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Abstract

Cooperative Multi-Agent Reinforcement Learning (MARL) is a rapidly growing research
field that has achieved outstanding results across a variety of challenging cooperation tasks.
However, existing MARL algorithms typically overlook the concurrent updates of teammate
agents. An agent always learns from the data that it cooperates with one set of (current)
teammates, but then practices with another set of (updated) teammates. This phenomenon,
termed as “teammate delay”, leads to a discrepancy between the agent’s learning objective
and the actual evaluation scenario, which can degrade learning stability and efficiency. In
this paper, we tackle this challenge by introducing a lookahead strategy that enables agents
to learn to cooperative with predicted future teammates, allowing the explicit awareness of
concurrent teammate updates. This lookahead strategy is designed to seamlessly integrate
with existing gradient-based MARL methods, enhancing their performance without signif-
icant modifications to their underlying structures. The extensive experiments demonstrate
the effectiveness of this approach, showing that the lookahead strategy can enhance the
cooperation learning efficiency and achieve superior performance over the state-of-the-art
MARL algorithms.

1 Introduction

Cooperative Multi-Agent Reinforcement Learning (MARL) techniques focus on replicating the collaborative
intelligence observed in human teams Oroojlooy & Hajinezhad (2023), and advancements in recent years
have showcased its remarkable potential in various application domains, including robotics Wang et al.
(2022), games Berner et al. (2019), and social networks Leibo et al. (2017). Among them, multi-agent policy
gradient methods stand out with the capability to handle continuous control tasks and with potential to solve
intricate cooperative problems de Witt et al. (2020a); Yu et al. (2022a). Despite the ongoing progresses in
this category of methods, we point out that they typically suffer from a “teammate delay” issue. Specifically,
this issue occurs when an agent learns from the data that it cooperates with current teammates, but then
practices with updated teammates due to the concurrent teammate updates.
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Figure 1: One simple example to show “teammate delay” issue, where Purchaser is expected to buy corre-
sponding ingredients for Cook to cook.
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For more intuitive illustration, one concrete example is shown in Figure 1. In this example, Cook initially
wants to cook hamburgers, and Purchaser adjusts its policy to buy corresponding ingredients after one
round of policy update. However, at this moment, Cook also improves its policy to cook vegetable salad.
Thereby, their updated policies fail to cooperate well. This simple example reveals that updating the agents
to cooperate with current teammates would lead to a training-test mismatch because the teammates update
their policies as well. This gap between policy training and evaluation in each round of update can lead to
severe learning inefficiency.

Although not explicitly pointing out this teammate delay issue, there exist works aiming to resolve similar
problems arising from concurrent updates of teammate policies. Opponent modeling methods seek to alle-
viate the non-stationarity in multi-agent scenarios through explicitly modeling the teammate policies Yuan
et al. (2023). They either introduce an auxiliary task of predicting teammate behaviors Hernandez-Leal
et al. (2019) or learn teammate representations as extra policy conditions Papoudakis & Albrecht (2020);
Cao et al. (2023). Despite their effectiveness in many problem scenarios, these methods necessitate ex-
tra teammate modeling efforts and lack theoretical analysis support. On the other hand, recent works,
LOLA Foerster et al. (2018a) and COLA Willi et al. (2022), explicitly acknowledge the learning behavior
of other agents and propose learning rules with opponent-learning awareness. However, these works are
limited to two-player simple problems and face challenges to extend to practical cooperative scenarios. The
most promising approach is one recent progress of multi-agent policy gradient method, HAPPO Kuba et al.
(2021). This method proposes a sequential policy update scheme with theoretical guarantees for joint policy
improvement. However, its actual implementation involves an approximation utilizing importance sampling,
potentially influencing the actual performance due to large variance in policy gradients.

Despite all these previous efforts, how the teammate delay issue influences the cooperative policy learning
and how to better mitigate its negative impact are still open questions. To answer these two questions, in this
paper, we both provide a formal analysis about the impact of this issue on the policy update, which motivates
us to predict future teammate policies, and propose a model-based MARL algorithm where we approximate
the future teammates via conducting policy updates within the environment model. In summary, our main
contributions are:

• We offer a rigorous formal analysis on policy-gradient MARL algorithms by investigating the regret
of the updated policy, which unveils the impact of “teammate delay” issue on cooperative policy
learning.

• Furthermore, we introduce a practical model-based MARL algorithm explicitly designed to address
the challenges posed by the “teammate delay” issue. By leveraging insights from our formal analysis,
our algorithm aims to enhance cooperative policy learning.

• To validate the effectiveness of our proposed approach, we conduct empirical studies on various
benchmarks. These benchmarks include complex problems with continuous action spaces, as well
as challenging multi-agent cooperative tasks. The empirical results unequivocally demonstrate the
superiority of our method, showcasing its ability to outperform existing approaches and handle
diverse scenarios with impressive performance gains.

2 Preliminaries

2.1 Single-Agent Policy Gradient

In single-agent setting, the sequential decision-making problem can be formalized as a Markov Decision
Process (MDP) that can be defined as a tuple (S,A,P,R, γ). At each timestep, the agent receives the
current state s ∈ S and selects an action a ∈ A according to the agent policy π(·|s). The environment will
return the next state s′ ∈ S and reward r according to P(·|s, a) and R(s, a). Besides, the γ denotes the
discount factor.
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The goal of reinforcement learning is to maximize the discounted return η(π) of the agent policy π, which
according to the performance discrepancy lemma Kakade & Langford (2002) equals to:

η(π) = η(πk) +
∑
s∈S

ρπ(s)
[∑

a∈A
π(a|s)Aπk (s, a)

]
, Aπk (s, a) = Qπk (s, a) − Vπk (s), (1)

where πk is the k-th round agent policy, ρπ(s) means the state distribution derived by π and Aπk (s, a)
denotes the advantage function. More details about the notations are listed in Appendix A.1. As it is hard
to sample trajectories corresponding to the state distribution ρπ(s), in practice, we typically use πk to sample
trajectories instead. This implies that the actual learning objective is:

J(π) = η(πk) +
∑
s∈S

ρπk (s)
[∑

a∈A
π(a|s)Aπk (s, a)

]
. (2)

In fact, J(π) is related to πk, but for brevity we omit it in input. The same applies to the following context.
Due to the state distribution change, π can not be updated too far away from πk, for which traditional actor-
critic algorithms, e.g., A3C Mnih et al. (2016), conduct only a few policy gradient ascend while trust-region
algorithms, such as PPO Schulman et al. (2017), conforms to the trust-region optimization.

2.2 Multi-Agent Policy Gradient

When it comes to the multi-agent setting, the problem can be defined as a tuple (N,S,A,P,R, γ), where
N is the number of agents. For the sake of simplicity and without loss of generality, we have omitted
the partial observability in notations above, where an agent needs to make decisions based on its local
observations. Moreover, we assume that the joint policy π can be decomposed into the product of individual
policies π(a|s) =

∏N
i=1 πi(ai|s), where πi is the individual policy for agent i and the joint action a =

[a1, a2, · · · , aN ] ∈ A is decomposed of individual actions {ai}N
i=1.

In this case, the learning objective for each agent in multi-agent policy gradient methods is typically defined
as:

Ji(πi|{πk
j }j ̸=i)

= η(πk) +
∑
s∈S

ρπk (s)
[ ∑

a∈A
πi(ai|s)

∏
j ̸=i

πk
j (aj |s)Aπk (s,a)

]
, i ∈ {1, 2, · · · , N}. (3)

Compared with that in single-agent setting, the data distribution here is also influenced by the teammate
policies. In other words, the i-th agent updates its policy associated with the current teammates {πk

j }j ̸=i in
this learning objective. Totally, the learning objective for the joint policy can be formalized as:

J(π) = η(πk) +
∑
s∈S

ρπk (s)
[

1
N

N∑
i=1

∑
a∈A

πi(ai|s)
∏
j ̸=i

πk
j (aj |s)Aπk (s,a)

]
. (4)

3 Method

In this work, we identify the teammate delay phenomenon in the common practice of multi-agent policy
gradient methods. The direct negative impact of this issue can be analyzed and how to solve this issue
deserves further study. In this section, we firstly discuss how the teammate delay issue can cause a negative
impact on the cooperative policy learning through analyzing the regret of the updated joint policy at the next
round. Motivated by this analysis, we then propose a practical algorithm that exploits the future teammate
information to facilitate the cooperation learning.

3.1 Analysis Motivates Predicting Future Teammates

From Equation (4), we know that in typical multi-agent policy gradient methods, the learning objective of
the agent policy involves computing an expectation with respect to the current teammate policies {πk

j }j ̸=i.
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Consequently, the current policy distribution of the teammates will have an impact on the policy update. In
order to provide further analysis on this impact, we replace the teammate policies with a general notation
{µj}j ̸=i, which means that the trajectories are sampled associated with a sampling policy µ. In this way,
the learning objective is transformed into:

J(π,µ) = η(πk) +
∑
s∈S

ρµ(s)
[

1
N

N∑
i=1

∑
a∈A

πi(ai|s)
∏
j ̸=i

µj(aj |s)Aπk (s,a)
]
, (5)

where πk still denotes the joint policy at the k-th round. In existing multi-agent policy-gradient methods,
the sampling policy µ is typically selected to be πk, which means that we expect πi to collaborate well with
the k-th round teammate policies through maximizing

∑
s∈S ρπk (s)

∑
a∈A πi(ai|s)

∏
j ̸=i π

k
j (aj |s)Aπk (s,a).

We wonder what would happen when we adjust µ from πk to other distributions. To answer this question,
we firstly propose the following lemma that estimates the upper bound of discrepancy between the learning
objective J(π,µ) and the actual policy return η(π).

Lemma 1 Assume that we update the joint policy πk to πk+1 with sampling policy µ. Given
the measurement of distance between sampling policy µ and the updated policy πk+1 as αi =
maxs DTV

(
πk+1

i (·|s)∥µi(·|s)
) 1, we have:

|J(πk+1,µ) − η(πk+1)| ≤ 4ϵγ
(1 − γ)2

(
N∑

i=1
αi

)2

+ 2ϵ(N − 1)
N

N∑
i=1

αi, (6)

where γ is the discount factor and ϵ = maxs,a |Aπk (s,a)|.

For proof see Appendix A.2. The estimated upper bound of the discrepancy between J(πk+1,µ) and η(πk+1)
in Lemma 1 can aid us in analyzing the regret of πk+1, leading to the following theorem:

Theorem 1 Suppose that we update joint policy πk to πk+1 with sampling policy µ, then the regret of the
updated joint policy πk+1 has the following upper bound:

η(π∗) − η(πk+1) ≤ η(π∗) − J(πk+1,µ) + 4ϵγ
(1 − γ)2

(
N∑

i=1
αi

)2

+ 2ϵ(N − 1)
N

N∑
i=1

αi

(c)

. (7)

For proof see Appendix A.2. The right hand side of Inequality (7) sheds light on the elements that can
influence the cooperative policy learning. Totally, we expect to minimize the regret of the updated policy via
minimizing the overall upper bound expression. Other than the first term η(π∗) that is a constant value, the
upper bound is composed of −J(πk+1,µ) and one extra term (c). In fact, the second term −J(πk+1,µ) is
exactly the loss function that the algorithm aims to minimize at each update round, which typically serves as
a surrogate function for the regret η(π∗) − η(πk+1). However, Inequality (7) reveals that the regret can not
be bounded by −J(πk+1,µ) alone, and an extra term (c) relatively captures the gap between this surrogate
function and the actual regret.

This extra term (c), a function of the sampling policy µ and the updated policy πk+1, can not be optimized
by the previous learning algorithms, but it can have an impact on the cooperation learning. When given a
large term (c), the surrogate function would be far from the actual regret, which can result in low learning
efficiency. In fact, it is easy to observe that term (c) will be reduced to zero when µ is equivalent to πk+1.
That is, the extra term (c) would disappear if we trained the agents with the information of future teammates.
This outcome motivates us to replace the sampling policy µ with an approximation of the future teammates,
thus to reduce the regret. A more comprehensive analysis on how approximating future teammates reduces
the regret upper bound is provided in Appendix A.3. In Section 3.2 and Section 3.3, we will show how we
approximate the future teammates.

1The TV distance measures the distance between two distributions via calculating DTV(P,Q) = 1
2
∑

x
|P (x) −Q(x)| Cover

(1999).
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3.2 Future Teammate Approximation

Based on the above analysis, we are motivated to replace the sampling policy µ with the future teammate
policy πk+1 in each round of policy update. However, achieving this goal is not easy in practice, because in
each round of policy update, the updated policy πk+1 is affected by the sampling policy µ, that is, πk+1

and µ are coupled. Thus, to serve this goal, we propose that the future teammate policy can be obtained
by solving a bi-level optimization problem below:

Theorem 2 Let ψ be the policy update operator 2. The sampling policy µ∗ that can derive the same updated
policy, i.e., µ∗ = ψ(µ∗,πk), is the solution of the following bi-level optimization problem:

min
µ
DKL(µ∥πk+1), s.t. πk+1 = arg max

π
J(π,µ). (8)

Its proof can be found in Appendix A.2. This theorem inspires us that we can obtain the expected µ∗ by
solving the consistent bi-level optimization problem. The solution of this problem to some extent contains
the information of future teammate policy. However, this problem typically follows a form of Stackelberg
Game Friedman (1971), and is not easy to solve.

In this case, we propose to perform one-step approximation of this optimization problem, which means that
with µ initialized as πk, we firstly solve the inner-loop optimization with πk+1 = arg maxπ J(π,µ) and then
we assign the obtained πk+1 to the sampling policy µ, thus obtaining the approximation of the solution
µ∗. This one-step approximation is commonly utilized for stackelberg-game-like problems, and it achieves
a trade-off between the solution accuracy and the computation cost. In brief, for feasible future teammate
approximation, we perform an additional round of optimization before each algorithm iteration, using the
previous round’s policy πk as the sampling policy, and the obtained policy π̃k+1 serves as the approximation
of future teammate policy.

3.3 Practical Algorithm Implementation

Model-based Approximation The above analysis motivates us to conduct extra training to estimate
the future teammate policy. However, a straight-forward implementation is not practical because it wastes
near half of the online samples for estimating the future teammate policy, and those samples are not utilized
for the actual policy training, which as a result will lead to very low sample efficiency of the algorithm. To
avoid this issue, we propose to learn an environment model, and put the teammate policy estimation process
within it, thus avoiding the waste of a large number of online samples.

In specific, we maintain a data buffer to store all the transition data that has been encountered during the
training process. In each iteration of the algorithm, we additionally conduct model learning by sampling
training data from this buffer. Typically, we update the model parameters through maximizing the likelihood
of observing the training data under the environment model. Subsequently, we perform future teammate
approximation within the model to derive a lookahead sampling policy denoted as π̃k+1. The derived policy
is then utilized for actual policy training within the real environment.

Off-policy Value Estimation The intuition of our work is to modify the sampling policy µ in Equa-
tion (5), thus to derive a better optimization objective that can bring a smaller upper bound of the regret
for the updated policy. However, term Aπk is expected to be maintained which means that we want to
estimate the advantage with the policy of the last round. In typical practice, it is easy to achieve because
the trajectories are sampled by πk and we can estimate the advantage directly. While in our algorithm
design, the sampling policy is replaced with the lookahead policy π̃k, which means that we need to conduct
off-policy estimation for Aπk . In specific, we adopt the V-trace trick to estimate Aπk with the trajectories
sampled by π̃k+1.

Overall Flow of the Algorithm Combining all the algorithmic design techniques that we have raised,
we propose a practical algorithm that can enhance the underlying multi-agent policy gradient method. The

2ψ(µ,πk) means the result of one round of policy update starting from πk using µ as the sampling policy, i.e., ψ(µ,πk) =
arg maxπ J(π,µ) within the trust region of πk for MAPPO Yu et al. (2022a).
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Algorithm 1 Multi-Agent Policy Gradient Learning with Lookahead
Input: The number of agent N , max iteration number K, trajectory batch size M
Output: Obtained multi-agent cooperation policy

1: Initialize replay buffer B;
2: Initialize a joint policy π = {πi}N

i=1 randomly;
3: for iteration k = 1 to K do
4: Sample a batch of transitions from B and update the environment model;
5: Sample a batch of trajectories {τ̃}M in the environment model with sampling policy πk, and obtain

π̃k+1 = ψ(πk,πk) using the training trajectories {τ̃}M ;
6: Sample a batch of trajectories {τ}M in the real environment with sampling policy π̃k+1, and obtain

πk+1 = ψ(π̃k+1,πk) using the training trajectories {τ}M ;
7: Add trajectories τ to the buffer B;
8: end for
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Figure 2: Visualization results on the toy environment. (a) Landscape of the two-variable function, where
darker the color is, higher function score the region obtains; (b) Algorithm learning score curve; (c) Opti-
mization process of Lookahead and MAPPO.

overall flow of our algorithm has been presented in Algorithm 1. In line 5, we obtain the estimated future
teammate policy π̃k+1 within the environment model, while in line 6 we utilize π̃k+1 to aid in actually
updating the policy in the real environment. Besides, we update the environment model in line 4.

4 Experiments

In this section, we substantiate the efficacy of our proposed approach through empirical validation via
experiments conducted on diverse benchmarks. These benchmarks include a toy environment, which serves
to illustrate the algorithmic process of our approach, and two intricate cooperative multi-agent scenarios that
provide practical validation of our approach’s effectiveness. Specifically, we aim to utilize these experimental
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6 total joints divided 
into 2 agents

(a) 2x3-Agent HalfCheetah (b) academy 3 vs 1 with Keeper

Figure 3: Two cases of Multi-Agent MuJoCo (MA-MuJoCo) and Google Football Research (GRF) environ-
ments.

results to investigate the following questions: 1) How does our algorithm work and can we analyze the
underlying mechanism through one simple task (Section 4.1)? 2) Can our algorithm actually enhance the
cooperation learning in complex multi-agent cooperative tasks (Section 4.2)? 3) Does the phenomenon
exhibited by our algorithm in complex cooperative tasks still align with our analysis (Section 4.3)?

4.1 Algorithm Analysis in Toy Environment

To visually reveal how our method works, we devised a toy environment involving a two-variable function
optimization problem. As depicted in Figure 2(a), this problem comprises two agents with continuous action
spaces in the range [0, 1]. Whenever the agents execute a joint action [a0, a1], the environment yields reward:
R = a3

0 − 2(a0 − a1)2 + 3a0.

Specifically, we initialize the joint policy as [0.1, 0.1] and both adopt the algorithms of MAPPO and our
lookahead strategy to investigate how they converge to the optimal policy [1, 1]. As shown in Figure 2(c),
without our lookahead strategy, agent 1 always shows a large gap from the Best-Response (BR) against the
updated agent 0, revealing the phenomenon of “teammate delay”. While our lookahead strategy can help
agent 1 predict the updated policy of agent 0, leading to a shorter optimization path. From the learning
curve in Figure 2(b), we also find that our lookahead strategy helps converge to the optimal policy using
much fewer samples, enhancing the learning efficiency.

The algorithm analysis in this straightforward objective optimization task helps provide an intuitive expla-
nation about the algorithm mechanism and motivation behind our approach. In the subsequent sections,
we explore whether the proposed lookahead strategy can indeed enhance the cooperative learning in more
complex task scenarios.

4.2 Main Results in Complex Cooperative Tasks

4.2.1 Experiment Setup

To investigate the effectiveness of our approach in more practical task scenarios, this section focuses on
two prevalent cooperative benchmark environments, including continuous control tasks from Multi-Agent
MuJoCo (MA-MuJoCo) de Witt et al. (2020b) and Google Research Football (GRF) Kurach et al. (2020)
games with discrete action spaces. Two cases for these two environments are provided in Figure 3. Below
we provide introduction for these two environments:
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Table 1: Evaluation results of various methods on MA-MuJoCo tasks, providing average scores across 5 seeds
with standard errors. The highest score for each task scenario is bolded and the top-2 scores are marked in
blue . The average rank denotes the average ranking across all task scenarios of each method.

Algorithm Ant 2x4 Ant 4x2 HalfCheetah 2x3 HalfCheetah 3x2 Walker2d 2x3 Walker2d 3x2 Average Rank
Lookahead 3393.39(336.98) 2858.22(540.76) 3315.83(346.46) 3687.10(304.98) 2048.30(309.27) 2670.71(123.74) 1.33
HAPPO 2471.15(201.23) 2120.18(168.48) 2910.18(39.38) 3016.20(80.90) 2544.62(272.91) 2780.65(76.25) 2.00
TAPPO 2055.21(182.25) 2503.62(207.66) 2154.73(443.24) 3487.52(711.65) 1475.63(215.27) 1445.56(350.34) 3.67
MAPPO 1034.19(18.99) 1002.15(18.30) 2160.29(503.76) 2350.32(477.29) 1852.8(41.48) 1812.54(139.44) 4.33

IPPO 884.93(46.24) 875.8(20.84) 2652.04(635.31) 2477.98(566.12) 2021.89(67.64) 1775.2(122.09) 4.33
MADDPG 1866.08(9.77) 1701.08(13.45) 1553.54(251.6) 1295.5(384.87) 71.68(15.36) 100.72(35.19) 5.33

Table 2: Evaluation results of various methods on GRF tasks. GRF 3vs1, CA(hard) and Corner are respec-
tively short for maps of academy 3 vs 1 with keeper, academy counterattack hard and academy corner in
GRF environment.

Algorithm GRF 3vs1 GRF CA (hard) GRF Corner Average Rank
Lookahead 0.82(0.02) 0.50(0.07) 0.63(0.03) 1.33
HAPPO 0.86(0.03) 0.46(0.09) 0.49(0.07) 2.00
TAPPO 0.77(0.03) 0.49(0.03) 0.28(0.10) 3.00
MAPPO 0.66(0.04) 0.37(0.08) 0.48(0.11) 3.67

CDS 0.49(0.11) 0.21(0.07) 0.02(0.01) 5.00

Multi-Agent MuJoCo (MA-MuJoCo) The MA-MuJoCo environment is built upon the MuJoCo
physics engine to create realistic simulations for MARL research. In specific, MA-MuJoCo partitions the
body graph in MuJoCo into disjoint sub-graphs, one for each agent, e.g., 2x4-Agent Ant means dividing the
8 joints in Ant into 2 agents, each controlling 4 joints.

Google Research Football (GRF) The Google Research Football (GRF) is a novel benchmark environ-
ment offering simulations of soccer matches, enabling the study of multi-agent behaviors and reinforcement
learning. It introduces challenging cooperation learning tasks as it has the property of heterogeneity and
sparse rewards.

To thoroughly explore the cooperative performance that our approach can potentially bring about, we
integrate our lookahead strategy with HAPPO, one of the current state-of-the-art multi-agent policy gradient
algorithms, in all experiments of this section. For comparison, we select several popular multi-agent actor-
critic algorithms as baselines. An opponent modeling approach, TAPPO, is also included, which learns
teammate representations to incorporate additional policy conditions like in previous methods Papoudakis &
Albrecht (2020); Cao et al. (2023). We adopt this baseline to contrast our approach with traditional opponent
modeling approaches in mitigating non-stationarity issue arising from teammate co-learning. Moreover, in
the GRF environment, we add one additional baseline CDS Li et al. (2021), a value-based MARL algorithm
designed specifically for solving GRF games, for a more comprehensive comparison. More details about
baselines can be found in Appendix B.1.

4.2.2 Results Analysis

MA-MuJoCo As shown in Table 1, in multiple task scenarios of MA-MuJoCo, our approach Lookahead
has achieved superior cooperative performance compared to other baseline algorithms. For tasks of Ant and
HalfCheetah, our approach has consistently achieved the highest scores across all methods. These results
imply that in these task scenarios, through predicting the potential future policies of other agents controlling
their respective joints, our algorithm can help agents learn to manipulate their own joints in coordination
with other agents better, finally enhancing the cooperative performance. Despite not achieving the highest
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Figure 4: Measuring policy distances in Multi-Agent MuJoCo environments. The y-axis calculates the
difference in distances from πk and π̃k+1 to πk+1, i.e., DKL(πk+1,πk) − DKL(πk+1, π̃k+1), and the plot
illustrates the changes in this metric throughout the policy training process.

score, our approach also attains top-2 performance in the Walker2d scenarios. We hypothesize that the slight
performance loss might be due to the nature of the Walker2d task, which requires not only proficient walking
but also maintaining the balance of the mechanical legs at all times. The possible failure to maintain the
legs’ balance may pose great challenges to the learning of the environment model, consequently having a
negative impact on the performance of our algorithm. Actually, the selection of environment model learning
methods is orthogonal to our algorithm. In the future, we will consider designing better model learning
methods to further enhance the performance of our approach.

Google Research Football (GRF) Similar to the results in MA-MuJoCo, the results in Table 2 demon-
strate that our approach also achieves superior performance in GRF problems. In particular, our approach
is the only one that attains a success rate exceeding 60% in the academy corner scenario, achieving a no-
table improvement of over 25% compared to the second-best algorithm. Moreover, the average rank of our
approach also stands out as the best in the GRF environment, the same as that in MA-MuJoCo.

Ablation Study The comparison in Tables 1 and 2 between the Lookahead and HAPPO algorithms
on both benchmark environments can be seen as ablation study to assess the impact of our introduced
lookahead strategy. Across the majority of task scenarios, the incorporation of our lookahead strategy
results in enhanced cooperative performance compared to the original HAPPO algorithm, e.g., exceeding
the second-best algorithm by around 1000 points in 2x4-Agent Ant, which effectively validates the efficacy
of the proposed lookahead strategy.

4.3 Analysis of Lookahead Policy in Complex Problems

While we have analyzed the algorithmic mechanism in a toy environment, applying the algorithm in complex
tasks is more intricate due to the involvement of model learning. In this section, we measure the policy
distances to investigate whether our lookahead approximation still provides right direction information in
MA-MuJoCo. In specific, we compute the difference between DKL(πk+1,πk) and DKL(πk+1, π̃k+1), which
equals to DKL(πk+1,πk) − DKL(πk+1, π̃k+1). As we can see from Figure 4 that this metric consistently
keep positive throughout the training process, the results reveal that π̃k+1 is actually closer to the future
teammate policy πk+1, forming a relatively good approximation. These results support our motivation and
more analytical experimental results can be found in Appendix C.
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5 Related Work

The related work of this paper mainly covers three aspects: multi-agent policy gradient, multi-agent model
learning, and opponent modeling. Below, we provide the introduction to related works in these three aspects
respectively.

Multi-Agent Policy Gradient The multi-agent policy gradient algorithms hold better convergence sta-
bility compared to the value-based algorithms, and they provide the ability to handle continuous control tasks.
IA2C Chu et al. (2019) introduces the A2C method to the multi-agent setting, and adopts an independent
learning paradigm. Subsequently, COMA Foerster et al. (2018b) proposes the paradigm of centralized critic
with decentralized actors, which tries to conduct credit-assignment for each agent via introducing a coun-
terfactual baseline. MAAC Iqbal & Sha (2019) and DOP Wang et al. (2020) respectively improve the policy
gradient methods by introducing the attention mechanism to the critic network and conducting value decom-
position for the centralized critic. On the other hand, IPPO de Witt et al. (2020a) and MAPPO Yu et al.
(2022a) extend the trust-region policy optimization scheme to the multi-agent setting, and obtain remarkable
performance. However, all the policy gradient methods above directly optimize the agent policy associated
with the current teammates, and may suffer from the “teammate delay” issue. Recently, HAPPO Kuba et al.
(2021) introduces sequential update scheme to the multi-agent policy gradient algorithm, which considers
the mutual influences between different agents’ policy update. Nevertheless, it adopts importance sampling
technique which suffers from high variance, and it is orthogonal to our algorithm. More discussion is provided
in Appendix B.2. Besides, there exist algorithms introducing deterministic policy gradient to the multi-agent
setting Lowe et al. (2017), while we mainly consider stochastic policy gradient methods in this work.

Multi-Agent Model Learning Model-based reinforcement learning enjoys higher sample efficiency. How-
ever, multi-agent model learning faces significant challenges due to the exponential growth of the state-action
space and the non-stationary in multi-agent scenarios. Adopting the Dreamer Hafner et al. (2019) architec-
ture, MAMBA Egorov & Shpilman (2022) sustains a world model for each agent with necessary communica-
tion, thus to scale gracefully with the number of agents. Another work Mahajan et al. (2021) shows utilizing
tensor decomposition in multi-agent model learning can significantly improve the sample efficiency when the
environment transition and reward functions are of low CP-rank. Krupnik Krupnik et al. (2020) adopts
generative models to learn a multi-step world model which can consider the delayed effects of the previous
actions. Besides, considering the characteristics of multi-agent settings, AORPO Zhang et al. (2021) and
CTRL Park et al. (2019) incorporate the opponent modeling into the model learning in order to roll-out
opponent-wise trajectories. When the dynamic model has been obtained, dyna-style algorithms Zhang et al.
(2022); Willemsen et al. (2021) conduct data augmentation to enhance policy learning. MBVD Xu et al.
(2022) evaluates the current state value via imagining future states within the model. Han Han et al. (2022)
conducts credit assignment by computing the shapley value Winter (2002) using the samples roll-outed in
the model. In this work, we pay little attention to designing model learning techniques, instead we focus on
approximating the future teammates within the model.

Opponent Modeling Opponent modeling is a well-studied topic in the field of MARL. Some previ-
ous works utilize opponent modeling to alleviate the non-stationarity issue in MARL. Among them, some
works Hong et al. (2018); Papoudakis & Albrecht (2020); Xie et al. (2021); Cao et al. (2023) involve utiliz-
ing the opponent representations as additional inputs to the policy network, thereby enhancing the policy
learning. While AMS-A3C and AFS-A3C Hernandez-Leal et al. (2019) treat the opponent modeling as an
auxiliary task to guide the network optimization. Besides, another series of works assume that opponents are
uncertain or may change, and they aim to help recognize and adapt to the opponents. DPN-BPR+ Zheng
et al. (2018) and MBOM Yu et al. (2022b) estimate the most probable types of opponents from a statistical
perspective, while Fastap Zhang et al. (2023) further considers that the changes of teammates may happen
within one episode and learn a instantaneous representation to achieve fast recognition of teammate changes.
Moreover, there exist other series of works Foerster et al. (2018a); Willi et al. (2022); Lu et al. (2022) that
propose a better update operator for general-sum games by modeling the influences of agents’ policies on
the other agent. However, these methods are limited to two-player simple problems, while our work focuses
on complex cooperative tasks.
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6 Closing Remarks

This paper introduces a pioneering approach to enhance cooperative MARL by anticipating future teammate
policies. Alleviating the prevalent issue of “teammate delay”, our proposed lookahead strategy bridges the
gap between the learning objective and the real evaluation scenario, significantly boosting the learning effi-
ciency. Through seamless integration with existing gradient-based MARL methods, our approach surpasses
state-of-the-art algorithms, exhibiting good performance in complex cooperative multi-agent benchmarks.
Currently, our method mainly relies on the environment model to predict the future teammates. Thus, the
practical algorithm performance is to some extent limited by the model learning error. How to better esti-
mate the future teammates and whether there exist other ways to harness the predicted information of future
teammates deserve further investigation. We believe researches in this topic can bring great advancement in
the MARL domain.
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Appendix

A Notations and Theoretical Analysis

A.1 Notations

In Table 3, we list the main notations in our paper.

Table 3: Notation list.

Symbol Meaning
S, s S denotes the state space for either the single-agent problem

or multi-agent problem, while s ∈ S is an instance of the
state.

A, a A denotes the action space for the single-agent problem,
while a is an instance of the action.

N Number of the agents in multi-agent problems.
A, {Ai}N

i=1 A is the joint action space for the multi-agent problem, Ai

is the action space for agent i.
a, {ai}N

i=1 a = [a1, a2, · · · , aN ] is an instance of the joint action, where
ai is the action for agent i.

P Transition function for either the single-agent problem or
multi-agent problem.

R Reward function for either the single-agent problem or multi-
agent problem.

γ Discount factor.
π π denotes the policy for single-agent problems, where π(a|s)

means the probability of taking action a under state s.
π, {πi}N

i=1 π denotes the joint policy for multi-agent problems, while
πi indicates the policy for agent i. π(a|s) =

∏N
i=1 πi(ai|s)

means the probability of taking action a under state s.
πk The obtained joint policy after the k-th round of policy up-

date.
η(π) The discounted return of joint policy π in multi-agent prob-

lems.
ρπ(s) The stationary state distribution derived by the joint policy

π.
Qπk (s, a), Qπk (s,a) Qπk (s, a) represents the Q-function in single-agent problems,

defined as the expected cumulative reward obtained by tak-
ing action a in state s and then following policy πk thereafter,
i.e., Qπk (s, a) = Eπk [

∑∞
t=0 γ

trt|s0 = s, a0 = a]. Qπk (s,a) is
for multi-agent problems.

Vπk (s), Vπk (s) Vπk (s) represents the state value function in single-agent
problems, indicating the expected cumulative reward start-
ing from state s and following policy π thereafter, i.e.,
Vπk (s) = Eπk [

∑∞
t=0 γ

trt|s0 = s]. Vπk (s) is for multi-agent
problems.

αi αi = maxs DTV
(
πk+1

i (·|s)∥µi(·|s)
)

is utilized to denote the
distance between the sampling policy and the updated policy
(the policy at the next round).
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A.2 Proofs of Main Theoretical Results

In this section, we provide the proofs of the main theoretical results in our paper. In specific, we begin by
outlining the primary theoretical results below, followed by their respective proofs one-by-one. Among them,
Lemma 1, Theorem 1, and Theorem 2 are introduced in the main text, while Theorem 3 is introduced in
the supplementary discussion in Appendix A.3.

Lemma 1 Assume that we update the joint policy πk to πk+1 with sampling policy µ. Given
the measurement of distance between sampling policy µ and the updated policy πk+1 as αi =
maxs DTV

(
πk+1

i (·|s)∥µi(·|s)
)
, we have:

|J(πk+1,µ) − η(πk+1)| ≤ 4ϵγ
(1 − γ)2

(
N∑

i=1
αi

)2

+ 2ϵ(N − 1)
N

N∑
i=1

αi, (9)

where γ is the discount factor and ϵ = maxs,a |Aπk (s,a)|.

Theorem 1 Suppose that we update joint policy πk to πk+1 with sampling policy µ, then the regret of the
updated joint policy πk+1 has the following upper bound:

η(π∗) − η(πk+1) ≤ η(π∗) − J(πk+1,µ) + 4ϵγ
(1 − γ)2

(
N∑

i=1
αi

)2

+ 2ϵ(N − 1)
N

N∑
i=1

αi. (10)

Theorem 2 Let ψ be the policy update operator 3. The sampling policy µ∗ that can derive the same updated
policy, i.e., µ∗ = ψ(µ∗,πk), is the solution of the following bi-level optimization problem:

min
µ
DKL(µ∥πk+1), s.t. πk+1 = arg max

π
J(π,µ). (11)

Theorem 3 Let ϕ be the ego-max-operator 4. We suppose that µ∗ denotes the lookahead policy which means
that it can derive the same updated policy, i.e., µ∗ = ψ(µ∗,πk); and π′ = ψ(πk,πk) denotes the updated
policy when using πk as the sampling policy. We express the trust region as that DTV

(
π′

i(·|s)||πk
i (·|s)

)
≤ βi.

In this case, when βi ≤
∑

s∈S
ρµ∗ (s)ϕ(s,A

πk )

2
∑

s∈S
ρ

πk (s)ϕ(s,|A
πk |)

, we have J(µ∗,µ∗) ≥ J(π′,πk).

Below are proofs.

Lemma 1 Assume that we update the joint policy πk to πk+1 with sampling policy µ. Given
the measurement of distance between sampling policy µ and the updated policy πk+1 as αi =
maxs DTV

(
πk+1

i (·|s)∥µi(·|s)
)
, we have:

|J(πk+1,µ) − η(πk+1)| ≤ 4ϵγ
(1 − γ)2

(
N∑

i=1
αi

)2

+ 2ϵ(N − 1)
N

N∑
i=1

αi, (12)

where γ is the discount factor and ϵ = maxs,a |Aπk (s,a)|.

3ψ(µ,πk) means the result of one round of policy update starting from πk using µ as the sampling policy, i.e., ψ(µ,πk) =
arg maxπ J(π,µ) within the trust region of πk for MAPPO.

4Assuming f is a function defined over the state and joint action space, the ego-max-operator ϕ is defined as ϕ(f, s) =
1
N

∑N

i=1 maxai∈A
∑

a−i∈A

∏
j ̸=i

πk
j (aj |s)f(s,a).
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Proof. Firstly, according to the performance difference lemma Kakade & Langford (2002), we have:

η(πk+1) − J(πk+1,µ)

=
∑
s∈S

ρπk+1(s)
∑
a∈A

πk+1(a|s)Aπk (s,a)

−
∑
s∈S

ρµ(s)
[

1
N

N∑
i=1

∑
a∈A

πi(ai|s)
∏
j ̸=i

µj(aj |s)Aπk (s,a)
]

=
∑
s∈S

ρπk+1(s)
∑
a∈A

πk+1(a|s)Aπk (s,a) −
∑
s∈S

ρµ(s)
∑
a∈A

πk+1(a|s)Aπk (s,a)

+
∑
s∈S

ρµ(s)
∑
a∈A

πk+1(a|s)Aπk (s,a)

−
∑
s∈S

ρµ(s)
[

1
N

N∑
i=1

∑
a∈A

πi(ai|s)
∏
j ̸=i

µj(aj |s)Aπk (s,a)
]

≤

∣∣∣∣∣∑
s∈S

ρπk+1(s)
∑
a∈A

πk+1(a|s)Aπk (s,a) −
∑
s∈S

ρµ(s)
∑
a∈A

πk+1(a|s)Aπk (s,a)

∣∣∣∣∣
+

∣∣∣∣∣∑
s∈S

ρµ(s)
∑
a∈A

πk+1(a|s)Aπk (s,a)

−
∑
s∈S

ρµ(s)
[

1
N

N∑
i=1

∑
a∈A

πi(ai|s)
∏
j ̸=i

µj(aj |s)Aπk (s,a)
]∣∣∣∣∣

(I)
≤ 4ϵγ

(1 − γ)2α
2 +

∣∣∣∣∣∑
s∈S

ρµ(s)
∑
a∈A

πk+1(a|s)Aπk (s,a)

−
∑
s∈S

ρµ(s)
[

1
N

N∑
i=1

∑
a∈A

πi(ai|s)
∏
j ̸=i

µj(aj |s)Aπk (s,a)
]∣∣∣∣∣,

(13)

where (I) holds because of the conclusion that has already been obtained in TRPO Schulman et al. (2015) (see
Theorem 1). Besides, we further have:

∣∣∣∣∣∑
s∈S

ρµ(s)
∑
a∈A

πk+1(a|s)Aπk (s,a)

−
∑
s∈S

ρµ(s)

 1
N

N∑
i=1

∑
a∈A

πk+1
i (ai|s)

∏
j ̸=i

µj(aj |s)Aπk (s,a)

 ∣∣∣∣∣
≤

∣∣∣∣∣∣ϵ
∑
s∈S

ρµ(s) 1
N

N∑
i=1

∑
ai∈Ai

πk+1
i (ai|s)

∑
a−i∈A−i

∏
j ̸=i

µj(aj |s) −
∏
j ̸=i

πk+1
j (aj |s)

∣∣∣∣∣∣
(II)= ϵ

∑
s∈S

ρµ(s) 2
N

N∑
i=1

∑
ai∈Ai

πk+1
i (ai|s)DTV

(
πk+1

−i (·|s)∥µ−i(·|s)
)

= 2ϵ
N

∑
s∈S

ρµ(s)
N∑

i=1
DTV

(
πk+1

−i (·|s)∥µ−i(·|s)
)

≤ 2ϵ
N

N∑
i=1

max
s
DTV

(
πk+1

−i (·|s)∥µ−i(·|s)
)
,

(14)
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where (II) holds according to the definition of TV distance. Thus, we finally have:

η(πk+1) − J(πk+1,µ) ≤ 4ϵγ
(1 − γ)2α

2 + 2ϵ
N

N∑
i=1

max
s
DTV

(
πk+1

−i (·|s)∥µ−i(·|s)
)

= 4ϵγ
(1 − γ)2α

2 + 2ϵ(N − 1)
N

N∑
i=1

αi

(III)
≤ 4ϵγ

(1 − γ)2

(
N∑

i=1
αi

)2

(a)

+ 2ϵ(N − 1)
N

N∑
i=1

αi

(b)

,

(15)

where (III) is because α ≤
∑N

i=1 αi. Specifically, term (a) in the final upper bound is due to the state
distribution mismatch of the training trajectories, while term (b) reveals the impact of the “teammate delay”
phenomenon on the learning objective.
□

Theorem 1 Suppose that we update joint policy πk to πk+1 with sampling policy µ, then the regret of the
updated joint policy πk+1 has the following upper bound:

η(π∗) − η(πk+1) ≤ η(π∗) − J(πk+1,µ) + 4ϵγ
(1 − γ)2

(
N∑

i=1
αi

)2

+ 2ϵ(N − 1)
N

N∑
i=1

αi. (16)

Proof.
η(π∗) − η(πk+1)

= η(π∗) − J(πk+1,µ) + J(πk+1,µ) − η(πk+1)
≤ η(π∗) − J(πk+1,µ) +

∣∣J(πk+1,µ) − η(πk+1)
∣∣

(IV)
≤ η(π∗) − J(πk+1,µ) + 4ϵγ

(1 − γ)2

(
N∑

i=1
αi

)2

+ 2ϵ(N − 1)
N

N∑
i=1

αi,

(17)

where (IV) is obtained due to Lemma 1.
□

Theorem 2 Let ψ be the policy update operator. The sampling policy µ∗ that can derive the same updated
policy, i.e., µ∗ = ψ(µ∗,πk), is the solution of the following bi-level optimization problem:

min
µ
DKL(µ∥πk+1), s.t. πk+1 = arg max

π
J(π,µ). (18)

Proof. This bi-level optimization problem can be viewed as a constrained optimization problem, where we
want to find a pair of µ and πk+1 that minimizes the DKL(µ∥πk+1), while satisfying the condition that
πk+1 = arg maxπ J(π,µ). For lookahead policy µ∗, if we set µ = µ∗, we can define a πk+1 as πk+1 = µ∗.
Then, as we know µ∗ = ψ(µ∗,πk), and ψ(µ,πk) typically means arg maxπ J(π,µ) with some conditions,
we have that the pair of (µ,πk+1) we find satisfies the constraint of this optimization problem. Moreover,
as we set πk+1 = µ∗, we know that DKL(µ∥πk+1) equals to zero for µ = πk+1 = µ∗, while DKL for two
distributions is always greater or equals to zero. Thus, we know µ∗ is the solution of this bi-level optimization
problem.
□

Theorem 3 Let ϕ be the ego-max-operator. We suppose that µ∗ denotes the lookahead policy which means
that it can derive the same updated policy, i.e., µ∗ = ψ(µ∗,πk); and π′ = ψ(πk,πk) denotes the updated
policy when using πk as the sampling policy. We express the trust region as that DTV

(
π′

i(·|s)||πk
i (·|s)

)
≤ βi.

In this case, when βi ≤
∑

s∈S
ρµ∗ (s)ϕ(s,A

πk )

2
∑

s∈S
ρ

πk (s)ϕ(s,|A
πk |)

, we have J(µ∗,µ∗) ≥ J(π′,πk).
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Proof. To begin with, for the updated policy π′ = ψ(πk,πk) using πk as the sampling policy, we have:

J(π′,πk) = η(πk) +
∑
s∈S

ρπk (s)

 1
N

N∑
i=1

∑
a∈A

π′
i(ai|s)

∏
j ̸=i

πk
j (aj |s)Aπk (s, a)


=⇒ |J(π′,πk) − J(πk,πk)|

≤
∑
s∈S

ρπk (s)

 1
N

N∑
i=1

∑
a∈A

∣∣∣∣∣∣(π′
i(ai|s) − πk

i (ai|s)
)∏

j ̸=i

πk
j (aj |s)Aπk (s, a)

∣∣∣∣∣∣


=
∑
s∈S

ρπk (s)
N

N∑
i=1

∑
a∈A

∣∣π′
i(ai|s) − πk

i (ai|s)
∣∣∏

j ̸=i

πk
j (aj |s)|Aπk (s, a)|

≤
∑
s∈S

2ρπk (s)
N

N∑
i=1

DTV(π′
i(·|s)∥πk

i (·|s)) max
ai∈A

∑
a−i∈A

∏
j ̸=i

πk
j (aj |s)|Aπk (s, a)|.

(19)

We have trust region condition that ∀s ∈ S, DTV(π′
i(·|s)∥πk

i (·|s)) ≤ βi. We assume βi has an upper bound
ζ for each agent i, then we further have:

|J(π′,πk) − J(πk,πk)| ≤ 2ζ
∑
s∈S

ρπk (s)

 1
N

N∑
i=1

max
ai∈A

∑
a−i∈A

∏
j ̸=i

πk
j (aj |s)|Aπk (s, a)|


→ J(π′,πk) ≤ J(πk,πk) + 2ζ

∑
s∈S

ρπk (s)

 1
N

N∑
i=1

max
ai∈A

∑
a−i∈A

∏
j ̸=i

πk
j (aj |s)|Aπk (s, a)|


→ J(π′,πk) ≤ η(πk) + 2ζ

∑
s∈S

ρπk (s)

 1
N

N∑
i=1

max
ai∈A

∑
a−i∈A

∏
j ̸=i

πk
j (aj |s)|Aπk (s, a)|

 .
(20)

We know that J(µ∗,µ∗) = arg maxπ∈Ball(µ∗) J(π,µ∗), where Ball(µ∗) means the trust region of µ∗. Further,
this optimization problem means that:

arg max
π∈Ball(µ)

J(π,µ∗) = η(πk) +
∑
s∈S

ρµ∗(s)

 1
N

N∑
i=1

∑
a∈A

πi(ai|s)
∏
j ̸=i

µ∗
j (aj |s)Aπk (s, a)

 . (21)

Thus, we are actually to optimize 1
N

∑N
i=1
∑

a∈A πi(ai|s)
∏

j ̸=i µ
∗
j (aj |s)Aπk (s, a) for each s ∈ S; and when

we find the optimized results are actually µ, it means that for each s ∈ S, µ(·|s) is a nash equilibrium for
the cooperative game where the utility of action a is defined as Aπk (s, a). With proper updating scheme, it
is reasonable that we can obtain equilibrium that satisfies:∑

a∈A
µ∗

i (ai|s)
∏
j ̸=i

µ∗
j (aj |s)Aπk (s, a) =

∑
ai∈A

µ∗
i (ai|s)

∑
a−i∈A

∏
j ̸=i

µ∗
j (aj |s)Aπk (s, a)

≥ max
ai∈A

∑
a−i∈A

∏
j ̸=i

πk
j (aj |s)Aπk (s, a).

(22)

Thus we have that:

J(µ∗,µ∗) = η(πk) +
∑
s∈S

ρµ∗(s)

 1
N

N∑
i=1

∑
a∈A

µ∗
i (ai|s)

∏
j ̸=i

µ∗
j (aj |s)Aπk (s, a)


≥ η(πk) +

∑
s∈S

ρµ∗(s)

 1
N

N∑
i=1

max
ai∈A

∑
a−i∈A

∏
j ̸=i

πk
j (aj |s)Aπk (s, a)

 .
(23)
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We define ϕ(f, s) = 1
N

∑N
i=1 maxai∈A

∑
a−i∈A

∏
j ̸=i π

k
j (aj |s)f(s,a). Then when βi ≤ ζ ≤∑

s∈S
ρµ∗ (s)ϕ(s,A

πk )

2
∑

s∈S
ρ

πk (s)ϕ(s,|A
πk |)

, according to Equation (20) and Equation (23), it is obvious that J(µ∗,µ∗) ≥

J(π′,πk).
□

A.3 Extra Analysis on Upper Bound

Theorem 1 has told us that when the extra term (c) in the upper bound disappears when we train the
agents with future teammate information, which motivates us to predict future teammates. However, we
still retrain a question whether eliminating term (c) can indeed reduce the overall upper bound. For this
question, one potential risk is that eliminating term (c) might influence the optimization of −J(π,µ), thus
making the second term −J(πk+1,µ) larger. To solve this concern, we prove that under certain conditions
it is at least better than the previous algorithms, as described below.

Theorem 3 To begin with, we introduce the policy update operator ψ 5 and ego-max-operator ϕ 6. We
suppose that µ∗ denotes the lookahead policy which means that it can derive the same updated policy, i.e.,
µ∗ = ψ(µ∗,πk); and π′ = ψ(πk,πk) denotes the updated policy when using πk as the sampling policy. We

express the trust region as that DTV
(
π′

i(·|s)||πk
i (·|s)

)
≤ βi. In this case, when βi ≤

∑
s∈S

ρµ∗ (s)ϕ(s,A
πk )

2
∑

s∈S
ρ

πk (s)ϕ(s,|A
πk |)

,

we have J(µ∗,µ∗) ≥ J(π′,πk).

For proof see Appendix A.2. This theorem shows that when we replace µ with an approximation of future
teammate policies, under certain conditions we can at least obtain a smaller upper bound compared to the
previous typical algorithms. Specifically, the required conditions are relevant to the trust-region setting.

B More Implementation Details

B.1 More Details about Baselines

To conduct performance comparison in our experiments, we firstly select the main multi-agent actor-critic
algorithms as baselines, including MADDPG Lowe et al. (2017), IPPO de Witt et al. (2020a), MAPPO Yu
et al. (2022a) and HAPPO Kuba et al. (2021). Besides, we additionally design an opponent modeling
algorithm TAPPO (abbreviated for Teammate-Aware MAPPO) to further compare our approach with tra-
ditional opponent modeling techniques. In specific, TAPPO learns teammate representations for extra policy
conditions like in previous works Papoudakis & Albrecht (2020); Cao et al. (2023) and is incorporated into
MAPPO. Furthermore, in the GRF environment, we additionally include the CDS algorithm Li et al. (2021),
which is a value-based algorithm specifically designed for the GRF problems. It mainly designs mechanism to
enhance policy diversity among agents and surpasses typical value-based algorithms in the GRF environment
in its experiments.

B.2 Incorporating Lookahead Strategy into HAPPO

Heterogeneous-Agent Proximal Policy Optimisation (HAPPO) Kuba et al. (2021) is a recent work that
introduced the sequential policy update scheme to the multi-agent policy gradient algorithm. It provides a
monotonic improvement guarantee in theory based on the finding of the multi-agent advantage decomposition
lemma. The core idea of this work is to update the agents’ policies in sequence. This approach empowers
subsequent agents to adapt their policies based on the updated strategies of preceding agents, thereby
mitigating to some extent the impact of the “teammate delay” phenomenon. However, it has two main
issues that might impact its effectiveness:

5ψ(µ,πk) means the result of one round of policy update starting from πk using µ as the sampling policy, i.e., ψ(µ,πk) =
arg maxπ J(π,µ) within the trust region of πk for MAPPO.

6Assuming f is a function defined over the state and joint action space, the ego-max-operator ϕ is defined as ϕ(f, s) =
1
N

∑N

i=1 maxai∈A
∑

a−i∈A

∏
j ̸=i

πk
j (aj |s)f(s,a).
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Table 4: Common hyper-parameters used across task scenarios of multi-agent MuJoCo. Note that lka is
short for Lookahead, mlearn is short for “model learning”, and ppo stands for Proximal Policy Optimization
(PPO) algorithm.

hyper-parameter value hyper-parameter value hyper-parameter value
critic lr 3e-4 max grad norm 10 lka episode length 20
actor lr 3e-4 num rollouts 40 lka num mini-batches 10

gamma γ 0.99 ppo num mini-batches 10 lka entropy coef 0.001
optimizer Adam entropy coef 0.01 mlearn batch size 512
optim eps 1e-5 stacked-frames 1

1) Despite the sequential policy update scheme, the preceding agents in the sequence still learn to
cooperate with the previous round of teammates, which means the teammate delay issue persists
for the preceding agents. This results in a critical importance placed on the order of agents’ update
(e.g., for the example in the Introduction section, if the order is Cook first, the updates are more
efficient; otherwise, sequential update yields no benefits). However, HAPPO adopts random update
orders, which poses a significant limitation.

2) Since in practice, the training trajectories are sampled by the policy of the previous round, HAPPO
adopts Importance Sampling to help the subsequent agents learn to cooperate with updated previous
agents. This approach can lead to a higher variance in the policy gradients as we need to multiply
it by an importance sampling ratio to correct the objective. This issue becomes exacerbated when
dealing with a larger number of agents, as we need to accumulate the product of importance ratios
for all preceding agents.

Due to these two main issues, the effectiveness of HAPPO in practice may be influenced and it can not
fully resolve the “teammate delay” issue . Actually, in practice, our lookahead strategy can be seamlessly
integrated with HAPPO, further enhancing its effectiveness, which has been validated by our empirical
experiments. The detailed process is introduced in the Algorithm 2, where the text highlighted in red
emphasizes the uniqueness introduced by HAPPO.

Algorithm 2 Heterogeneous-Agent Proximal Policy Optimisation with Lookahead
Input: The Number of agent N
Output: A cooperation policy for a multi-agent system

1: Initialize a replay buffer B;
2: Initialize a policy π randomly;
3: for each iteration k do
4: Sample a batch of transitions from B and update the environment model;
5: Sample a batch of trajectories τ̃ in the environment model with sampling policy πk, and obtain

π̃k+1 via maximizing J(π,πk) within trust region in a sequential update scheme using the training
trajectories τ̃ ;

6: Sample a batch of trajectories τ in the real environment with sampling policy π̃k+1, and obtain
πk+1 via maximizing J(π, π̃k+1) within trust region in a sequential update scheme using the training
trajectories τ ;

7: Add trajectories τ to the buffer B;
8: end for

B.3 Details about Hyper-parameters

In this section, we firstly introduce the hyper-parameter configurations of our method in the experiments,
and then we illustrate how we tune the hyper-parameters.
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B.3.1 Hyper-parameter configuration

Here, we list the configuration of hyper-parameters that was utilized in our experiments to facilitate re-
producing our experimental results. Note that for the common hyper-parameters, both the Lookahead
algorithm and HAPPO adopted the same value in our experiments. Hence, the hyper-parameter configura-
tions provided in this section are also applicable to our experimental results of the HAPPO algorithm.

Multi-agent MuJoCo For hyper-parameters that were set to the same values across all task scenarios,
the configuration is provided in Table 4. Additionally, the varying hyper-parameter configurations across
different tasks are provided in Table 5.

Table 5: Different hyper-parameters used across task scenarios of multi-agent MuJoCo. Note that lka is
short for Lookahead, mlearn is short for “model learning”, and ppo stands for Proximal Policy Optimization
(PPO) algorithm.

hyper-parameter Ant HalfCheetah Walker2d
episode length 200 400 200

ppo num epochs 10 20 10
lka num rollouts 2000 4000 2000
lka num epochs 10 20 10

mlearn num epochs 4000 2000 2000

Google Research Football (GRF) In the three task scenarios of Google Research Football (GRF), we
employed identical hyper-parameter configurations, which are detailed in Table 6.

Table 6: Common hyper-parameters used across task scenarios of Google Research Football (GRF). Note
that lka is short for Lookahead, mlearn is short for “model learning”, and ppo stands for Proximal Policy
Optimization (PPO) algorithm.

hyper-parameter value hyper-parameter value hyper-parameter value
critic lr 5e-4 episode length 100 lka num rollouts 100
actor lr 5e-4 num rollouts 10 lka num mini-batches 1

gamma γ 0.99 ppo num mini-batches 1 lka num epochs 15
optimizer Adam ppo num epochs 15 lka entropy coef 0
optim eps 1e-5 entropy coef 5e-3 mlearn batch size 1024

max grad norm 10 lka episode length 100 mlearn num epochs 800

B.3.2 Hyper-parameter tuning strategy

Multi-agent MuJoCo For the practical implementation efficiency of the algorithm, we employed JAX
to implement our Lookahead algorithm. Additionally, to ensure a fair and effective comparison of the
efficacy of our added lookahead strategy, the underlying HAPPO algorithm also utilized the same codebase.
Furthermore, the fundamental hyper-parameters for both Lookahead and HAPPO were kept consistent.
Consequently, we mainly tune the hyper-parameters to align the performance of the HAPPO algorithm of
our codebase with that disclosed in the original paper.

Google Research Football (GRF) Similar to the case in multi-agent MuJoCo, to ensure a fair com-
parison, we maintained consistent foundational hyper-parameters for both Lookahead and the underlying
HAPPO algorithm. While tuning these hyper-parameters, we conducted a search within certain ranges
to fine-tune the underlying HAPPO algorithm for reasonably good performance results. Specifically, we
explored learning rate lr (including critic_lr and actor_lr) within the range of {1e-4, 5e-4, 1e-3},
number of learning epochs ppo_num_epochs within {10, 15, 20}, and entropy regularization coefficient
entropy_coef within {1e-3, 5e-3}.
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Figure 5: Measuring policy distances in multi-agent MuJoCo environment.

0.0M 1.0M 2.0M 3.0M 4.0M 5.0M
Timesteps

0

800

1600

2400

3200

4000

Sc
or

e

Lookahead Step=1
Lookahead Step=2
Lookahead Step=4

(a) 2x4-Agent Ant

0.0M 1.0M 2.0M 3.0M 4.0M 5.0M
Timesteps

0

800

1600

2400

3200

4000

Sc
or

e

(b) 2x3-Agent HalfCheetah

Figure 6: Experimental results for study about multiple steps of lookahead approximation.

C More Experimental Results

C.1 More Results about Lookahead Policy Analysis

In Section 4.3, we measure the KL distance difference of policies on Ant and HalfCheetah tasks of multi-
agent MuJoCo. Here, we additionally provide the results on the Walker2d task. As we can see, the results
on three different types of tasks all validate that our approach can empirically obtain positive results for
DKL(πk+1,πk) −DKL(πk+1, π̃k+1), which means that π̃k+1 can to some extent provide the direction infor-
mation of future teammate policy πk+1 and is relatively a good approximation.

C.2 Study about Multiple Steps of Lookahead Approximation

In the practical implementation of the algorithm in this work, we employ a one-step approximation to
estimate future teammate policies. We wonder whether we can obtain a better approximation of future
teammates through more rounds of lookahead training. To answer this question, we conduct additional
experiments, comparing with the baselines that perform more rounds of policy update when obtaining the
lookahead policy. The results are depicted in Figure 6, where “Lookahead Step” represents the number of
policy update rounds conducted for approximating future teammates, i.e., “Lookahead Step=1” corresponds
to the results in the maintext.

From the results, we can see that when we increase the Lookahead Step, the quality of the lookahead
approximation does not increase and we obtain lower performance. It is reasonable because when we conduct
more iterations for lookahead training within the model, the newly updated policy would appear unfamiliar
to the model, as the environmental model has been trained on data sampled from the old policies. This
necessitates refraining from employing excessively off-policy policies for trajectory rollout within the model.
However, despite achieving lower convergence performance, it seems to learn faster in the early stage in the
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task of 2x3-Agent HalfCheetah when we increase the Lookahead Step. This encourages us to design better
model learning algorithm in the future, thus to further improve the effectiveness of our approach.
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