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ABSTRACT

Recent advances in Large Reasoning Models (LRMs) highlight the importance of
long chain-of-thought (CoT) reasoning for complex tasks. However, most exist-
ing methods rely post-training that tunes the model parameters, obscuring whether
pre-trained models intrinsically possess such capabilities. We propose in-context
learning (ICL) with long CoT demonstrations as a tuning-free approach to investi-
gate this. Across Qwen 2.5 (7B, 32B) and DeepSeek V3 models on mathematical
reasoning tasks, we demonstrate that ICL empowers base models to exhibit so-
phisticated long CoT behaviors like reflection and verification. Furthermore, it
delivers performance gains (pass@1–pass@K) over direct generation, supporting
the conjecture that base models possess inherent reasoning capabilities, but not
fully leveraged by direct prompting. Furthermore, our in-depth analysis reveals
that long CoT ICL not only improves accuracy on easy problems but also enables
models to solve previously intractable medium problems. Finally, we validate that
tasks benefit from long CoT ICL when problem-relevant demonstrations are pro-
vided. For instance, given problem-relevant demonstrations, the performance of
DeepSeek V3 on AIME25 improves by 6.5%. We hope this work could advance
the understanding of the mechanisms and intrinsic abilities of long CoT reasoning.

1 INTRODUCTION

Recent advances in large language models (LLMs) have introduced a new class of Large Reasoning
Models, such as OpenAI o1 (OpenAI, 2024), DeepSeek-R1 (Guo et al., 2025), and Qwen3 (Yang
et al., 2025). These models generate explicit and structured reasoning before producing final an-
swers, a process commonly referred to as long chain-of-thought (long CoT) inference (Chen et al.,
2025; Li, 2025). This paradigm integrates CoT with iterative exploration and reflection, which can
significantly enhance a model’s ability to solve complex reasoning tasks (Wang et al., 2025).

Despite these impressive results, eliciting the long CoT reasoning capabilities of LLMs remains an
open challenge. Most existing methods involve post-training to tune model parameters (Guo et al.,
2025; Team et al., 2025; Yang et al., 2025), which obscures whether pre-trained models intrinsically
possess such capabilities. While Yeo et al. (2025a) demonstrated that long CoT data patterns exist
in pre-training corpora like OpenWebMath (Paster et al., 2023), recent research indicates that zero-
shot prompting methods struggle to elicit long CoT reasoning from pre-trained models, as they are
constrained by the base model’s inherent solution space (Yeo et al., 2025a; Yue et al., 2025). The
primary challenge lies in guiding models to explore beyond this intrinsic solution space.

Inspired by previous research on in-context learning (ICL) (Brown et al., 2020; Agarwal et al., 2024)
as a tuning-free paradigm for steering model behaviors, we investigate whether ICL with long-CoT
demonstrations can empower base models to exhibit long CoT behaviors. This task presents a sig-
nificant challenge, as unlike the often easy and short demonstrations used in prior ICL studies, long-
CoT demonstrations are considerably more complex, demanding both sophisticated understanding
of the input and the ability to generate elaborate outputs.

In this paper, we first demonstrate that long-CoT in-context learning (ICL) prompting can induce
pre-trained models to exhibit long CoT patterns on mathematical tasks, as illustrated in Figure 1.
Specifically, we quantify long CoT patterns in models’ outputs and experiment with the Qwen2.5-
7B base model (Yang et al., 2024) using demonstrations generated by DeepSeek-R1. We find that the
proportion of deep reasoning behaviors, such as reflection and verification, significantly increases
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compared to direct generation. This observation suggests that pre-trained models can be prompted to
exhibit long CoT patterns without parameter fine-tuning, essentially activating a “reasoning style”.

Beyond this “style activation”, we further examine whether this elicitation translates into improved
task performance. To this end, we study a broader set of pre-trained models, including the Qwen2.5
family (7B, 32B) (Yang et al., 2024) and DeepSeek V3 (Liu et al., 2024). Testing on diverse math-
ematical reasoning tasks, we consistently observe performance improvements, indicating that the
models discover better solutions through the induced long CoT reasoning.

What accounts for these observed performance improvements? We conduct an in-depth analysis of
Qwen2.5-32B’s performance on the AIME25 benchmark across questions of varying difficulty levels
(easy, medium, and hard). This analysis reveals that long-CoT ICL not only enhances accuracy on
easy problems but also enables the model to tackle previously intractable medium problems. And
then, we investigate this question, hypothesizing that they stem from two potential factors: the
emergence of long CoT behaviors (i.e., “style activation”) or genuine gains in the model’s intrinsic
reasoning ability. As detailed in Section 4.1.3, our findings indicate that the observed performance
boost is primarily attributable to the former, while the model’s fundamental reasoning ability shows
no significant enhancement.

Finally, to further optimize the performance of long-CoT ICL, we study various factors that may
affect its efficacy, such as the source and number of demonstrations. In particular, we validate that
tasks particularly benefit from long-CoT ICL when problem-relevant demonstrations are provided.
For instance, DeepSeek V3’s performance on AIME25 improves by 6.5% under such conditions.

In summary, our contributions are:

• We propose in-context learning (ICL) with long-CoT demonstrations to explore whether
and how pre-trained models’ long CoT reasoning capabilities can be elicited.

• We conduct comprehensive experiments on mathematical reasoning tasks, showing that
ICL with long CoT improves accuracy by eliciting long CoT behaviors.

• We conduct in-depth analysis, which reveals that long CoT ICL not only enhances accu-
racy on easy problems but also enables the model to tackle previously intractable medium
problems.

• We validate that long CoT ICL yields greater performance gains when problem-relevant
demonstrations are provided, compared to random selection.

2 PRELIMINARIES

2.1 LONG COT PROMPTING

Chain-of-Thought (CoT), first introduced by Wei et al. (2022), is a technique that guides large lan-
guage models LLMs to explicitly produce intermediate reasoning steps before delivering a final
answer. OpenAI has validated that test-time scaling can substantially improve performance on com-
plex tasks by allocating more compute at inference (OpenAI, 2024). A key phenomenon is that
the model’s reasoning becomes increasingly fine-grained, often accompanied by behaviors such as
reflection and the exploration of alternative solutions, collectively referred to as long CoT. Follow-
ing Chen et al. (2025), we characterize long CoT along three key mechanisms: (1) Deep reasoning,
by extending the allowable reasoning length from a short CoT boundary (Bs) to a long CoT bound-
ary (Bℓ), where Bℓ ≫ Bs. (2) extensive exploration, by encouraging branching out to extensively
explore uncertain or unknown logical paths; and (3) feasible reflection, by allowing iterative revisi-
tation and refinement of earlier steps. These mechanisms jointly increase a model’s ability to handle
complex tasks. With the emergence of o1, there is growing interest in generating long CoT rea-
soning. While most existing approaches rely on post-training to produce long CoT reasoning paths
(Ye et al., 2025; Muennighoff et al., 2025; Guo et al., 2025; Team et al., 2025), a few studies have
attempted to generate long reasoning traces without fine-tuning, for example by appending control
words such as wait (Yeo et al., 2025b; Shen et al., 2025a).
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2.2 IN-CONTEXT LEARNING

Let M be a pretrained large language model. Given an input prompt xprompt structured as a se-
quence of k input-output demonstrations S = {(x1, y1), . . . , (xk, yk)} followed by a new query
x∗, In-Context Learning (ICL) refers to the ability of M to perform the task exemplified by S on
x∗ without updating its parameters. Formally, the model predicts the output ŷ for the query x∗ by
maximizing the conditional probability:

ŷ = arg max
yj∈Y

PM (yj | x∗,S)

where PM denotes the probability assigned by the model M to the output yj conditioned on the
query x∗ and the in-context demonstrations S. This entire process occurs within the model’s forward
pass, without any gradient updates to M ’s parameters.

By presenting the model with relevant examples or demonstrations, this approach enables few-shot
learning, reducing the need for task-specific fine-tuning. ICL can be effectively combined with CoT.
For example, providing step-by-step reasoning examples in the prompt can help LLMs generalize to
unseen tasks, making in-context learning a powerful tool for improving reasoning capabilities. By
providing ICL samples from specific domains, the model can better automate prompt design (Zhang
et al., 2023) and actively engage in prompting (Diao et al., 2024), as well as perform tree search (Yao
et al., 2023). ICL operates as a form of algorithm execution within the model’s forward pass, where
architectural features like ”induction heads” (Olsson et al., 2022) infer and apply task structure from
contextual examples. In this work, we investigate the impact of long CoT ICL on the emergence of
long CoT reasoning patterns.

3 LONG COT IN-CONTEXT LEARNING EMPOWERS PRE-TRAINED LLMS

3.1 SETTINGS

Demonstration We focus on mathematical reasoning tasks. To construct demonstrations, we ran-
domly draw questions from DeepScaler (Luo et al., 2025) dataset and pair them with responses
generated by DeepSeek R1, whose outputs exhibit long CoT reasoning patterns. We select only
cases in which the LLM provides correct answers, ensuring that the demonstrations reflect both ac-
curacy and extended reasoning behavior. For comparison, we also collect short CoT demonstrations
from OpenAI O1 (OpenAI, 2024) for short CoT ICL.

Models and Benchmarks To ensure the robustness of conclusions, we experiment with multi-
ple LLM families, primarily Qwen2.5 (7B/32B base model) (Yang et al., 2024) and DeepSeek
V3 (Liu et al., 2024). We evaluate our approach on mainstream datasets, including AIME25,
MATH500 (Hendrycks et al., 2021), AMC23, and MinervaMath (Lewkowycz et al., 2022). For
AIME25, we use the full test set, while for MATH500 and MinervaMath, we randomly select sub-
sets of 50 problems each as the test set.
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Figure 1: Long CoT Behavior on Qwen2.5-7B
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Evaluation Protocol For the sampling procedure across all models, we use commonly adopted
parameters: a temperature of 0.6, a top-p value of 0.95, and a maximum response length of 16,384
tokens. For ICL generation, we employ four demonstrations randomly selected from the DeepScaler
dataset for small models and two for DeepSeek V3.

Pass@K Metric To evaluate the model’s reasoning ability, we employ the pass@K metric with
rule-based rewards across all tasks. Given a problem, we sample K responses, each of which is
scored using the rule-based reward: correct answers are assigned a value of 1, while incorrect an-
swers are assigned 0. Over the entire dataset, we compute the average pass@K across all questions,
which reflects the proportion of problems that can be correctly solved within K trials. In practice,
we adopt the unbiased estimator of pass@K, as described in Appendix A.1.1.

Baselines We mainly consider two baselines: Direct Generation (DG): the model takes the prob-
lem as input and directly generates a CoT; and ICL-O1, in which the model is prompted with short
CoT demonstrations derived from OpenAI O1.
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Figure 2: The performance comparison between ICL with long CoT demonstration, direct genera-
tion and ICL with short CoT demonstration.

3.2 LONG COT ICL CAN ACTIVATE LONG COT PATTERN

To verify the impact of long CoT in-context learning on pre-trained models, we first present long
CoT ICL prompting named ICL-R1 can enable pre-trained models to exhibit long CoT patterns.
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Specifically, we utilize the Qwen2.5-7B base model with demonstrations generated by DeepSeek-
R1 and quantify its long CoT behavior using the reasoning behavior ratio metric, described in Ap-
pendix A.1.2. As shown in the Figure1, across all benchmarks, the model’s outputs under long CoT
ICL exhibit a higher frequency of reflection, verification, and correction behaviors. In particular, the
frequency of reflection is approximately 4× that observed in outputs produced by direct generation.
The results reveal that long CoT behaviors, such as long CoT behaviors like reflection and verifi-
cation, emerge with higher frequency compared to direct generation. These findings suggest that
pre-trained models, even without post-training on long CoT datasets, can exhibit sophisticated long
CoT behaviors simply by providing long CoT demonstrations.

3.3 LONG COT ICL CAN IMPROVE THE PERFORMANCE OF PRE-TRAINED LLMS

Building on this insight, we further investigate the impact of long CoT ICL on model performance.
Specifically, we extend our study to a broader set of pre-trained models, including the Qwen2.5
family (7B and 32B) and DeepSeek V3, and evaluate them across diverse benchmarks. For each
problem, we randomly select demonstrations for pre-trained models. For comparison, we employ
short CoT ICL and direct generation as baseline conditions. The pass@K results are shown in
Figure 2. We also report pass@1 performance in Table 1. Our experiments show that long CoT ICL
improves the model’s pass@K performance. In particular, substantial gains in pass@1 are observed
on tasks such as AMC23, Math500, and MinervaMath, whereas the improvement on AIME25 is
relatively limited due to its higher difficulty. We observe that the improvements of DeepSeek V3
on AMC23 and Math500 are limited. We hypothesize that this is because the model is already
capable of solving many of these problems directly, and the addition of ICL demonstrations may
instead introduce noise, thereby reducing effectiveness. Moreover, for the Qwen family of models,
performance gains become increasingly pronounced as model size grows, a trend we attribute to the
enhanced ability of larger models to follow ICL demonstrations. These findings provide evidence
that long CoT ICL promotes performance beyond the base model.

Table 1: Pass@1 performance across benchmarks. Best performance are bold.
Model Method AIME25 AMC23 MATH500 MinervaMath Average

Qwen2.5-7B
DG 3.2 36.7 60.4 18.4 29.7

ICL-O1 4.0 41.0 62.3 18.0 31.3
ICL-R1 4.2 39.7 62.6 19.7 31.6

Qwen2.5-32B
DG 3.6 41.2 61.6 20.2 31.7

ICL-O1 2.8 34.7 58.5 16.8 28.2
ICL-R1 5.4 44.9 67.4 23.4 35.3

DeepSeek V3
DG 40.8 91.2 94.4 29.8 64.1

ICL-O1 36.6 82.6 89.9 37.8 61.7
ICL-R1 41.8 90.3 93.5 39.5 66.3

4 DEEP ANALYSIS

In this section, we further analyze the causes of the performance improvements and investigate why
some problems remain unsolved. We then explore the relationship between long CoT ICL and fine-
tuning, and finally explore the performance if relevant demonstrations were provided.

4.1 WHY LONG COT CAN OR CAN NOT IMPROVE REASONING PERFORMANCE

To investigate the source of performance improvements, we follow Sun et al. (2025) and analyze
per-problem performance of Qwen2.5-32B on AIME25. Specifically, we categorize problems into
three difficulty levels based on pass@1 accuracy under long CoT ICL. Easy-level questions are
those typically solvable by long CoT ICL, for which pass@128 performance approaches 100%.
Hard questions are those that cannot be solved by long CoT ICL, and the remaining problems are
classified as medium-level. To facilitate comparison, we report both pass@8 and pass@128 scores
across the different categories. From Figure 3, we observe that for easy questions, long CoT ICL

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

substantially improves accuracy, as reflected in the pass@8 results. For medium questions, long CoT
ICL also enhances performance, as reflected in the pass@128 results. Specially, for Problems 23 and
28, the model is able to solve problems that were previously intractable.These results suggest that
for problems the model is already capable of solving, long CoT ICL enhances overall performance.
Next, we manually check the questions to identify how the model’s behavior varies compared with
direct generation.

4.1.1 WHY CAN LONG COT ICL IMPROVE REASONING PERFORMANCE?

Refining Algebraic Derivation and Problem-Solving Process. For mathematical problems, lan-
guage models solve mathematical problems primarily through step-by-step variable solving and
formula application. When using the Long CoT ICL, the model not only follows the CoT reasoning
style in its overall solution process but also consistently carries it out in the concrete solving steps.
For example, in the answer to Problem 7 in Appendix D.1, the base model directly provides the
equation of the perpendicular bisector of points 4 + k and 3i+ k without showing the intermediate
calculation process. In contrast, the ICL method provides detailed calculations for finding the slope
4
3 of the perpendicular bisector and the process of passing through point 2+ 3i

2 +k, thereby reducing
errors in intermediate steps.

Reducing Hallucinations in Generated Code. The model tends to attempt problem-solving us-
ing Python code. However, without the ability to access external tools, it often produces incorrect
answers. By long CoT ICL, the model solves the problem step by step, carefully enumerating possi-
bilities, and ultimately reaching the correct solution. For example, in Problem 8 (see Appendix D.1
for details), Qwen2.5-32B exhibits severe hallucinations under direct answering, producing a seg-
ment of Python code and omitting critical intermediate reasoning steps. In contrast, with long CoT
ICL, when calculating the intersection points between the parabola y = x2 − 4 and its rotated im-
age, the model does not directly provide code to obtain the intersections as the base model does,
but instead adopts a reasoning style similar to R1 and solves the equations step by step, ultimately
arriving at the correct result.
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Figure 3: Pass@8 and Pass@128 on AIME25 with Qwen2.5-32B

4.1.2 WHY CANNOT LONG COT ICL IMPROVE REASONING PERFORMANCE?

From Figure 3, we observe that for some problems, performance decreases under long CoT ICL,
while for others, neither long CoT ICL nor direct generation is able to solve them. In this section,
we analyze these cases in detail.

Higher Rate of Geometric Misjudgments. The long CoT demonstrations can cause misunder-
standings in the order of points and the logical relationships of edges in geometry problems. For
example, given three points A, B, and C on a straight line from left to right, the LLM may incor-
rectly infer during reasoning that AB = AC + CB, leading to wrong results. A detailed example of
the ICL results shows that ICL leads to a higher rate of geometric misjudgments in the problem of
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Appendix D.1. In problems 26 and 12, even though logical reasoning plays a larger role, the geomet-
ric errors introduced by ICL offset the advantages brought by logical reasoning, resulting in overall
performance comparable to the base model. This suggests that randomly selected demonstrations
may introduce noise into the generation process, leading to misleading responses from the model.

Incomplete Base Model Knowledge and Problem-Solving Skills. For hard problems, we ob-
serve that the primary source of failure lies not in the absence of relevant knowledge but in the
inability to apply it effectively. For instance, in Problem 27 (see Appendix D.1), a process of taking
the modulus of a large number requires the use of the Chinese Remainder Theorem. Qwen2.5-32B
fails to invoke this theorem and thus produces incorrect reasoning. However, when explicitly asked
“Do you know the Chinese Remainder Theorem?”, the model can state the theorem correctly, in-
dicating that the knowledge itself is present in its parameters. The difficulty therefore stems from
the failure to activate and apply the related knowledge. This suggests that the challenge lies not in
knowledge acquisition, but in retrieving and applying knowledge already stored within the LLM.

4.1.3 LONG COT BEHAVIORS IMPROVE THE PERFORMANCE OF PRE-TRAINED LLMS

The improvements of performance may arise from two factors: the emergence of long CoT be-
haviors and genuine gains in reasoning ability. It remains uncertain whether the model’s reasoning
ability has been improved. To evaluate reasoning ability, we examine three aspects: problem com-
prehension, adherence to a valid problem-solving strategy, and the number of correctly executed
intermediate steps. We leverage an oracle model, OpenAI GPT-5 (OpenAI, 2025), to comprehen-
sively evaluate the reasoning ability of LLMs. Specifically, the assessment comprises three aspects:
Problem Understanding (0.1 points), Valid Problem-Solving Strategy (0.1 points), and Step Execu-
tion (0.8 points), which measures how many of the key reasoning steps the model executes correctly.
When evaluating Step Execution scores, we provide the key steps of the solution, which are extracted
from the correct answers generated by GPT-5. It is worth noting that GPT-5 failed to answer five
questions correctly. The detailed process is shown in Appendix B.1.

We randomly selected 4 problems from the AIME25 dataset using Qwen2.5-32B for illustration,
with additional results provided in Figure 9. The results are shown in Figure 4. For these four
problems, the model’s reasoning ability shows little improvement under long CoT ICL compared
with direct generation, suggesting that long CoT ICL provides limited gains in reasoning ability.
This may be because the randomly selected demonstrations contain only long CoT pattern infor-
mation without problem-relevant knowledge. Based on the results, we conclude that the observed
performance gains primarily stem from the long CoT patterns. Furthermore, since reasoning and
pre-trained models differ in both pattern and reasoning ability, long CoT ICL can help mitigate
differences arising from patterns, allowing for a fairer comparison of reasoning capabilities.
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Figure 4: Score distributions of reasoning ability between Long CoT ICL and Direct generation

4.2 THE RELATIONSHIP WITH LONG COT FINE-TUNING

In this section, we investigate how long CoT ICL differs from post-training especially SFT in elicit-
ing long CoT reasoning. Specifically, we compare long CoT ICL with two types of post-trained mod-
els: DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025) and S1K-7B (Muennighoff et al., 2025).The
S1K-7B model is trained from the Qwen2.5-7B base model using the same configuration as in Muen-
nighoff et al. (2025). On the AIME25 benchmark, we observe that models exhibit substantially
higher pass@1 performance compared to long CoT ICL. To investigate why their capability falls
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short of fine-tuning, we analyze reasoning quality across different models as shown in Figure 5.
Relative to the performance from long CoT ICL prompting, the S1K-7B model achieves only cer-
tain improvements in reasoning quality, whereas the DeepSeek-R1-Distill-Qwen-7B exhibits sub-
stantially greater enhancements. We find that the improvements from Long CoT ICL primarily stem
from the emergence of Long CoT patterns, whereas the gains from S1K arise from both the pattern
and enhanced reasoning ability. With larger-scale fine-tuning, the model’s reasoning ability could
be further improved.

Table 2: Pass@1 performance on AIME25 with different numbers of shots. Best performance are
bold.

Model 1-shot 2-shot 4-shot 6-shot 8-shot

Qwen2.5-32B 4.0 3.5 5.4 4.5 5.0
DeepSeek V3 39.5 41.8 37.2 32.9 33.3

4.3 ABLATION STUDY

Direct Generation ICL-R1 S1K R1-Distill
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Figure 5: Average score distributions of
reasoning ability for different methods

In this section, we analyze factors influencing model rea-
soning ability, with a particular focus on the impact of
different numbers of shots and the sources of demonstra-
tions. By performing ablation studies on the number of
shots, we identify the optimal shot count. We further
investigate whether providing additional relevant knowl-
edge can improve model performance and examine the
upper bound of such improvements.

Ablation for demonstration numbers We conduct ab-
lation studies to evaluate the robustness of our method
under different numbers of shots, using Qwen-32B and
DeepSeek V3. The results are shown in Table 2. We
observe that as the number of shots increases, model per-
formance initially improves but then declines. We speculate that, under the few-shot setting, the
limited and randomly selected examples can introduce noise, which may offset the benefits of addi-
tional shots.

ICL with Relevant long CoT Demonstration As discussed in Section 4.1.2, the model fails to
answer correctly because it cannot effectively retrieve and utilize the knowledge stored in the LLM.
This raises the question of how well the model can perform when given problem-relevant demonstra-
tions. To examine this, we used semantic matching to identify relevant problems from DeepScaler.
Nonetheless, the retrieved examples were not truly aligned with the target problems. We therefore
tried distilling problem-relevant demonstrations from LLMs. The detailed construction process is
provided in Appendix C.2. We conducted experiments with Qwen2.5 and DeepSeek V3 on the
AIME25 benchmark. The results indicate that providing problem-relevant demonstrations yields a
substantial improvement over long CoT ICL with randomly selected demonstrations. The perfor-
mance gain becomes more pronounced as the model’s capability increases, indicating that the model
can further leverage its potential when relevant knowledge is provided. However, the improvement
is still less significant than what is typically achieved through fine-tuning. We speculate that this
is because the model cannot fully exploit the knowledge in ICL. Namely, it has not yet learned to
actively utilize the knowledge in the demonstrations when solving problems.

5 RELATED WORK

5.1 LONG CHAIN-OF-THOUGHT REASONING

Recent studies demonstrated that enabling LLMs to generate long CoT sequences during test-time
inference significantly enhanced reasoning accuracy (Brown et al., 2024; Snell et al., 2024). Current
researches focus on training models with long CoT reasoning through fine-tuning. By constructing
and leveraging long CoT demonstrations, fine-tuning enables LLMs to generate long CoT reason-
ing paths that exhibit deep reasoning, extensive exploration and reflection. Specifically, Deepseek

8
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R1 (Guo et al., 2025), extending Deepseek R1 Zero, warmup with high-quality cold-start data and
utilize pure RL to achieve reasoning performance on par with OpenAI’s O1 models (OpenAI, 2024).
Kimi K1.5 (Team et al., 2025) utilized a high-quality long CoT dataset, employing SFT as a warmup
phase that improved the generation of logically coherent and detailed responses. LIMO (Ye et al.,
2025) and s1 (Muennighoff et al., 2025) challenged the necessity of large sample sizes, demonstrat-
ing that minimal sample sets successfully activated reasoning capabilities in foundational LLMs.
Satori (Shen et al., 2025b) introduced a critic model for constructing multi-step demonstrations with
reflection mechanisms, facilitating enhanced multi-step reasoning capabilities in trained models.
This work does not rely on additional training. Instead, it activates long chain-of-thought reasoning
patterns through prompting, offering greater flexibility across tasks.

5.2 IN-CONTEXT LEARNING

In-Context Learning (ICL) leverages contextual examples, which contains the formulation of target
math reasoning abilities, provided within the prompt to guide LLMs to learn to solve new prob-
lems. By formalizing algorithmic processes as skills and incorporating them as examples (Zhou
et al., 2022), the model is taught how to leverage algorithms for reasoning rather than simply en-
gaging in imitation learning. In addition to formalizing reasoning examples as algorithms to solve
problems, Jie & Lu (2023) suggests that the reasoning process can be represented through code,
which effectively enables the acquisition of multi-step reasoning capabilities. Zhang et al. (2024)
finds that learning from incorrect examples can also lead to improvements. Additionally, ICL can
be effectively combined with CoT. For example, providing step-by-step reasoning examples in the
prompt can help LLMs generalize to unseen tasks, making in-context learning a powerful tool for
improving reasoning capabilities. By providing ICL samples from specific domains, the model can
better automate prompt design (Zhang et al., 2023) and actively engage in prompting (Diao et al.,
2024), as well as perform tree search (Yao et al., 2023). However, since there is no gradient propaga-
tion for learning, currently ICL still faces significant challenges in generalization and corresponding
interpretability (Opedal et al., 2024).
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Figure 6: ICL performance with different long CoT demonstration.

6 CONCLUSION

In this work, we investigated the role of long Chain-of-Thought (CoT) In-Context Learning (ICL) as
a tuning-free method for enhancing reasoning capabilities in pre-trained, pre-trained language mod-
els. Our experiments on Qwen2.5 and DeepSeek V3 demonstrate that long CoT ICL can effectively
empower these base models to exhibit long CoT behaviors, even though understanding and gener-
ating such elaborate demonstrations typically require complex abilities. This approach consistently
leads to improved task performance. We provided an in-depth analysis that illuminates the extent
to which long CoT ICL can enhance performance across different task difficulties and identifies the
primary factors driving these improvements. We believe our work represents a crucial initial step
towards a deeper understanding of long CoT reasoning and how to effectively elicit these advanced
behaviors in LLMs.
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REPRODUCIBILITY STATEMENT

In this study, to ensure the reproducibility of our approach, we provide key information from our
submission as follows.

1. Source Code and Data. We have submitted the source code of our approach in the sup-
plementary materials.

2. Experimental Details. We list the detailed experiment settings, computational resources.

3. Evaluation and Construct problem-relevant demonstrations. We provide a detailed
evaluation of reasoning ability as well as the algorithms and prompts used to construct
problem-relevant demonstrations in the Appendix.

ETHICS STATEMENT

The authors confirm their adherence to the Code of Ethics. This research is purely methodological
and does not involve human subjects or applications with foreseeable negative societal impacts.
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THE USE OF LLMS

In the preparation of this manuscript, we employed large language models (LLMs) as a general-
purpose writing aid for sentence-level editing, including improving grammar, clarity, and readabil-
ity. The LLMs did not contribute to any of the core research aspects of this work, such as the
formulation of ideas, the design of algorithms, theoretical derivations, or the execution and analysis
of experiments. The intellectual content and all claims made within this paper are solely the work
of the human authors, who bear full responsibility for the final manuscript.

A DETAILED EVALUATION METRICS

A.1 METRIC

A.1.1 LOW-VARIANCE PASS@K METRIC

The metric pass@K reflects the proportion of problems that can be correctly solved within K at-
tempts. Directly estimating pass@K using only K generated answers often incurs high variance,
leading to inaccurate results. To mitigate this issue, we follow the unbiased estimation algorithm
proposed by Chen et al. (2021). The estimator is defined as:

pass@K := Exi∼D

[
1−

(
n−ci
K

)(
n
K

) ]
(1)

where ci denotes the number of correct solutions among the n generated samples for problem xi ∈
D. The estimator computes the probability that at least one correct solution appears within K
attempts by subtracting the probability that all K samples are incorrect. Notably, smaller values of
K lead to a more accurate estimation.

A.1.2 REASONING BEHAVIOR RATE

To monitor the model’s reasoning patterns, we quantify behaviors such as reflection, verification, and
correction. Inspired by prior work (Yeo et al., 2025a; Xie et al., 2025), we construct a keyword-based
detection system that identifies three categories: Reflect, capturing rethinking or exploring alterna-
tives; Verify, indicating self-monitoring and re-evaluation; and Correct, reflecting error recognition
and modification. The average frequency of these behaviors across benchmarks serves as a proxy for
assessing reasoning depth, self-monitoring, and correction ability, while also enabling comparisons
across models and prompting strategies.

The specific keywords associated with each behavioral category are defined as follows:

• Reflect: This category is identified by keywords indicative of re-evaluating the current
approach or considering alternatives, such as: "however", "reflect", "wait",
"reconsider", "think again", "rethink", and "alternatively".

• Verify: This category captures self-monitoring and consistency checks, signaled
by keywords including: "verify", "check", "confirm", "re-evaluate",
"reevaluate", "re-examine", "reexamine", "reanalyze", and
"recheck".

• Correct: This category reflects the recognition and amendment of errors, characterized by
keywords like: "correct", "revise", and "adjust".

B ALGORITHM PIPELINE

B.1 EVALUATING THE REASONING ABILITY

In this section, we present an evaluation of the quality of long CoT reasoning. The evaluation
algorithm is shown in Algorithm 1.
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Algorithm 1 Algorithm for Evaluating the Reasoning Ability
Require: Language model πθ, oracle model O, problem set S = {s1, s2, . . . , s|S|}, number of

trials N ,
prompt templates Pextract (reasoning extraction), Peval (process evaluation)
for each problem si ∈ S, i = 1, 2, . . . , |S| do

Reference Generation: Obtain reference answer and extract key reasoning steps:
(ŷi,Ki) = O(si;Pextract)

Initialize score collection: Scoresi = {}
for trial j = 1, 2, . . . , N do

LLM Response: Generate response from language model: yi,j = πθ(si)
Reasoning Evaluation: Score the reasoning process using oracle model and key steps:

scorei,j = Oeval(si, yi,j ,Ki;Peval)
Add score to collection: Scoresi = Scoresi ∪ {scorei,j}

end for
Distribution Analysis: Analyze the score distribution Scoresi for problem si

end for

Note: Prompt templates Pextract and Peval are detailed in Section C.1.

B.2 GENERATING PROBLEM-RELEVANT DEMONSTRATIONS

In this section, we present the detailed procedure for generating problem-relevant demonstrations.
The algorithm is illustrated in Algorithm 2.

Algorithm 2 Algorithm for Generating Problem-Relevant Demonstrations
Require: Teacher model T , problem set S = {s1, s2, . . . , s|S|},

prompt templates Pextract (knowledge extraction), Pgen (question generation),
number of consistency trials M = 4, consistency threshold τ = 3

Ensure: Problem-demonstration pairs D = {(si, qi)}|S|
i=1

Initialize demonstration collection: D = {}
for each problem si ∈ S, i = 1, 2, . . . , |S| do

Knowledge Extraction: Solve problem and extract key knowledge points:
(yi,Ki) = T (si;Pextract)

Initialize success flag: found = False
while found = False do

New Question Generation: Generate related question based on problem and knowledge:
qcandidate = T (si,Ki;Pgen)

8-gram Filtering: Check for uniqueness using 8-gram overlap
if qcandidate passes 8-gram filtering then

Initialize answer collection: Answers = {}
for trial j = 1, 2, . . . ,M do

Generate answer: aj = T (qcandidate)
Answers = Answers ∪ {aj}

end for
Consistency Check: Count most frequent answer in Answers
max count = maxa |{aj ∈ Answers : aj = a}|
if max count ≥ τ then

qi = qcandidate
found = True

end if
end if

end while
Save Pair: D = D ∪ {(si, qi)}

end for
return D

Note: Prompt templates Pextract and Pgen are detailed in Section C.2.
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C PROMPTS

C.1 THE PROMPTS FOR QUANTIFY REASONING ABILITY

The prompt for extracting the key intermediate steps and evaluating the error steps are shown in the
following. Specifically, the prompt of extracting the key intermediate steps is adapted from Jiang
et al. (2025).

Reasoning Step Extraction Prompt Template

Analyze the provided reasoning text and extract a strictly ordered, atomic sequence of key
reasoning steps. Focus on extracting the validated, logically essential progression of thoughts
while excluding backtracking, rechecks, or redundant details.
EXTRACTION RULES:

1. Logical Flow Identification: Find the key steps and the logical flow of reasoning
2. Atomic Requirement: Each step must represent a single, indivisible logical action

that directly advances the reasoning
3. Redundancy Elimination: Determine the correct version of the step, ignoring re-

dundant information. A correct step should be able to push the reasoning logic
forward and have no errors in itself

4. Completeness Guarantee: Do not skip steps. Do not merge steps. Use the original
phrasing where possible

5. Verification Filter: Do not include verification steps unless it introduces new con-
straints

6. Sequential Organization: Organize the steps into a coherent sequence of key rea-
soning steps and number it sequentially (1., 2., 3., ...)

7. Format Compliance: Maintain strict output format
EXCLUSIONS:

• Backtracking processes
• Rechecking steps
• Redundant details

STANDARD OUTPUT FORMAT:
<reasoning process>
Step 1. [concise statement]: [Detail step]
Step 2. [concise statement]: [Detail step]
Step 3. [concise statement]: [Detail step]
. . .
</reasoning process>
USAGE INSTRUCTIONS:
This template uses the format method to fill in the specific reasoning text parameter, gen-
erating complete extraction instructions. The extraction results can be used for downstream
tasks such as reasoning process analysis, step evaluation, and logical chain verification.
APPLICATION SCENARIOS:
Mathematical reasoning analysis, logical deduction verification, problem-solving process
evaluation, reasoning quality assessment, and other scenarios requiring key step identifica-
tion and extraction.
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Process Score Evaluation Prompt Template

You are an expert mathematics teacher evaluating a student’s solution to a math competition
problem. Your task is to assign a process score based on the student’s reasoning process,
even if their final answer is incorrect.
PROBLEM:
{question}
STANDARD KEY STEPS:
{key steps}
STUDENT’S ANSWER:
{answer}
SCORING CRITERIA:
The process score ranges from 0 to 1 and consists of three components:
1. Problem Understanding (0.1 points): Does the student correctly understand what the
problem is asking for?

• Award 0.1 if they understand the problem correctly
• Award 0 if they misunderstand the problem

2. Approach Direction (0.1 points): Is the student’s overall approach/method appropriate
for solving this problem?

• Award 0.1 if their approach is generally correct or reasonable
• Award 0 if their approach is fundamentally wrong

3. Step Execution (0.8 points): How many of the key reasoning steps did the student execute
correctly?

• Calculate: (Number of correctly executed steps / Total number of key steps) × 0.8
• Count partial credit for steps that are attempted but have minor errors

EVALUATION INSTRUCTIONS:
1. Compare the student’s reasoning against the standard key steps
2. Identify which key steps the student successfully completed (even if not in the exact

same order)
3. Give partial credit for steps that show correct reasoning but may have minor com-

putational errors
4. Focus on the reasoning process, not just the final answer

OUTPUT FORMAT:
<result>
Problem Understanding: [0 or 0.1] - [Brief explanation]
Approach Direction: [0 or 0.1] - [Brief explanation]
Step Execution: [X/Y steps correct] = [score out of 0.8] - [List which steps were done cor-
rectly]
Total Process Score: [sum of above three components]
</result>
Please evaluate the student’s solution carefully and provide your scoring.

C.2 THE PROMPTS FOR GENERATING RELATED QUESTIONS

The prompt for generating related problems for each problem is shown in the following. Addition-
ally, we provide examples of the final input to the model under two conditions: one with randomly
selected problems and the other with constructed related problems.
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Knowledge Extraction Prompt Template

You are an expert in mathematics and knowledge extraction.
Your task is to process a math problem and its answer in three stages:
PROCESSING STAGES:

1. Solution Derivation: Carefully solve the given problem step by step, showing the
reasoning that leads to the final answer

2. Knowledge Extraction: Based on the reasoning process, identify:
• The key concepts involved (mathematical ideas, topics, or theories)
• The skills required (specific techniques or problem-solving methods)
• The theorems or mathematical results explicitly or implicitly used in the so-

lution
3. Output Format: Present the extracted knowledge in the following strict JSON

format only

Problem:
{original question}
Given Answer:
{original answer}

EXECUTION SEQUENCE:
Now, begin with the solution derivation, then perform the knowledge extraction, and finally
output only the JSON object for extracted knowledge.
STANDARD OUTPUT FORMAT:

{
"concepts": [...],
"skills": [...],
"theorems": [...]

}
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New Question Generation Prompt Template

You are a mathematics education expert.
Your task is to design a new practice question that will help a student who could not solve
the following original problem eventually solve it.

Original Problem:
{original question}
Original Answer:
{original answer}
Extracted Knowledge (concepts, skills, theorems):
{extracted knowledge}

REQUIREMENTS:
1. Problem Analysis: Carefully analyze the original problem and the extracted

knowledge
2. New Question Design: Create a new question that:

• Trains the same concepts, skills, and theorems as required in the original prob-
lem

• Is easier or more guided than the original problem, serving as a stepping stone
• Is self-contained and solvable without referring to the original problem

3. Explanation Requirement: After creating the new question, briefly explain in one
or two sentences how solving it prepares the student to solve the original problem

CONSTRAINTS TO AVOID CHEATING:
• The new question must not be too similar in surface wording or structure to the

original problem
• Specifically avoid:

– Copying long phrases or expressions directly
– Keeping the same problem type with only small number changes

• Instead: Change the problem framing, question type, or context, while ensuring
that the underlying knowledge being practiced remains aligned with the original
problem

OUTPUT FORMAT:
Respond in strict JSON format:

{
"new_question": "<the designed practice problem statement>",
"rationale": "<how this helps prepare for solving the original

problem>"
}

The following examples demonstrate the final model inputs under two different demonstration se-
lection strategies for AIME25 mathematical problems. The first shows related problem selection
where demonstration examples share similar mathematical concepts, while the second shows ran-
dom problem selection with diverse demonstration topics.
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Final Inputs Example

Related Problem Selection Input:
You are a mathematical problem solver.
Below are 2 examples of how to solve mathematical problems. Study these examples care-
fully to understand the problem-solving approach and reasoning patterns.
DEMONSTRATION EXAMPLE 1:
Problem: Let O = (0,0). Let X = (30,0) and Y = (0,H) for some positive H. On segment OX
take points U and V so that OU:UV:VX = 1:3:2. On segment OY take points W and Z so that
OW:WZ:ZY = 2:6:2. Let U’ be the reflection of U across W (so W is the midpoint of UU’)
and let Z’ be the reflection of Z across V (so V is the midpoint of ZZ’). The quadrilateral
with vertices U, V, Z, W taken in that cyclic order has area 240. Find the area of the hexagon
with vertices O, U’, X, V, Y, Z’ taken in that order. Give your final answer in a box. Please
reason step by step, and put your final answer within \boxed{}.
Solution: {Solution 1}
DEMONSTRATION EXAMPLE 2:
Problem: Let a and b be two noncollinear vectors in the plane and let parallelogram OABC
be formed by O (the origin), A = a, B = b, and C = a + b. Points P and Q lie on OA and OB
respectively with OP = (1/4)·OA and OQ = (1/3)·OB. Let P’ be the reflection of P across the
midpoint of segment OA, and let Q’ be the reflection of Q across the midpoint of segment
OB. If the area of quadrilateral PP’Q’Q is 60, find the area of parallelogram OABC (i.e. find
—a × b—). (You may use that reflecting X about a point R gives X’ = 2R - X and that area
is bilinear in the side vectors.) Please reason step by step, and put your final answer within
\boxed{}.
Solution: {Solution 2}
YOUR TASK:
Now, solve the following problem by applying the reasoning skills and solution patterns
demonstrated in the examples above:
Problem: On △ABC points A,D,E, and B lie that order on side AB with AD = 4, DE =
16, and EB = 8. Points A,F,G, and C lie in that order on side AC with AF = 13, FG =
52, and GC = 26. Let M be the reflection of D through F , and let N be the reflection of G
through E. Quadrilateral DEGF has area 288. Find the area of heptagon AFNBCEM .
Let’s think step by step and output the final answer within \boxed{}. Please reason step
by step, and put your final answer within \boxed{}.
Solution:

Random Problem Selection Input:
You are a mathematical problem solver.
Below are 2 examples of how to solve mathematical problems. Study these examples care-
fully to understand the problem-solving approach and reasoning patterns.
DEMONSTRATION EXAMPLE 1:
Problem: On the AMC 8 contest Billy answers 13 questions correctly, answers 7 questions
incorrectly and doesn’t answer the last 5. What is his score? Please reason step by step, and
put your final answer within \boxed{}.
Solution: {Solution 1}
DEMONSTRATION EXAMPLE 2:
Problem: If a(x+ 1) = x3 + 3x2 + 3x+ 1, find a in terms of x.
If a− 1 = 0, then the value of x is 0 or b. What is b ?
If pc4 = 32, pc = b2, and c is positive, what is the value of c ?
P is an operation such that P (A ·B) = P (A) + P (B).
P (A) = y means A = 10y . If d = A · B, P (A) = 1 and P (B) = c, find d. Please reason
step by step, and put your final answer within \boxed{}.
Solution: {Solution2}
YOUR TASK:
Now, solve the following problem by applying the reasoning skills and solution patterns
demonstrated in the examples above:
Problem: On △ABC points A,D,E, and B lie that order on side AB with AD = 4, DE =
16, and EB = 8. Points A,F,G, and C lie in that order on side AC with AF = 13, FG =
52, and GC = 26. Let M be the reflection of D through F , and let N be the reflection of G
through E. Quadrilateral DEGF has area 288. Find the area of heptagon AFNBCEM .
Let’s think step by step and output the final answer within \boxed{}. Please reason step
by step, and put your final answer within \boxed{}.
Solution:

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D MORE EXPERIMENTS

D.1 SOLUTIONS OF ICL AND BASE MODEL

This section presents the answers on AIME25 obtained by Qwen2.5-32B through direct answering
and through ICL with long CoT demonstrations. An asterisk preceding a method name indicates
that the answer is correct. From these answers, we can observe the differences between using ICL
and direct answering.

Problem 4

Problem: Six points A,B,C,D,E and F lie in a straight line in that order. Suppose that G
is a point not on the line and that AC = 26, BD = 22, CE = 31, DF = 33, AF = 73,
CG = 40, and DG = 30. Find the area of △BGE.
Base Model*: To solve this problem, we need to use the given information to find the co-
ordinates of the points and then use the formula for the area of a triangle given its vertices.
Let’s assume that point A is at the origin, so A = (0, 0). Since all points lie on a straight
line in the order A,B,C,D,E, F , we can represent the coordinates of the points as follows:
A = (0, 0) B = (x1, 0) C = (x2, 0) D = (x3, 0) E = (x4, 0) F = (x5, 0) Now, let’s
use the given distances to find the coordinates of the points: 1. AC = 26 ⇒ x2 = 26
2. BD = 22 ⇒ x3 − x1 = 22 3. CE = 31 ⇒ x4 − x2 = 31 ⇒ x4 = 57 4.
DF = 33 ⇒ x5 − x3 = 33 5. AF = 73 ⇒ x5 = 73 Now we can find the coordi-
nates of the remaining points: 1. From x5 = 73 and x5−x3 = 33, we get x3 = 40. 2. From
x3−x1 = 22, we get x1 = 18. So, the coordinates of the points are: A = (0, 0)B = (18, 0)
C = (26, 0) D = (40, 0) E = (57, 0) F = (73, 0) Now, we need to find the coordinates
of point G. We are given that CG = 40 and DG = 30. Let’s assume that G = (x, y).
Then, we have the following equations: 1. CG = 40 ⇒

√
(x− 26)2 + y2 = 40 2.

DG = 30 ⇒
√
(x− 40)2 + y2 = 30 Squaring both equations and subtracting, we get:

(x − 26)2 − (x − 40)2 = 402 − 302 Solving this equation, we get x = 31. Substitut-
ing this value back into either equation, we get y = 24. So, the coordinates of point G
are (31, 24). Now, we can use the formula for the area of a triangle given its vertices:
Area = 1

2 |x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)| Substituting the coordinates of points
B, G, and E into the formula, we get: Area = 1

2 |18(24− 0) + 31(0− 0) + 57(0− 24)| =
1
2 |18(24)− 57(24)| = 1

2 |24(18− 57)| = 1
2 |24(−39)| = 1

2 · 24 · 39 = 468
ICL: < think > Alright, let’s break this down step by step. We have six points
A,B,C,D,E and F lying in a straight line in that order. We also have a point G not on the
line, and we know the lengths of several line segments. We need to find the area of △BGE.
First, let’s find the lengths of AB, BC, CD, DE, and EF . We can use the given information
to do this: 1. AC = AB+BC = 26 2. BD = BC+CD = 22 3. CE = CD+DE = 31
4. DF = DE + EF = 33 5. AF = AB + BC + CD +DE + EF = 73 We can solve
these equations to find the lengths of AB, BC, CD, DE, and EF : 1. From AC = 26, we
have AB+BC = 26. 2. From BD = 22, we have BC+CD = 22. 3. From CE = 31, we
have CD +DE = 31. 4. From DF = 33, we have DE + EF = 33. 5. From AF = 73,
we have AB+BC+CD+DE+EF = 73. Substituting the values of AC, BD, CE, and
DF into the equations, we get: 1. AB +BC = 26 2. BC +CD = 22 3. CD+DE = 31
4. DE + EF = 33 5. AB + BC + CD +DE + EF = 73 Solving these equations, we
find: 1. AB = 10 2. BC = 16 3. CD = 6 4. DE = 25 5. EF = 8 Now, let’s find
the coordinates of points A,B,C,D,E, F and G. We can assume that A is at the origin, so
A = (0, 0). Then, we have: 1. B = (10, 0) 2. C = (26, 0) 3. D = (32, 0) 4. E = (57, 0)
5. F = (65, 0) Since G is not on the line, we can assume that G has coordinates (x, y).
We know that CG = 40 and DG = 30, so we can use the distance formula to find the
coordinates of G: 1. CG =

√
(x− 26)2 + y2 = 40 2. DG =

√
(x− 32)2 + y2 = 30

Solving these equations, we find that G = (26, 30).
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Now, we can find the area of △BGE using the coordinates of B,G,E: 1. B = (10, 0) 2.
G = (26, 30) 3. E = (57, 0) Using the formula for the area of a triangle with coordinates
(x1, y1), (x2, y2), (x3, y3): Area = 1

2 |x1(y2−y3)+x2(y3−y1)+x3(y1−y2)| Substituting
the coordinates of B,G,E into the formula, we get: Area = 1

2 |10(30 − 0) + 26(0 − 0) +

57(0 − 30)| Simplifying, we find: Area = 1
2 |300 + 0 − 1710| Area = 1

2 | − 1410| Area =
1
2 · 1410 Area = 705 < /think > First, we find the lengths of AB, BC, CD, DE, and
EF using the given information. Then, we find the coordinates of points A,B,C,D,E, F ,
and G. Finally, we use the coordinates of B,G,E to find the area of △BGE using the
formula for the area of a triangle with coordinates. The area of △BGE is 705 .

Problem 7

Problem:Let k be real numbers such that the system |25 + 20i− z| = 5 and |z − 4− k| =
|z − 3i − k| has exactly one complex solution z. The sum of all possible values of k can
be written as m

n , where m and n are relatively prime positive integers. Find m + n. Here
i =

√
−1.

Base Model: The first equation represents a circle centered at 25 + 20i with radius 5. The
second equation represents the perpendicular bisector of the segment joining 4 + k and
3i + k. For there to be exactly one solution, the line must be tangent to the circle. The
distance between the center of the circle and the line is the radius of the circle. The equation
of the line is y − x = k. The distance between the center of the circle and the line is
|20−25−k|√

2
= 5. Solving for k gives k = −15 or k = −5. The sum of all possible values of

k is −20, which can be written as −40
2 . The final answer is 42 .

ICL*:The problem asks us to find the sum of all possible values of k such that the system
of equations |25 + 20i − z| = 5 and |z − 4 − k| = |z − 3i − k| has exactly one complex
solution z. To solve this problem, we need to analyze the two equations separately. The first
equation represents a circle in the complex plane with center 25 + 20i and radius 5. The
second equation represents the set of points z that are equidistant from 4 + k and 3i + k,
which forms a perpendicular bisector of the line segment joining 4 + k and 3i+ k. For the
system to have exactly one complex solution, the circle and the line must intersect at exactly
one point, which means the line must be tangent to the circle. The center of the circle is
25+20i and its radius is 5. The line is the perpendicular bisector of the line segment joining
4+ k and 3i+ k, which has a midpoint of (4+k)+(3i+k)

2 = 2+ 3i
2 + k. The slope of the line

segment joining 4 + k and 3i + k is 3i−0
0−4 = − 3

4 , so the slope of the perpendicular bisector
is 4

3 . The equation of the line can be written as y − 3
2 = 4

3 (x − 2 − k), which simplifies to
4x− 3y = 8 + 4k − 9

2 . The distance from the center of the circle to the line must be equal
to the radius of the circle, which is 5. Using the formula for the distance from a point to a
line, we have:

|4(25)− 3(20)− (8 + 4k − 9
2 )|√

42 + (−3)2
= 5

. Simplifying this equation, we get:

|32− 4k +
9

2
| = 25

. Solving this equation for k, we get two possible values of k: 1. 32 − 4k + 9
2 = 25 2.

32− 4k + 9
2 = −25. Solving these equations, we find: 1. k = 23

8 2. k = 123
8 . The sum of

all possible values of k is 23
8 + 123

8 = 146
8 = 73

4 . Therefore, the sum of all possible values
of k can be written as 73

4 , where 73 and 4 are relatively prime positive integers. The final
answer is 73 + 4 = 77 .
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Problem 8

Problem:
The parabola with equation y = x2 − 4 is rotated 60◦ counterclockwise around the origin.
The unique point in the fourth quadrant where the original parabola and its image intersect
has y-coordinate a−

√
b

c , where a, b, and c are positive integers, and a and c are relatively
prime. Find a+ b+ c.
Base Model:To find the unique point in the fourth quadrant where the original parabola and
its image intersect after a 60-degree counterclockwise rotation around the origin, we can
follow these steps: 1. **Rotate the parabola:** The equation of the parabola after a 60-
degree counterclockwise rotation can be found using the rotation transformation formulas:
x′ = x cos(60◦)− y sin(60◦) and y′ = x sin(60◦)+ y cos(60◦). Substituting cos(60◦) = 1

2

and sin(60◦) =
√
3
2 , we get x′ = x

2 − y
√
3

2 and y′ = x
√
3

2 + y
2 . 2. **Find the intersection:**

The intersection of the original parabola and its rotated image can be found by solving
the system of equations y = x2 − 4 and y′ = (x′)2 − 4. 3. **Substitute the rotated
coordinates:** Substituting the rotated coordinates into the second equation, we get x

√
3

2 +

y
2 =

(
x
2 − y

√
3

2

)2

− 4. 4. **Solve the system of equations:** Solving the system of
equations, we find the unique point in the fourth quadrant where the original parabola and
its image intersect. 5. **Find the y-coordinate:** The y-coordinate of the unique point in
the fourth quadrant is a−

√
b

c , where a, b, and c are positive integers, and a and c are relatively
prime. We can find a, b, and c by analyzing the solution. Let’s implement this in Python
using sympy:

Listing 1: Code Hallucination
import sympy as sp

# Define variables
x, y = sp.symbols(’x y’)

# Define the original parabola equation
original_parabola = y - (x**2 - 4)

# Define the rotated parabola equation
x_prime = x/2 - y*sp.sqrt(3)/2
y_prime = x*sp.sqrt(3)/2 + y/2
rotated_parabola = y_prime - (x_prime**2 - 4)

# Solve the system of equations
solutions = sp.solve([original_parabola, rotated_parabola], (x, y))

# Find the unique point in the fourth quadrant
for sol in solutions:

if sol[0] > 0 and sol[1] < 0:
y_coordinate = sol[1]
break

# Simplify the y-coordinate to the form (a - sqrt(b))/c
y_coordinate_simplified = sp.simplify(y_coordinate)
a, b, c = sp.Wild(’a’), sp.Wild(’b’), sp.Wild(’c’)
match = y_coordinate_simplified.match((a - sp.sqrt(b)) / c)
a_val = match[a]
b_val = match[b]
c_val = match[c]

# Calculate a + b + c
result = a_val + b_val + c_val
print(result)
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The output is 17. The unique point in the fourth quadrant where the original parabola and
its image intersect has y-coordinate a−

√
b

c , where a, b, and c are positive integers, and a and
c are relatively prime. We found that a+ b+ c = 17 .
ICL*: < think > Alright, let’s tackle this step by step. We’re dealing with a parabola
and its image after a 60-degree counterclockwise rotation around the origin. We’re looking
for the y-coordinate of the unique intersection point in the fourth quadrant. First, let’s write
down the equation of the original parabola: y = x2 − 4. Now, let’s find the equation
of the rotated parabola. To do this, we’ll use the rotation transformation formulas: x′ =
x cos(θ) − y sin(θ) y′ = x sin(θ) + y cos(θ) In our case, θ = 60◦, so cos(60◦) = 1

2

and sin(60◦) =
√
3
2 . Substituting these values into the transformation formulas, we get:

x′ = x
2 −

√
3y
2 y′ =

√
3x
2 + y

2 Now, let’s substitute y = x2−4 into the second equation: y′ =
√
3x
2 + x2−4

2 Simplifying this expression, we get: y′ = x2+
√
3x−4
2 Now we have the equation

of the rotated parabola: y′ = x2+
√
3x−4
2 . Next, we need to find the intersection point of the

original parabola and its image in the fourth quadrant. To do this, we’ll set the equations of
the two parabolas equal to each other: x2 − 4 = x2+

√
3x−4
2 Multiplying both sides by 2 to

eliminate the fraction, we get: 2x2 − 8 = x2 +
√
3x − 4 Rearranging the terms, we have:

x2−
√
3x−4 = 0 Now, we’ll solve this quadratic equation using the quadratic formula: x =

−b±
√
b2−4ac
2a In our case, a = 1, b = −

√
3, and c = −4. Substituting these values into the

formula, we get: x =
√
3±

√
3+16

2 Simplifying this expression, we have: x =
√
3±

√
19

2 Since
we’re looking for the intersection point in the fourth quadrant, we’ll choose the negative root:
x =

√
3−

√
19

2 Now, let’s find the corresponding y-coordinate by substituting this x-value into

the equation of the original parabola: y = x2 − 4 y =
(√

3−
√
19

2

)2

− 4 Simplifying this

expression, we get: y = 3−2
√
57+19−16
4 y = 6−2

√
57

4 Finally, we can simplify the expression
further: y = 3−

√
57

2 Now we have the y-coordinate of the intersection point in the fourth
quadrant: 3−

√
57

2 . We’re given that a, b, and c are positive integers, and a and c are relatively
prime. So, a = 3, b = 57, and c = 2. Therefore, a+ b+ c = 3+ 57+ 2 = 62. So, the final
answer is: 62 < /think > To find the y-coordinate of the intersection point in the fourth
quadrant, we first find the equation of the rotated parabola using the rotation transformation
formulas. Then, we set the equations of the original and rotated parabolas equal to each
other and solve the resulting quadratic equation. Finally, we substitute the x-coordinate of
the intersection point into the equation of the original parabola to find the y-coordinate. The
y-coordinate of the intersection point is 3−

√
57

2 . Therefore, a = 3, b = 57, and c = 2, and
the final answer is a+ b+ c = 3 + 57 + 2 = 62
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Problem 15

Problem:Six points A,B,C,D,E and F lie in a straight line in that order. Suppose that G
is a point not on the line and that AC = 26, BD = 22, CE = 31, DF = 33, AF = 73,
CG = 40, and DG = 30. Find the area of △BGE.
Base Model*: To solve this problem, we need to use the given information to find the
coordinates of the points and then use the formula for the area of a triangle given its vertices.
Let’s assume that point A is at the origin, so A = (0, 0). Since all points lie on a straight
line in the order A,B,C,D,E, F , we can represent the coordinates of the points as follows:
A = (0, 0), B = (x1, 0), C = (x2, 0), D = (x3, 0), E = (x4, 0), F = (x5, 0). Now,
let’s use the given distances to find the coordinates of the points: 1. AC = 26 ⇒ x2 =
26 2. BD = 22 ⇒ x3 − x1 = 22 3. CE = 31 ⇒ x4 − x2 = 31 ⇒ x4 = 574.
DF = 33 ⇒ x5 − x3 = 335. AF = 73 ⇒ x5 = 73. Now we can find the coordinates
of the remaining points: 1. From x5 = 73 and x5 − x3 = 33, we get x3 = 40. 2.
From x3 − x1 = 22, we get x1 = 18. So, the coordinates of the points are: A = (0, 0),
B = (18, 0), C = (26, 0), D = (40, 0), E = (57, 0), F = (73, 0). Now, we need to find
the coordinates of point G. We are given that CG = 40 and DG = 30. Let’s assume that
G = (x, y). Then, we have the following equations: 1. CG = 40 ⇒

√
(x− 26)2 + y2 =

40 2. DG = 30 ⇒
√

(x− 40)2 + y2 = 30. Squaring both equations and subtracting,
we get: (x − 26)2 − (x − 40)2 = 402 − 302. Solving this equation, we get x = 31.
Substituting this value back into either equation, we get y = 24. So, the coordinates of point
G are (31, 24). Now, we can use the formula for the area of a triangle given its vertices:
Area = 1

2 |x1(y2− y3)+x2(y3− y1)+x3(y1− y2)|. Substituting the coordinates of points
B, G, and E into the formula, we get: Area = 1

2 |18(24− 0) + 31(0− 0) + 57(0− 24)| =
1
2 |18(24)− 57(24)| = 1

2 |24(18− 57)| = 1
2 |24(−39)| = 1

2 · 24 · 39 = 468
ICL: Alright, let’s break this down step by step. We have six points A,B,C,D,E and F
lying in a straight line in that order. We also have a point G not on the line, and we know the
lengths of several line segments. We need to find the area of
triangleBGE. First, let’s find the lengths of AB, BC, CD, DE, and EF . We can use the
given information to do this: 1. AC = AB+BC = 26 2. BD = BC+CD = 22 3. CE =
CD+DE = 31 4. DF = DE+EF = 33 5. AF = AB+BC +CD+DE+EF = 73
We can solve these equations to find the lengths of AB, BC, CD, DE, and EF : 1. From
AC = 26, we have AB + BC = 26. 2. From BD = 22, we have BC + CD = 22. 3.
From CE = 31, we have CD +DE = 31. 4. From DF = 33, we have DE + EF = 33.
5. From AF = 73, we have AB+BC+CD+DE+EF = 73. Substituting the values of
AC, BD, CE, and DF into the equations, we get: 1. AB +BC = 26 2. BC + CD = 22
3. CD + DE = 31 4. DE + EF = 33 5. AB + BC + CD + DE + EF = 73.
Solving these equations, we find: 1. AB = 10 2. BC = 16 3. CD = 6 4. DE = 25 5.
EF = 8. Now, let’s find the coordinates of points A,B,C,D,E, F and G. We can assume
that A is at the origin, so A = (0, 0). Then, we have: 1. B = (10, 0) 2. C = (26, 0)
3. D = (32, 0) 4. E = (57, 0) 5. F = (65, 0). Since G is not on the line, we can
assume that G has coordinates (x, y). We know that CG = 40 and DG = 30, so we can
use the distance formula to find the coordinates of G: 1. CG =

√
(x− 26)2 + y2 = 40

2. DG =
√

(x− 32)2 + y2 = 30. Solving these equations, we find that G = (26, 30).
Now, we can find the area of △BGE using the coordinates of B,G,E: 1. B = (10, 0) 2.
G = (26, 30) 3. E = (57, 0). Using the formula for the area of a triangle with coordinates
(x1, y1), (x2, y2), (x3, y3): Area = 1

2 |x1(y2−y3)+x2(y3−y1)+x3(y1−y2)|. Substituting
the coordinates of B,G,E into the formula, we get:
textArea = 1

2 |10(30−0)+26(0−0)+57(0−30)|Ṡimplifying, we find: Area = 1
2 |300+

0− 1710|. Area = 1
2 | − 1410|. Area = 1

2 · 1410. Area = 705
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Problem 27

Problem:Let x1, x2, x3, . . . be a sequence of rational numbers defined by x1 = 25
11 and

xk+1 =
1

3

(
xk +

1

xk
− 1

)
for all k ≥ 1. Then x2025 can be expressed as m

n , where m and n are relatively prime
positive integers. Find the remainder when m+ n is divided by 1000.
Base Model:To solve this problem, we need to analyze the given recursive sequence and
find a pattern or a closed-form expression for xk. Let’s start by computing the first few
terms of the sequence to see if we can identify any patterns. 1. Compute x1:

x1 =
25

11

2. Compute x2:

x2 =
1

3

(
x1 +

1

x1
− 1

)
=

1

3

(
25

11
+

11

25
− 1

)
=

157

275

3. Compute x3:

x3 =
1

3

(
x2 +

1

x2
− 1

)
=

1

3

(
157

275
+

275

157
− 1

)
=

18983

43325

4. Compute x4:

x4 =
1

3

(
x3 +

1

x3
− 1

)
=

1

3

(
18983

43325
+

43325

18983
− 1

)
=

155683843

80840025

Now, let’s analyze the pattern in the sequence. We can see that the numerators and denom-
inators of the terms are increasing rapidly. However, we can notice that the numerators and
denominators of consecutive terms are relatively prime. This suggests that the terms of the
sequence are in their simplest form. To find x2025, we need to find a pattern in the sequence
or a closed-form expression for xk. However, finding a closed-form expression for xk is
not straightforward. Instead, we can use the fact that the terms of the sequence are in their
simplest form and that the numerators and denominators are relatively prime. Let’s denote
the numerator of xk as ak and the denominator as bk. Then, we have:

xk =
ak
bk

We can rewrite the recursive formula as:

ak+1

bk+1
=

1

3

(
ak
bk

+
bk
ak

− 1

)
Multiplying both sides by 3akbk, we get:

3ak+1bk = a2k + b2k − akbk

This equation shows that ak+1 and bk+1 are relatively prime, as ak and bk are relatively
prime. Now, let’s find the remainder when m + n is divided by 1000. We know that x2025

can be expressed as m
n , where m and n are relatively prime positive integers. Therefore, we

need to find the remainder when m + n is divided by 1000. Since ak+1 and bk+1 are rela-
tively prime, we can conclude that m and n are relatively prime. Therefore, we can use the
Chinese Remainder Theorem to find the remainder when m + n is divided by 1000. How-
ever, finding the exact values of m and n is not possible without a closed-form expression
for xk. Therefore, we can only conclude that the remainder when m+ n is divided by 1000

is a number between 0 and 999. The answer is 0
ICL: < think > Okay, so I need to find x2025 for a sequence of rational numbers defined by
x1 = 25

11 and xk+1 = 1
3

(
xk + 1

xk
− 1

)
for all k ≥ 1. Then, I need to express x2025 as m

n ,
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where m and n are relatively prime positive integers. Finally, I need to find the remainder
when m + n is divided by 1000. First, let’s find a pattern in the sequence. I’ll compute
the first few terms: x1 = 25

11 x2 = 1
3

(
25
11 + 11

25 − 1
)
= 1

3

(
625+121−275

275

)
= 1

3

(
471
275

)
=

157
275 x3 = 1

3

(
157
275 + 275

157 − 1
)

= 1
3

(
24649+75625−43225

43225

)
= 1

3

(
57049
43225

)
= 57049

129675 x4 =
1
3

(
57049
129675 + 129675

57049 − 1
)

= 1
3

(
3254000001+1682705625−756250000

756250000

)
= 1

3

(
4180455626
756250000

)
=

4180455626
2268750000 Now, I can see that the numerator and denominator of xk are both increasing
rapidly. However, the pattern is not immediately clear. Let’s try to simplify the expres-
sion for xk+1: xk+1 = 1

3

(
xk + 1

xk
− 1

)
=

x2
k+1−xk

3xk
Now, let’s rewrite the expression for

xk+1 in terms of xk: xk+1 =
x2
k−xk+1
3xk

I can see that the numerator of xk+1 is a quadratic

polynomial in xk. Let’s try to factor this polynomial: xk+1 =
(xk− 1

2 )
2+ 3

4

3xk
Now, I can see

that the numerator of xk+1 is always positive, since it’s the sum of a square and a positive
constant. This means that xk+1 is always positive, as long as xk is positive. Since x1 = 25

11
is positive, all terms in the sequence are positive. Now, let’s consider the sequence modulo
1000. We know that the numerator and denominator of x2025 are relatively prime, so we can
find the remainder of m + n modulo 1000 by finding the remainders of m and n modulo
1000 and adding them. Let’s compute the first few terms of the sequence modulo 1000:
x1 ≡ 25 (mod 1000) x2 ≡ 157 (mod 1000) x3 ≡ 57049 (mod 1000) x4 ≡ 4180455626
(mod 1000) I can see that the remainders are not forming a simple pattern. However, since
the sequence is defined recursively, I can use a computer program to compute the remain-
ders of the first 2025 terms and find the remainder of x2025 modulo 1000. After computing
the remainders of the first 2025 terms, I find that the remainder of x2025 modulo 1000 is
713. Therefore, the remainder when m + n is divided by 1000 is 713 . < /think > Let
x1, x2, x3, . . . be a sequence of rational numbers defined by x1 = 25

11 and

xk+1 =
1

3

(
xk +

1

xk
− 1

)
for all k ≥ 1. Then x2025 can be expressed as m

n , where m and n are relatively prime
positive integers. Find the remainder when m + n is divided by 1000. To find x2025,
we can start by calculating the first few terms of the sequence to see if there’s a pat-
tern: x1 = 25

11 x2 = 1
3

(
25
11 + 11

25 − 1
)

= 157
275 x3 = 1

3

(
157
275 + 275

157 − 1
)

= 57049
129675

x4 = 1
3

(
57049
129675 + 129675

57049 − 1
)
= 4180455626

2268750000 We can see that the terms are becoming more
complex, and it’s not easy to spot a pattern. However, we can notice that the numerators and
denominators are relatively prime for each term. Now, we need to find the value of x2025.
Since we can’t easily find a pattern, we can use a computer program to calculate the value of
x2025 by iterating the recurrence relation. After doing this, we find that x2025 = m

n , where
m and n are relatively prime positive integers. Finally, we need to find the remainder when
m + n is divided by 1000. Since m and n are relatively prime, we can use the Chinese
Remainder Theorem to find the remainder when m+n is divided by 1000. After doing this,
we find that the remainder is 713 .
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Figure 7: Pass@1 to Pass@256 on AIME25 with Qwen-7B
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Figure 8: Pass@1 to Pass@256 on AIME25 with Qwen-32B
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Figure 9: all problems score distribution with Qwen2.5-32B
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Figure 10: all problems score distribution with Qwen2.5-7B
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