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Abstract

Imaging physical objects that are free to rotate and translate in 3D is challenging. While
an object’s pose and location do not change its nature, varying them presents problems
for current vision models. Equivariant models account for these nuisance transformations,
but current architectures only model either 2D transformations of 2D signals or 3D trans-
formations of 3D signals. Here, we propose a novel convolutional layer consisting of 2D
projections of 3D filters that models 3D equivariances of 2D signals—critical for capturing
the full space of spatial transformations of objects in imaging domains such as cryo-EM.
We additionally present methods for aggregating our rotation-specific outputs. We demon-
strate improvement on several tasks, including particle picking and pose estimation.
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1. Introduction

Rotation and translation introduce challenges to many computer vision tasks including face
and eye tracking (Liu, 2022), galactic imaging (Lintott et al., 2008), and cryogenic electron
microscopy (cryo-EM) (Cheng et al., 2015; Sigworth, 2015). In each case, the perceived
object is free to move in three dimensions before being projected onto a 2D image plane.
The object’s identity remains the same and thus the information content of the image should
be somewhat conserved. We aim to capture this symmetry with models incorporating more
expressive 3D equivariances that still act on images alone.

Related Work Recent works have developed numerous techniques to achieve equivari-
ance to transformations such as 2D rotation and scaling (Nasiri and Bepler, 2022; Marcos
et al., 2017; Cohen and Welling, 2016). Similarly, a wide variety of methods have been in-
troduced to incorporate equivariance to rotations in three dimensions (Thomas et al., 2018;
Worrall and Brostow, 2018; Kondor et al., 2018). However, none of these function directly
in the 2D image domain.

2. Methods

SO(3)-Equivariant Convolutional Layers We begin by describing the cryo-EM image
formation process. Each particle’s volume V first adopts some orientation ϕ corresponding
to a rotation R ∈ SO(3) and a translation t ∈ R3. The volume’s density is then projected
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Figure 1: Particle picking model architecture, consisting of group convolutional modules
to extract rotation-specific features, modules to propagate information between
the corresponding rotations, and an aggregation module to synthesize the final
rotation-specific feature maps into overall particle probabilities.

along the Z-axis (according to our convention) via summation by PZ into the 2D image
plane. This projection removes information specific to Z-positions, so in typical formulations
t ∈ R2. The image is finally subject to modulation by the microscope contrast transfer
function C and the addition of noise W . Thus, the final observed 2D image becomes

I = (C ◦ PZ)(R(V ) + t) +W (1)

. To make our model equivariant to these rotation and projection operations, we generate
convolutional filters by applying the same operations to 3D model weights. For each channel,
a 3D weight is initialized. We then sample rotations from SO(3), as described below,
and apply them to the weight. Given these newly-rotated 3D arrays, we then project
them by taking their means (which was more stable than summation) along the Z-axis.
This produces 2D images of the weight in various orientations, which we use as filters
in traditional 2D convolution. The 2D convolutions are grouped to ensure that filters
and feature maps remain matched according to their orientations. This results in filters
and layers that are equivariant to rotation and projection, in addition to possessing the
translational equivariance of traditional CNNs. Our architecture, by virtue of the linear
projection PZ , is invariant to Z-axis translation. We can vary this property, and others,
by varying our choice of projection P , as we discuss below. We provide a schematic of a
typical particle picking model in Figure 1, and one of our layer’s mechanics in Figure 2.

Rotation Sampling In order to generate a finite number of projections about the group
SO(3), we need to first discretize it. We begin by finding points on the sphere–defined by
two angles–with which to align the Z-axis and then rotate by a third angle about these
newly-aligned Z’-axes. We do so using a modification of the Hopf fibration (Yershova et al.,
2010). For simplicity, our models generate the first two angles using the Fibonacci sphere,
a simple and relatively accurate sampling method (González, 2010). We use the chosen
angles to create 3D affine flow field grids, on which we sample the weights we are rotating,
as used by Jaderberg et al. (2015).

Rotation Aggregation For tasks that don’t need rotation-specific features, we synthe-
size our feature vector into a single, invariant output. The first method we consider for this
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Figure 2: SO(3)-rotation-and- projection-equivariant convolutional module. Each module
first rotates R copies of a 3D weight to unique orientations in SO(3). Each 3D
weight is then projected into a 2D plane, which is finally convolved with the 2D
input image or feature maps.

is max-pooling over rotations, corresponding to taking the score of the most likely rotation.
Our second method–a novel approach–combines the probabilities associated with each ori-
entation. Let Y be a Bernoulli random variable indicating whether an object is present in
the given image, and let {yi, i ∈ [1, R]} be Bernoulli random variables indicating whether
an object is present with rotation i. Thus:

P (Y = 1) = 1− P (Y = 0) = 1−
R∏
i=1

P (yi = 0) (2)

We deem this the ”at least one” (AL1) aggregation. To maintain numerical stability, we
compute the above in the log domain. We also add to each output logit a (negative) bias

of log(2
1
R − 1) to counteract the increasing false-positive rate associated with increasing R

(Benjamini and Hochberg, 1995).

3. Experiments

Image Classification We evaluate our architectures on a variety of cryo-EM datasets:
(EMPIAR-10025 (Campbell et al., 2015), EMPIAR-10028 (Wong et al., 2014), and EMPIAR-
11076 (Ehrenbolger et al., 2020)). We compare a variety of models with a range of equiv-
ariant properties: a linear model, a CNN, a ResNet, an SO(2)-equivariant model (in-plane
rotations only), and our SO(3)-equivariant models. Comparing various levels of equivari-
ance allows us to observe the performance gains associated with explicitly modeling each
type of symmetry. Equivariant models are tested with our AL1 aggregation. We also eval-
uate a model using a single SO(3)-equivariant layer on the cryo-EM datasets in an attempt
to generate rough 3D models of the underlying particles.

Pose Estimation Here, we train models to predict an object’s orientation from its 2D
projection. Our model uses equivariant layers to output weights over r discretized 3D-
rotations and offsets ϕ associated with each one of these rotations. In each ri, the filters are
rotated by angle θi, so to get the angles for each ri dimension we use θi + ϕi. We train this
model by minimizing the loss function described in Appendix B. We compare models using
convolutional layers, SO(2)-equivariant layers, and multiple variants of our SO(3) model.
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In each, we compare the arc distance between the predicted and ground-truth quaternion
components. We further evaluate how well each model can generalize to angles not seen
in the training distribution, inspired by the important preferred orientation problem in
cryo-EM (Cheng et al., 2015).

4. Results

Image Classification Our results in Table 1 demonstrate that our models perform sim-
ilarly or better than those without SO(3) equivariance, all while using fewer parameters.
A similar table for generic image datasets is presented in Appendix C. In that setting, our
models perform similarly to other models tested, but they continue to demonstrate increased
parameter efficiency.

Table 1: Classification statistics for various models on our cyro-EM datasets.

Dataset Method Parameters Loss↓ AUPR↑ Accuracy↑

EMPIAR-10025

Linear 2026 0.1172 0.7913 0.9543
Convolutional 74054 0.2906 0.8732 0.9611
ResNet 73598 0.1645 0.873 0.968
SO(2)-AL1 74137 0.0769 0.8833 0.9671
SO(3)-AL1 1-filter 91126 0.5372 0.7793 0.9164
SO(3)-AL1 63369 0.0733 0.8927 0.9691

EMPIAR-10028

Linear 2026 0.1274 0.8127 0.9543
Convolutional 74054 0.3449 0.8554 0.9588
Resnet 73598 0.2079 0.8676 0.9622
SO(2)-AL1 74137 0.0919 0.8766 0.9605
SO(3)-AL1 1-filter 91126 0.2409 0.8216 0.9563
SO(3)-AL1 63369 0.093 0.8818 0.9582

EMPIAR-11076

Linear 2026 0.1172 0.7913 0.9543
Convolutional 74054 0.2246 0.8627 0.9625
ResNet 73598 0.201 0.8747 0.9672
SO(2)-AL1 74137 0.0793 0.8813 0.967
SO(3)-AL1 1-filter 91126 0.5372 0.7793 0.9163
SO(3)-AL1 63369 0.0746 0.8884 0.9698

Pose Estimation Our results in Table 2 show that our 3D group convolutional mod-
els outperform the other methods in correctly predicting rotation angles of projections.
Furthermore, our models display greater generalizability; after being trained on narrowly-
distributed data, they outperform the others in predicting rotations of data sampled from
outside of the training distribution.
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Table 2: Details of the models and their performance over the data with various train-
ing/testing data combinations, either uniformly sampled rotation angles (Uni-
form), or sampled using a narrow Gaussian distribution around a random angle
(Preferred). The right columns describes how well a model generalizes to unseen
angles.

Method R Parameters Unif/Unif Pref/Pref Unif/Pref

Conv2D – 2.74M 0.508 0.018 1.939
SO(2) 9 2.75M 0.231 0.029 1.926
SO(3)-Unimodal 256 2.80M 0.288 0.015 1.776
SO(3) 256 2.74M 0.14 0.103 1.156

5. Discussion

The models we present here demonstrate similar or better performance, greater general-
izability, and improved parameter efficiency than non- and SO(2)-equivariant models in
image classification and cryo-EM pose estimation. Additionally, our models generalize sig-
nificantly better from data adopting preferred orientations. In generic image classification,
it is unclear why our models’ are more efficient than others. Though such images lack a
single projected volume, their subjects still undergo rotation and projection; therefore, we
hypothesize that modeling these operations provides some weaker inductive bias than for
the comparatively restricted cryo-EM environment.

In the future, we will continue to examine our relationship between the discrete cover’s
density and performance, data efficiency, and deeper models with richer features. We also
aim to explore the structure of our models’ SO(3)-equivariant feature space, and applica-
tions like projection alignment. As we’ve demonstrated the usefulness of including richer
symmetries, there are numerous areas for future work to explore. One area is formulating
more complex projection operators that include properties like perspective and occlusion.
Another area is adapting this approach to lower- or higher-dimensional signals. For ex-
ample, architectures that model 4D transformations in 3D signals. Due to the curse of
dimensionality, higher-dimensional applications will likely require even more sophisticated
sampling and aggregation methods.
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Appendix A. Data Preprocessing

Our cryo-EM datasets consisted of EMPIAR-10025 (Campbell et al., 2015), EMPIAR-
10028 (Wong et al., 2014), and EMPIAR-11076 (Ehrenbolger et al., 2020). We used Topaz
(Bepler et al., 2019) to downsample all micrographs to 8 Å/pixel and extract 200,000 45x45
crops with 10% positive labels, mimicking the sparsity of cryo-EM labels. All images were
individually normalized. The datasets were split into 70% training, 15% validation, and
15% testing. We train our pose estimation models on the projections of the (arbitrarily
chosen) volume from (Imada et al., 1998). For this volume, we have generated two datasets:
one is based on the uniform sampling of the projection angles over SO(3), and the other
one is based on the preferred orientation, where the projection angles are sampled from a
Gaussian distribution with a standard deviation of 0.1 around a randomly sampled angle
(the preferred orientation). Each training dataset has 10,000 samples, and we use a separate
dataset of 1000 samples for testing.

Appendix B. Training Details

All classification models were trained to convergence on one 80GB NVIDIA A100 GPU for a
maximum of 200 epochs using a batch size of 512. Early stopping was used with a patience
of 5 epochs. We reduced the learning rate upon validation loss plateaus with patience of
three epochs, the Adam optimizer (Kingma and Ba, 2014), and an initial learning rate of
10−3. Binary classification models were evaluated on the area under the precision-recall
curve and trained using binary cross-entropy loss.

We train pose regression models by minimizing

−logP (θpred|r) = −Σi(logP (θpred|ri) + logPi) (3)

The first part of this loss function is calculated based on the quaternion distance between
the predicted angles for rk and θk, where k is the ground-truth rotation dimension. For
calculating the second part of this loss function which is logPi, we use cross-entropy loss. We
identify the class assignments for both the ground-truth of samples using argmini(1−qθi)

2,
where q is the ground-truth rotations in quaternions. We use this class assignment along
with the weights over r, which is outputted by the model to calculate the logPi. We are using
the same number of filters in all these models. They are trained with the Adam optimizer,
learning rate of 10−3 which is decayed by 0.9 after 10 iterations with no improvement in
the loss, and batch size of 100 samples. We train all our models for 100 iterations and save
the one with the best performance over the validation set.
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Appendix C. Generic Multi-class Image Classification

We additionally tested our models on the common 10-class image dataset CIFAR-10 (Krizhevsky,
2009) and Galaxy Zoo 2–a subset of the Galaxy Zoo/Sloan Digital Sky Survey dataset with
8 classes (Willett et al., 2013). Both datasets consist of color images. Galaxy Zoo 2 (GZ2)
images were 424x424 pixels, so they were center-cropped to 180 pixels (minimally clipping
the galaxies pictured), and resized to 45 pixels. CIFAR-10 images are 32x32 pixels, so they
were simply normalized. The CIFAR and GZ2 datasets already contain train/test splits, so
the training images were split to yield similar validation sets. Our models perform roughly
in-line with the ResNet and SO(2)-equivariant models while using fewer parameters.

Table 3: Classification statistics for generic image classification.

Dataset Method Parameters Loss↓ Accuracy↑

CIFAR-10

Linear 32680 1.7236 0.4064
Convolutional 51104 1.191 0.6017
ResNet 89240 1.2748 0.5721
SO(2)-AL1 51178 1.2481 0.5795
SO(3)-AL1 48842 1.2605 0.5628

Galaxy Zoo 2

Linear 48608 1.3345 0.4793
Convolutional 560176 0.6395 0.784
ResNet 639216 0.6581 0.7743
SO(2)-AL1 802568 0.6277 0.779
SO(3)-AL1 691784 0.6569 0.7656
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