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ABSTRACT

Selection bias is a prevalent challenge in real-world data analysis, often stemming
from biased historical censoring policies. While there is a growing body of literature
on fairness in mitigating accuracy disparities, few studies have considered the
potential impact of selection bias in training data. Depending on the selection
mechanism, significant differences can arise between the population distribution
and the training data distribution. Therefore, the training fairness metric can be
heavily biased, leading to unfair learning. To address this issue under the fair
regression problem, we propose weighting adjustments in the fairness constraint,
which results in a novel fair regression estimator. Despite non-convexity, we derive
an efficient algorithm to obtain a globally optimal solution. This work pioneers the
integration of weighting adjustments into the fair regression problem, introducing
a novel methodology to constrain accuracy disparities under arbitrary thresholds.

1 INTRODUCTION

The use of machine learning methods has become increasingly popular in critical sectors such as
employment, education, healthcare, and criminal justice. However, bias and unfairness arising from
prediction algorithms have led to growing concerns. Notably, accuracy disparities across different
demographic groups have been observed in various scenarios (Barocas & Selbst, 2016). For example,
Seyyed-Kalantari et al.|(2021) showed Al systems consistently underdiagnosed historically under-
served patient populations, such as female patients and black patients. In another case, analysis
conducted by Julia Angwin & Kirchner| (2016)) highlights that the recidivism risk scale of COMPAS
software exhibits a higher false positive rate for black defenders compared to their white counterparts.

While recent efforts have been devoted to mitigating algorithmic accuracy disparity (Agarwal et al.,
2019} |[Donini et al.l 2018} (Chi et al., [2021), most of them presume the training data unbiasedly
represents the population, which is a usually violated assumption in the real world. In practice,
datasets may suffer from selection bias, originating from historically biased decision-making, thereby
distorting their representativeness of the population. Machine learning algorithms trained on such
datasets induce bias on population-level estimands, posing a remaining violation of fairness, some-
times referred to as residual unfairness (Kallus & Zhou, 2018)). Many sectors grappling with Al
fairness concerns have encountered such biases in their data collection procedures. For instance,
data on loan default is typically collected only from applicants who were historically approved. This
dataset is then used to develop loan approval policies applicable to all applicants, introducing an
inherent bias (Kallus & Zhoul, [2018)).

In this paper, we introduce weighting adjustments to the model trained on a dataset under selection
bias, thereby extending the model accuracy parity to the population level. Our primary focus is
on regression problems with continuous outcomes (Y') and a binary protected attribute (A). Some
prior works (e.g.,|Chi et al.l 2021} [Zhao| 2021} |Oneto et al.l 2019) have made strides in mitigating
regressor accuracy disparity without considering selection bias. (Chi et al.| (2021) reduced the accuracy
disparity of a regressor through adversarially training a fair representation that minimizes the distance
between two group distributions while maximizing the representation’s predictive power. Similarly,
Zhao|(2021) showed for Lipschitz continuous predictors, the accuracy disparity can be reduced by
training the model on a fair representation that minimizes the Wasserstein distance between two
group distributions. |Oneto et al.|(2019) converted the regression problem to binary classifications
by discretizing the continuous label and adopted the same technique as in [Donini et al.| (2018]),
which regulates the disparity of true positive rate across the sensitive groups. However, research in



mitigating accuracy disparity in regression under selection bias remains relatively scarce. We present
a few related works below.

Related work Many studies addressing the impact of selection bias on algorithmic fairness focus
on scenarios where the training data consists of samples from the population of interest ps, with their
covariates (X ) always observed and outcomes (Y") selectively observed (Kallus & Zhou, 2018} Du
et al.,2022; (Coston et al.| 2021b)). |[Kallus & Zhou|(2018)) used an estimated propensity score ratio
between the target and training distribution to address the covariate shift caused by selection. |Du
et al.| (2022)) considered a special sample selection process and used the Inverse Mills Ratio derived
from the Heckman Model to correct the selection bias. (Coston et al.|(2021b) used extrapolation to
infer the unobserved labels and de-biased the fairness estimation over a Rashomon Set of the model.
In practice, however, data subject to selection may also exhibit incompleteness in their covariates
(X). We provide a recruitment example to illustrate this scenario in Example below. As far as we
know, only |Zhang & Long|(2021) considered this more general setting of selection bias characterized
by incomplete covariates (X) and/or outcome (Y') in fairness-related literature. They utilize inverse
probability weighting (IPW) to assess the bias in fairness metric estimands while not aiming to
control the algorithmic unfairness. Among all these works, the most relevant one we could find is Du
et al.| (2022), which addresses the selection bias issue in the regression problem in order to construct
a fair regressor. However, the method in [Du et al.| (2022) is developed under a more restrictive
setting than ours, assuming that the propensity score follows the probit model of a linear function of
the covariates, which is not required in our assumption. Moreover, Du et al.|(2022) formulates the
constrained optimization with a Lagrangian form that is similar to ours, but controls the trade-off
by manually tuning the dual variable, while we develop an algorithm that constrains the accuracy
disparities under any predetermined thresholds.

Our contributions: This work offers a few novel contributions. Firstly, we introduce weighting
techniques to address selection bias in fair regression problems, a topic that has received limited
attention in the literature. Our method is developed under a more general setting than previous studies
in this area. Secondly, there is a lack of research on constraining accuracy disparity in regression
problems, and none have considered constraining accuracy disparity below arbitrary thresholds. In
this work, we propose a computationally efficient algorithm that limits training accuracy disparity
below arbitrary thresholds and provides a globally optimal solution despite the non-convexity of the
constrained optimization. Thirdly, we propose a novel parameter tuning method by approximating
leave-one-out cross-validation in constrained regression problems, significantly reducing computation
time compared to commonly adopted K -fold cross-validation.

2 PROBLEM STATEMENT

Let (Z, A) be a vector of random variables, where A is a protected attribute, and Z := {X,Y'} €
X x Y consists of predictors X and response variable Y. For simplicity, we assume A to be binary such
that A € {0,1}. Let g : X — Y denote a predictive function. We define R (g) := E+{{(g; 2)},
where £ is a loss function, and the expectation E is taken over a population distribution py. In
this paper, we focus on the regression problem, and therefore, we let £ to be the L5 loss function,

ie,l(g;Z) = (g(X) — Y)z. Given an appropriate function class G, we define the population fair
regression function with fairness constraint set C as

gx := argmin Ry (g).
gegne

Fairness notion The fairness constraint is often in the form A(g) < ¢ for some discrepancy
measure A : G — [0, 00) and some ¢ > 0. In this paper, we consider the mean squared error (MSE)
disparity (Chi et al.|(2021);|Zhang & Long|(2021) as our fairness metric:

Alg) = [61(9) — &olg)],  where  Eu(g) = ET{l(g; Z)|A = a} for a=0,1,

is the conditional MSE. Our target is

9. = argmin { Er{¢(9(X); Y)} : Ag) <} )
g€eg



If we are given independent and identically distributed (i.i.d.) training samples {(Z;, 4;)}?_, from
pr, then £,(g) can be estimated consistently by the data strata with A = a, and therefore, a
straightforward approach is to replace the risk and the expectation terms in the constraint by the direct
sample analogs, i.e., (conditional) averages.

Training data distribution under selection bias We assume the training samples are collected
under potential selection bias. We use S; € {0, 1} to indicate whether the i-th datum remains fully
observed after selection. When S; = 1, we obtain Z;. Conversely, when .S; = 0, part of Z; is not
observed. The conditional distribution of Z; given S; = 1 is denoted by pp, which is also referred to
as training distribution.

Due to the selection process, the training distribution pp is not necessarily the same as the population
distribution p-, and the empirical group risk can be biased for estimating the conditional risk. As such,
adjustment will be needed to correct the selection bias and its effect on the estimated (conditional)
risk. The issue has been discussed in|[Zhang & Long| (2021)); Kallus & Zhou|(2018)); Du et al.| (2022);
Coston et al.|(2021a). We present an illustrative example in Example 1]

Example 1 (Recruitment pre-screening). Consider a recruitment system where the success of a job
interview (Y') is predicted based on a candidate’s major (X1), undergraduate GPA (X3), and an
assessment score (X3), with gender as the protected attribute A. A pre-screening process is first
applied to filter candidates based on X, and Xs. If a candidate fails this pre-screening (S = 0),
their X3 and Y will become unrecorded (i.e., not selected). Therefore, if the pre-screening policy
favors majors predominantly chosen by one gender group (A = 1), the other group (A = 0) may be
underrepresented in the training data (pp). Consequently, models trained on such data can propagate
biased estimates of risk Rt and fairness metrics in the population pr.

Standard selection mechanism We need the following assumption for the training sample selection
mechanism.

Assumption 1. There exists a sub-vector U of Z, which is not subject to selection, such that,

E7{l(g;Z2)|A,U} = Ep{l(g: Z)|A,U}, forallgeg. ()

The condition () (only based on conditional expectations) is implied by the stronger condition that
pr(Z|U, A) = pp(Z|U, A), which is commonly assumed in many related works (Coston et al.,
2021a;|Zhang & Long| [2021}; Kallus & Zhou, 2018)). Note that this stronger condition, which states
that the selection mechanism S is independent of Z given the always observable U and the protected
attribute A, is closely related to the missing-at-random condition when S is considered as an indicator
of observation. As for Example [I] Assumption [I]is satisfied as the pre-screening (selection process)
depends on the candidate’s major (X7) and undergraduate GPA (X3), which are always observable.
If the selection process depends on some covariates that are not always fully observed, Assumption |T]
may be violated. A numerical experiment under this scenario is presented in Section [5]

3  WEIGHTING ADJUSTMENTS

Note that the selection mechanism in () implies that
E7{l(g; 2)|A = a} = ET{E7{l(g; Z2)|U, A = a}|A = a} = E7{Ep{{(g; 2)|U, A = a}|A = a}.

The outermost (conditional) expectation in the RHS is taken over U, which can be estimated by
the data as (U, A) is not subject to selection and, hence, is always observed. Let r(g,U,a) =
Er{l(g9; Z)|U, A =a} = Ep{l(g; Z)|U, A = a}. We would like to find a weighted estimator for
E.(g) using the fully observed data in the form of

1 n
ga(g? W) = ; ZS’LW’L]I(AZ = a)g(gy Z’L)? (3)
i=1

with some appropriate weights {W;}, and I(-) denotes the indicator function. One common example
of weights W is the IPW as discussed in|Zhang & Long|(2021). However, the inversion of probabilities
could cause instability and poor finite-sample performance (Kang & Schafer,2007). Instead, covariate
balancing weights have been proposed as a more stable alternative in causal inference problems (e.g.,



Qin & Zhang|, 2007} Imai & Ratkovic| 2014)). To motivate the proposed covariate balancing weights
in our problem, we decompose the weighted estimator in the following way:

Ealg, W) =~ ZS Will(Ai = a) {€(g; Zi) — (g, Ui, a)} Q)

n

1
+ - Z SWil(4i = a)r(9, Ui, 0) = -~ ;H(Aj = a)r(g,U;, a) 5)

+ ;a ZJI r(g,Uj,a) — Er{r(g,U,a)|A = a} (6)

+ ET{T(ga U7 a’)‘A = a}7

where n, = Y 1" I(A; = a). Note that E7-{r(g,U, a)|A = a} = E7{l(g; Z)|A = a} = E.(9).
Therefore, we want the magnitude of the three terms {@)—(6) small. For large samples, the terms
(@) and (6] are expected to be small due to concentration arguments, similarly as in prior works on
covariate balancing weights (e.g.,|Wong & Chanl 2018; Wang & Zubizarretal 2019)). The key is to
find weights that control the term (3)), and therefore our goal is to find weights {W;} to control

1 n
]n;siWiH(Ai a)r(g, Ui, a) — —ZH r(g,Uj, a)}
S W 1
= a) ( - ) T(gv Uiva) ) (7)
n Ng

which is the absolute difference between the weighted conditional loss of function g over p7 using
the observed data and the corresponding average conditional loss. However, an issue shows up
immediately. The conditional expectation r is not known in general, rendering (7) inaccessible.
Moreover, the optimization associated with the fair regression using (3) will be highly complicated if
the weights depend on g. To solve these issues, we instead control the supreme (uniform) error over a
large class of functions of U without specific choices of g or r. The underlying idea is that if we can
control the supreme (uniform) error

= Swp 1
sup I(A; = a) ( - ) h(U;,a)
heF i—1 n Na

®

such that the function class F includes or approximates (g, U, a) well, we can control (7). Following
a similar uniform balancing idea inWong & Chan|(2018]) that simultaneously controls a uniform error
and a variability measure of weights, our weights result from a minimax optimization problem, and
the corresponding details are present in Appendix[A.T] Note that the weights in[Wong & Chan|(2018)
are developed for average treatment estimation, which is a conditional mean (a scalar), and so is
different from our target (the risk function). Our weights result from a different minimax optimization
problem.

4  WEIGHTED FAIR REGRESSION

With the weights introduced in Section [3] we now propose an estimator for the population fair
regression function g,. Let W denote the estimated balancing weights by the optimization step in
Appendix We can estimate the risk over p

Er{l(g:2)} = 3 Er{t(g:2)|A=a}P(A=a)

a=0,1
by
- “ ~ A Mg 1 2 Wina
Ry(g, W) := a(gaw); = EZSZ' > I(Ai=a) - Ug; Z;). C))
a=0,1 i=1 a=0,1



The proposed estimator of g, is the solution to the following minimization:
min { Ry(9, W) +nJ(g) : |A(g,W)| < 6} (10)
9€g

where A(g,W) and Ry (g, W) are as defined in (@) and () respectively. Let J(g) denote the
complexity of the function and n > 0 denote the tuning parameter.

Note that, given the weights, both the objective function and the constraint can be evaluated based on
only the fully observed data, i.e., {X;, Y; : S; = 1}. As such, we rewrite the optimization using this
set of samples. Without loss of generality, we assume that S; = 1 for i < m and .S; = 0 for i > m.
Let X = (X1,...,X,,)T denote the m x p design matrix,and Y = (Y1, ...,Y,,)” denote the vector
Na Wi
n2 -

of response variable. Let W denote a m x m diagonal matrix where W;; = Zi:o I(A; = a)
Let D denote a m x m diagonal matrix with D;; = I(A; = 1)%: — (A4, = O)WT

n

Fair ridge regression We first consider a linear regression model class {g € G : g(X) = XT3}
and a ridge penalty J(g) = ||3||3. Then, the optimization can be written as

min {(Y — XB)"W(Y - XB) +n"8: (Y - XB)"D(Y - Xp)| <5} (D)

Fair kernel ridge regression Next, we consider a nonparametric alternative: a fair version of kernel
ridge regression. Consider some reproducing kernel Hilbert space (RKHS) H with a reproducing
kernel function R(-, ). With J(g) = ||g||3, denoting the complexity, the optimal solution of lies
in the space spanned by { R(X7,-),..., R(X, )} due to the representer theorem. Therefore, we
focus on a class of functions {g € G : g(*) = > " a; R(X;, )}

Let K denote the Gram matrix that K; ; = R(X;, X;) for 1 < ¢,j < m. We can reformulate the
optimization problem interms of a = (v, ..., )7

min {(Y “Ka)"W(Y —Ka) + na’Ka : |(Y - Ka)TD(Y — Ka)| < 5}. (12)

Let K = LL”. The above optimization can be rewritten as
min {(Y ~ LB)TW(Y — L) +nf"8: (Y ~LA)'D(Y — LB)| <5}, (13)

where 3 is equivalent to LT av. Note that the fair ridge regression (TT)) can be expressed with the
same form in (I3)) by replacing L with X.

In the following subsections, we focus on solving optimization in the form of (T3). Note that each of
the key term in the fairness constraint (Y — L3)T D(Y — L) is a difference between two convex
functions, and so the resulting optimization is a challenging non-convex optimization problem. We
could use the disciplined convex-concave program (DCCP) to solve this optimization (Shen et al.,
2016)). However, there is no guarantee that DCCP will return the globally optimal solution. Therefore,
we next introduce the Lagrangian duality and sufficient conditions to find the global optimal solution
by solving the dual problem. We provide comparisons between the DCCP and our optimization
method in Appendix [B.4] The results demonstrate the proposed algorithm consistently achieves a
smaller objective value, and is significantly more efficient, reducing both the average and maximum
computation time to less than 1% of DCCP optimization.

4.1 LAGRANGIAN DUALITY AND GLOBAL OPTIMAL SOLUTION

In this section, we formalize the constrained optimization problem as a convex problem through the
Lagrangian duality.
4.1.1 THE LAGRANGIAN DUAL FORM

The Lagrangian form of (T3) can be expressed with one free Lagrange multiplier A, or equivalently
two nonnegative Lagrange multipliers

Ay = max{A, 0}, A\ := —min{\, 0}, A\ = (Ay — ), (14)



as follows:
L(B. A, A-) = BT(LT(W — AD)L + D)8 — 2Y"(W — AD)Lj3
+ 2. (=YTDY - §) - A\_(-YTDY +9).
Let p* denote the solution to the primal problem (I3)). It can be expressed as the solution to a minimax
optimization of the Lagrangian form. However, solving a minimax optimization of the Lagrangian
form is usually hard, hence many primal-dual approximation algorithms (e.g. Coston et al.,[2019)

instead solve the dual problem. The dual problem of the optimization in (I3), which is the maximin
optimization of the Lagrangian form, is written as:

d* :=supinf L(B, A1, A_)
A B

15)

=sup —(LT (W = AD)YY)" (LY (W — AD)L +nT)~ (L* (W — AD)Y)
A

+ 2. (=YTDY —6) - A\_(-YTDY +94), (16)

LT(W — AD)L +nI = 0

bject t
subjectfo {LT(W — AD)Y € Range(L” (W — AD)L + 1)

4.1.2 THE STRONG DUALITY

Based on the well-known weak duality, a lower bound for p* is obtained by solving the dual problem.
We next present the sufficient conditions for strong duality to hold between the primal form (T3]
and dual form (I6). When such strong duality holds, we can optimize the dual to obtain a globally
optimal solution of the primal. Next, we present an assumption and a lemma, which can be shown
using Theorem 7 of Wang & Xial (2014).

Assumption 2.
(i) LY DL # 0.
(i) There exists a 3 € RY, such that — 3§ < (Y — LB)TD(Y — LB) < 6.
(#i1) The primal problem is bounded below.

In a weighted regression problem, Assumption i) is a mild assumption. Given that L and D denote
the design matrix and weight matrix, respectively, this assumption is violated only if the group
difference between the weighted sum of products of any two columns of L equals zero, which is
generally not the case. Assumption [2{ii) posits that there always exists an interior point within the
feasible region. In Appendix [A.2] it can be shown that this assumption holds for the regression
problem under certain general conditions. Assumption [2{iii) always holds for regression problem.

Lemma 1 (Strong Duality). Under Assumption[2|i) and[2](ii),
d* :=sup igfL(B, Ap,Al) = igf sup L(B, Ay, A_) =: p* (17)
A A

Moreover, if Assumption|2(iit) holds in addition to[2)i) and[2|(ii), d* is attained.

4.1.3 THE CONDITIONS TO CHARACTERIZE A GLOBAL OPTIMAL SOLUTION

In this section, we introduce a proposition to characaterize the global optimal solution to the pri-
mal (I3). By Theorem 2.4 of [Pong & Wolkowicz| (2014)), there exists a nonempty open inter-
val (A, \) containing 0, such that LT (W — AD)L + nI = 0 if and only if A\ < A < ), and
LT(W — AD)L +nI = 0 if and only if A < A < \. The characterization of A and X can be found
in Appendix For a fixed A € Closure() : ), we define the first-order stationary point of the
Lagrangian form (T3) as,

B(\) == (LY (W — AD)L +nI)" LY (W — AD)Y, (18)
and the constraint evaluated at 3(\) as,
$(A) == BAN)TLTDLB(N) —2Y " DLB(A)
= (L (W - AD)YY) (LY (W — AD)L +nI)" L"DL" (L (W — AD)L + nI)~ (19)
x LT(W —AD)Y —2YTDL(L"(W — AD)L + 1) LT (W — AD)Y.



Let A* denote the optimal Lagrangian multiplier of the dual problem (I6), and B8* denote the
optimal solution of the primal (T3)). Then the following proposition characterizes \* and 3* under
Assumption 2]

Proposition 1. Under Assumption if ~YTDY — 6 < 4(0) < ~-YTDY + 6, then \* = 0.
Otherwise, \* is the unique maximizer of the following concave objective function:

he(\) = — (LY (W = AD)Y)T (LT (W — AD)L +nI)" (LT (W — AD)Y') + AC,

LT (W —AD)L+nI =0 (20)
LT (W — AD)Y € Range(LT(W —AD)L +nI) ’

where C = —~YTDY —§ if)(0) < ~YTDY —§,and C = - YT DY +3 if)(0) > YT DY +4.

subject to {

If X € (A, N\), B* = B(X\*) is the unique optimizer of the primal; otherwise, there exists a vector
v € Null(LT(W — X\*D)L + nI)\{0} such that 3* = B(\*) + v.

See Appendix [A.4] for the proof of Proposition [T] and the characterization of . This proposition
implies that the two inequality constraints in primal (T3] can be reduced to a single equality constraint.

4.1.4 ALGORITHM

Following Proposition[I} we propose the following algorithm to solve the primal problem (I3)) by
optimizing the Lagrangian multiplier through Newton’s method. Our method is different from the
extended Rendl-Wolkowicz (ERW) algorithm of |Pong & Wolkowicz (2014), which solves the same
primal problem as a parametrized eigenvalue problem. We, instead, focus on solving the dual problem
in directly. By solving the dual problem, the optimal coefficients, 3()), described in , will
impose a special structure related to Y, which is not accessible with the ERW solution. This special
structure enables us to perform model selection efficiently, as discussed in the following section.

Algorithm 1 Optimization procedure to solve for problem|[I3]

1: Calculate initial interval for \*, (A, \) as in Proposition

2. if ~YTDY -6 <4(0) < -YTDY +§ > Interior solution then
3 AT =0,8" = B\)

4: elseif ¥(0) < -YT'DY —§ > Optimal solution reaches lower constraint then
5.  ifA=ccory(\) < —YTDY — 6 then

6: Use Newton’s methodto solve \* = argmax hc()) in @0) for C = - YTDY — 4.
7 B = B(V).

8: else _

9: A* = A. Solve for suitable v as in (38); B8* = B(\*) +v.
10: end if
11: else > Optimal solution reaches upper constraint
122 ifA=—-occory(A) > ~YTDY + § then
13: Use Newton’s methodto solve \* = argmax hc () in 20) for C = ~YTDY + 4.
14: B* = B(\").
15: else
16: A* = \. Solve for suitable v as in (38); B3* = B(\*) + v.
17: end if
18: end if
19: Return (\*, 3%)

4.2 PARAMETER TUNING

Let g, (-) be the predictive function whose complexity depends on 1. A small value of 7 leads to a

flexible §,(-), and thereby small £,(g,, W) and small A(g,, W). However, these models may not
generalize well to the out-of-distribution samples as they overfit. To mitigate the effect of overfitting,
an appropriate value of 7 has to be selected to control the flexibility of the fitted model. In below, we
introduce an approximate leave-one-out-cross-validation (LOOCYV) criterion, which does not require
re-fittings of the estimator for each 7, and, therefore, will enable fast tuning of 7 (Section .



4.2.1 APPROXIMATE GROUP LOOCV

One common way of estimating the generalization error E7-{(Y — §,/(X))?} (where the expectation

taken over a new observation (Y, X)) is through LOOCYV (Stonel |1974). Recall W is the estimated
balancmg weights introduced in SCCthl’ll 3} We would like to estimate the conditional risk E7{(Y —
Gn(X))?|A = a} for each group a via a group LOOCV:

EalGn, W ZSH Wi(Y; = Yi—p)?, 1)

where Yi(_i) denote the evaluation of predictive function estimated by excluding the i-th observation.

Let L_;y and Y{_;) denote the covariate matrix and outcome vector with the i-th observation (L, ;)
left out. Let D(_;y and W(_;) denote the corresponding (1m — 1) x (m — 1) weight matrices. Without
loss of generality, we consider the following optimizations:

B =argmin(LB - Y)"W(LB-Y) + 13" 3,
B (22)
subject to (LB —Y)TD(LB -Y) = —4,

Biy = arggﬂn(L(ff)ﬁ — Y i) " Wy(LyB—Yy) +18" B,

subject to (L(—i)/B — n—i))TD(—i) (L(_L),B - Yv(_z)) = —0.

Proposition 2. Let A and \ be the bounds for the Lagrangian multiplier \ of as defined in
Section Suppose the optimal solutions of the above optimizations, 22) and (23), take the
following forms

(23)

Sfor some A = \* €
Bi—iy = B—n(\
for some X = \_; € (A, X). Then we have

Yii) = H(A-9) Y0, (25)

A) an

B =B\ = (LT (W —AD)L+nI)"'L"(W - AD)Y, (24)
€ (A,
) = (L{_sy(W(—iy = AD(—)) L) + 1) T L{_) (W(—s) = AD(-5)) Y(—s),

where
H(\) = L(LT(W — AD)L + 1) 'LT(W — AD), (26)

and Yy = (Y1, Yot Vi, Yipas o Yon) T with iy = LT By,

The proof of the above proposition can be found in Appendix[A.5] We can then use A\* to approximate
each A(_;), assuming the maximizer of the dual of [23[stays close to A* when Y; is substituted by

its leave-one-out prediction }A/i(,i). We denote H = H(\*). With (23), Yi( 7) 1s approximated by

Hm-f/i(,i) + Zj# H, ;Y;. With the identity YZ =H,,;Y; + Z#Z H, ;Y;, it follows that we can

approximate Y; — Yi(_i) with (Y; — Y;)/(1 — H; ;). Therefore, given a fixed 7, the approximate
group LOOCYV can be simplified to the following:

EalGns W NfZS]I (%) 27)

When 7 becomes unexpectedly large, the assumption of Proposition |2 may not be satisfied if either
of A* or A(_;), the optimizer of the corresponding duals of (22)) and (23), hits the bound A or A.
Based on Proposition under this scenario, 8* is written as 3(\) + v for some vector v, and the
approximate LOOCV may not serve as an accurate estimator of the out-of-sample MSE. However,
note that, in both simulations and benchmark experiments, we have not observed this case for a wide
range of n’s. Also, the model may become overly constrained for unexpectedly large 7, often leading
to a lack of predictive power. Therefore, model selection is practically unnecessary at this point.



4.2.2 TUNING PROCEDURE
For each fixed 7, with the approximate LOOCYV in (27), we estimate the out of sample unfairness via
A(gﬁ’ W) = gl(gn? W) - go(gﬁa W) )
and the MSE via
N R ~ nl ~ R A~ no N " ~
RT(gna W) = ?51 (gTIa W) + ?50(9717 W)
For a given §, we select 7 that corresponds to the smallest RT(gn, W) among all values of n

such ﬁ(gn, W) < ko, where k > 1 is a hyperparameter. If there is no value of 7 that satisfies

E(gn, W) < k6, we select ) corresponding to the smallest RT(QU, W). We set k = 1.2 for all our
numerical experiments.

5 EXPERIMENTAL EVALUATION

We compare our estimator combined with various weighting techniques, as well as the method
proposed inDu et al.|(2022)) to adjust for selection bias. As|Du et al.|(2022)) specifically addresses the
scenario where only the response variable (V) in training data is affected by selection, we conduct
our experiments under the same condition. To better illustrate the effectiveness of our method, we
conduct numerical simulations to evaluate our method under various § and selection mechanisms for
both parametric and nonparametric regressions. As accuracy disparity in the population distribution
can arise without selection bias, we would also like to assess our method’s capacity of regulating
accuracy disparty under this scenario. Additionally, we compare our method with the CENet and
WassersteinNet methods proposed in |Chi et al.|(2021)), both of which regulate the MSE disparity
for regression model under a setting without bias selection. Due to the space limit, we refer to
Appendix [B.3|and [B.2]for the full experiment details and results of both numerical simulation and
comparisons with |Chi et al.|(2021)).

Dataset We carry out the experiments using the Law School Dataset|Wightman| (1998) and Com-
munity&Crime Redmond| (2009) Dataset. We adopt the same data generation and preprocessing steps
as in|Du et al. (2022)E] In both datasets, a binary variable is selected as a protected attribute (A) and
a continuous variable is selected as the outcome (Y). See Appendix [5]for more details about the
datasets.

Method We examine the performance of balancing weight adjustment. We further compare it with
two inverse probability weights (IPW), proposed in |[Zhang & Long| (2021), where the propensity
score (as a function of U) is estimated by either logistic regression or kernel support vector machine.
The weighted constrained regression is then optimized through the proposed Algorithm [T} [Du et al.
(2022) employed the Heckman model for bias correction, assuming that the propensity score follows
the probit model of a linear function of U. They derived the Inverse Mills Ratio (IMR) and treated
it as an extra covariate for predicting Y. To prevent multicollinearity in predicting Y, they further
assumed that the predictors set X used to predict Y is a strict subset of U, i.e., some covariates not
subject to selection are excluded from predicting Y on purpose. Both of these two above assumptions
are not required by our method, making our setting more general than the one in|Du et al.| (2022).
Du et al.|(2022) handled the constrained optimization by optimizing its Lagrangian dual form while
controlling the trade-off by manually tuning the dual variable. In the experiments, we use the default
values of the dual variable provided in their code for each dataset.

In the Community&Crime Dataset, the selection mechanism follows:
S | “NumUnderPov” ~ Bernoulli(®(—1.5“NumUnderPov” + 0.4)),

where ®(-) represents the cumulative distribution function of the standard normal distribution, and
“NumUnderPov” is the ratio of people under the poverty level in a community. We conducted two
experiments on this dataset, where the “NumUnderPov” is either included in the set of U or not,
which is the same setting used in|Du et al.[(2022).

!The source code of implementation, as well as data preprocessing, can be found at https://drive,
google.com/file/d/1cOdyTXUeaBlf41lxuyY-bCshUykHOgACA/viewl


https://drive.google.com/file/d/1cOdyTXUeaB1f4lxuyY-bCshUykHOqACA/view
https://drive.google.com/file/d/1cOdyTXUeaB1f4lxuyY-bCshUykHOqACA/view
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Figure 1: Overall performance: average test MSE and MSE disparity with standard error of different
methods on two datasets. “NumUnderPov" attribute is not included in U in the experiment on the
Crime data (1).

In the Law School Dataset, the selection mechanism follows:
S | “age” ~ Bernoulli(sigmoid(—0.2*age” — 10.5)),
where “age" denotes the age of a candidate and is included in U.

The specification of all attributes in X and U for both data are discussed in Appendix

Results and analysis In all experiments, we set constraint § = 0.001. For each repetition, we
randomly split the dataset into 70% training and 30% testing sets. We fit the weighted linear regression
model using the restricted covariates set X on the training set (subject to selection) and evaluate its
performance on the testing set (not subject to selection). We summarize the average performance of
200 repetitions as well as the standard error for each method in Figure[I] Our observations are as
follows: (1) The proposed method achieves a smaller MSE and an MSE disparity at least as small
as the method proposed in Du et al.|(2022) on all experiments. (2) Among all weights that we have
compared, balancing weights achieves the smallest MSE disparity on all experiments. The proposed
method also achieves the best trade-off (the average value of the metric is located at the bottom left)
on both experiments on Crime data. (3) When “NumUnderPov” is excluded from U, Assumption
might be violated. However, the experiment results show that balancing weights adjustment is still
effective in regulating the MSE disparity on population distribution.

6 CONCLUSION

In this paper, we propose a novel weighted fair regression algorithm to regulate the MSE disparity on
population distribution given the training data is under selection bias. Our algorithm solves a non-
convex constrained optimization problem through its Lagrangian dual, obtaining the globally optimal
solution. The efficiency of our proposed algorithm is validated under comprehensive experiments.
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A PROOF AND DERIVATIONS

A.1 ESTIMATION OF THE BALANCING WEIGHTS W IN SECTION[3]

In this section, we aim to control the error term in (7)) and denote the uniform weights for controlling
the error term for group a as Wj,.

For each a = 0, 1, we would like to obtain the weights W, such that

>t =a) (S - ) (g, D) w0, 28)

i=1 n Na
for a large class of r and g. As mentioned in Section[3] both g and r are unknown, therefore we use

the generic notation h to denote their combined effect and h(U;, a) as a substitute to r(U;, g, a), and
we aim to control the supreme (uniform) error. Denote

2
H,(Wa,h,a) = {ZH (SW—1> h(Ui,a)} :
n Ng

we need to control H, (W,, h, a) to validate the balancing weights TV,,. We have

2
Hy(Wa, hya) < ZI[ a)h*(Us, )~ ZH (SWM—:>.

a

Therefore, following|Wong & Chan|(2018), we consider the following constrained minimizations for
a = 0, 1 for some reproducing-kernel Hilbert space  with norm || - || of functions on Uj;:

min | sup {H,(Wa,h,a) = M||hlln} + X Va(Wa) |,
WaiZ50 | he#,
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where
Il = ‘IZH a)h?(Us, ),
Ho = {hGH'IIhIIn=1},
Vo(W,) = —ZH i =a)S;W2,,

Let K be the reproducing kernel of H, and h(U ,a) lies in a finite-dimensional subspace span
{K(U;,") :j=1,..,n;A; = a}. We can then write h(U,a) = Z?:LAJ_:a o, ;K (Uj,-). Let M
denote the ng x n, Gram matrix, i.e., M; = K(Uq,,Uq;), Aa; = Aa; = a. We have
- 1
Hy(Wa, Y a;K(Uj,),a) = —al MQ(W,,a)Maq,
j:l,A]-:a n
where
n n\"
Qi) = a(War )W) with () = (S0 Vo, = ) (81, Wa, = 25))
a a

Let the eigenvalue decomposition of M be

M= (P P) (%1 Cga) (?;)

Since the counterpart of “« W, ; is P(S; = 1|U;, a), which is at least 1, we restrict W, ; > . The
weights W, for each a = {0, 1} is the solution of the following problem:

a

min [omax {1P1Q(Wa, a)P, — nAlQll} + )\QVn(Wa)] ,
n n

where oyax(+) represents the maximum eigenvalue of a matrix, and \;, Ay are tuning parameters.
Finally, the estimated balancing weights W; in Sectionis given by W; =W, ; for A; = a.

A.2 A NOTE ON FEASIBILITY

Assumption [2] (ii) posits that there always exists an interior point within the feasible region. In this
section, we would like to show that this assumption holds for the regression problem under certain
general conditions.

We consider the most extreme case where § = 0 and g(X') = ¢ is a constant predictive function. We
aim to demonstrate that there exists at least one feasible solution under this scenario. It follows that
this solution is an interior point of the feasible region for any function g with an intercept term and
0 > 0, and therefore Assumption [2](ii) holds.

Under this most extreme case, a feasible solution of the optimization problem has to satisfy the
following constraint:
(Y —e)'D(Y —¢) =0. (29)
The constraint can be expanded as
(Y — C)TD(Y —c)

=1
—CQ(i I(A; = 1)@ - Zm:H(AZ = 0)2) + 2¢(— zmjﬂ(Az = 1>@Yl + iH(Az = O)QYJ
=1 n =1 1=1 n =1 n
i Wi i W,
I(4; =1)—Y? I(4; = 0)—Y?2
+ ; ( ) Y ; ( 0) Y
(30)
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The balancing weight estimation ensured Y .- I(4; = 1) =Y (A = 0) =i =1 with
minor regularity on the optimization step. It then follows that a value of c satisfying the followmg
equation will satisfy the constraint in (29),

m z m z m z m =

2e(= Y I(A = )7 Vi Y TA = 0 V)Y (A = )RS 04 = 0)7 Y =0

=1 =1 =1 =1
A A (31)
Such ¢ exists whenever Y1 I(4; = 1)22Y; # ™7 I(A; = 0)*4Y;, which can be assumed
without loss of generality. Hence, we can conclude that Assumption 2] (i1) holds with minor regularity

on the optimization step of weight estimation.

A.3 CHARACTERIZATIONS OF BOUNDS FOR LAGRANGIAN MULTIPLIER

Without loss of generality, we assume LYW L + nI > 0, then the matrix pencil LYW L + nI —
ALT DL is positively regular, i.e, there exist some A € R such that

LWL +nl—-AL"DL » 0.
With the above fact, it is proven by (Pong & Wolkowicz, 2014, Theorem 2.4) that there exists a
nonempty open interval (), \) such that LT (W —AD)L +nl = Oif and only if A < A < A, and
LT(W —AD)L +nl = Oifand only if A < X\ < \.

We denote Apnax (A4, B) and A\pin(A, B) to be the maximum and minimum generalized eigenvalue of
the matrix pair (A, B). Then from Pong & Wolkowicz|(2014) and (Nguyen & Ngan Nguyen), 2024,

Theorem 1) we have the following proposition that can calculate A and ) efficiently:
Proposition3. /. If L"DL = 0, A\ = A\in (LYWL +nI, L" DL), A = <.

2.IfLTDL <0, A\ = —00, A\ = Apax (LYWL + I, LTDL).
3. If L"DL is indefinite, given L"WL + nl = 0, A =

1
Amin (LT DL, LTW L+nI)”’

1
T N (—LTDL,LTWL+nI)

A.4 PROOF OF PROPOSITION(I]
Proof. Under Assumption 2} we have the following theorem to characterize the necessary and
sufficient conditions for 3* being an optimal solution for problem (I3).

Theorem 4 (Theorem 2.3 of |Pong & Wolkowicz| (2014)). If Assumption E] holds, 3* is a solution to
the primal problem if and only if for some Lagrangian multiplier \* € R, we have

(L™(W = X\"D)L +nD)B" = L'(W - \'D)Y, } dual fesibility
LT (W —X\*D)L + I >~ 0,
—6 < (Y = LB")TD(Y — LB*) < 6, primal feasibility (32)
* *\T * .
A (0= (¥ L) D(Y - LB")) =0, } complementary slackness
N (Y —LB)'D(Y — LB*) —6) =0,

Recall the first-order stationary point of the Lagrangian form (T3] for A € Closure() : \) is defined
® B(\) == (LT (W — AD)L + 1) LT(W — AD)Y, (33)
and the constraint evaluated at 3(\) is defined as,
¥(\) =BT L"DLA() — 2YTDLA(\)
=(LT(W - AD)Y)" (L™ (W — AD)L + 1) L" DL (L" (W — AD)L +nI)~ (34)
LT(W —AD)Y —2YTDL(L"(W — AD)L +nI)"LT(W — AD)Y

In the following, we consider three cases dependent on where (0) is located relative to the interval
(-YTDY —6,-YTDY +9). Firstof all, if - YTDY —6 < (0) < ~YTDY +,then \* =0
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and B* = B(\*) satisfies all the conditions in (32), and therefore B(\*) is the optimal solution of the
primal problem according to Theorem@ Otherwise, we first consider the case ¥(0) < —~Y T DY —§.

Since () is monotonically increasing on (), A), if ¥(0) < =Y TDY — §, A\* has to be positive in
order to satisfy the primal feasibility condition in (32)
Since A* > 0, the objective function in dual problem can be reduced to the following,
he(\) = —(LT(W = AD)Y)"(LT(W — AD)L + nI)” (LT (W — AD)Y) + A\C,
LT (W —AD)L+nI =0 (35)

subject to {LT(W ~ AD)Y € Range(L”(W — AD)L + 7I)

where C = —-YTDY — 6.

Also, from the complementary slackness condition, the primal feasibility condition is reduced to the
following:

(Y - LB)'D(Y — LB3*) = —0. (36)
The derivative of the above objective function h¢ () is written as
—(\) + (=Y DY — ).

When A = coor y(A) > —YTDY — 4§, () = —=YTDY — § is solvable within (), \); it has
one unique solution A* due to the monotonicity of ¢)(\). Then A* is the unique optimizer of ho (),
and B(\*), which satisfies all conditions in Theorem is the unique optimal solution of the primal

problem (T3).

When A < oo and (X)) < =Y TDY — 4,4 (\) = =Y T DY — § is unsolvable within (A, \). Since
—(0) + (=YTDY —6) > 0, we must have —)()\) + (=Y TDY —§) > 0forall A € (), A]. It
follows that hc(\) is monotonically increasing on (A, A] and is maximized at A = \. Therefore,
A=\

Since LT (W — AD) L is singular by the construction of A and X in Appendix any B = B(\)+v
for some vector v € Null(LT (W — AD)L) satisfies the dual feasibility conditions in Theorem@ If

such 3 satisfying the primal feasibility condition (36) for some suitable vector v, it is the optimal
solution of primal problem. In below, we introduce how to compute such v.

Let & denote a normalized vector in Null(LT (W — AD)L)\{0}. The optimal solution 3* is written
as

B* = (LY (W —AD)L +nI)”" LY (W — AD)Y + av,
such that 3* satisfies the primal feasibility condition (36),

BTL"DLTB* —2Y"DLB* = -YTDY — 6. (37)

By plugging in the form of 3, solving is equivalent to solving for a « for the following quadratic
equation,

aa? —2ba+c=0, (38)
where
a=v"(L*DL),
b= (L"DL(LY(W — AD)L +9I)" LY (W —AD)Y - Y'DL),
c=YT(W —AD)L(LY (W — AD)L + 1) (L" DL)(L" (W — AD)L + 1) LT(W - AD)Y
—2YT'DL(L* (W — AD)L + 1) LT (W —AD)Y + YT DY +5,

_ (39)

According to Lemma 2.5 in |Pong & Wolkowicz| (2014)), when A< oo,a > 0forall v €
Null(LT (W — AD)L)\{0}. At the same time, note that ¢ = (\) + Y7 DY + § < 0, which then

guarantees the existence of real solutions « to (38)). We let « to be the real solution with a smaller
magnitude, i.e,

C
a= )
—b — sign(b)v/b% — ac

The vector v in Proposition|1is then given by ar.
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The case where ¥(0) > —Y 7 DY + 6 can be derived in analogy to the above analysis by reducing
the objective function of the dual problem to the same expression in (33) with C = ~ YT DY + .

O

A.5 PROOFS OF PROPOSITION[]]

Proof. Let L(_;y and Y(_;) denote the covariate matrix and outcome vector with the i-th observation
(Li, Y;) left out. Let D(_;) and W _;y denote the corresponding (m — 1) x (m — 1) weight matrices.

To prove the position, it suffices to show that B(,i) is also the optimal solution of the following
constraint optimization,

arg;nin(Lﬁ —Y3)"W(LB - YY) +nB"B: (LB - Y,))"D(LB - Y;)) = =5,  (40)

where Y(;) = (Y1,...,Yi 1, Yi(i), Vi1, ..., V)T, with Y i) = LT B_,).
Firstly, note the Lagrangian form of above optimization is written as

L(B,)) = BTLT(W=AD)LB-2Y;)" (W-AD)LB+18" B+Y) WY(5) +A(=¥() " DY) —0).
(41)
We write the first-order stationary point of as

B(\) = (L"(W — AD)L + )" 'L"(W — AD)Y};).

By definition, ,é _4) is the minimizer of the Lagrangian form corresponding to the leave-one-out
primal problem 23|at A = \(_;), i.e.,

B(_iy = argmin Z(Wjj — XiyDi) (L] B = Y;)? +nB" B+ A_y(—9).
By
Given Y;(_;y = LT B(_, it follows that
B(_i) = argmin Z(VVJ‘J‘*)\(—i)Djj)(L?5*¥)2+(Wii*>\(—i)Dii)(L?ﬁ*ﬁ(—i))QJrﬁﬁTﬁJr/\(—i)(*5)-
B i
"l:herefore, [:3(_1-) is also the minimizer of Egﬁ, A)in @) at A = A(—4), and we can write ,C:}'(_i) =
B(A(—s))- Next we want to show sup,, infg L(3, A) is actually attained at A = A(_;).
The dual problem of (40) is
h(A) = — (LT(W - AD)Y;))" (L™ (W — AD)L + nI)~ (L*(W — AD)Y{;)) + A=Y, DY;) - d),

LT(W — AD)L + I = 0

subject to {LT(W — AD)Y{;, € Range(L”(W — AD)L + 1)

. (42)
The unique optimizer of the concave function h()\) in (@2) solves the following equation
~ ~ T ~
Vh(\) = =6 — (LB(\) — Y(Z)) D(LB(/\) — Y(z)) =0. (43)
It can be shown Vﬁ()\(_i)) =0as
~ T ~
(L) = ¥i») D(LBA-) — Yiy) (44)
A T A
=(LB(-i) = Yii)) D(LB(—i) = Vi) (45)
=(L—B=i) = Y=)) "Dy (L(=B(—i) = Y(=i)) (46)
=—9, (47)

where the first quality follows from B(_i) =0 (A(=i)), and the second equality follows from the fact
ffi(,i) =Lr B(,i), and the third equality is ensured by the primal feasibility condition of the [:3(,1-),
which is the optimal solution to (23)). Therefore, i () in takes its optimal values at A = \(_;).
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According to Proposition I ﬁ ) is the globally optimal solution of if X is the optimizer of
R(\) for some A € (A, A). Since A(—i) € (A, ) by assumption, and A(_;) is the optimizer of h(\),

ﬁ()\(,l)) is the globally optimal solution.
O

B EXPERIMENTS

B.1 DETAILS AND SETTINGS OF THE EXPERIMENTS UNDER SELECTION BIAS

In this section, we provide the specifications of the protected attribute A, the prediction covariates set
X and the fully observed covariate U for the two different datasets used in the experiments.

Crime data (1) Crime dataset Redmond|(2009)) was collected from the 1990 US Census and con-
tains socio-economic information from 1994 communities. The crime rate of a given community is the
target variable (Y), and the African American Population Ratio (AAPR) is selected as the protected
attribute. Communities with an AAPR exceeding 50% are labeled as protected (A = 1), resulting
in 219 protected communities and 1775 non-protected ones. As specified in|Du et al.[(2022), 15 at-

tributes are selected as the prediction covariates set X: “racePctHisp”, “agePct12t21”, “agePct12t29”,
“agePct16t24”, “agePct65up”, “numbUrban”, “pctUrban”, “medIncome”, “pctWWage”, “pctWFarm-
Self”, “pctWinvInc”, “pctWSocSec”, “pctWPubAsst”, “pctWRetire”, “medFamlInc”. In addition
to X, the following 6 attributes are included in U to avoid the multicollinearity issue of Heckman
model: “populatlon” “householdsize”, “racepctblack”, racePctWhite”, racePctAsian”. After remov-
ing attributes with missing values and standardizing all attributes to have zero mean and unit variance,

the IMR covariate and weights are learned using the full set of U.

Crime data (2) The overall setting is the same as Crime data (1), except the attribute “NumUnder-
Pov” is included in this experiment so that Assumption [I]is satisfied.

Law data Law dataset Wightman| (1998) was collected from the Law School Admissions Council’s
National Longitudinal Bar Passage Study, containing personal records of law students who eventually
took the bar exam, including their LSAT scores, age, race, and more. The objective is to predict the
GPA of a student based on other attributes. We follow the same preprocessing steps for protected
attributes and covariates as outlined in|Du et al.|(2022). The race attribute (black/non-black) is chosen
as the protected attribute, with black being considered the protected (A = 1) group. Within a total of
20,649 records, 3,000 records are randomly selected for the final dataset, including 1,000 protected
and 2,000 non-protected samples. As specified in[Du et al.| (2022), 5 attributes are included in the

9% 9% ¢

prediction covariates set X: “fulltime”, “fam_inc age”, “gender”, “pass”. In addition to X, the

following 6 attributes are included in U but not X to aV01d the multicollinearity issue of Heckman
model: “cluster”, “Isat”, “ugpa”, “zgpa”. The IMR covariate and all weights are learned using the set
of U.

B.2 BENCHMARK EXPERIMENTS WITHOUT SELECTION BIAS

In this section, we validate the performance of our method proposed in Algorithm [} Additionally,
we compare our methods with the CENet method and WassersteinNet methodE] proposed in|Chi et al.
(2021). Both the CENet and WassersteinNet methods consider MSE disparity as the fairness metric
and assume no covariate shift between the training and testing sets. Therefore, to better compare with

these two methods, we focus the cases without selection bias, and let Wl = % if A; = a.

We conduct experiments on Law School [Wightman|(1998)), Communities&Crime Redmond| (2009)
and Medical Insurance Cost|Lantz|(2013) datasets. For each dataset, a binary variable is selected
as the protected attribute (A) and a continuous variable is selected as the response variable (Y").
All experiments in this section follow the same data generation, data preprocessing and covariate
sets specification outlined in|Chi et al.[(2021)). We’ll provide a brief overview of the general setup,

The source code of implementation of both methods can be found at https://github.com/JFChi/
Understanding—and-Mitigating-Accuracy-Disparity-in—-Regression
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Figure 2: Overall performance: average test MSE and MSE disparity of different methods.

including the protected and target variables. For more detailed information and an introduction to the
datasets, readers can refer to the Appendix of |Chi et al.|(2021).

Methods We apply ridge regression (RR) and kernel ridge regression (KRR) with different con-
straint levels ¢ using Lagrangian optimization. We test our method across a wide range of § values to
understand its performance under various constraints. Both the CENet method and WassersteinNet
aim to minimize the MSE disparity of neural network models by fitting them on a fair representation
that minimizes the distance between two groups [Chi et al.|(2021). Algorithmic fairness is controlled
by a parameter A\, which penalizes the distance between conditional representations. In our experi-
ments, we use the default neural network architectures from|Chi et al.|(2021)) and vary \ across a wide
range of values. Further details on parameter tuning for all methods can be found in the following
corresponding paragraphs.

Crime data In this experiment, the race attribute is used as the protected attribute with A = 1
represents when the population percentage of the white is greater or equal to 80% and O oth-
erwise. Each instance has an input dimension of 96. For ridge regression, we set the tun-
ing hyper-parameter range to be 20 numbers spaced evenly on a log scale between 10~ and
103, In Kernel ridge regression, we implement the rbf kernel using random Fourier fea-
tures and choose the bandwidth through median heuristic. We select the penalizing hyper-
parameter 7 from 20 evenly spaced numbers on a log scale between 1078 and 1. The thresh-
old 4 for our methods is set to be {1076,107°,10~%,1073,0.005,0.01,0.015,0.02, 0.03}; the
penalizing hyper-parameter A for CENet and WassersteinNet in [Chi et al| (2021) is set as
{0.01,0.1,1.0,5.0,10.0, 15.0, 20.0, 35.0, 50.0, 100.0}.

Law Data In this experiment, we use gender as the protected attribute and undergraduate GPA
as the target variable. For ridge regression, we set the tuning hyper-parameter range to be 20
numbers spaced evenly on a log scale between 10~ and 10~3. In kernel ridge regression, we use
the Sobolev kernel. We select the penalizing hyper-parameter 7 from 20 evenly spaced numbers
on a log scale between 10~® and 1. The MSE disparity threshold & for our methods is set to be
{107¢,1075,10%,10~3,0.0025, 0.005, 0.075, 0.01}; the penalizing hyper-parameter \ for CENet
and WassersteinNet in |Chi et al.| (2021} is set as {0.01,0.1, 1.0, 5.0, 10.0, 15.0, 20.0, 50.0, 100.0}.

Medical Insurance Cost Data The medical insurance cost dataset Lantz (2013)) is a simulated
dataset created using real-world demographic statistics from the U.S. Census Bureau. It contains 1,338
medical expense examples for patients in the United States. In this experiment, gender is selected as
the protected attribute and the charged medical expenses as the target variable. We apply the same
sub-sample process as in|Chi et al.|(2021)), by randomly selecting 5% of examples with male gender
and 50% of examples with female gender, resulting in a total of 364 examples. For ridge regression,
we set the tuning hyper-parameter range to be 20 numbers spaced evenly on a log scale between
107Y and 10~3. We use the Sobolev kernel in kernel ridge regression. We select the penalizing
hyper-parameter 7 from 20 evenly spaced numbers on a log scale between 108 and 1. The MSE
disparity threshold & for our methods is set to be {1076, 107%,10~%,1073,0.0025, 0.005, 0.01};
the penalizing hyper-parameter A for CENet and WassersteinNet in |Chi et al.| (2021)) is set as
{0.01,0.1,0.5,1.0,2.0,5.0}.
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Figure 3: MSE disparity at various levels of fairness controlled by § or A. The model is supposed to
be more “fair” with a smaller § or larger A. The standard error of 10 repetitions is represented by the
error bars.

Results and Analysis For each repetition, we randomly split the data into 80% training and 20%
testing set. We train the models on training data and assess their performance on testing set. The
average metrics at each level of d or A over 10 random splits are summarized in Figure 2]and Figure[3]
Here are our observations: (1) Our proposed methods achieve the best trade-offs in all datasets. (2)
Our methods effectively reduce the MSE disparity. Compare with fair RR, fair KRR works more
effectively for relatively large §; when ¢ is small, the estimation of out-of-sample MSE disparity
A(gy) exceeds the tuning limit & - §, and a n that minimizes the out-of-sample risk ﬁf,—(g,,) will be
selected by tuning rule. (3) Compared to our methods, the CENet method and WassersteinNet method
can reduce the MSE disparity in some cases (such as in the Law Dataset), but overall, increasing A
does not consistently reduce the MSE disparity as shown in Figure 3]

B.3 NUMERICAL SIMULATIONS

In this section, we use simulations to illustrate the performance of the balancing weights proposed in
Section [3|and our proposed optimization algorithms. In each simulation, we compare the balancing
weights with inverse probability weights (IPW), proposed by |Zhang & Long| (2021). In particular, we
compare with two IPWs, where the propensity score is obtained by fitting the selection indicator S' to
fully observed covariates set U with either a logistic regression (logistic) or a kernel support vector
machine (kernel SVM) model with a Gaussian kernel. We also include the comparisons with the true
IPW, even though it is usually unknown for real data. For balancing weights, a sobolev kernel is used
for the optimization step.

We generate 500 replicates and each replicate consists of n; = 2000 and ng = 2000 samples. We
showcase the results for four simulation settings and summarize the results in Table [T|2I3]4] For
each experiment, we present the average MSE and average MSE disparity with their corresponding
standard error. We highlight the smallest average MSE and MSE disparity at each level of fairness
constraint 4. The simulation results demonstrate that with the balancing weights adjustment, our
proposed algorithm can consistently constrain the MSE disparity over the population distribution py
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Table 1: Mean and standard error of mse of weighted fair regression of case 1; all the values are

multiplied by 100.

é Weights MSE MSE disparity
IPW (kernel SVM)  675.587 (0.249)  49.704 (1.559)
IPW (logistic) 669.682 (0.284) 591.706 (2.666)
0.0  IPW (true) 678.58 (0.273)  42.168 (1.427)
balancing weights  677.949 (0.205) 32.112 (1.039)
unweighted 667.191 (0.234) 358.885 (1.852)
IPW (kernel SVM)  671.41(0.229)  85.749 (2.049)
IPW (logistic) 671.312 (0.294) 624.165 (2.591)
50.0 IPW (true) 673.814 (0.251)  59.983 (1.744)
balancing weights  673.211 (0.189)  53.755 (1.546)
unweighted 667.763 (0.244) 341.495 (2.686)
IPW (kernel SVM)  668.423 (0.213)  123.038 (2.115)
IPW (logistic) 672.855 (0.303)  650.448 (2.533)
90.0 IPW (true) 670.386 (0.234) 91.26 (2.134)
balancing weights  669.804 (0.177)  90.536 (1.736)
unweighted 668.121 (0.252) 333.082 (3.163)

even the fully observed training samples come from a distribution different from p; under selection.
Comparing to the IPW adjustments and even the true IPW, balancing weights adjustment can control
the MSE disparity more effectively for most cases.

Parametric regression:

Case 1: Let X; = (X;1, X;2, Xi3, Xi4)T € R* follow the Gaussian distribution such that X;; ~
N(0,0’ii), with 09 = 1.5and 0y = 1. We let U; = (X;1, X;2)” denoting the covariates not
subject to selection. The selection mechanism is based on the following model S;|4; ~ Bernoulli
(sigmoid(m 4, (U;))), where

7o(Us) = =2 + 0.1exp((Us; — 1)/1.5) 4+ 0.2((Uiz — 1)/0.8)2,

7T1(Ui) =—-1+ 2SiIl(UZ'1 — 1)/12) - 10g(|Ui2/5|).

LetY; = X7 B+ (—44;+1) X2 +¢;, for 3 = (1,—1,—1,1)T, and ¢; ~ N(0, 1) independent of X;
and A;. In each repetition, we estimate the weights and apply Algorithmwith 6 € {0,0.5,0.9}. We
evaluate the performance on a sample of size 100, 000 from p and report the average and standard
error of the metrics.

Case2: LetX; = (X;1,X;2, X3, Xi4)T € R* follow the Gaussian distribution such that X;; ~
N(1—24;,0%,), withog = 1.2 and 0y = 0.8. We let U; = (X;1, X;2)" denoting the covariates
not subject to selection. We adopt the same selection mechanism as above.

LetY; = X B+(—44;+1)X;1 +¢;, for 3 = (1,—1,—1,1)7, and ¢; ~ N(0, 1) independent of X;
and A;. In each repetition, we estimate the weights and apply Algorithmwith 5 € {0,0.5,0.9}. We

evaluate the performance on a sample of size 100, 000 from p7 and report the average and standard
error of the metrics.

Nonparametric regression:

Case 3 Let X; = (X;1, Xi2, Xi3, Xia)T € R* follow the gaussian distribution such that )?ij ~
N(1 - 24;,1).

The selection mechanism is based on the following model S;|A; ~ Bernoulli(sigmoid(m 4, (X;))),

where ~ ~ ~ _ ~
WQ(XZ') =1- 08XL1 - O.QX,L'Q - 025X¢3 - 0.1X1‘4,
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Table 2: Mean and standard error of mse of weighted fair regression of case 2; all the values are

multiplied by 100.

) Weights MSE MSE disparity
IPW (kernel SVM) 513.742 (0.389) 131.985 (3.54)
IPW (logistic) 536.328 (1.461) 70.601 (3.052)
0.0  IPW (true) 515.693 (0.489) 51.549 (2.247)
balancing weights  514.181 (0.43)  40.123 (1.649)
unweighted 570.96 (1.192)  362.96 (4.812)
IPW (kernel SVM)  512.369 (0.391)  182.804 (3.707)
IPW (logistic) 533.645 (1.423) 82.148 (3.446)
50.0 IPW (true) 510.965 (0.427) 63.402 (2.759)
balancing weights ~ 509.475 (0.384) 53.168 (2.19)
unweighted 574.145 (1.256)  402.068 (5.372)
IPW (kernel SVM)  512.3 (0.411) 224.591 (3.801)
IPW (logistic) 531.923 (1.393) 97.571 (3.899)
90.0 IPW (true) 508.107 (0.381) 92.426 (3.349)

balancing weights

unweighted

506.602 (0.349)
576.13 (1.309)

85.324 (2.711)
421.302 (5.835)

Table 3: Mean and standard error of mse of weighted fair regression of case 3; all the values are

multiplied by 100.

) Weights MSE MSE disparity
IPW (kernel SVM)  675.022 (89.549) 285.889 (54.493)
IPW (logistic) 326.999 (27.337) 93.419 (13.771)
10.0 IPW (true) 398.192 (52.417) 155.848 (33.64)
balancing weights ~ 321.863 (9.744)  94.404 (5.168)
unweighted 321.191 (18.824)  124.904 (12.843)
IPW (kernel SVM) 611.08 (95.804)  288.263 (61.81)
IPW (logistic) 314.115 (33.503)  99.25 (15.653)
40.0 IPW (true) 359.299 (56.734)  135.306 (32.964)
balancing weights ~ 279.165 (13.448) 81.353 (4.962)
unweighted 260.925 (12.145) 89.738 (8.583)
IPW (kernel SVM)  619.388 (95.285) 295.261 (51.575)
IPW (logistic) 302.156 (29.485) 117.268 (13.972)
80.0 IPW (true) 384.351 (62.054) 162.384 (33.715)
balancing weights ~ 246.321 (6.007)  82.065 (3.797)
unweighted 225.814 (4.298)  90.585 (4.218)

71'1()’21‘) =0.5+ 0.5)?1'1 - 2)?,‘2 - 02)?73 - 01)"(:14

The observed covariates X;; = exp(fi1/2)7Xi2 = Xiz/(l + exp()?il)) +10, X;3 = ()2,»3/25 +
0.6)3, X;4 = ()?22 + X4 + 20)%. We let U; = (X1, Xia, Xi3, Xi4)T denoting the covariates not
subject to selection. Let Y; = 27.4X;1 + 13.7X,0 4 13.7X;3 + 13.7X 4 + (—2A4; + 0.5) X1 (Xy3 +
)21»4)/2 + ¢; with ¢; ~ N (0, 1) independent of X; and A;.

For each repetition, we estimate the weights and apply Algorithmwith § €{0.1,04,0.8}. We
select the penalizing hyper-parameter 7 from 20 evenly spaced numbers on a log scale between 1078

and 10~!. We evaluate the performance on a sample of size 2000 from p7 and report the average
and standard error of the metrics.
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Table 4: Mean and standard error of mse of weighted fair regression of case 4; all the values are

multiplied by 100.

1) Weights MSE MSE disparity
IPW (kernel SVM)  988.292 (146.981)  212.571 (32.191)
IPW (logistic) 986.541 (109.23) 239.749 (29.474)
10.0 IPW (true) 1148.411 (157.506) 214.139 (34.216)
balancing weights ~ 655.782 (85.631) 132.995 (18.233)
unweighted 1770.393 (128.721)  622.058 (49.221)
IPW (kernel SVM)  1095.237 (157.847) 272.822 (38.877)
IPW (logistic) 891.51 (104.671) 223.875 (25.495)
40.0 IPW (true) 994.546 (144.07) 218.461 (32.34)
balancing weights ~ 527.704 (71.915) 138.869 (15.876)
unweighted 962.436 (98.601) 349.391 (37.017)
IPW (kernel SVM)  507.14 (97.388) 184.18 (24.907)
IPW (logistic) 399.367 (58.096) 165.881 (16.936)
80.0 IPW (true) 591.531 (108.822)  166.445 (20.541)
balancing weights ~ 424.582 (59.104) 139.38 (9.321)
unweighted 301.806 (39.492) 158.556 (16.41)

Cased4 Let X; = (Xil, )?7;2, ),Zig, )ZM)T € R* follow the gaussian distribution such that )?ij ~
N(1—24;,0%,), withoj = 0.8 and 07 = 1.

The selection mechanism is based on the following model S;| 4; ~ Bernoulli(sigmoid (7 4, (X))
where

WO()A(:i) =1- 015511 - 01)?22 - 025&13 - 0.2)?2'4,
’/Tl()?i) = 05 + 055(:11 — 25(212 - 025(113 — 015{'24

The observed covariates X;; = exp()?il/Q), Xio = X’ig/(l + exp()?il)) +10, X3 = (Xi3/25 +
0.6)%, X4 = (Xi2 + Xia +20)% We let U; = (X1, Xio, Xi3, Xi4)T denoting the covariates not

subject to selection. Let Y; = 274X21 + 137X12 + 137X23 + 137Xz4 + (72141 + 05)X21(X23 +
Xi4)/2 + €; with ¢; ~ N(0,1) independent of X; and A,.

For each repetition, we estimate the weights and apply Algorithmwith 5 € {0.1,0.4,0.8}. We
select the penalizing hyper-parameter 7 from 20 evenly spaced numbers on a log scale between 10~8
and 10~!. We evaluate the performance on a sample of size 2000 from p7 and report the average
and standard error of the metrics.

B.4 COMPARISON WITH DISCIPLINED CONVEX-CONCAVE PROGRAMMING (DCCP)

In this section, we follow the same setting as in case 3 and compare the performance of our optimiza-
tion method and DCCP. We fix 7 = 10~° and do not apply any weights adjustment to both methods.
The MOSEK optimizer is employed to solve DCCP with default parameter configurations. For all
repetitions, both DCCP and our method yield feasible solutions, with the MSE disparity bounded by
§+ 1076, We compare the average time and maximal time needed to finish training for one repetition.
We also include frequency of each method achieving a smaller objective value. The summarized
results from 500 random repetitions are presented in Table[5] Each repetition is completed with one
node with 2 CPUs, which has 8 cores and 16 threads. Each compute node has 64 GB of RAM. The
results show that our method is significantly more efficient than DCCP, and consistently achieving a
smaller objective value.
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Table 5: Comparison between lagrangian and dccp optimization.

1) Optimization Average time (s) Maximal time (s) Smaller objective value frequency
01 Lagrangian 0.577 0.723 500
" DCCP 71.916 109.843 0
0.4 Lagrangian 0.577 0.738 500
" DCCP 66.674 107.829 0
08 Lagrangian 0.575 0.684 500
" DCCP 56.239 109.155 0

C NEWTON’S METHOD IMPLEMENTATION

In this section, we present the implementation details of the Newton’s method that will be used to
optimize the objective function in the dual problem 0.

Algorithm 2 Optimization procedure to solve \* = argmax ho ().

)\0 =0
while epoch < maxepoch; epoch ++ do
AN = ThoQ)

VZhe (M)

A

V2he (M) = —2(8(\)LTDL — LTDY)T(
LTDY)

6: if A\ > 0 then B

7: AN = min(AX,0.95(A — \;))
8: else

9: AN = max(AN 0.95(A — ;)
10: end if

11: Ait1 =X+ AN Big1 = B(hit1)
12: if

Vhe(\) = C + 2¥"DLB(N) ~ B(\)" (L DL)A(),

TWL - NLTDL + 1)~ (8(\) LT DL —

ax { [Vhe(N)] 1fo(Biv1) — h(Aig1)] (H(LT(W —Xis1D)L)Biy — (L' (W = N1 D)Y )|

IS|+1 7 [fo(Bixr)| +1

then
13: Break.
14: end if
15: end while
16: Return )\,

ILT(W = Xia D)L|| + [|[LT(W = Ain D)Y || + 1
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