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Abstract

Estimating the expectation of a Bernoulli random variable based on N independent trials is
a classical problem in statistics, typically addressed using Binomial Proportion Confidence
Intervals (BPCI). In the control systems community, many critical tasks—such as certifying
the statistical safety of dynamical systems—can be formulated as BPCI problems.
Conformal Prediction (CP), a distribution-free technique for uncertainty quantification, has
gained significant attention in recent years and has been applied to various control systems
problems, particularly to address uncertainties in learned dynamics or controllers. A variant
known as training-conditional CP was recently employed to tackle the problem of safety
certification.
In this note, we highlight that the use of training-conditional CP in this context does not
provide valid safety guarantees. We demonstrate why CP is unsuitable for BPCI problems
and argue that traditional BPCI methods are better suited for statistical safety certification.

1 Introduction

Uncertainty quantification is a critical aspect in fields where predictions influence safety and performance
guarantees, such as in control systems. Probabilistic guarantees, including those derived from the theory
of Probably Approximately Correct (PAC) learning, play an important role in providing bounds on the
accuracy of predictions under limited training data.

Conformal Prediction (CP) is one of the approaches that has gained visibility due to its ability to provide valid
prediction sets without requiring strong distributional assumptions. A distinctive characteristic of CP is that,
rather than providing a point prediction of the variable of interest, it provides set predictions with a valid
bound on the probability that the predicted set contains the true variable (Vovk et al., 2005). This technical
note focuses on a specific formulation of CP known as training-conditional CP (Vovk, 2012). However,
existing applications in areas such as safety verification for dynamical systems have shown limitations in the
interpretation of these guarantees. In particular, recent works have applied training-conditional CP to safety
verification problems in control systems (Chilakamarri et al., 2024; Lin & Bansal, 2024; Vincent et al., 2024).
While promising, these applications have misinterpreted the implications of CP’s set prediction framework,
especially in cases where the underlying data can be modeled as Bernoulli random variables. This paper
aims to rigorously analyze these limitations and provide an alternative framework for interpreting PAC-
based guarantees in such contexts. In section 2 we recall existing methods for estimating the expectation of
a Bernoulli random variable. In section 3 we introduce the formalism of training-conditional CP, followed
by a detailed analysis of its PAC guarantees. In section 4 we present a special case of interest, where the
nonconformity measure corresponds to an indicator function, leading to Bernoulli-distributed conformity
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scores. We demonstrate that the PAC guarantees derived from this setting are unsuitable for estimating the
expectation of a Bernoulli random variable.

2 Binomial Proportion Confidence Intervals

Consider a setting where there are N + 1 independent and identically distributed (i.i.d.) Bernoulli random
variables (r.v.) R1, R2, ..., RN , RN+1 with parameter b, i.e. Ri ∼ Bernb and PrBernb

(Ri = 1) .= b. Given a
realization of the first N r.v., the problem is to estimate an interval of values for the probability that the
N + 1-th variable will be equal to 1, or in other words we want to estimate the parameter b. This is a very
well studied problem and it is known in the literature under the name of Binomial Proportion Confidence
Intervals (BPCI), see Dean & Pagano (2015) for a survey. We give below a quick overview of the setting.

Define the new r.v. Y
.=

∑N
i=1 Ri. It is well known that Y has a binomial distribution Y ∼ BinN,b with N

trials and probability of success b, defined by PrBinN,b
(Y = y) .=

(
N
y

)
by(1−b)N−y for y ∈ Z[0,N ], where Z[0,N ]

denotes the integers 0, 1, ..., N . Let b̌ : Z[0,N ] → [0, 1] and b̂ : Z[0,N ] → [0, 1] be two random variables serving
as interval estimators. The coverage probability of the interval estimator [b̌, b̂] for Y ∼ BinN,b is defined as

ρ(b, b̌, b̂) .= PrBinN,b
(b̌(Y ) ≤ b ≤ b̂(Y )). (1)

In the expression above b is fixed and it’s the true parameter of the binomial distribution describing Y . Note
that b̌ and b̂ are a transformation of the same random variable Y . This expression can also be rewritten
equivalently as

ρ(b, b̌, b̂) =
∑
y∈I

PrBinN,b
(Y = y),

where I
.= {y ∈ Z[0,N ] : b̌(y) ≤ b ≤ b̂(y)}. For α ∈ (0, 1) an interval estimator [b̌, b̂] is a conservatively valid

(sometimes also called ’exact’ or ’secure’) 1 − α confidence interval if the coverage probability ρ(b, b̌, b̂) is
greater or equal to 1 − α for all the values of b. An example of a conservatively valid interval estimator is
given by the Clopper-Pearson method (Clopper & Pearson, 1934), see also Dean & Pagano (2015) for more
estimators.

Before concluding this section, we rewrite equation 1 in an equivalent form that is more commonly found in
the literature on Probably Approximately Correct (PAC) bounds. First, note that PrBernb

(RN+1 = 1) = b.
Second, since Y is a r.v. obtained as a transformation of the i.i.d. Bernoulli random variables R1, . . . , RN , the
probability of any event M ⊆ Z[0,N ], PrBinN,b

(Y ∈ M) can be equivalently described by PrN
Bernb

({(r1, ..., rN ) :∑
i≤N ri ∈ M}), where PrN

Bernb
is the product probability measure induced by the N i.i.d. Bernoulli random

variables. Hence, we rewrite the definition of a conservatively valid 1 − α confidence interval by revisiting
equation 1:

PrBinN,b
(b̌(Y ) ≤ b ≤ b̂(Y )) = PrN

Bernb

b̌

∑
i≤N

Ri

 ≤ PrBernb
(RN+1 = 1) ≤ b̂

∑
i≤N

Ri

 ≥ 1 − α, (2)

for all b ∈ [0, 1]. We will use this form of the coverage probability to draw a comparison with the guarantees
given by training-conditional CP.

3 Training-conditional Conformal Prediction

Conformal Prediction is a statistical tool that uses the available data sampled from identically and indepen-
dently from an underlying distribution to output predictions for which an error probability can be computed.
The original formulation of CP can be informally explained as follows. Suppose that we want to solve a
classification problem and we have method that given a feature x outputs a label ŷ. Given a desired error
probability ϵ, conformal prediction uses the available data to generate a set of labels, typically containing ŷ,
containing the true label y corresponding to the feature x with a probability not smaller than 1−ϵ (Shafer &
Vovk, 2008). It is a method capable of augmenting a (usually unreliable) point prediction to a set prediction
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with probabilistic guarantees of correctness, i.e. it construct a set predictor. The original formulation of CP
has been successfully applied to both classification and regression problems, see Angelopoulos et al. (2023);
Fontana et al. (2023) for a recent survey.

In this section we introduce instead the basic concepts of training-conditional CP (Vovk, 2012). Training-
conditional CP is a variant of the original formulation of CP. While the quality of the guarantees differs
from the original, the core idea remains the same, that is, constructing set predictions with some form of
guarantees: training-conditional CP produces PAC-style guarantees. In the following, we give a self-contained
overview of the theoretical details of training-conditional CP.

Let (Z, F , P) be a probability space where Z, F and P denote a sample set, a σ-algebra, and a probability
measure respectively, and consider L + 1 i.i.d. random variables (r.v.) Z ′

1, ..., Z ′
M , Z1, ..., ZN and ZN+1 with

L = N + M . Let Z ′
i for i = 1, ..., M be the training set and Zi for i = 1, ..., N be the calibration set.

Note that ZN+1 is not part of either set. We use the lower case of a r.v. to denote a realization1. An
Inductive Nonconformity M -measure (INM) is a measurable function A : ZM × Z → R. While no additional
requirements are needed for A, intuitively an effective INM will assign a high real number to any element
in Z that does not conform to a training set (in ZM ). An Inductive Nonconformal Predictor (INP) is a set
predictor defined as

Γϵ(z1, ..., zN , z′
1, ..., z′

M ) .= {z ∈ Z : pz > ϵ}, (3)

where ϵ ∈ [0, 1] is the significance level, the p-values are defined as

pz .= |{i : Ri ≥ Rz}| + 1
N + 1 , (4)

and
Ri

.= A((z′
1, ..., z′

M ), zi) for i = 1, ...N, Rz .= A((z′
1, ..., z′

M ), z), (5)

are the nonconformity scores.

In the following, when it is clear from the context we omit the arguments of the INP and write Γϵ instead of
Γϵ(z1, ..., zN , z′

1, ..., z′
M ). Intuitively, z belongs to the INP Γϵ if there are strictly more than ⌊ϵ(N + 1) − 1⌋

elements Ri in the calibration set with a higher (worse) or equal nonconformity score than Rz. It is easy to see
that ϵ′ < ϵ′′ implies that Γϵ′′ ⊆ Γϵ′ . The INP is the set predictor mentioned in the discussion at the beginning
of this section: similarly to the original formulation of CP, given some prediction method depending on the
training set, the INP uses the available calibration set to produce a set prediction guaranteed to contain
the correct prediction. The elements included in the set prediction are all the z ∈ Z that conform well
enough with the calibration set, according to the chosen INM. The following theorem specifies the PAC-style
guarantees for training-conditional CP.

Theorem 1 (Vovk (2012)) Choose ϵ, E ∈ [0, 1]2, fix the training set Z ′
1 = z′

1, ..., Z ′
M = z′

M , let N be the
size of the calibration set, and consider the event

SE
.= {(z1, ..., zN ) ∈ ZN : P(ZN+1 ∈ Γϵ(z1, ..., zN , z′

1, ..., z′
M )) ≥ 1 − E} (6)

in the σ-algebra FN of the product probability space (ZN , FN , PN ), where Γϵ is defined according to equations
3-5. It holds that

PN (SE) ≥ 1 − δ, (7)

where δ
.= BinN,E(J) =

∑J
j=0

(
N
j

)
Ej(1 − E)N−j is the cumulative binomial distribution with N trials and

probability of success E, with J
.= ⌊ϵ(N + 1) − 1⌋.

1Our considerations hold also for the case where Z = X × Y where X and Y represent a measurable feature space and label
space respectively and each z ∈ Z may be written as z = (x, y) where x ∈ X is some feature and y ∈ Y a label. For clarity we
omit the exact structure of Z.

2A brief note on the notation. In the original formulation of CP ϵ has a double role: it is the significance level (appearing
as the index to the INP Γϵ) and it describes the coverage probability as 1 − ϵ, see Shafer & Vovk (2008) for details. In the
training-conditional formulation the latter role is covered by E, that is 1 − E is the coverage probability and ϵ remains the
significance level, see Vovk (2012).
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The quantities 1 − δ and 1 − E are sometimes referred to as the confidence and coverage probability (which
is not the coverage probability mentioned in section 2). Theorem 1 is to be understood in the following way.
Given two values ϵ and E, for the given training set, the event SE is the subset of ZN containing all the
tuples (z1, ..., zN ) such that the INP Γϵ contains a realization of ZN+1 with probability at least 1 − E, or,
in other words, Γϵ returns a subset of Z of measure at least 1 − E. By equation 7 the measure of this set
of tuples SE is at least 1 − δ, where δ depends on ϵ, β and N . This form of guarantees where a double
layer of nested probabilities is present is called Probably Approximately Correct (PAC). Moreover, this is
a distribution-free result, that is, it holds for every P as long as the samples used to construct the INP are
i.i.d. and P-distributed. In particular, in this work we focus on Bernoulli-distributed r.v.’s, and Theorem 1
holds for any value of the parameter b of a Bernoulli distribution. Observe that the confidence 1 − δ and
the quantity 1 − α mentioned in section 2 play a similar role in that they described the outmost layer of
probability, compare for instance equations equation 7 and equation 2. Finally, we note that ϵ and E are
chosen a priori; in other words, they cannot be defined as random variables depending on a realization of
the calibration set, as is erroneously done in Lin & Bansal (2024).

4 A Special Case of Interest

In this section we draw a parallel between the BPCI and training-conditional CP and show the fundamental
difference between the two approaches.

Let the INM be an indicator function for the set Q ⊂ Z, that is

A((z′
1, ..., z′

M ), z) .=
{

1 if z ∈ Q,

0 if z ∈ Q.
(8)

Typically Q depends on z′
1, ..., z′

M . For example, in binary classification problems, the training set may be
used to train a parameterized function that assigns one of two labels to all z ∈ Q, as in Support Vector
Machines. However, since Theorem 1 assumes a given training set, we omit this dependency here. A point
z with a high nonconformity score is interpreted as poorly conforming to the training set. For this reason,
in section 4.1 the set Q will represent the unsafe region of a dynamical system.
Given a fixed training set, the nonconformity scores of the calibration set follow an i.i.d. Bernoulli distribution
with parameter b, i.e. Ri ∼ Bernb, where b

.= P(Q). Using a BPCI method it is directly possible to derive a
conservatively valid confidence interval for the parameter b describing the probability of drawing a sample
in Q, as shown in section 2. Can a training-conditional CP approach also provide a conservatively valid
confidence interval for b based on the calibration set? The answer is no. We illustrate this with an example.

Example 1 - Part 1.

Suppose that the calibration set has size 2, i.e. N = 2. Up to reindexing, there are three distinct outcomes.
Case 1: With probability (1 − b)2 we have z1, z2 /∈ Q, resulting in nonconformity scores R1 = R2 = 0. We
construct the prediction set Γϵ following its definition equation 3.

• For all z ∈ Q, we have that Rz = 1, meaning z has the highest (worst) nonconformity score. Since
|{i ≤ 2 : Ri ≥ Rz}| = 0 the corresponding p-value is pz = 1

3 .

• For all z ∈ Q we have that Rz = 0 resulting in and pz = 1.

The inclusion of z in the predicted set Γϵ depends on the significance level ϵ.

• If ϵ ∈ [ 1
3 , 1) then any z ∈ Q is excluded from Γϵ since pz = 1

3 ≤ ϵ, while all z ∈ Q are included since
pz = 1 > ϵ. Thus, Γϵ = Q.

• If ϵ ∈ [0, 1
3 ) then any z ∈ Q ∪ Q = Z has a sufficiently high p-value, meaning Γϵ = Z.

Case 2: With probability 2b(1 − b) we have (z1 ∈ Q ∧ z2 ∈ Q) or (z2 ∈ Q ∧ z1 ∈ Q) hence R1 ∪ R2 = {0, 1}.
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• If Rz = 1 then pz = 2
3 .

• If Rz = 0 then pz = 1.

Thus:

• If ϵ ∈ [0, 2
3 ) then Γϵ = Z.

• If ϵ ∈ [ 2
3 , 1) then Γϵ = Q.

Case 3: With probability b2 we have z1, z2 ∈ Q and R1 = R2 = 1.

• If Rz = 1 then pz = 1.

• If Rz = 0 then pz = 1 as well.

Then for any significance level ϵ ∈ [0, 1) it holds Γϵ = Z.

In summary, for any fixed ϵ the INP is fully determined by the calibration set through equations 3-5; as a
result, Γϵ can be thought equivalently as a discrete random variable with support Q, Q and Z, see Figure 1.

(z1, z2)

Q
Z

Z

Q × Q Q × Q

Q × QQ × Q

ϵ Q

Q

Z

Γϵ

M
ass

Figure 1: On the left, a representation of the product space Z2 = Z × Z, partitioned accordingly to the
sets Q and Q, and a hypothetical calibration set (z1, z2) as in Case 1. On the right, a summary of Case 1,
2 and 3. On the x-,y-,z-axes are represented the values of ϵ, the prediction (or support) of the INP, and
the probability mass function respectively. For any given ϵ, the INP Γϵ can be viewed as a discrete random
variable with support Q, Q and Z. In the figure, for ϵ = 0.8 and b = 0.3, the INP predicts Q with probability
0, Z with probability b2, and Q with probability 1 − b2.

Example 1 - Part 2.

Now, fix E ∈ [0, 1] and consider any ϵ ∈ [ 2
3 , 1). Theorem 1 implies that

P2(SE) ≥ E2, (9)

where
SE

.= {(z1, z2) ∈ Z2 : P(Z3 ∈ Γϵ(z1, z2, z′
1, ..., z′

M )) ≥ 1 − E}.
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However, equation 9 does not provide a confidence interval for the probability of drawing a new sample in
Q, or conversely in Q. For ϵ ∈ [ 2

3 , 1), Γϵ = Z with probability b2 (from Case 3) and Γϵ = Q with probability
1 − b2 (from Case 1 and 2)3, see Figure 1. Theorem 1 is a distribution-free result and as such it holds for
all values of b, leading to two cases b ≤ E and b > E:

1. If b ≤ E (i.e. 1 − b ≥ 1 − E):
• If z1, z2 ∈ Q (Case 3) we have that P(ZN+1 ∈ Γϵ) = P(Z) = 1 ≥ 1 − E, hence Q × Q ⊆ SE.
• If at least one of z1 and z2 belongs to Q (Case 1 and 2) we have that P(ZN+1 ∈ Γϵ) = P(Q) =

1 − b ≥ 1 − E, hence Q × Q ⊆ SE.
• Thus, SE = Z2. Trivially, P2(SE) = P2(Z2) = 1 ≥ E2.

2. If b > E (i.e. 1 − b < 1 − E)
• If z1, z2 ∈ Q (Case 3), as before, P(ZN+1 ∈ Γϵ) = P(Z) = 1 ≥ 1 − E, and once again

Q × Q ⊆ SE.
• If at least one of z1 and z2 belongs to Q (Case 1 and 2) then P(ZN+1 ∈ Γϵ) = P(Q) = 1 − b <

1 − E, hence such z1 and z2 do not belong to SE by definition.
• Thus, P2(SE) = P2(Q × Q) = b2 ≥ E2.

Theorem 1 holds for both cases, since we have either P2(Z2) = 1 ≥ E2 or P2(Q × Q) = b2 ≥ E2. Now,
assume b > E and that the calibration set gives R1 = 0 and R2 = 1. What can we say about b?

For the given calibration set and significance level the INP predicts Γϵ = Q, hence it is tempting to say that
P2(P(Q) ≥ 1 − E) = P2(1 − b ≥ 1 − E) ≥ E2, or equivalently P2(b ≤ E) ≥ E2: recalling equation 2, we
may conclude that [0, E] is a E2 confidence interval for b. But this is clearly not true: since we assumed
that b > E the interval [0, E] will never contain the parameter b (note that none of the arguments of P2()
depends on (z1, z2) in the preceding statement, unlike equation 2). We conclude from this example that this
is not a viable path to obtain a PAC bound for b comparable to equation 2.

The example above leads us to the following remark and main message of this technical note.

Remark 1 Theorem 1 guarantees the correctness of the set predictor Γϵ. Adopting the frequentist perspec-
tive, it is a statement on how often the set predictor Γϵ constructed from N samples attains the desired
coverage level 1 − E for a new realization of ZN+1. In other words, since b is unknown, if b > E the INP
attains the desired coverage level only when Γϵ = Z (which is a trivial prediction), and it does not attain
the desired coverage level when Γϵ = Q. Essentially, the confidence level of E2 is attained by making trivial
predictions sufficiently often. If instead b ≤ E, the INP is always correct. Thus, Theorem 1 does not estimate
b or provide information on the probability of a specific score or class, which is the goal of BPCI methods.
See the appendix for a graphical representation.

To further clarify, consider the equivalent set predictor mapping the elements z predicted by Γϵ to their
respective nonconformity score

Γϵ(z1, ..., zN , z′
1, ..., z′

M ) .=
⋃

z∈Γϵ(z1,...,zN ,z′
1,...,z′

M
)

A((z′
1, ..., z′

M ), z),

which amounts to Γϵ = {0, 1} when Γϵ = Z and Γϵ = {0} when Γϵ = Q. Let RN+1
.= A((z′

1, ..., z′
M ), ZN+1)

be the score of the N +1-th sample. Then, we can replace the event RN+1 ∈ Γϵ with ZN+1 ∈ Γϵ in equation 6.
In essence, both BPCI methods and training-conditional CP provide PAC guarantees but differ in scope:
while BPCI methods compute an interval containing the true value b describing the probability of the event
that the N + 1-th score equals 1, i.e. RN+1 = 1 (with probability not less than 1 − α), training-conditional
CP computes a lower bound for the probability of the event that the N + 1-th score is contained in the
predicted set of scores, i.e. RN+1 ∈ Γϵ (with probability not less than 1 − δ).

3If Γϵ predicts Q it implies that the nonconformity score of ZN+1 is predicted to be 0, whereas if it predicts Z then all we
know is that the nonconformity score of ZN+1 is predicted to be in {0, 1} which is uninformative.

6



Published in Transactions on Machine Learning Research (02/2025)

Remark 1 extends to any scenario where the nonconformity score takes values from a finite set, effectively
defining a classification problem. Training-conditional CP provides a framework for constructing a set
predictor that guarantees the desired coverage level with a minimum confidence. The predictor adapts
to the calibration data: for ‘good’ calibration data, it produces tight sets (few classes), while for ‘poor’
calibration data, it outputs loose sets (many classes). On average, the probability that the calibration data
yields a predictor attaining the coverage level of 1 − E is at least 1 − δ.

Depending on the choice of ϵ and E, we have shown that the 1−δ confidence level may be achieved simply by
predicting the entire sample space (i.e., all classes) sufficiently often (see Figure 2). However, this approach
does not provide meaningful information about the probability of a specific class, which is the focus of
equation 2 and, more generally, BPCI methods.

4.1 A Note on Safety Verification for Dynamical Systems

Recent studies have applied training-conditional CP, particularly Theorem 1, to provide PAC guarantees on
the safety of control systems with neural network-based controllers (Chilakamarri et al., 2024; Lin & Bansal,
2024), and more broadly, on the safety of autonomous systems (Vincent et al., 2024). In this section we show
that these works follow the reasoning outlined in section 4, and are therefore incorrect. Below, we follow the
notation used in Lin & Bansal (2024), but the same applies to the other works.

Consider a dynamical system defined by ẋ = f(x) where x ∈ X ⊆ Rn, a fixed time horizon T ∈ R>0. Denote
by ξx(τ) for τ ∈ [0, T ] the state trajectory of the system at time τ when initialized at x (for simplicity we
assume that the solution to the differential equation exists and is unique)4. Let XA ⊂ X represent a set of
undesirable states, and consider the cost function defined as

J(x) .= min
τ∈[0,T ]

d(ξx(τ)),

where d : X → R is a function satisfying

d(x) ≤ γ ⇐⇒ x ∈ XA, d(x) > γ ⇐⇒ x ∈ X \ XA,

for some threshold γ ∈ R. The function d measures the distance between a point in the domain and the
unsafe set XA. An instructive example for the discussion is below is to choose γ = 0 and d : X → {0, 1},
with d = 0 ⇐⇒ x ∈ XA and d = 1 ⇐⇒ x ∈ X \ XA, but the same applies for any different choice. In
this case, J assigns a positive real number to a point x ∈ X if and only if the state trajectory from x never
intersects with XA. Let (X, F , P) be a probability space. To quantify system safety probabilistically, we seek
to estimate P({x : J(x) > 0}), i.e. the probability of sampling an initial state that leads to a safe trajectory.
In Lin & Bansal (2024) the authors define the nonconformity score as Ri

.= J(xi) for i = 1, ..., N , and are
therefore interested in estimating P({x : Rx > 0}). However, this is equivalent to defining a nonconformity
measure as

A(x) .=
{

1 if x ∈ XA,

0 if x ∈ X \ XA,
(10)

and we have shown that this line of reasoning is not suitable for estimating the parameter b of a Bernoulli
r.v. given N i.i.d. realizations Ri ∼ Bernb of it.

Since Chilakamarri et al. (2024) relies on the framework of Lin & Bansal (2024), it suffers from the same
issue. Additionally, in Vincent et al. (2024, Theorem 1), the authors re-derive Theorem 1, originally from
Vovk (2012). They claim that training-conditional CP reduces to the Clopper-Pearson confidence interval
when the underlying i.i.d. random variables are Bernoulli-distributed (see their Sec. Proofs-D). However,
we have disproved this claim.

4In the original paper the trajectory ξ depends on a learned controller and depends on a training set Z′
1, ..., Z′

M . For clarity
we omit this dependence here, since the training set is given and is fixed.
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5 Conclusion

In this note we examined existing methodologies to use training-conditional CP for statistical safety verifi-
cation, a problem that can be reduced to estimating the expectation of a Bernoulli random variable. While
training-conditional CP remains a powerful tool for uncertainty quantification we have shown that it is not
appropriate for BPCI problems. Specifically, we clarified the correct interpretation of confidence intervals
and PAC-style guarantees for training-conditional CP. We do not rule out the possibility that a different
formulation of CP could be applied to BPCI problems. This is left for future work.
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A Appendix

We validate empirically equation 9 as follows and represent the results graphically in Figure 2.

We define a list of values for E by Eq = 0.01 + 0.01 ∗ q for q = 0, ..., 98. For every value of Eq we consider
an underlying Bernoulli distribution with parameter b1,q = Eq − αEq < Eq (right figure) and an underlying
Bernoulli distribution with parameter b2,q = E + αEq% > Eq (left figure) with α = 0.005. For every value
of q = 0, ..., 98 we examine the two situations b1,q ≤ Eq and b2,q > Eq, as mentioned in Example 1 - Part
2. The significance level ϵ is set to 2/3. We draw ncal = 5 · 104 pairs of calibration points {z

(i)
1 , z

(i)
2 }ncal

i=1 .
For every pair of calibration points z

(i)
1 , z

(i)
2 we construct the resulting INP as Γϵ

(i)
.= Γϵ(z(i)

1 , z
(i)
2 , ...), draw

ntest = 5 · 104 test points {z
(j)
N+1}ntest

i=j and compute the empirical frequency ĝi = |{j=1,...ntest:z(j)
N+1∈Γϵ

(i)}|
ntest

as
an approximation for P(ZN+1 ∈ Γϵ

(i)); finally we compute ĥ = |{i=j,...ncal:ĝi≥1−E}|
ncal

as an approximation to
P2(SE) shown in the plots as the solid red line. The solid black line represents the curve given by E2, which
remains always below the red line in both plots, as expected. The area shaded in blue represents the fraction
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Figure 2: On the left the curves resulting from b2,q > Eq, on the right the curves resulting from b1,q ≤ Eq,
for q = 0, ..., 98.

of the ĝi’s for which the INP Γϵ
(i) is equal to Z, whereas the area shaded in red represents the fraction of

the ĝi’s for which the INP Γϵ
(i) is equal to Q and ĝi is greater or equal than 1 − E. It is visible in the left

plot that the only reason why the solid red line (approximating P2(SEq
) = b2

2,q) is above E2
q is that the INP

is allowed to predict the entire set Z. In contrast, on the right the solid red line approximates P2(SEq
) = 1

since any pair of z
(i)
1 , z

(i)
2 results in a prediction Γϵ

(i) satisfying P(ZN+1 ∈ Γϵ
(i)) ≥ 1 − Eq; accordingly, for a

fixed q, the area shaded in red covers approximately 1 − b2
1,q of the ’Probability’ axis and the area shaded in

blue approximately b2
1,q.

In summary, in both situations the theorem is confirmed empirically, since the red line is always above the
black line. In the first case, where b2,q > Eq, the minimum confidence level of E2

q is attained by predicting
sufficiently often the entire sample space Z, precisely with a frequency of b2

2,q, as this is the only set prediction
attaining the required coverage probability of 1 − Eq. Unfortunately, a prediction of the entire sample space
is uninformative. In the second case, where b1,q ≤ Eq, any predicted set between Q and Z attains the
required coverage probability of 1 − Eq.
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