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Abstract

Contextual bandits are widely-used models in

reinforcement learning for incorporating both

generic and idiosyncratic factors in reward func-

tions. The existing approaches rely on full ob-

servation of the context vectors, while the prob-

lem of learning optimal arms from partially ob-

served contexts remains immature. We show

that in the latter setting, decisions can be made

more guarded to minimize the risk of pulling sub-

optimal arms. More precisely, efficiency is estab-

lished for Greedy policies that treat the estimates

of the unknown parameter and of the unobserved

contexts as their true values. That includes non-

asymptotic high probability regret bounds that

grow logarithmically with the time horizon and

linearly with the number of arms. Numerical re-

sults that showcase the efficacy of avoiding ex-

ploration are provided as well.

1. Introduction

Contextual bandits are ubiquitous models for sequential

decision-making in environments with finite action spaces.

The range of applications is extensive and includes differ-

ent problems for which time-varying and action-dependent

information are important, such as personalized recommen-

dation of news articles, healthcare interventions, advertise-

ments, and clinical trials (Li et al., 2010; Bouneffouf et al.,

2012; Tewari & Murphy, 2017; Nahum-Shani et al., 2018;

Durand et al., 2018; Varatharajah et al., 2018; Ren & Zhou,

2020).

In many applications, consequential variables for

decision-making are not perfectly observed. Techni-

cally speaking, in the bandit problem, the context vectors

are often observed in a partial, transformed, or noisy
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manner (Bensoussan, 2004; Bouneffouf et al., 2017;

Tennenholtz et al., 2021). Furthermore, since perfect ob-

servation can be considered as a special case of imperfectly

observed contexts, sequential decision-making algorithms

for the latter family of problems provide a richer class of

settings compared to the former. Accordingly, partial ob-

servation models are commonly used in different problems,

including space-state models, robot control, and filtering

(Nagrath, 2006; Lin et al., 2012; Kang et al., 2012).

We study contextual bandits with imperfectly observed con-

text vectors. The probabilistic structure of the problem un-

der study, as time proceeds, is as follows. At every time

step, there are N available arms, each of which has the

unobserved context that is denoted by xi(t) ∈ R
dx for

arm i at time t. The context vectors are generated inde-

pendent of the previous contexts and independent of the

other arms, according to a multivariate normal distribution

N (0dx
,Σx). Moreover, the corresponding observation of

xi(t) is yi(t) ∈ R
dy , while the stochastic reward ri(t) of

arm i is determined by the context vector and the unknown

parameter µ∗:

yi(t) = Axi(t) + ζi(t), (1)

ri(t) = xi(t)
⊤µ∗ + ψi(t), (2)

Above, ζi(t) and ψi(t) are the noises of observation and

reward, which are identically distributed and independent

following the distributions N (0dy
,Σy) and N (0, γ2r ), re-

spectively. Further, the known dy × dx sensing matrix A
captures the relationship between xi(t) and the noiseless

portion of yi(t). The above structure holds for all arms and

at all time t. For this model, as compared to the classic con-

textual bandits, there is uncertainty in contexts as well as in

the environment associated with the parameter µ∗.

At each time, the goal is to learn to choose the optimal

arm a∗(t) (which can change at every time step), by utiliz-

ing the available information by time t. That is, the agent

chooses an arm based on the previously collected data from

the model in (1); {a(τ)}1≤τ≤t−1, {ya(τ)(τ)}1≤τ≤t−1,

{ra(τ)}1≤τ≤t−1, as well as the observations at the time;

{yi(t)}1≤i≤N . Then, once the action is taken, the resulting

reward of the chosen arm will be provided to the agent ac-

cording to the equation in (2), while rewards of the other

arms are not observed. Clearly, to choose high-reward

arms, the agent needs accurate estimates of the unknown
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parameter µ∗, as well as those of the contexts xi(t), for

i = 1, · · · , N . However, because xi(t) is not observed,

estimation of µ∗ is feasible only through the observation

yi(t). Thereby, design of efficient reinforcement learning

policies with guaranteed performance is challenging.

Learning strategies for contextual bandits are investigated

in the literature, assuming that the context vectors are fully

observed. Early papers focus on reinforcement learning

policies that utilize Upper-Confident-Bounds (UCB) for ad-

dressing the exploitation-exploration trade-off (Auer, 2002;

Abbasi-Yadkori et al., 2011; Chu et al., 2011). Another

popular and efficient family of policies use randomized

exploration, usually in the (Bayesian) form of Thompson

sampling (Chapelle & Li, 2011; Agrawal & Goyal, 2013;

Faradonbeh et al., 2020; Modi & Tewari, 2020). Recently,

for contexts generated under certain conditions, it is shown

that exploration-free greedy policies have efficient perfor-

mances (Bastani et al., 2021).

Currently, study of efficient algorithms with theoretical

performance guarantees for imperfect context observations

is rather incomplete. Notably, imperfectness of obser-

vation frequently appears in different areas of applica-

tions. The causes are various, including privacy regulations

(Sbeity & Younes, 2015), measurement errors (Lin et al.,

2012; Kang et al., 2012), and missingness (Azimi et al.,

2019). The existing analyses study some special cases,

such as those with invertible sensing matrices. Asymp-

totic results are shown for UCB-type algorithms (Yun et al.,

2017) and Thompson sampling (Park & Faradonbeh,

2021), as well as in presence of additional informa-

tion (Tennenholtz et al., 2021), and in adversarial settings

with partial monitoring (Lattimore & Szepesvári, 2019;

Lattimore, 2022). For Greedy algorithms, numerical anal-

yses indicate that they outperform Thompson sampling

in partially observed contextual bandits with stochastic

contexts (Park & Faradonbeh, 2022). Importantly, Greedy

policies are of special interests in settings that explo-

ration is not (ethically) permitted, such as precision

medicine (Bastani et al., 2021). However, comprehensive

theoretical performance guarantees are currently unavail-

able for Greedy policies.

We perform the finite-time worst-case analysis of Greedy

reinforcement learning policies for imperfectly observed

contextual bandits. We provide high probability regret

bounds that consists of poly-logarithmic factors of the time

horizon and of the failure probability. Furthermore, the ef-

fects of other quantities such as the number of arms, dimen-

sion, and properties of the noise processes, are fully charac-

terized. Illustrative numerical experiments showcasing the

efficiency of Greedy policies are also provided.

Different technical difficulties arise in the high probabil-

ity analysis of reinforcement learning policies in partially

observed contextual bandits. First, one needs to study the

eigenvalues of the empirical covariance matrices, since the

estimation accuracy heavily depends on them. Further-

more, it is required to consider the number of times the

algorithm selects sub-optimal arms. Note that both quanti-

ties are stochastic and so worst-case (i.e., high probability)

results are needed for a statistically dependent sequence

of random objects. To obtain the presented theoretical re-

sults, we employ advanced technical tools from martingale

theory and random matrices. Indeed, by utilizing concen-

tration inequalities for matrices with martingale difference

structures, we carefully characterise the effects of order

statistics and tail-properties of the estimation errors.

A highlight of this paper is as follows. In Section 2, we for-

mulate the problem and discuss the preliminary materials.

Next, a Greedy policy for contextual bandits with imperfect

context observations is presented in Section 3. In Section

4, we provide theoretical performance guarantees, followed

by numerical experiments in Section 5.

Notation A⊤ is the transpose of A and the ℓ2 norm is

‖v‖ =
(∑d

i=1 |vi|2
)1/2

. Moreover, λmin(A) (λmax(A))

denote the minimum (maximum) eigenvalues of A, respec-

tively. In addition, O(·) is the order of magnitude such that

f(n) = O(g(n)) denotes lim sup
n→∞

|f(n)|/g(n) < ∞ for a

real valued function f and a strictly positive valued func-

tion g. Finally, {Xi}i∈E = {Xi : i ∈ E}, and I(·) is the

indicator function.

2. Problem Formulation

First, we formally discuss the problem of contextual ban-

dits with imperfect context observations. The bandit ma-

chine under consideration has N arms, each of which has

its own unobserved context xi(t), for i ∈ {1, · · · , N}.

Equation (1) presents the observation model, where the

observations {yi(t)}1≤i≤N are linearly transformed func-

tions of the contexts, perturbed by additive noise vectors

{ζi(t)}1≤i≤N . Equation (2) describes the process of re-

ward generation for different arms, depicting that if the

agent selects arm i, then the resulting reward is an unknown

linear function of the unobserved context vector, subject to

some additional randomness due to the reward noise ψi(t).

The agent aims to maximize the cumulative reward over

time, by utilizing the sequence of observations. To gain

the maximum possible reward, the agent needs to learn the

relationship between the reward ri(t) and the observation

yi(t). For that purpose, we proceed by considering the con-

ditional distribution of the reward ri(t) given the observa-

tion yi(t); i.e., P(ri(t)|yi(t)), which is

N (yi(t)
⊤D⊤µ∗, γ

2
ry), (3)
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where D = (A⊤Σ−1
y A + Σ−1

x )−1A⊤Σ−1
y and γ2ry =

µ⊤
∗ (A

⊤Σ−1
y A+Σ−1

x )−1µ∗ + γ2r .

Based on the conditional distribution in (3), in order to max-

imize the expected reward given the observations, one can

consider the conditional expectation of the reward given the

observation; yi(t)
⊤D⊤µ∗. So, letting η∗ = D⊤µ∗ be the

transformed parameter, we focus on the estimation of η∗.

The rationale is twofold. First, the conditional expected re-

ward given the observation can be inferred with only learn-

ing η∗, and one does not need to learn µ∗. Second, µ∗ is

not estimable when the rank of the sensing matrix A in the

observation model is less than dx. Therefore, the quality

of learning the environment is reflected by the estimation

accuracy of η∗. Note that consistent estimation of µ∗ needs

further assumptions of non-singularity of A and dy ≥ dx.

The optimal policy that reinforcement learning policies

need to compete against knows the true parameter µ∗. That

is, to maximize the reward given the observations, the opti-

mal arm at time t, denoted by a∗(t), is

a∗(t) = argmax
i
yi(t)

⊤η∗. (4)

Then, the performance degradation due to uncertainty

about the environment that the parameter µ∗ represents,

is the assessment criteria for reinforcement learning poli-

cies. So, we consider the following performance measure,

which is commonly used in the literature, and is known as

regret of the reinforcement learning policy that selects the

sequence of actions a(t), t = 1, 2, · · · :

Regret(T ) =
T∑

t=1

(
ya∗(t)(t)− ya(t)(t)

)⊤
η∗. (5)

In other words, the regret at time T is the total difference

in the rewards obtained up to time T , between the opti-

mal arms a∗(t) and the arm a(t) chosen by the reinforce-

ment learning policy based on the observations by the time

t. Note that this difference does not directly depend on

the unknown contexts {xi(t)}1≤i≤N since the optimal pol-

icy that selects a∗(t) does not observe the context vectors,

and decides merely based on the observations yi(t), for

i = 1, · · · , N .

3. Reinforcement Learning Policy

In this section, we explain the details of the Greedy al-

gorithm for contextual bandits with imperfect context ob-

servations. Although inefficient in some reinforcement

learning problems, Greedy algorithms have a logarithmic

regret bound for contextual bandits with fully observed

contexts under certain conditions such as covariate diver-

sity (Bastani et al., 2021). Intuitively speaking, the latter

condition expresses that the context vectors provide infor-

mation along all dimensions in R
dx with positive probabil-

ity, so that additional exploration is not necessary.

Algorithm 1 : Greedy policy for contextual bandits with

imperfect context observations

1: Set B(1) = Σ−1, η̂(1) = η
2: for t = 1, 2, . . . , do

3: Observe observations yi(t) for i = 1, . . . , N
4: Select arm a(t) = argmax

1≤i≤N
yi(t)

⊤η̂(t)

5: Gain reward ra(t)(t) = xa(t)(t)
⊤µ∗ + ψa(t)(t)

6: Update B(t+ 1) and η̂(t+ 1) by (7) and (8)

7: end for

As discussed in Section 2, it suffices for the policy to learn

the arm i that maximizes E[ri(t)|yi(t)] = yi(t)
⊤η∗. To

that end, we estimate η∗ using the least-squares estimator

η̂(t) = argmax
η

t∑

τ=1

(ra(τ)(τ)− ya(τ)(τ)
⊤η)2. (6)

Then, the Greedy policy works with η̂(t) in lieu of the truth

η∗. So, the algorithm selects the arm a(t) at time t, such

that a(t) = argmax1≤i≤N yi(t)
⊤η̂(t). Thanks to the struc-

ture of the parameter estimates in (6), once can update η̂(t)
in a recursive fashion. The recursions relies on updating

the empirical inverse covariance matrix B(t) as well, ac-

cording to

B(t+ 1) = B(t) + ya(t)(t)ya(t)(t)
⊤, (7)

and

η̂(t+ 1) = B(t+ 1)−1
(
B(t)η̂(t) + ya(t)(t)ra(t)(t)

)
, (8)

where the initial values consist of B(1) = Σ−1, for some

arbitrary positive definite matrix Σ, and η̂(1) = η for an ar-

bitrary vector η in R
dy . Algorithm 1 describes the pseudo-

code for the Greedy policy.

4. Theoretical Performance Guarantees

In this section, we present a theoretical result for Algo-

rithm 1 presented in the previous section. The result pro-

vides a worst-case analysis and establishes a high probabil-

ity upper-bound for the regret as defined in (5).

Theorem 4.1. Assume that Algorithm 1 is used in a bandit

withN arms and the observation dimension dy . Then, with

probability at least 1− 4δ, Regret(T ) is of the order

cond(AΣxA
⊤ +Σy)γryNd

3/2
y

(
log

NdyT

δ

)5/2

log
dyT

δ
,

where cond denotes the condition number of a matrix and

γ2ry is the conditional variance of reward defined in (3).

The proof of Theorem 4.1 is provided in the appendix.

Next, we discuss the intuitions of different terms in the re-

gret bound presented in the above theorem.
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The regret bound above scales linearly with the number

of arms N , and with d
3/2
y for the dimension of the obser-

vations dy , while it grows poly-logarithmically with time

horizon T . The dimension of the unobserved context vec-

tors does not appear in the above regret bound because the

optimal policy in (4) does not observe the exact values of

the context vectors. So, similar to Algorithm 1, the optimal

policy needs to estimate the context vectors as well.

The rationale of the linear growth of the regret bound

in Theorem 4.1 with the number of arms N is that for

larger N , the policy is more likely to choose one of

the sub-optimal arms, which makes the larger growths

of the regret more likely. In addition, the terms d
3/2
y

and λmax(AΣxA
⊤ + Σy) constituting cond(AΣxA

⊤ +
Σy) are generated by the ℓ2 norm of the stochastic ob-

servation vectors, for which the following high probabil-

ity upper-bounds hold; ‖yi(t)‖22 = O(λmax(AΣxA
⊤ +

Σy)dy log(NTdy/δ)). Similarly, the poly-logarithmic

scaling of the regret bound in terms of T and δ, origi-

nates from the magnitude of the random vectors (vT (δ) =
O((log(NTdy/δ))

1/2)) that are used in the analysis of Al-

gorithm 1. On the other hand, γry indicates the role of the

reward noise. Simply, if the reward observations are noisier,

it will be harder to learn the optimal arms. Finally, the fac-

tor λmin(AΣxA
⊤+Σy) consisting of cond(AΣxA

⊤+Σy)
in the regret bound is the intrinsic decrease in the cumu-

lative reward caused by uncertainties about the unknown

parameter µ∗.

The proof process is divided into two steps. The first step

consists of establishing a high probability upper-bound for

(ya∗(t)(t)− ya(t)(t))
⊤η∗. Then, in the second step we find

upper-bounds on the frequency of pulling sub-optimal arms.

Consequently, by combining the above-mentioned bounds,

we prove Theorem 4.1.

5. Numerical Illustrations

In this section, we perform numerical analyses for the the-

oretical result in the previous section. We simulate cases

with N = 10, 20, 50 arms and different dimensions of the

observations dy = 5, 20, 50, while the context dimensions

are fixed to dx = 20. Each case is repeated 100 times, and

the average values of the quantities of interest across 100
scenarios are reported, as well as the worst among all the

repetitions.

In Figure 1, the left plot depicts the average (solid) and

worst-case (dashed) regret among all scenarios, normalized

by log t. The number of arms N varies as shown in the

graph, while the observation dimension is fixed to dy =
10. Next, the graph on the right hand side illustrates that

the normalized regrets increase over time for different dy ,

for the fixed number of arms N = 5. In Figure 1, the

worst-case regret curves are well above the average ones as

expected, but curves for both average-case and worst-case

become flat as time goes on, implying that the worst-case

regret grows logarithmically in terms of t.

Figure 2 presents the average and worst-case regret (not

normalized by log T ) at time T = 2000 for different val-

ues of N = 10, 20, 50 and dy = 5, 20, 50. The plot shows

that the regret at T = 2000 increases as N and dy become

larger. In addition, it shows that the dimension of observa-

tions dy has a greater effect on the regret than that of the

number of arms N , which is consistent with the result of

Theorem 4.1.

6. Conclusion

This work investigates reinforcement learning algorithms

for contextual bandits where the contexts are observed

imperfectly. We focus on establishing theoretical results

for regret analysis, and establish a high probability regret

bound for Greedy algorithms. The presented regret bound

grows poly-logarithmically with the time horizon T .

There exist multiple interesting future directions introduced

in this paper. First, it will be of interest to study reinforce-

ment learning policies for settings that each arm has its own

parameter. Further, regret analysis for contextual bandits

under imperfect context observations where the covariance

matrices of context vectors and the sensing matrix are un-

known, is another problem for future work.
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A. Proofs of the Technical Results

In the sequel, C(A) and C(A)⊥ are employed to denote the column-space of the matrix A and its orthogonal subspace,

respectively. In addition, PC(A) is the projection operator onto C(A).

A.1. Proof of Theorem 4.1

Proof. We use the following intermediate results, whose proofs are delegated to Section A.2. For simplicity, let η̂(1) be a

random variable with E[η̂(1)] = η∗ and Cov(η̂(1)) = Σ−1γ2ry so that E[η̂(t)] = η∗ and Cov(η̂(t)|B(t)) = B(t)−1γ2ry for

all t. First, for T > 0 and 0 < δ < 0.25, we define

WT =

{
max

{1≤τ≤t and 1≤i≤N}
||S−1/2

y yi(τ)||∞ ≤ vT (δ)

}
, (9)

where vT (δ) = (2 log(NdyT/δ))
1/2.

Lemma A.1. For the event WT defined in (9), we have P(WT ) ≥ 1− δ.

Lemma A.1 guarantees that all the observation up to time T are generated in the truncation event WT with the probability

at least 1− δ.

Lemma A.2. Let σ{X1, . . . , Xn} be the sigma-field generated by random vectors X1, . . . , Xn. For the observation of

chosen arm ya(t)(t) at time t, the estimator η̂(t) defined in (8), and the filtration {Ft}1≤t≤T defined according to

Ft = σ{{a(τ)}1≤τ≤t, {yi(τ)}1≤τ≤t,1≤i≤N , {ra(τ)(τ)}1≤τ≤t},
we have

E[Vt|Ft−1] = P
C(S

1/2
y η̂(t))

(kN − 1) + Idy
,

where Vt = S
−1/2
y ya(t)(t)ya(t)(t)

⊤S
−1/2
y and kN = E

[(
max

1≤i≤N
{Zi}

)2
]

for N independent Zi with the standard

normal distribution and Sy = Cov(yi(t)). That is, kN is the expected maximum of N independent standard normal

random variables.

Lemma A.2 sets the stage for analysis of the (unnormalized) empirical inverse covariance B(t) in (7)

Lemma A.3. (Matrix Azuma Inequality (Tropp, 2012)) Consider the sequence {Mk}1≤k≤K of symmetric d × d random

matrices adapted to some filtration {Gk}1≤k≤K , such that E[Mk|Gk−1] = 0. Assume that there is a deterministic sequence

of symmetric matrices {Ak}1≤k≤K that satisfy M2
k � A2

k , almost surely. Let σ2 = ‖∑1≤k≤K A2
k‖. Then, for all ε ≥ 0,

it holds that

P

(
λmax

(
K∑

k=1

Mk

)
≥ ε

)
≤ d · e−ε2/8σ2

.

Lemma A.4 provides a high probability lower bound for the minimum eigenvalue of B(t). Then, Lemma A.5 bounds the

estimation error.

Lemma A.4. For B(t) in (7) and t ≤ T , on the event WT defined in (9), by Lemma A.2 and A.3, with the probability at

least 1− δ, we have

λmin(B(t)) ≥ λmin(Sy)(t− 1)

(
1−

√
32vT (δ)4

t− 1
log

dyT

δ

)
.

Lemma A.5. In Algorithm 1, let η̂(t) be the parameter estimate, as defined in (8). Then, for t ≤ T , on the event WT

defined (9), we have

P (‖η̂(t)− η∗‖ > ε|B(t)) ≤ 2e
− ε2

2dyλmax(B(t)−1)γ2
ry .
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Next, Lemma A.6 gives an upper bound for the probability that Algorithm 1 does not choose the optimal arm at time t.
Finally, Lemma A.7 studies the weighted sum of indicator functions I(a∗(t) 6= a(t)) that count the effective number of

times that the algorithm chooses sub-optimal arms.

Lemma A.6. Given B(t), an upper bound of probability of choosing a sub-optimal arm is bounded as follows:

P(a∗(t) 6= a(t)|B(t)) ≤ 2Ndyλmax(Sy)
1/2vT (δ)γry√

ηT∗ Syη∗
λ
1/2
t ,

where λt = λmax(B(t)−1).

Lemma A.7. For I(a∗(t) 6= a(t)), on the event WT , with the probability at least 1− δ, we have

∑

t∗≤t≤T

1√
t− 1

I(a∗(t) 6= a(t)) ≤
√

32 log T log(Tδ−1)

+
∑

t∗≤t≤T

1√
t− 1

P(a∗(τ) 6= a(τ)|B(t)),

where t∗ = 128vT (δ)
4 log

dyT
δ + 1.

Note that Regret(T ) is the sum of the conditional expected reward difference
(
ya∗(t)(t)− ya(t)(t)

)⊤
η∗ for 1 ≤ t ≤ T .

The difference
(
ya∗(t)(t)− ya(t)(t)

)⊤
η∗ at time t is greater than 0, only when a∗(t) 6= a(t). Thus, the regret can be

rewritten as Regret(T ) =
∑T

t=1

(
ya∗(t)(t)− ya(t)(t)

)⊤
η∗I(a

∗(t) 6= a(t)). To find an upper bound of the regret, we find

high probability upper bounds for
(
ya∗(t)(t)− ya(t)(t)

)⊤
η∗ and I(a∗(t) 6= a(t)), respectively. For both upper bounds,

the inverse of the (unnormalized) empirical covariance matrix B(t) in (7) matters in that the matrix determines the size of

estimation error ‖η̂(t)− η∗‖.

By, Lemma A.4, we have

λmin(B(t)) ≥ λmin(Sy)(t− 1)

(
1−

√
32vT (δ)4

t− 1
log

dyT

δ

)
, (10)

for all 1 ≤ t ≤ T with the probability at least 1− 2δ. This implies that B(t) grows linearly with the horizon almost surely.

Next, we investigate the estimation error ‖η∗ − η̂(t)‖ based on the above result of the minimum eigenvalue of B(t). Using

‖yi(t)‖∞ ≤ λmax(Sy)
1/2vT (δ) on the event WT , we have

(ya∗(t)(t)− ya(t)(t))
⊤η∗ ≤ λmax(Sy)

1/2vT (δ)‖η̂(t)− η∗‖, (11)

where λmax(Sy) = λmax(Sy). So, we write the regret in the following form:

Regret(T ) ≤
T∑

t=1

λmax(Sy)
1/2vT (δ)‖η̂(t)− η∗‖I(a∗(t) 6= a(t)). (12)

Here, we denote λt = λmax(B(t)−1) = (λmin(B(t)))−1. By (10), we can find t∗ = 128vT (δ)
4 log

dyT
δ + 1, such that

λt ≤
2

λmin(Sy)(t− 1)
, (13)

with the probability at least 1− δ, for all t∗ < t ≤ T . By Lemma A.5 and (13), for all t∗ < t ≤ T , with the probability at

least 1− 3δ, we have

λmax(Sy)
1/2vT (δ)‖η̂(t)− η∗‖ ≤ a1(t− 1)−1/2, (14)

where a1 = 4(λmax(Sy)/λmin(Sy))
1/2vT (δ)

√
2dy log(2Tδ−1). Thus, with (ya∗(t) − ya(t))

⊤η∗ ≤
2λmax(Sy)

1/2vT (δ)‖η∗‖ for t < t∗, the regret can be represented

Regret(T ) ≤
∑

t<t∗

2λmax(Sy)
1/2vT (δ)‖η∗‖

+
∑

t∗≤t≤T

a1(t− 1)−1/2I(a∗(t) 6= a(t)), (15)



A Regret Bound for Greedy Partially Observed Stochastic Contextual Bandits

with the probability at least 1− 3δ. Now, we consider the probability to choose the optimal arm at time t. By Lemma A.6,

we have

∑

t∗≤t≤T

P(a∗(t) 6= a(t)|B(t))√
t− 1

≤ 23/2Nλmax(Sy)
1/2dyvT (δ)γry

‖η∗‖λmin(Sy)1/2
log T. (16)

Now, we construct an upper bound about the indicator function I(a∗(t) 6= a(t)) in (12), by Lemma A.7.

∑

t∗≤t≤T

1√
t− 1

I(a∗(t) 6= a(t)) ≤
√

32 log T log(Tδ−1)

+
∑

t∗≤t≤T

1√
t− 1

P(a∗(τ) 6= a(τ)|B(τ)), (17)

with the probability at least 1−δ. Therefore, by (16) and (17), with the probability at least 1−4δ, the following inequalities

hold for the regret of the algorithm, which yield to the desired result:

Regret(T )

=

T∑

t=1

(ya∗(t)(t)− ya(t)(t))
⊤η∗I(a

∗(t) 6= a(t))

≤ 2λmax(Sy)
1/2vT (δ)‖η∗‖t∗ +

∑

t∗≤t≤T

a1
1√
t− 1

I(a∗(t) 6= a(t))

= O

(
λmax(Sy)

λmin(Sy)
γryNd

2/3
y

(
log

NdyT

δ

)5/2

log
dyT

δ

)
. (18)

Finally, using Sy = AΣxA
⊤ + Σy and λmax(Sy)/λmin(Sy) = O((λmax(ΣA) + λmax(Σy))/(λmin(ΣA) + λ

min
(Σy))), with

the probability at least 1− 4δ, we have

Regret(T ) =

O

(
(λmax(ΣA) + λmax(Σy))γry

λmin(ΣA) + λ
min
(Σy)

Nd3/2y

(
log

NdyT

δ

)5/2

log
dyT

δ

)
. (19)

A.2. Proofs of Lemmas

A.2.1. PROOF OF LEMMA A.1

Note that S−0.5
y yi(t) has the normal distribution N(0, Idy

). Then, we have

P

(
|λmax(Sy)

−1/2yij(t)| ≥ ε
)
≤ 2 · e− ε2

2 (20)

where yij(t) is the jth component of yi(t). By plugging vT (δ) to ε, we have

P

(
|λmax(Sy)

−1/2yij(t)| ≥ vT (δ)
)
≤ 2 · e−

vT (δ)2

2 = 2 · e− log
2NdyT

δ =
δ

NdyT
. (21)

Thus,

P(WT ) ≥ 1−
T∑

t=1

N∑

i=1

dy∑

j=1

P

(
|λmax(Sy)

−1/2yij(t)| ≥ vT (δ)
)
≥ 1− δ. (22)

A.2.2. PROOF OF LEMMA A.2

We use the following decomposition

S−0.5
y ya(t)(t) = PC(S0.5

y η̂(t))S
−0.5
y ya(t)(t) + PC(S0.5

y η̂(t))⊥S
−0.5
y ya(t)(t). (23)
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We claim that PC(S0.5
y η̂(t))S

−0.5
y ya(t) and PC(S0.5

y η̂(t))⊥S
−0.5
y yi(t) are statistically independent. To show it, define

Z(ν,N) = argmax
Zi,1≤i≤N

{
Z⊤
i ν
}
, (24)

where Zi has the distribution N(0dy
, Idy

) and ν is an arbitrary vector in R
dy . The vector Zi can be decomposed as

Zi = PC(ν)Zi+(Id−PC(ν))Zi. Then, we have Z(ν,N) = argmax
Zi,1≤i≤N

{
(PC(ν)Zi)

⊤ν
}

, because PC(ν)ν = ν. This implies

that only the first term of the decomposed terms, PC(ν)Zi, affects the result of argmax
Zi,1≤i≤N

{
Z⊤
i ν
}

. This means that Z(ν,N)

has the same distribution as PC(ν)Z(ν,N) + (Id − PC(ν))Zi, which means

Z(ν,N)
d
= PC(ν)Z(ν,N) + (Id − PC(ν))Zi, (25)

where
d
= is used to denote the equality of the probability distributions. Note that

S−0.5
y ya(t) = argmax

S−0.5
y yi,1≤i≤N

(S−0.5
y yi(t))

⊤S0.5
y η̂(t).

Thus, S−0.5
y ya(t) has the same distribution as PC(S0.5

y η̂(t))S
−0.5
y ya(t) + PC(S0.5

y η̂(t))⊥S
−0.5
y yi(t), where

PC(S0.5
y η̂(t))S

−0.5
y ya(t) and PC(S0.5

y η̂(t))⊥S
−0.5
y yi(t) are statistically independent. By the decomposition (23) and

the independence,

E
[
S−0.5
y ya(t)(t)ya(t)(t)

⊤S−0.5
y |Ft−1

]
can be written as

E
[
S−0.5
y ya(t)(t)ya(t)(t)

⊤S−0.5
y |Ft−1

]

= E

[
(PC(S0.5

y η̂(t)) + PC(S0.5
y η̂(t))⊥)S

−0.5
y ya(t)(t)ya(t)(t)

⊤S−0.5
y (PS0.5

y η̂(t) + PS0.5
y η̂(t)⊥)|Ft−1

]

= E

[
PC(S0.5

y η̂(t))S
−0.5
y ya(t)(t)ya(t)(t)

⊤S−0.5
y PC(S0.5

y η̂(t))|Ft−1

]
+ PC(S0.5

y η̂(t))⊥ . (26)

To proceed, we show that the first term above, E[PS0.5
y η̂(t)S

−0.5
y ya(t)(t)ya(t)(t)

⊤S−0.5
y PS0.5

y η̂(t)|η̂(t)] = aPS0.5
y η̂(t) for

some constant a > 1. Using PC(ν) = νν⊤/ν⊤ν for an arbitrary vector ν ∈ R
dy , we have

PS0.5
y η̂(t)E[S

−0.5
y ya(t)(t)ya(t)(t)

⊤S−0.5
y |η̂(t)]PS0.5

y η̂(t)

=
S0.5
y η̂(t)η̂(t)⊤S0.5

y

η̂(t)⊤Syη̂(t)
E[S−0.5

y ya(t)(t)ya(t)(t)
⊤S−0.5

y |η̂(t)]S
0.5
y η̂(t)η̂(t)⊤S0.5

y

η̂(t)⊤Sy η̂(t)

=
S0.5
y η̂(t)

η̂(t)⊤Sy η̂(t)
E[(η̂(t)⊤S0.5

y S−0.5
y ya(t)(t))

2|η̂(t)] η̂(t)
⊤S0.5

y

η̂(t)⊤Sy η̂(t)

= PS0.5
y η̂(t)E

[((−−−−−→
S0.5
y η̂(t)

)⊤
S−0.5
y ya(t)(t)

)2
∣∣∣∣∣ η̂(t)

]
, (27)

where
−−−−−→
S0.5
y η̂(t) = S0.5

y η̂(t)/‖S0.5
y η̂(t))‖ is the unit vector aligned linearly with S0.5

y η̂(t). Now, it suffices to prove that

E

[((−−−−−→
S0.5
y η̂(t)

)⊤ (
S−0.5
y ya(t)(t)

))2
∣∣∣∣∣ η̂(t)

]
> 1.

Note that
(−−−−−→
S0.5
y η̂(t)

)⊤
S−0.5
y yi(t) has the standard normal distribution, since S−0.5

y yi(t) has the distribution N(0, Idy
).

Thus,
(−−−−−→
S0.5
y η̂(t)

)⊤
S−0.5
y ya(t)(t) is the maximum variable of N variables with the standard normal density. Thus, using

a(t) = argmax
1≤i≤N

{yi(t)⊤η̂(t)} = argmax
1≤i≤N

{
yi(t)

⊤S−0.5
y

−−−−−→
S0.5
y η̂(t)

}
,

we have

ya(t)(t)
⊤S−0.5

y

−−−−−→
S0.5
y η̂(t)

d
= max

1≤i≤N
{Vi : Vi ∼ N(0, 1)}. (28)
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where
d
= denotes the equality in terms of distribution. As such, we have

E

[(
ya(t)(t)

⊤S−0.5
y

−−−−−→
S0.5
y η̂(t)

)2∣∣∣∣ η̂(t)
]
= E

[(
max

1≤i≤N
({Vi : Vi ∼ N(0, 1)}

)2
]
. (29)

We define the quantity in (29) as kN ,

kN = E

[(
max

1≤i≤N
({Vi : Vi ∼ N(0, 1)}

)2
]
, (30)

which is greater than 1 forN ≥ 2 and grows asN gets larger, because E[V 2
i ] = 1 < E

[(
max

1≤i≤N
({Vi : Vi ∼ N(0, 1)}

)2
]

.

Therefore,

E[S−0.5
y ya(t)(t)ya(t)(t)

⊤S−0.5
y |η̂(t)] = PC(S0.5

y η̂(t))kN + PC(S0.5
y η̂(t))⊥ = PC(S0.5

y η̂(t))(kN − 1) + Idy
. (31)

A.2.3. PROOF OF LEMMA A.4

Consider Vt = S
−1/2
y ya(t)(t)ya(t)(t)

⊤S
−1/2
y defined in Lemma A.2 to identify the behavior of B(t). By Lemma A.2, the

minimum eigenvalue of E[Vt|Ft−1] is greater than 1 for all t. Thus, for all t > 0, it holds that

λmin

(
t−1∑

τ=1

E[Vτ |η̂(τ)]
)

≥ t− 1. (32)

Now, we focus on a high probability lower-bound for the smallest eigenvalue of B(t). On the event WT , the matrix

v2T (δ)I − Vt is positive semidefinite for all i and t. Let

Xτ = Vτ − E[Vτ |Fτ−1],

Yτ =

τ∑

j=1

(Vj − E[Vj |Fj−1]) . (33)

Then, Xτ = Yτ − Yτ−1 and E [Xτ |Fτ−1] = 0. Thus, Xτ is a martingale difference sequence. Because v2T (δ)I − Vt � 0
for all t ≤ T , 4v4T (δ)I −X2

τ � 0, for all τ ≤ T , on the event WT . By Lemma A.3, we get

P

(
λmin

(
t−1∑

τ=1

Xτ

)
≤ (t− 1)ε

)
≤ dy · exp

(
− (t− 1)ε2

32v4T (δ)

)
, (34)

for ε ≤ 0. Now, using
∑t−1

τ=1Xτ =
∑t−1

τ=1 Vτ −∑t−1
τ=1 E[Vτ |Fτ−1], together with

λmin

(
t−1∑

τ=1

Vτ −
t−1∑

τ=1

E[Vτ |Fτ−1]

)
≤ λmin

(
t−1∑

τ=1

Vτ

)
− λmin

(
t−1∑

τ=1

E[Vτ |Fτ−1]

)
(35)

and (32), we obtain

P

(
λmin

(
t−1∑

τ=1

Vτ

)
≤ (t− 1)(1 + ε)

)
≤ dy · exp

(
− (t− 1)ε2

32v4T (δ)

)
, (36)

where −1 ≤ ε ≤ 0 is arbitrary, and we used the fact that λmin

(∑t−1
τ=1 Vτ

)
≥ 0. Indeed, using

∑t−1
τ=1 Vτ =

S−0.5
y B(t)S−0.5

y , on the event WT defined in (9), for −1 ≤ ε ≤ 0 we have

P (λmin(B(t)) ≤ λmin(Sy)(t− 1)(1 + ε)) ≤ dy · exp
(
− (t− 1)ε2

32v4T (δ)

)
, (37)
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where λmin(Sy) = λmin(Sy). In other words, by equating dy · exp
(
−(t− 1)ε2/(32v4T (δ)

)
to δ/T , (37) can be written as

λmin(B(t)) ≥ λmin(Sy)(t− 1)

(
1−

√
32vT (δ)4

t− 1
log

dyT

δ

)
, (38)

for all 1 ≤ t ≤ T with the probability at least 1− 2δ.

A.2.4. PROOF OF LEMMA A.5

Note that η̂(t) has the distribution N (E[η̂(t)|Ft−1],Cov(η̂(t)|Ft−1)) given the observations up to time t, where

E[η̂(t)|Ft−1] = B(t)−1

(
Σ−1 +

t−1∑

τ=1

ya(τ)(τ)ya(τ)(τ)
⊤

)
η∗ = η∗

Cov(η̂(t)|Ft−1) = B(t)−1γ2ry. (39)

For Z ∼ N(0, λmax(B(t)−1)γ2ry), using the Chernoff bound, we get

P (‖η̂(t)− η∗‖ > ε|B(t)) ≤ P
(
dyZ

2 > ε2
)

≤ 2 · exp
(
− ε2

2dyλmax(B(t)−1)γ2ry

)
, (40)

where ε ≥ 0.

A.2.5. PROOF OF LEMMA A.6

Let a∗∗(t) be the arm with the second largest expected reward at time t and η∗∗ be a vector such that ya∗(t)(t)
⊤η∗∗ =

ya∗∗(t)(t)
⊤η∗∗ and θ(ya∗(t)(t)− ya∗∗(t)(t), η∗ − η∗∗) = 0, where θ(x, y) is the angle between two vectors x and y. Then,

(ya∗(t)(t)− ya∗∗(t)(t))
⊤η∗ = (ya∗(t)(t)− ya∗∗(t)(t))

⊤η∗∗ + (ya∗(t)(t)− ya∗∗(t)(t))
⊤(η∗ − η∗∗)

= ‖ya∗(t)(t)− ya∗∗(t)(t)‖ ‖η∗ − η∗∗‖ cos θ(ya∗(t)(t)− ya∗∗(t)(t), η∗ − η∗∗)

= ‖ya∗(t)(t)− ya∗∗(t)(t)‖ ‖η∗ − η∗∗‖. (41)

If ‖ya∗(t)(t)−ya∗∗(t)(t)‖ ‖η∗− η̂(t)‖ ≤ (ya∗(t)(t)−ya∗∗(t)(t))
⊤η∗, we can guarantee a∗(t) = a(t). Thus, the probability

not to choose the optimal arm at time t given the observations and B(t) is

P(a∗(t) 6= a(t)|{yi(t)}1≤i≤N , B(t)) = P

(
‖η̂(t)− η∗‖ >

(ya∗(t)(t)− ya∗∗(t)(t))
⊤η∗

‖ya∗(t)(t)− ya∗∗(t)(t)‖

∣∣∣∣∣ {yi(t)}1≤i≤N , B(t)

)

≤ 2 · exp


−

(
(ya∗(t)(t)−ya∗∗(t)(t))

⊤η∗

‖ya∗(t)(t)−ya∗∗(t)(t)‖

)2

2dyλmax(B(t)−1)γ2ry


 . (42)

Using ‖ya∗(t)(t)− ya∗∗(t)(t)‖2 ≤ 2λmax(ΣA)dyvT (δ)
2 on the event WT , we have

2 · exp


−

(
(ya∗(t)(t)−ya∗∗(t)(t))

⊤η∗

‖ya∗(t)(t)−ya∗∗(t)(t)‖

)2

2dyλtσ2
ry


 ≤ 2 · exp

(
− ((ya∗(t)(t)− ya∗∗(t)(t))

⊤η∗)
2

2d2yvT (δ)
2λmax(ΣA)λtσ2

ry

)
. (43)

LetX1 . . . , XN be the order statistics of variables with the standard normal density. The joint distribution of the maximum,

XN , and the second maximum variable, XN−1, of N independent ones with the standard normal density is

fX(N−1),X(N)
(xN−1, xN ) = N(N − 1)φ(xN )φ(xN−1)Φ(xN−1)

N−2, (44)
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where φ and Φ are the pdf and cdf of the standard normal distribution, respectively. The density of D = XN − XN−1,

which is the difference of the maximum and second largest variable, can be bounded by Nφ(0) as follows:

fD(d) =

∫
fD,XN−1

(d, xN−1)dxN−1

=

∫
N(N − 1)φ(xN−1 + d)φ(xN−1)Φ(xN−1)

N−2dxN−1

≤ Nφ(0). (45)

Thus, the density γD is bounded by Nφ(0)/γ = N/
√

2πγ2.

We denote ∆t = (ya∗(t)(t)−ya∗∗(t)(t))
⊤η∗. The term on the right hand side is the upper bound P(a∗(t) 6= a(t)|B(t),∆t).

Thus, by marginalizing ∆t from it, we have

P(a∗(t) 6= a(t)|B(t)) =

∫ ∞

−∞

P(a∗(t) 6= a(t)|B(t),∆t)f∆t
(∆t)d∆t

≤ 2

∫ ∞

−∞

exp

(
− ∆2

t

2d2yλmax(ΣA)vT (δ)2λtσ2
ry

)
f∆t

(∆t)d∆t

≤ 2Ndyλmax(ΣA)
1/2vT (δ)λ

1/2
t γry/

√
ηT∗ Syη∗,

where the density of ∆t, f∆t
(∆t), is bounded by N/

√
2πη⊤∗ Syη∗ by (45).

A.2.6. PROOF OF LEMMA A.7

We construct a martingale difference sequence that satisfies the conditions in Lemma A.3. To that end, let G1 = H1 = 0,

Gτ = (t− 1)−1/2I(a∗(t) 6= a(t))− (t− 1)−1/2
P(a∗(t) 6= a(t)|F ∗

t−1),

and Ht =
∑t

τ=1Gτ , where

F
∗
t−1 = σ{{B(τ)}1≤τ≤t−1}.

Since E[Gτ |F ∗
τ−1] = 0, the above sequences {Gτ}τ≥0 and {Hτ}τ≥0 are a martingale difference sequence and a martin-

gale with respect to the filtration {F ∗
τ }1≤τ≤T , respectively. Let cτ = 2(τ − 1)−1/2. Since

∑T
τ=1 |Gτ | ≤

∑T
τ=2 c

2
τ ≤

4 log T , by Lemma A.3, we have

P(HT −H1 > ε) ≤ exp

(
− ε2

8
∑T

t=1 c
2
t

)
≤ exp

(
− ε2

32 log T

)
.

Thus, with the probability at least 1− δ, it holds that

∑

t∗T≤t≤T

1√
t− 1

I(a∗(t) 6= a(t)) ≤
√
32 log T log δ−1 +

∑

t∗T≤t≤T

1√
t− 1

P(a∗(τ) 6= a(τ)|F ∗
τ−1).


