorithm for Generating Problem-Relevant Demonstrations
Require: Teacher model T , problem set S = {s1, s2, . . . , s|S|},

prompt templates Pextract (knowledge extraction), Pgen (question generation),
number of consistency trials M = 4, consistency threshold τ = 3

Ensure: Problem-demonstration pairs D = {(si, qi)}|S|
i=1

Initialize demonstration collection: D = {}
for each problem si ∈ S, i = 1, 2, . . . , |S| do

Knowledge Extraction: Solve problem and extract key knowledge points:
(yi,Ki) = T (si;Pextract)

Initialize success flag: found = False
while found = False do

New Question Generation: Generate related question based on problem and knowledge:
qcandidate = T (si,Ki;Pgen)

8-gram Filtering: Check for uniqueness using 8-gram overlap
if qcandidate passes 8-gram filtering then

Initialize answer collection: Answers = {}
for trial j = 1, 2, . . . ,M do

Generate answer: aj = T (qcandidate)
Answers = Answers ∪ {aj}

end for
Consistency Check: Count most frequent answer in Answers
max count = maxa |{aj ∈ Answers : aj = a}|
if max count ≥ τ then

qi = qcandidate
found = True

end if
end if

end while
Save Pair: D = D ∪ {(si, qi)}

end for
return D

Note: Prompt templates Pextract and Pgen are detailed in Section C.2.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C PROMPTS

C.1 THE PROMPTS FOR QUANTIFY REASONING ABILITY

The prompt for extracting the key intermediate steps and evaluating the error steps are shown in the
following. Specifically, the prompt of extracting the key intermediate steps is adapted from Jiang
et al. (2025).

Reasoning Step Extraction Prompt Template

Analyze the provided reasoning text and extract a strictly ordered, atomic sequence of key
reasoning steps. Focus on extracting the validated, logically essential progression of thoughts
while excluding backtracking, rechecks, or redundant details.
EXTRACTION RULES:

1. Logical Flow Identification: Find the key steps and the logical flow of reasoning
2. Atomic Requirement: Each step must represent a single, indivisible logical action

that directly advances the reasoning
3. Redundancy Elimination: Determine the correct version of the step, ignoring re-

dundant information. A correct step should be able to push the reasoning logic
forward and have no errors in itself

4. Completeness Guarantee: Do not skip steps. Do not merge steps. Use the original
phrasing where possible

5. Verification Filter: Do not include verification steps unless it introduces new con-
straints

6. Sequential Organization: Organize the steps into a coherent sequence of key rea-
soning steps and number it sequentially (1., 2., 3., ...)

7. Format Compliance: Maintain strict output format
EXCLUSIONS:

• Backtracking processes
• Rechecking steps
• Redundant details

STANDARD OUTPUT FORMAT:
<reasoning process>
Step 1. [concise statement]: [Detail step]
Step 2. [concise statement]: [Detail step]
Step 3. [concise statement]: [Detail step]
. . .
</reasoning process>
USAGE INSTRUCTIONS:
This template uses the format method to fill in the specific reasoning text parameter, gen-
erating complete extraction instructions. The extraction results can be used for downstream
tasks such as reasoning process analysis, step evaluation, and logical chain verification.
APPLICATION SCENARIOS:
Mathematical reasoning analysis, logical deduction verification, problem-solving process
evaluation, reasoning quality assessment, and other scenarios requiring key step identifica-
tion and extraction.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Process Score Evaluation Prompt Template

You are an expert mathematics teacher evaluating a student’s solution to a math competition
problem. Your task is to assign a process score based on the student’s reasoning process,
even if their final answer is incorrect.
PROBLEM:
{question}
STANDARD KEY STEPS:
{key steps}
STUDENT’S ANSWER:
{answer}
SCORING CRITERIA:
The process score ranges from 0 to 1 and consists of three components:
1. Problem Understanding (0.1 points): Does the student correctly understand what the
problem is asking for?

• Award 0.1 if they understand the problem correctly
• Award 0 if they misunderstand the problem

2. Approach Direction (0.1 points): Is the student’s overall approach/method appropriate
for solving this problem?

• Award 0.1 if their approach is generally correct or reasonable
• Award 0 if their approach is fundamentally wrong

3. Step Execution (0.8 points): How many of the key reasoning steps did the student execute
correctly?

• Calculate: (Number of correctly executed steps / Total number of key steps) × 0.8
• Count partial credit for steps that are attempted but have minor errors

EVALUATION INSTRUCTIONS:
1. Compare the student’s reasoning against the standard key steps
2. Identify which key steps the student successfully completed (even if not in the exact

same order)
3. Give partial credit for steps that show correct reasoning but may have minor com-

putational errors
4. Focus on the reasoning process, not just the final answer

OUTPUT FORMAT:
<result>
Problem Understanding: [0 or 0.1] - [Brief explanation]
Approach Direction: [0 or 0.1] - [Brief explanation]
Step Execution: [X/Y steps correct] = [score out of 0.8] - [List which steps were done cor-
rectly]
Total Process Score: [sum of above three components]
</result>
Please evaluate the student’s solution carefully and provide your scoring.

C.2 THE PROMPTS FOR GENERATING RELATED QUESTIONS

The prompt for generating related problems for each problem is shown in the following. Addition-
ally, we provide examples of the final input to the model under two conditions: one with randomly
selected problems and the other with constructed related problems.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Knowledge Extraction Prompt Template

You are an expert in mathematics and knowledge extraction.
Your task is to process a math problem and its answer in three stages:
PROCESSING STAGES:

1. Solution Derivation: Carefully solve the given problem step by step, showing the
reasoning that leads to the final answer

2. Knowledge Extraction: Based on the reasoning process, identify:
• The key concepts involved (mathematical ideas, topics, or theories)
• The skills required (specific techniques or problem-solving methods)
• The theorems or mathematical results explicitly or implicitly used in the so-

lution
3. Output Format: Present the extracted knowledge in the following strict JSON

format only

Problem:
{original question}
Given Answer:
{original answer}

EXECUTION SEQUENCE:
Now, begin with the solution derivation, then perform the knowledge extraction, and finally
output only the JSON object for extracted knowledge.
STANDARD OUTPUT FORMAT:

{
"concepts": [...],
"skills": [...],
"theorems": [...]

}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

New Question Generation Prompt Template

You are a mathematics education expert.
Your task is to design a new practice question that will help a student who could not solve
the following original problem eventually solve it.

Original Problem:
{original question}
Original Answer:
{original answer}
Extracted Knowledge (concepts, skills, theorems):
{extracted knowledge}

REQUIREMENTS:
1. Problem Analysis: Carefully analyze the original problem and the extracted

knowledge
2. New Question Design: Create a new question that:

• Trains the same concepts, skills, and theorems as required in the original prob-
lem

• Is easier or more guided than the original problem, serving as a stepping stone
• Is self-contained and solvable without referring to the original problem

3. Explanation Requirement: After creating the new question, briefly explain in one
or two sentences how solving it prepares the student to solve the original problem

CONSTRAINTS TO AVOID CHEATING:
• The new question must not be too similar in surface wording or structure to the

original problem
• Specifically avoid:

– Copying long phrases or expressions directly
– Keeping the same problem type with only small number changes

• Instead: Change the problem framing, question type, or context, while ensuring
that the underlying knowledge being practiced remains aligned with the original
problem

OUTPUT FORMAT:
Respond in strict JSON format:

{
"new_question": "<the designed practice problem statement>",
"rationale": "<how this helps prepare for solving the original

problem>"
}

The following examples demonstrate the final model inputs under two different demonstration se-
lection strategies for AIME25 mathematical problems. The first shows related problem selection
where demonstration examples share similar mathematical concepts, while the second shows ran-
dom problem selection with diverse demonstration topics.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Final Inputs Example

Related Problem Selection Input:
You are a mathematical problem solver.
Below are 2 examples of how to solve mathematical problems. Study these examples care-
fully to understand the problem-solving approach and reasoning patterns.
DEMONSTRATION EXAMPLE 1:
Problem: Let O = (0,0). Let X = (30,0) and Y = (0,H) for some positive H. On segment OX
take points U and V so that OU:UV:VX = 1:3:2. On segment OY take points W and Z so that
OW:WZ:ZY = 2:6:2. Let U’ be the reflection of U across W (so W is the midpoint of UU’)
and let Z’ be the reflection of Z across V (so V is the midpoint of ZZ’). The quadrilateral
with vertices U, V, Z, W taken in that cyclic order has area 240. Find the area of the hexagon
with vertices O, U’, X, V, Y, Z’ taken in that order. Give your final answer in a box. Please
reason step by step, and put your final answer within \boxed{}.
Solution: {Solution 1}
DEMONSTRATION EXAMPLE 2:
Problem: Let a and b be two noncollinear vectors in the plane and let parallelogram OABC
be formed by O (the origin), A = a, B = b, and C = a + b. Points P and Q lie on OA and OB
respectively with OP = (1/4)·OA and OQ = (1/3)·OB. Let P’ be the reflection of P across the
midpoint of segment OA, and let Q’ be the reflection of Q across the midpoint of segment
OB. If the area of quadrilateral PP’Q’Q is 60, find the area of parallelogram OABC (i.e. find
—a × b—). (You may use that reflecting X about a point R gives X’ = 2R - X and that area
is bilinear in the side vectors.) Please reason step by step, and put your final answer within
\boxed{}.
Solution: {Solution 2}
YOUR TASK:
Now, solve the following problem by applying the reasoning skills and solution patterns
demonstrated in the examples above:
Problem: On △ABC points A,D,E, and B lie that order on side AB with AD = 4, DE =
16, and EB = 8. Points A,F,G, and C lie in that order on side AC with AF = 13, FG =
52, and GC = 26. Let M be the reflection of D through F , and let N be the reflection of G
through E. Quadrilateral DEGF has area 288. Find the area of heptagon AFNBCEM .
Let’s think step by step and output the final answer within \boxed{}. Please reason step
by step, and put your final answer within \boxed{}.
Solution:

Random Problem Selection Input:
You are a mathematical problem solver.
Below are 2 examples of how to solve mathematical problems. Study these examples care-
fully to understand the problem-solving approach and reasoning patterns.
DEMONSTRATION EXAMPLE 1:
Problem: On the AMC 8 contest Billy answers 13 questions correctly, answers 7 questions
incorrectly and doesn’t answer the last 5. What is his score? Please reason step by step, and
put your final answer within \boxed{}.
Solution: {Solution 1}
DEMONSTRATION EXAMPLE 2:
Problem: If a(x+ 1) = x3 + 3x2 + 3x+ 1, find a in terms of x.
If a− 1 = 0, then the value of x is 0 or b. What is b ?
If pc4 = 32, pc = b2, and c is positive, what is the value of c ?
P is an operation such that P (A ·B) = P (A) + P (B).
P (A) = y means A = 10y . If d = A · B, P (A) = 1 and P (B) = c, find d. Please reason
step by step, and put your final answer within \boxed{}.
Solution: {Solution2}
YOUR TASK:
Now, solve the following problem by applying the reasoning skills and solution patterns
demonstrated in the examples above:
Problem: On △ABC points A,D,E, and B lie that order on side AB with AD = 4, DE =
16, and EB = 8. Points A,F,G, and C lie in that order on side AC with AF = 13, FG =
52, and GC = 26. Let M be the reflection of D through F , and let N be the reflection of G
through E. Quadrilateral DEGF has area 288. Find the area of heptagon AFNBCEM .
Let’s think step by step and output the final answer within \boxed{}. Please reason step
by step, and put your final answer within \boxed{}.
Solution:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D MORE EXPERIMENTS

D.1 SOLUTIONS OF ICL AND BASE MODEL

This section presents the answers on AIME25 obtained by Qwen2.5-32B through direct answering
and through ICL with long CoT demonstrations. An asterisk preceding a method name indicates
that the answer is correct. From these answers, we can observe the differences between using ICL
and direct answering.

Problem 4

Problem: Six points A,B,C,D,E and F lie in a straight line in that order. Suppose that G
is a point not on the line and that AC = 26, BD = 22, CE = 31, DF = 33, AF = 73,
CG = 40, and DG = 30. Find the area of △BGE.
Base Model*: To solve this problem, we need to use the given information to find the co-
ordinates of the points and then use the formula for the area of a triangle given its vertices.
Let’s assume that point A is at the origin, so A = (0, 0). Since all points lie on a straight
line in the order A,B,C,D,E, F , we can represent the coordinates of the points as follows:
A = (0, 0) B = (x1, 0) C = (x2, 0) D = (x3, 0) E = (x4, 0) F = (x5, 0) Now, let’s
use the given distances to find the coordinates of the points: 1. AC = 26 ⇒ x2 = 26
2. BD = 22 ⇒ x3 − x1 = 22 3. CE = 31 ⇒ x4 − x2 = 31 ⇒ x4 = 57 4.
DF = 33 ⇒ x5 − x3 = 33 5. AF = 73 ⇒ x5 = 73 Now we can find the coordi-
nates of the remaining points: 1. From x5 = 73 and x5−x3 = 33, we get x3 = 40. 2. From
x3−x1 = 22, we get x1 = 18. So, the coordinates of the points are: A = (0, 0)B = (18, 0)
C = (26, 0) D = (40, 0) E = (57, 0) F = (73, 0) Now, we need to find the coordinates
of point G. We are given that CG = 40 and DG = 30. Let’s assume that G = (x, y).
Then, we have the following equations: 1. CG = 40 ⇒

√
(x− 26)2 + y2 = 40 2.

DG = 30 ⇒
√
(x− 40)2 + y2 = 30 Squaring both equations and subtracting, we get:

(x − 26)2 − (x − 40)2 = 402 − 302 Solving this equation, we get x = 31. Substitut-
ing this value back into either equation, we get y = 24. So, the coordinates of point G
are (31, 24). Now, we can use the formula for the area of a triangle given its vertices:
Area = 1

2 |x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)| Substituting the coordinates of points
B, G, and E into the formula, we get: Area = 1

2 |18(24− 0) + 31(0− 0) + 57(0− 24)| =
1
2 |18(24)− 57(24)| = 1

2 |24(18− 57)| = 1
2 |24(−39)| = 1

2 · 24 · 39 = 468
ICL: < think > Alright, let’s break this down step by step. We have six points
A,B,C,D,E and F lying in a straight line in that order. We also have a point G not on the
line, and we know the lengths of several line segments. We need to find the area of △BGE.
First, let’s find the lengths of AB, BC, CD, DE, and EF . We can use the given information
to do this: 1. AC = AB+BC = 26 2. BD = BC+CD = 22 3. CE = CD+DE = 31
4. DF = DE + EF = 33 5. AF = AB + BC + CD +DE + EF = 73 We can solve
these equations to find the lengths of AB, BC, CD, DE, and EF : 1. From AC = 26, we
have AB+BC = 26. 2. From BD = 22, we have BC+CD = 22. 3. From CE = 31, we
have CD +DE = 31. 4. From DF = 33, we have DE + EF = 33. 5. From AF = 73,
we have AB+BC+CD+DE+EF = 73. Substituting the values of AC, BD, CE, and
DF into the equations, we get: 1. AB +BC = 26 2. BC +CD = 22 3. CD+DE = 31
4. DE + EF = 33 5. AB + BC + CD +DE + EF = 73 Solving these equations, we
find: 1. AB = 10 2. BC = 16 3. CD = 6 4. DE = 25 5. EF = 8 Now, let’s find
the coordinates of points A,B,C,D,E, F and G. We can assume that A is at the origin, so
A = (0, 0). Then, we have: 1. B = (10, 0) 2. C = (26, 0) 3. D = (32, 0) 4. E = (57, 0)
5. F = (65, 0) Since G is not on the line, we can assume that G has coordinates (x, y).
We know that CG = 40 and DG = 30, so we can use the distance formula to find the
coordinates of G: 1. CG =

√
(x− 26)2 + y2 = 40 2. DG =

√
(x− 32)2 + y2 = 30

Solving these equations, we find that G = (26, 30).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Now, we can find the area of △BGE using the coordinates of B,G,E: 1. B = (10, 0) 2.
G = (26, 30) 3. E = (57, 0) Using the formula for the area of a triangle with coordinates
(x1, y1), (x2, y2), (x3, y3): Area = 1

2 |x1(y2−y3)+x2(y3−y1)+x3(y1−y2)| Substituting
the coordinates of B,G,E into the formula, we get: Area = 1

2 |10(30 − 0) + 26(0 − 0) +

57(0 − 30)| Simplifying, we find: Area = 1
2 |300 + 0 − 1710| Area = 1

2 | − 1410| Area =
1
2 · 1410 Area = 705 < /think > First, we find the lengths of AB, BC, CD, DE, and
EF using the given information. Then, we find the coordinates of points A,B,C,D,E, F ,
and G. Finally, we use the coordinates of B,G,E to find the area of △BGE using the
formula for the area of a triangle with coordinates. The area of △BGE is 705 .

Problem 7

Problem:Let k be real numbers such that the system |25 + 20i− z| = 5 and |z − 4− k| =
|z − 3i − k| has exactly one complex solution z. The sum of all possible values of k can
be written as m

n , where m and n are relatively prime positive integers. Find m + n. Here
i =

√
−1.

Base Model: The first equation represents a circle centered at 25 + 20i with radius 5. The
second equation represents the perpendicular bisector of the segment joining 4 + k and
3i + k. For there to be exactly one solution, the line must be tangent to the circle. The
distance between the center of the circle and the line is the radius of the circle. The equation
of the line is y − x = k. The distance between the center of the circle and the line is
|20−25−k|√

2
= 5. Solving for k gives k = −15 or k = −5. The sum of all possible values of

k is −20, which can be written as −40
2 . The final answer is 42 .

ICL*:The problem asks us to find the sum of all possible values of k such that the system
of equations |25 + 20i − z| = 5 and |z − 4 − k| = |z − 3i − k| has exactly one complex
solution z. To solve this problem, we need to analyze the two equations separately. The first
equation represents a circle in the complex plane with center 25 + 20i and radius 5. The
second equation represents the set of points z that are equidistant from 4 + k and 3i + k,
which forms a perpendicular bisector of the line segment joining 4 + k and 3i+ k. For the
system to have exactly one complex solution, the circle and the line must intersect at exactly
one point, which means the line must be tangent to the circle. The center of the circle is
25+20i and its radius is 5. The line is the perpendicular bisector of the line segment joining
4+ k and 3i+ k, which has a midpoint of (4+k)+(3i+k)

2 = 2+ 3i
2 + k. The slope of the line

segment joining 4 + k and 3i + k is 3i−0
0−4 = − 3

4 , so the slope of the perpendicular bisector
is 4

3 . The equation of the line can be written as y − 3
2 = 4

3 (x − 2 − k), which simplifies to
4x− 3y = 8 + 4k − 9

2 . The distance from the center of the circle to the line must be equal
to the radius of the circle, which is 5. Using the formula for the distance from a point to a
line, we have:

|4(25)− 3(20)− (8 + 4k − 9
2)|√

42 + (−3)2
= 5

. Simplifying this equation, we get:

|32− 4k +
9

2
| = 25

. Solving this equation for k, we get two possible values of k: 1. 32 − 4k + 9
2 = 25 2.

32− 4k + 9
2 = −25. Solving these equations, we find: 1. k = 23

8 2. k = 123
8 . The sum of

all possible values of k is 23
8 + 123

8 = 146
8 = 73

4 . Therefore, the sum of all possible values
of k can be written as 73

4 , where 73 and 4 are relatively prime positive integers. The final
answer is 73 + 4 = 77 .

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Problem 8

Problem:
The parabola with equation y = x2 − 4 is rotated 60◦ counterclockwise around the origin.
The unique point in the fourth quadrant where the original parabola and its image intersect
has y-coordinate a−

√
b

c , where a, b, and c are positive integers, and a and c are relatively
prime. Find a+ b+ c.
Base Model:To find the unique point in the fourth quadrant where the original parabola and
its image intersect after a 60-degree counterclockwise rotation around the origin, we can
follow these steps: 1. **Rotate the parabola:** The equation of the parabola after a 60-
degree counterclockwise rotation can be found using the rotation transformation formulas:
x′ = x cos(60◦)− y sin(60◦) and y′ = x sin(60◦)+ y cos(60◦). Substituting cos(60◦) = 1

2

and sin(60◦) =
√
3
2 , we get x′ = x

2 − y
√
3

2 and y′ = x
√
3

2 + y
2 . 2. **Find the intersection:**

The intersection of the original parabola and its rotated image can be found by solving
the system of equations y = x2 − 4 and y′ = (x′)2 − 4. 3. **Substitute the rotated
coordinates:** Substituting the rotated coordinates into the second equation, we get x

√
3

2 +

y
2 =

(
x
2 − y

√
3

2

)2

− 4. 4. **Solve the system of equations:** Solving the system of
equations, we find the unique point in the fourth quadrant where the original parabola and
its image intersect. 5. **Find the y-coordinate:** The y-coordinate of the unique point in
the fourth quadrant is a−

√
b

c , where a, b, and c are positive integers, and a and c are relatively
prime. We can find a, b, and c by analyzing the solution. Let’s implement this in Python
using sympy:

Listing 1: Code Hallucination
import sympy as sp

Define variables
x, y = sp.symbols(’x y’)

Define the original parabola equation
original_parabola = y - (x**2 - 4)

Define the rotated parabola equation
x_prime = x/2 - y*sp.sqrt(3)/2
y_prime = x*sp.sqrt(3)/2 + y/2
rotated_parabola = y_prime - (x_prime**2 - 4)

Solve the system of equations
solutions = sp.solve([original_parabola, rotated_parabola], (x, y))

Find the unique point in the fourth quadrant
for sol in solutions:

if sol[0] > 0 and sol[1] < 0:
y_coordinate = sol[1]
break

Simplify the y-coordinate to the form (a - sqrt(b))/c
y_coordinate_simplified = sp.simplify(y_coordinate)
a, b, c = sp.Wild(’a’), sp.Wild(’b’), sp.Wild(’c’)
match = y_coordinate_simplified.match((a - sp.sqrt(b)) / c)
a_val = match[a]
b_val = match[b]
c_val = match[c]

Calculate a + b + c
result = a_val + b_val + c_val
print(result)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The output is 17. The unique point in the fourth quadrant where the original parabola and
its image intersect has y-coordinate a−

√
b

c , where a, b, and c are positive integers, and a and
c are relatively prime. We found that a+ b+ c = 17 .
ICL*: < think > Alright, let’s tackle this step by step. We’re dealing with a parabola
and its image after a 60-degree counterclockwise rotation around the origin. We’re looking
for the y-coordinate of the unique intersection point in the fourth quadrant. First, let’s write
down the equation of the original parabola: y = x2 − 4. Now, let’s find the equation
of the rotated parabola. To do this, we’ll use the rotation transformation formulas: x′ =
x cos(θ) − y sin(θ) y′ = x sin(θ) + y cos(θ) In our case, θ = 60◦, so cos(60◦) = 1

2

and sin(60◦) =
√
3
2 . Substituting these values into the transformation formulas, we get:

x′ = x
2 −

√
3y
2 y′ =

√
3x
2 + y

2 Now, let’s substitute y = x2−4 into the second equation: y′ =
√
3x
2 + x2−4

2 Simplifying this expression, we get: y′ = x2+
√
3x−4
2 Now we have the equation

of the rotated parabola: y′ = x2+
√
3x−4
2 . Next, we need to find the intersection point of the

original parabola and its image in the fourth quadrant. To do this, we’ll set the equations of
the two parabolas equal to each other: x2 − 4 = x2+

√
3x−4
2 Multiplying both sides by 2 to

eliminate the fraction, we get: 2x2 − 8 = x2 +
√
3x − 4 Rearranging the terms, we have:

x2−
√
3x−4 = 0 Now, we’ll solve this quadratic equation using the quadratic formula: x =

−b±
√
b2−4ac
2a In our case, a = 1, b = −

√
3, and c = −4. Substituting these values into the

formula, we get: x =
√
3±

√
3+16

2 Simplifying this expression, we have: x =
√
3±

√
19

2 Since
we’re looking for the intersection point in the fourth quadrant, we’ll choose the negative root:
x =

√
3−

√
19

2 Now, let’s find the corresponding y-coordinate by substituting this x-value into

the equation of the original parabola: y = x2 − 4 y =
(√

3−
√
19

2

)2

− 4 Simplifying this

expression, we get: y = 3−2
√
57+19−16
4 y = 6−2

√
57

4 Finally, we can simplify the expression
further: y = 3−

√
57

2 Now we have the y-coordinate of the intersection point in the fourth
quadrant: 3−

√
57

2 . We’re given that a, b, and c are positive integers, and a and c are relatively
prime. So, a = 3, b = 57, and c = 2. Therefore, a+ b+ c = 3+ 57+ 2 = 62. So, the final
answer is: 62 < /think > To find the y-coordinate of the intersection point in the fourth
quadrant, we first find the equation of the rotated parabola using the rotation transformation
formulas. Then, we set the equations of the original and rotated parabolas equal to each
other and solve the resulting quadratic equation. Finally, we substitute the x-coordinate of
the intersection point into the equation of the original parabola to find the y-coordinate. The
y-coordinate of the intersection point is 3−

√
57

2 . Therefore, a = 3, b = 57, and c = 2, and
the final answer is a+ b+ c = 3 + 57 + 2 = 62

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Problem 15

Problem:Six points A,B,C,D,E and F lie in a straight line in that order. Suppose that G
is a point not on the line and that AC = 26, BD = 22, CE = 31, DF = 33, AF = 73,
CG = 40, and DG = 30. Find the area of △BGE.
Base Model*: To solve this problem, we need to use the given information to find the
coordinates of the points and then use the formula for the area of a triangle given its vertices.
Let’s assume that point A is at the origin, so A = (0, 0). Since all points lie on a straight
line in the order A,B,C,D,E, F , we can represent the coordinates of the points as follows:
A = (0, 0), B = (x1, 0), C = (x2, 0), D = (x3, 0), E = (x4, 0), F = (x5, 0). Now,
let’s use the given distances to find the coordinates of the points: 1. AC = 26 ⇒ x2 =
26 2. BD = 22 ⇒ x3 − x1 = 22 3. CE = 31 ⇒ x4 − x2 = 31 ⇒ x4 = 574.
DF = 33 ⇒ x5 − x3 = 335. AF = 73 ⇒ x5 = 73. Now we can find the coordinates
of the remaining points: 1. From x5 = 73 and x5 − x3 = 33, we get x3 = 40. 2.
From x3 − x1 = 22, we get x1 = 18. So, the coordinates of the points are: A = (0, 0),
B = (18, 0), C = (26, 0), D = (40, 0), E = (57, 0), F = (73, 0). Now, we need to find
the coordinates of point G. We are given that CG = 40 and DG = 30. Let’s assume that
G = (x, y). Then, we have the following equations: 1. CG = 40 ⇒

√
(x− 26)2 + y2 =

40 2. DG = 30 ⇒
√

(x− 40)2 + y2 = 30. Squaring both equations and subtracting,
we get: (x − 26)2 − (x − 40)2 = 402 − 302. Solving this equation, we get x = 31.
Substituting this value back into either equation, we get y = 24. So, the coordinates of point
G are (31, 24). Now, we can use the formula for the area of a triangle given its vertices:
Area = 1

2 |x1(y2− y3)+x2(y3− y1)+x3(y1− y2)|. Substituting the coordinates of points
B, G, and E into the formula, we get: Area = 1

2 |18(24− 0) + 31(0− 0) + 57(0− 24)| =
1
2 |18(24)− 57(24)| = 1

2 |24(18− 57)| = 1
2 |24(−39)| = 1

2 · 24 · 39 = 468
ICL: Alright, let’s break this down step by step. We have six points A,B,C,D,E and F
lying in a straight line in that order. We also have a point G not on the line, and we know the
lengths of several line segments. We need to find the area of
triangleBGE. First, let’s find the lengths of AB, BC, CD, DE, and EF . We can use the
given information to do this: 1. AC = AB+BC = 26 2. BD = BC+CD = 22 3. CE =
CD+DE = 31 4. DF = DE+EF = 33 5. AF = AB+BC +CD+DE+EF = 73
We can solve these equations to find the lengths of AB, BC, CD, DE, and EF : 1. From
AC = 26, we have AB + BC = 26. 2. From BD = 22, we have BC + CD = 22. 3.
From CE = 31, we have CD +DE = 31. 4. From DF = 33, we have DE + EF = 33.
5. From AF = 73, we have AB+BC+CD+DE+EF = 73. Substituting the values of
AC, BD, CE, and DF into the equations, we get: 1. AB +BC = 26 2. BC + CD = 22
3. CD + DE = 31 4. DE + EF = 33 5. AB + BC + CD + DE + EF = 73.
Solving these equations, we find: 1. AB = 10 2. BC = 16 3. CD = 6 4. DE = 25 5.
EF = 8. Now, let’s find the coordinates of points A,B,C,D,E, F and G. We can assume
that A is at the origin, so A = (0, 0). Then, we have: 1. B = (10, 0) 2. C = (26, 0)
3. D = (32, 0) 4. E = (57, 0) 5. F = (65, 0). Since G is not on the line, we can
assume that G has coordinates (x, y). We know that CG = 40 and DG = 30, so we can
use the distance formula to find the coordinates of G: 1. CG =

√
(x− 26)2 + y2 = 40

2. DG =
√

(x− 32)2 + y2 = 30. Solving these equations, we find that G = (26, 30).
Now, we can find the area of △BGE using the coordinates of B,G,E: 1. B = (10, 0) 2.
G = (26, 30) 3. E = (57, 0). Using the formula for the area of a triangle with coordinates
(x1, y1), (x2, y2), (x3, y3): Area = 1

2 |x1(y2−y3)+x2(y3−y1)+x3(y1−y2)|. Substituting
the coordinates of B,G,E into the formula, we get:
textArea = 1

2 |10(30−0)+26(0−0)+57(0−30)|Ṡimplifying, we find: Area = 1
2 |300+

0− 1710|. Area = 1
2 | − 1410|. Area = 1

2 · 1410. Area = 705

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Problem 27

Problem:Let x1, x2, x3, . . . be a sequence of rational numbers defined by x1 = 25
11 and

xk+1 =
1

3

(
xk +

1

xk
− 1

)
for all k ≥ 1. Then x2025 can be expressed as m

n , where m and n are relatively prime
positive integers. Find the remainder when m+ n is divided by 1000.
Base Model:To solve this problem, we need to analyze the given recursive sequence and
find a pattern or a closed-form expression for xk. Let’s start by computing the first few
terms of the sequence to see if we can identify any patterns. 1. Compute x1:

x1 =
25

11

2. Compute x2:

x2 =
1

3

(
x1 +

1

x1
− 1

)
=

1

3

(
25

11
+

11

25
− 1

)
=

157

275

3. Compute x3:

x3 =
1

3

(
x2 +

1

x2
− 1

)
=

1

3

(
157

275
+

275

157
− 1

)
=

18983

43325

4. Compute x4:

x4 =
1

3

(
x3 +

1

x3
− 1

)
=

1

3

(
18983

43325
+

43325

18983
− 1

)
=

155683843

80840025

Now, let’s analyze the pattern in the sequence. We can see that the numerators and denom-
inators of the terms are increasing rapidly. However, we can notice that the numerators and
denominators of consecutive terms are relatively prime. This suggests that the terms of the
sequence are in their simplest form. To find x2025, we need to find a pattern in the sequence
or a closed-form expression for xk. However, finding a closed-form expression for xk is
not straightforward. Instead, we can use the fact that the terms of the sequence are in their
simplest form and that the numerators and denominators are relatively prime. Let’s denote
the numerator of xk as ak and the denominator as bk. Then, we have:

xk =
ak
bk

We can rewrite the recursive formula as:

ak+1

bk+1
=

1

3

(
ak
bk

+
bk
ak

− 1

)
Multiplying both sides by 3akbk, we get:

3ak+1bk = a2k + b2k − akbk

This equation shows that ak+1 and bk+1 are relatively prime, as ak and bk are relatively
prime. Now, let’s find the remainder when m + n is divided by 1000. We know that x2025

can be expressed as m
n , where m and n are relatively prime positive integers. Therefore, we

need to find the remainder when m + n is divided by 1000. Since ak+1 and bk+1 are rela-
tively prime, we can conclude that m and n are relatively prime. Therefore, we can use the
Chinese Remainder Theorem to find the remainder when m + n is divided by 1000. How-
ever, finding the exact values of m and n is not possible without a closed-form expression
for xk. Therefore, we can only conclude that the remainder when m+ n is divided by 1000

is a number between 0 and 999. The answer is 0
ICL: < think > Okay, so I need to find x2025 for a sequence of rational numbers defined by
x1 = 25

11 and xk+1 = 1
3

(
xk + 1

xk
− 1

)
for all k ≥ 1. Then, I need to express x2025 as m

n ,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

where m and n are relatively prime positive integers. Finally, I need to find the remainder
when m + n is divided by 1000. First, let’s find a pattern in the sequence. I’ll compute
the first few terms: x1 = 25

11 x2 = 1
3

(
25
11 + 11

25 − 1
)
= 1

3

(
625+121−275

275

)
= 1

3

(
471
275

)
=

157
275 x3 = 1

3

(
157
275 + 275

157 − 1
)

= 1
3

(
24649+75625−43225

43225

)
= 1

3

(
57049
43225

)
= 57049

129675 x4 =
1
3

(
57049
129675 + 129675

57049 − 1
)

= 1
3

(
3254000001+1682705625−756250000

756250000

)
= 1

3

(
4180455626
756250000

)
=

4180455626
2268750000 Now, I can see that the numerator and denominator of xk are both increasing
rapidly. However, the pattern is not immediately clear. Let’s try to simplify the expres-
sion for xk+1: xk+1 = 1

3

(
xk + 1

xk
− 1

)
=

x2
k+1−xk

3xk
Now, let’s rewrite the expression for

xk+1 in terms of xk: xk+1 =
x2
k−xk+1
3xk

I can see that the numerator of xk+1 is a quadratic

polynomial in xk. Let’s try to factor this polynomial: xk+1 =
(xk− 1

2)
2+ 3

4

3xk
Now, I can see

that the numerator of xk+1 is always positive, since it’s the sum of a square and a positive
constant. This means that xk+1 is always positive, as long as xk is positive. Since x1 = 25

11
is positive, all terms in the sequence are positive. Now, let’s consider the sequence modulo
1000. We know that the numerator and denominator of x2025 are relatively prime, so we can
find the remainder of m + n modulo 1000 by finding the remainders of m and n modulo
1000 and adding them. Let’s compute the first few terms of the sequence modulo 1000:
x1 ≡ 25 (mod 1000) x2 ≡ 157 (mod 1000) x3 ≡ 57049 (mod 1000) x4 ≡ 4180455626
(mod 1000) I can see that the remainders are not forming a simple pattern. However, since
the sequence is defined recursively, I can use a computer program to compute the remain-
ders of the first 2025 terms and find the remainder of x2025 modulo 1000. After computing
the remainders of the first 2025 terms, I find that the remainder of x2025 modulo 1000 is
713. Therefore, the remainder when m + n is divided by 1000 is 713 . < /think > Let
x1, x2, x3, . . . be a sequence of rational numbers defined by x1 = 25

11 and

xk+1 =
1

3

(
xk +

1

xk
− 1

)
for all k ≥ 1. Then x2025 can be expressed as m

n , where m and n are relatively prime
positive integers. Find the remainder when m + n is divided by 1000. To find x2025,
we can start by calculating the first few terms of the sequence to see if there’s a pat-
tern: x1 = 25

11 x2 = 1
3

(
25
11 + 11

25 − 1
)

= 157
275 x3 = 1

3

(
157
275 + 275

157 − 1
)

= 57049
129675

x4 = 1
3

(
57049
129675 + 129675

57049 − 1
)
= 4180455626

2268750000 We can see that the terms are becoming more
complex, and it’s not easy to spot a pattern. However, we can notice that the numerators and
denominators are relatively prime for each term. Now, we need to find the value of x2025.
Since we can’t easily find a pattern, we can use a computer program to calculate the value of
x2025 by iterating the recurrence relation. After doing this, we find that x2025 = m

n , where
m and n are relatively prime positive integers. Finally, we need to find the remainder when
m + n is divided by 1000. Since m and n are relatively prime, we can use the Chinese
Remainder Theorem to find the remainder when m+n is divided by 1000. After doing this,
we find that the remainder is 713 .

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 16 8 5 2 3 19 4 151320262112 9 7 2818232922 1 1424 6 1727251110
AIME25 Question IDs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

Pass@1
Direct Generation
ICL-R1
ICL-O1

0 16 8 5 2 3 19 4 151320262112 9 7 2818232922 1 1424 6 1727251110
AIME25 Question IDs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Pass@2

0 16 8 5 2 3 19 4 151320262112 9 7 2818232922 1 1424 6 1727251110
AIME25 Question IDs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Pass@4

0 16 8 5 2 3 19 4 151320262112 9 7 2818232922 1 1424 6 1727251110
AIME25 Question IDs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Pass@8

0 16 8 5 2 3 19 4 151320262112 9 7 2818232922 1 1424 6 1727251110
AIME25 Question IDs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Pass@16

0 16 8 5 2 3 19 4 151320262112 9 7 2818232922 1 1424 6 1727251110
AIME25 Question IDs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Pass@32

0 16 8 5 2 3 19 4 151320262112 9 7 2818232922 1 1424 6 1727251110
AIME25 Question IDs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Pass@64

0 16 8 5 2 3 19 4 151320262112 9 7 2818232922 1 1424 6 1727251110
AIME25 Question IDs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Pass@128

0 16 8 5 2 3 19 4 151320262112 9 7 2818232922 1 1424 6 1727251110
AIME25 Question IDs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Pass@256

Easy Medium Hard

Figure 7: Pass@1 to Pass@256 on AIME25 with Qwen-7B

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 16 8 5 2 3 19 4 151320262112 9 7 2818232922 1 1424 6 1727251110
AIME25 Question IDs

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

Pass@1
Direct Generation
ICL-R1
ICL-O1

0 16 8 5 2 3 19 4 151320262112 9 7 2818232922 1 1424 6 1727251110
AIME25 Question IDs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ac

cu
ra

cy

Pass@2

0 16 8 5 2 3 19 4 151320262112 9 7 2818232922 1 1424 6 1727251110
AIME25 Question IDs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Pass@4

0 16 8 5 2 3 19 4 151320262112 9 7 2818232922 1 1424 6 1727251110
AIME25 Question IDs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Pass@8

0 16 8 5 2 3 19 4 151320262112 9 7 2818232922 1 1424 6 1727251110
AIME25 Question IDs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Pass@16

0 16 8 5 2 3 19 4 151320262112 9 7 2818232922 1 1424 6 1727251110
AIME25 Question IDs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Pass@32

0 16 8 5 2 3 19 4 151320262112 9 7 2818232922 1 1424 6 1727251110
AIME25 Question IDs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Pass@64

0 16 8 5 2 3 19 4 151320262112 9 7 2818232922 1 1424 6 1727251110
AIME25 Question IDs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Pass@128

0 16 8 5 2 3 19 4 151320262112 9 7 2818232922 1 1424 6 1727251110
AIME25 Question IDs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Pass@256

Easy Medium Hard

Figure 8: Pass@1 to Pass@256 on AIME25 with Qwen-32B

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0

Pr
oc

es
s S

co
re

P0
Direct: 0.61
ICL-R1: 0.71

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P1
Direct: 0.23
ICL-R1: 0.23

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P2
Direct: 0.35
ICL-R1: 0.35

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P3
Direct: 0.42
ICL-R1: 0.45

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P4
Direct: 0.25
ICL-R1: 0.27

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0

Pr
oc

es
s S

co
re

P5
Direct: 0.41
ICL-R1: 0.40

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P6
Direct: 0.15
ICL-R1: 0.15

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P7
Direct: 0.33
ICL-R1: 0.29

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P8
Direct: 0.32
ICL-R1: 0.40

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P9
Direct: 0.14
ICL-R1: 0.15

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0

Pr
oc

es
s S

co
re

P10
Direct: 0.16
ICL-R1: 0.18

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P11
Direct: 0.18
ICL-R1: 0.19

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P12
Direct: 0.18
ICL-R1: 0.16

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P15
Direct: 0.24
ICL-R1: 0.20

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P16
Direct: 0.43
ICL-R1: 0.44

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0

Pr
oc

es
s S

co
re

P17
Direct: 0.12
ICL-R1: 0.12

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P18
Direct: 0.31
ICL-R1: 0.25

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P20
Direct: 0.31
ICL-R1: 0.24

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P21
Direct: 0.44
ICL-R1: 0.36

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P22
Direct: 0.20
ICL-R1: 0.19

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0

Pr
oc

es
s S

co
re

P23
Direct: 0.23
ICL-R1: 0.29

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P24
Direct: 0.05
ICL-R1: 0.01

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P25
Direct: 0.14
ICL-R1: 0.15

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P26
Direct: 0.23
ICL-R1: 0.21

Direct Generation ICL-R1

0.0

0.2

0.4

0.6

0.8

1.0 P28
Direct: 0.15
ICL-R1: 0.13

Figure 9: all problems score distribution with Qwen2.5-32B

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0

Pr
oc

es
s S

co
re

P0
Direct: 0.55
ICL-R1: 0.60
S1K: 0.98
R1-Distill: 1.00

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P1
Direct: 0.21
ICL-R1: 0.17
S1K: 0.66
R1-Distill: 0.88

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P2
Direct: 0.41
ICL-R1: 0.26
S1K: 0.61
R1-Distill: 1.00

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P3
Direct: 0.34
ICL-R1: 0.45
S1K: 0.80
R1-Distill: 0.98

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P4
Direct: 0.25
ICL-R1: 0.25
S1K: 0.29
R1-Distill: 0.73

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0

Pr
oc

es
s S

co
re

P5
Direct: 0.50
ICL-R1: 0.54
S1K: 0.93
R1-Distill: 1.00

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P6
Direct: 0.15
ICL-R1: 0.13
S1K: 0.14
R1-Distill: 0.17

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P7
Direct: 0.27
ICL-R1: 0.24
S1K: 0.37
R1-Distill: 0.86

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P8
Direct: 0.32
ICL-R1: 0.41
S1K: 0.35
R1-Distill: 0.51

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P9
Direct: 0.11
ICL-R1: 0.11
S1K: 0.09
R1-Distill: 0.14

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0

Pr
oc

es
s S

co
re

P10
Direct: 0.17
ICL-R1: 0.15
S1K: 0.25
R1-Distill: 0.26

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P11
Direct: 0.19
ICL-R1: 0.22
S1K: 0.36
R1-Distill: 0.50

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P12
Direct: 0.14
ICL-R1: 0.13
S1K: 0.24
R1-Distill: 0.44

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P15
Direct: 0.31
ICL-R1: 0.21
S1K: 0.95
R1-Distill: 1.00

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P16
Direct: 0.56
ICL-R1: 0.53
S1K: 0.94
R1-Distill: 1.00

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0

Pr
oc

es
s S

co
re

P17
Direct: 0.13
ICL-R1: 0.10
S1K: 0.15
R1-Distill: 0.27

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P18
Direct: 0.32
ICL-R1: 0.31
S1K: 0.54
R1-Distill: 0.94

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P20
Direct: 0.17
ICL-R1: 0.17
S1K: 0.37
R1-Distill: 0.67

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P21
Direct: 0.34
ICL-R1: 0.34
S1K: 0.45
R1-Distill: 0.78

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P22
Direct: 0.24
ICL-R1: 0.16
S1K: 0.28
R1-Distill: 0.48

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0

Pr
oc

es
s S

co
re

P23
Direct: 0.28
ICL-R1: 0.27
S1K: 0.38
R1-Distill: 0.64

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P24
Direct: 0.02
ICL-R1: 0.01
S1K: 0.05
R1-Distill: 0.54

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P25
Direct: 0.08
ICL-R1: 0.11
S1K: 0.25
R1-Distill: 0.32

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P26
Direct: 0.20
ICL-R1: 0.25
S1K: 0.33
R1-Distill: 0.66

Direct Generation ICL-R1 S1K R1-Distill

0.0

0.2

0.4

0.6

0.8

1.0 P28
Direct: 0.14
ICL-R1: 0.13
S1K: 0.30
R1-Distill: 0.53

Figure 10: all problems score distribution with Qwen2.5-7B

30

	Introduction
	Preliminaries
	Long CoT Prompting
	In-Context Learning

	Long CoT In-Context Learning Empowers Pre-Trained LLMs
	Settings
	Long CoT ICL can activate long CoT pattern
	Long CoT ICL can improve the performance of pre-trained LLMs

	Deep Analysis
	Why long CoT can or can not improve reasoning performance
	Why can Long CoT ICL Improve Reasoning Performance?
	Why cannot Long CoT ICL Improve Reasoning Performance?
	Long CoT Behaviors improve the performance of pre-trained LLMs

	The Relationship with Long CoT fine-tuning
	Ablation Study

	Related Work
	Long Chain-of-Thought Reasoning
	In-Context Learning

	Conclusion
	Detailed Evaluation Metrics
	Metric
	Low-Variance Pass@K Metric
	Reasoning Behavior Rate

	ALGORITHM PIPELINE
	Evaluating the reasoning ability
	Generating problem-relevant demonstrations

	Prompts
	The prompts for quantify reasoning ability
	The prompts for generating related questions

	More Experiments
	Solutions of ICL and Base Model

