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Abstract

Machine learning models increasingly influence decisions in high-stakes settings such as
finance, law and hiring, driving the need for transparent, interpretable outcomes. However,
while explainable approaches can help understand the decisions being made, they may
inadvertently reveal the underlying proprietary algorithm—an undesirable outcome for
many practitioners. Consequently, it is crucial to balance meaningful transparency with a
form of recourse that clarifies why a decision was made and offers actionable steps following
which a favorable outcome can be obtained.

Counterfactual explanations offer a powerful mechanism to address this need by showing
how specific input changes lead to a more favorable prediction. We propose Model-Agnostic
Causally Constrained Counterfactual Generation (MC3G), a novel framework that tackles
limitations in the existing counterfactual methods. First, MC3G is model-agnostic: it ap-
proximates any black-box model using an explainable rule-based surrogate model. Second,
this surrogate is used to generate counterfactuals that produce a favourable outcome for
the original underlying black box model. Third, MC3G refines cost computation by ex-
cluding the “effort” associated with feature changes that occur automatically due to causal
dependencies. By focusing only on user-initiated changes, MC3G provides a more realistic
and fair representation of the effort needed to achieve a favourable outcome.

We show that MC3G delivers more interpretable and actionable counterfactual recom-
mendations compared to existing techniques all while having a lower cost. Our findings
highlight MC3G’s potential to enhance transparency, accountability, and practical utility
in decision-making processes that incorporate machine-learning approaches.

1. Introduction

Machine learning models have become indispensable in high-stakes decision-making sys-
tems, influencing outcomes in domains such as finance (e.g., loan approvals), law (e.g.,
risk assessments), and hiring (e.g., candidate screening). Unfortunately, these models of-
ten function as black boxes, making it difficult to understand the reasoning behind their
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decisions. This lack of transparency raises concerns about fairness, accountability, and
trust, especially when decisions have significant consequences for individuals. To address
these challenges, explainable AT (XAI) techniques aim to provide insights into model be-
havior. However, a fundamental trade-off exists between explainability and model protec-
tion—many organizations rely on proprietary models and are reluctant to disclose internal
logic due to competitive, security, or privacy reasons. As a result, there is a growing need
for explanations that offer meaningful recourse to affected individuals without exposing
model internals. Counterfactual explanations provide a powerful mechanism to achieve this
balance. Instead of revealing how a model arrives at a decision, counterfactuals answer the
question: “What changes in input features would have led to a different, more favorable
outcome?” For instance, in a loan application scenario, a counterfactual explanation might
state: “If the applicant’s credit score had been 650 instead of 600, the loan would have been
approved.” Such explanations offer actionable recourse, enabling users to understand what
changes are necessary to achieve a desirable outcome.

Existing counterfactual generation methods face key limitations: 1) Not model agnos-
tic: Many approaches require direct access to model parameters, making them impractical
for proprietary systems. 2) Ignore causal dependencies: Traditional methods assume fea-
tures can be altered independently, leading to unrealistic counterfactuals (e.g., arbitrarily
increasing credit score without addressing underlying financial history). 3) Inefficient cost
computation: Most frameworks treat all feature changes equally, failing to distinguish be-
tween user-initiated changes and automatic adjustments due to causal relationships.

To address these limitations, we propose Model-Agnostic Causally Constrained Counter-
factual Generation (MC3G), a novel framework that enhances the realism, interpretability,
and usability of counterfactual explanations while maintaining model secrecy. Our key con-
tributions are as follows: 1) Model-agnostic framework: Instead of accessing the black-box
model directly, MC3G first approximates it using an explainable rule-based model (e.g.,
FOLD-SE). This allows MC3G to work across different machine learning models without
compromising their proprietary nature. 2) Refined cost computation: MC3G separates
user-initiated interventions from automatic feature adjustments caused by causal depen-
dencies. This ensures a more accurate and fair representation of effort required to achieve a
counterfactual outcome. 3) Improved actionability and interpretability: By enforcing causal
constraints, MC3G generates realistic counterfactuals that align with real-world constraints
(e.g., increasing credit score realistically through debt reduction). This makes the generated
explanations more useful and actionable for individuals seeking recourse.

In the following sections, we formalize the problem setting, present the MC3G method-
ology and evaluate its performance across multiple datasets. Our findings demonstrate that
MC3G outperforms existing counterfactual methods in realism and cost-efficiency, making
it a valuable tool for transparency in machine-learning decision systems.

2. Background and Related Work

2.1. Counterfactual Explanations

Explanations help humans understand decisions and inform actions. Counterfactual ex-
planations (CFE) indicate minimal feature changes that would yield a different outcome,
aligning with “what-if” human reasoning. Formally, for a binary classifier f : X — {0,1}, a
counterfactual explanation is defined as an alternative input & where the model’s prediction
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changes: CFy¢(x) = {2 € X|f(x) # f(&)}. This set of counterfactual explanations con-
sists of all instances & that lead to a different prediction under f, compared to the original
input x. Although widely adopted in XAI, many methods assume feature independence,
producing unrealistic interventions. For instance, Boundary Counterfactuals by Wachter
et al. (2018) optimize closeness but ignore causality, DICE by Mothilal et al. (2020) offers
diverse solutions yet they do not natively model causal dependencies. MACE by Karimi
et al. (2020) finds minimal changes without enforcing causal relationships, and C3G by
Dasgupta et al. (2024), while producing causally compliant counterfactuals, is restricted to
rule-based models. Thus, a model-agnostic approach that respects causal dependencies and
ensures feasible interventions is urgently needed—a gap MC3G addresses.

2.2. Causality

Causality explains how changes in one variable affect another. In the Structural Causal
Model (SCM) framework by Pearl (2009), interventions—external actions that alter a vari-
able’s state—capture true cause-effect relationships rather than mere correlations. When
generating counterfactual explanations, it is essential that interventions are feasible and
respect these causal dependencies. For instance, in a loan approval scenario, an increase in
income may naturally boost credit scores through improved debt repayment; treating these
as independent changes can lead to unrealistic recommendations.

2.3. C3G: Causally Constrained Counterfactual Generation

Causally Constrained Counterfactual Generation (C3G) by Dasgupta et al. (2024) explicitly
models causal dependencies using Answer Set Programming (ASP) to ensure counterfactuals
adhere to real-world cause—effect relationships rather than assuming feature independence as
seen in methods like Boundary Counterfactuals, DiCE, and MACE. For example, for a loan
rejected due to low income and a poor credit score, C3G recognizes that increasing income
will naturally improve the credit score, recommending only the direct intervention. However,
C3G currently assigns a cost to every feature change—even those automatically induced by
causal propagation—potentially overestimating the cost of realistic counterfactuals.

2.4. Answer Set Programming (ASP) and s(CASP)

Answer Set Programming (ASP) is a declarative framework for knowledge representation
and non-monotonic reasoning, making it well-suited for dynamic environments [Brewka et al.
(2011); Baral (2003); Gelfond and Kahl (2014)]. Its goal-directed solver, s(CASP) by Arias
et al. (2018), executes programs in a top-down, query-driven manner and employs program
completion to transform “if” rules into “if and only if” rules, enabling bidirectional reasoning
and the simulation of causal interventions by encoding causal relationships (e.g., (P =
Q)N (=P = —Q)). By integrating ASP’s reasoning with a refined cost computation strategy,
MC3G generates realistic, actionable counterfactuals that closely mirror the original data,
thereby overcoming key limitations of existing methods.

2.5. FOLD-SE

FOLD-SE, developed by Wang and Gupta (2024), is a rule-based machine learning algo-
rithm that learns a compact stratified logic program to approximate a dataset, providing
transparent and scalable decision-making. It is a part of the FOLD family of algorithms
[Shakerin et al. (2017), Wang and Gupta (2022)] In MC3G, FOLD-SE serves as an explain-
able surrogate for any black-box classifier, enabling counterfactual generation without direct
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access to the internals of the model while capturing causal dependencies among features.
This integration unites model-agnosticism, explainability, and causal compliance.

3. Overview
3.1. The Problem

In high-stakes domains (e.g., loan approvals), black-box machine learning models might
return negative outcomes without providing a guidance on how to obtain positive outcomes.
Given the current feature vector ¢ for which the negative outcome holds, and a set of causally
feasible positive outcomes G, the task is to find the minimal, causally consistent set of feature
interventions that moves the individual from 7 to some g € G.

3.2. MC3G Approach

MC3G defines two distinct states: Pre-intervention state i: The current scenario where
the model returns a negative outcome, and Post-intervention state g € GG: A feasible
scenario where the model returns a positive outcome. Here G is a set of all possible scenarios
while g is one such scenario that we wish to reach. MC3G traverses the individual from the
pre-intervention state i to the post-intervention state g € G (counterfactual).

MC3G first approximates the black-box model f : X — Y with a rule-based surrogate
model 7 : X — Y. This surrogate model, learned using a RBML algorithm (FOLD-SE),
provides an interpretable representation of the decision logic of f, enabling transparent and
causal-aware counterfactual reasoning. However just using these rules as an explanation is
insufficient as in many scenarios revealing the underlying logic of the black box algorithm is
undesired. Hence, the idea is to use counterfactuals that provide explanations by highlight-
ing the minimal changes to the original instance i (which obtained an undesired outcome)
that are needed to obtain the desired outcome.

MC3G follows a three-step process: 1) Black-Box Model Approximation: The black-box
model f is approximated using a RBML algorithm (FOLD-SE), generating an explainable
surrogate model r that mimics the black-box model f’s decision-making. 2) Causal-Aware
Counterfactual Search: Using ASP-based reasoning, the surrogate model r and the original
feature vector i (negative outcome), MC3G identifies causally feasible changes that tran-
sition from ¢ to g € G. 3) Optimized Cost Computation: Unlike prior methods, MC3G
distinguishes between direct changes and automatic causal effects, ensuring cost is assigned
only to user-initiated (direct) changes.

In ASP terms, the problem is formulated as: 1) Given a pre-intervention state ¢ where
the query— ?7- reject_loan(i).—succeeds, 2) Compute causally consistent changes to
transition to a post-intervention state g € G where the negation of the original query—
?7- not reject_loan(g).—succeeds. 3) Compute the counterfactual state ¢ € G with
minimal cost. To implement this, MC3G employs s(CASP), a query-driven ASP system,
ensuring that counterfactual conditions hold while adhering to causal constraints. For
Example, consider a loan application scenario, where an individual’s approval depends on
the following factors: 1) Debt Status: {no_debt, < 10,000, > 10,000}, 2) Bank Balance: {0,
.., 1000, 000}, and 3) Credit Score: {300, ..., 850}. John {Debt : > 10,000, Bank Balance :
40,000, Credit Score : 599} applies for a loan and is denied.

Step 1- Black-Box Approximation: A black-box model f predicts loan decisions
based on the above features. MC3G approximates f with a Rule-Based Machine Learning
(RBML) model r using FOLD-SE. This surrogate model learns interpretable decision rules,
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enabling counterfactual generation without direct access to f. From r, we learn that the
bank denies loans to applicants with: Bank balance: < 60,000 and Credit score: < 600.
Step 2- Identifying Counterfactuals: John {Debt : > 10,000, Bank Balance :
40,000, Credit Score : 599} meets the conditions of r. Hence, he is denied the loan, i.e.,
the query —7?- reject_loan(john).—is TRUE. John is in the Pre-Intervention state .
Incorrect Counterfactual (Ignoring Causality): A naive counterfactual assumes
feature independence and suggests: 1) Increase Bank balance to 60,000, and 2) Increase
Credit score to 620. This is unrealistic, as the Credit score cannot be arbitrarily changed.
It fails to recognize that the Credit score’s improvements depend on reducing Debt.
MC3G’s Causal-Aware Counterfactual: MC3G correctly models causal depen-
dencies, recognizing that: Clearing Debt leads to a higher Credit Scores. Thus, a
realistic counterfactual solution is: John {Debt : no debt, Bank Balance : 60,000,
Credit Score : 620}. The required interventions are: 1) Increase Bank balance to 60, 000,
and 2) Clear Debt, which automatically increases the credit score to 620. By respecting
causal constraints, MC3G ensures that only feasible interventions are suggested, avoiding
unrealistic modifications that do not respect causal dependencies.
Step 3- Finding Minimal Counterfactual: Assign zero weight to causal changes so
that only direct, user-initiated changes contribute to the overall cost. The counterfactual
with the lowest resulting cost is therefore the minimal causally compliant solution.

3.3. Cost Computation in MC3G
Standard Cost Computation used by existing methods (C3G, MACE) assigns a cost to
every feature change, even those that occur automatically from causal effects. It weights
direct interventions (user initiated) and causal effects equally, unfairly penalizing causally
compliant solutions by making them costly. MC3G’s Refined Cost Computation dis-
tinguishes between direct interventions and causal effects. It excludes automatic changes
due to causal effects from the cost computation. Hence, it does not artificially inflate
causally compliant solutions

For example, in John’s case:, Standard Cost Computation treats an “increase in
Credit Score, Bank Balance” and “clearing Debt” as three interventions, inflating the
cost. In contrast, MC3G’s Refined Cost Computation sees that clearing Debt auto-
matically improves Credit Score, so only the direct interventions (clear Debt; increase
Bank Balance) contribute to the cost. By refining the cost computation, MC3G en-
sures that the realistic counterfactuals with the lowest cost are prioritized, making recourse
strategies both actionable and fair.

4. Methodology

Unlike standard counterfactual methods that assume feature independence, MC3G mod-
els causal dependencies, yielding realistic counterfactual recommendations. This section
outlines the key components of MC3G’s counterfactual-generation framework.

4.1. Definitions

4.1.1. STATE SPACE (S)

S represents all combinations of feature values. For domains D1, ..., D, of the features
Py, ..., F,, S is a set of possible states s, where each state is defined as a tuple of feature
values Vi, ..., V,,. s € S where S = {(V1,Va,...,V,,) | Vi € D;, for each i in 1,...,n}. E.g.,
an individual John: s = (> $10,000, $40, 000, 599 points), where s € S.

5
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4.1.2. CAUSALLY CONSISTENT STATE SPACE (S¢)

Sc is a subset of S where all causal rules are satisfied. C represents a set of causal rules over
the features within a state space S. Then, 0¢c : P(S) — P(S) (where P(S) is the power set
of S) is a function that defines the subset of a given state sub-space S’ C S that satisfy all
causal rules in C. 0c(S") = {s € 5" | s satisfies all causal rules in C} and Sc = 0c(S).
E.g., causal rules state that if debt is 0, the credit score should be above 599, then instance
s1 = (no debt, 40000, 620 points) is causally consistent, and instance sy = (no debt, 40000,
400 points) is causally inconsistent.

4.1.3. DECISION CONSISTENT STATE SPACE (SQ)

Sq is a subset of S¢ where all decision rules are satisfied. @ represents a set of rules that
compute some external decision for a given state. g : P(S) — P(S) is a function that
defines the subset of the causally consistent state space S’ C S¢ that is also consistent with
decision rules in Q. 0 (S") = {s € S’ | s satisfies any decision rule in Q}. Given S¢ and
fq, we define the decision consistent state space: Sg = 0g(Sc) = 0g(6c(S)). E.g., John
whose loan has been rejected: s = (no debt, $40000, 620 points), where s € Sq.

4.1.4. COUNTERFACTUAL GENERATION (CFG) PROBLEM

A counterfactual generation (CFG) problem is a 3-tuple (S¢, Sg, I) where S¢ is the causally
consistent state space, Sg is the decision consistent state space, I € S¢ is the initial state.

4.1.5. GOoAL SET G

The goal set G is the set of desired outcomes that do not satisfy the decision rules Q. For
the Counterfactual Generation (CFG) problem (S¢, Sg, ), G C Sc, we have G = s € S¢ |
s € Sg. G includes all states in Sc that do not satisfy Sg. For example, g = (no debt,
60000, 620 points) where g € G.

4.1.6. FINDING A COUNTERFACTUAL SOLUTION

A solution to the problem (S¢, Sg,I) with Goal set G is any state g € G. This means a
valid counterfactual must satisfy two conditions: 1) It respects causal constraints (g € S¢),
and 2) It achieves the desired outcome (g & Sg. Example: A valid counterfactual solution
is John Debt : no debt, Bank Balance : 60,000, Credit Score : 620. Here, John clears his
debt, which naturally increases his credit score and raises his bank balance. This ensures
that he is qualified to have his loan approved.

4.2. Algorithm to Obtain the Counterfactual

4.2.1. ALGORITHM 1: MC3G

MC3G combines three algorithms in sequence to find minimal-cost counterfactuals that
overturn an undesired decision. First, extract_logic (found in the supplement) obtains deci-
sion rules from the original model—directly if the model is already rule-based, or by training
a rule-based surrogate on the model’s predictions. Next, for each candidate state in the
dataset, is_counterfactual checks whether it satisfies causal constraints and avoids the unde-
sired decision, while also zeroing out the weights of any features changed automatically by
those causal dependencies. This means causally compliant changes contribute nothing to
the cost. Finally, compute_weighted_Lp measures the overall distance from the initial state
to each valid counterfactual, taking into account only direct user-initiated changes (since
features altered by causality have zero weight). The method then selects the counterfactual
with the lowest total cost as the optimal solution.

6
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Algorithm 1: MC3G: Generating Counterfactuals & Selecting Minimum Cost
Input: Original Model M, Data H, RBML Algorithm R, Set of Causal Rules C, Initial
State sg, Candidate States S, Feature Weights W, Norm Parameter p € {0, 1,2}
Output: Optimal Counterfactual State s*, Minimum Cost bestCost

// 1. Extract Decision Rules from the Model
Q@ «+ extract_logic(M, H, R)

bestCost <— oo // Initialize best cost to a large value
s* <~ NULL // Optimal counterfactual state not found yet

foreach state s € S do
// 2. Check if s is a counterfactual and adjust weights
(isValid, adjWeights) < is_counterfactual(s, C, @, W)
if isValid = TRUFE then
// 3. Compute cost from initial state sg to s
cost < compute_weighted_Lp(sg, s, adjWeights, p)

if cost < bestCost then
| bestCost < cost s* < s

end

end
end
return (s*, bestCost) // Return the state with minimal cost and its cost

Algorithm 2: extract_logic: Extract the underlying logic of the classification model

Input: Original Classification model M, Data H, RBML Algorithm R

if M is rule-based then

‘ @ < M // Decision Rules are the rules of M

end

else if M is statistical then
V< predict(M(H)) // For input data H, predict the labels as V
R + train(R(H,V)) // Use the H and V to train R
Q) < R // Decision Rules are the rules of R

end

return @

4.2.2. ALGORITHM 2: extract_logic

We first describe the algorithm for extracting the underlying logic in the form of rules for the
classification model that provides the undesired outcome. By using this extracted logic or
rules, we can generate a path to the counterfactual solution g. The function ‘extract_logic’
extracts the underlying logic of the classification model used for decision-making. Our
MC3G framework applies specifically to tabular data, so any classifier handling tabular
data can be used. Algorithm 2 provides the pseudocode for ‘extract_logic’, which takes
the original classification model M, input data H, and a RBML algorithm R as inputs
and returns (), the underlying logic of the classification model. () represents the decision
rules responsible for generating the undesired outcome. The algorithm first checks if the
classification model M is rule-based. If yes, we set Q = M and return Q. Otherwise, the
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corresponding labels for the input data are predicted using M. These predicted labels,
along with the input data H, are then used to train the RBML algorithm R. The trained
RBML algorithm represents the underlying logic of M, and we set () = R, returning @) as
the extracted decision rules.

4.2.3. ALGORITHM 3: is_counterfactual

Algorithm 3: is_counterfactual: Checks if a state s is a valid counterfactual while

adjusting feature weights
Input: State s € S, Set of Causal Rules C, Set of Decision Rules @), Feature Weights W

Output: Boolean indicating if s is a counterfactual, Updated Feature Weights W’
adjusted_weights <— W // Initialize weights for feature changes
foreach feature Fy, € s do
if i, was altered due to a causal dependency in C then
adjusted_weights[F] < 0 // Set weight to O if change was caused by a
causal dependency
end
end
if is_causally_consistent(s,C) AND not is_decision_compliant(s, Q) then
‘ return (TRUE, adjusted _weights) // s is a valid counterfactual
end
else
‘ return (FALSE, adjusted_weights) // s is not a valid counterfactual
end

This algorithm determines whether a given state s qualifies as a valid counterfactual by
checking two conditions: (1) is it causally consistent (it satisfies all causal rules), and (2)
does it not satisfy the decision rules. Additionally, it sets the weights of any features
whose changes occur automatically due to causal dependencies to 0, preventing these “free”
adjustments from inflating the overall cost. If both conditions are met, the algorithm
returns T RU E and the adjusted feature weights, indicating that s is a valid counterfactual.
Otherwise, it returns FFALSFE and the adjusted weights.

4.2.4. ALGORITHM 4: compute_weighted_Lp

This algorithm calculates the overall cost of transforming one state s into another state
s’ = g under three possible distance metrics—Lg, Ly, or Ly— while incorporating feature-
specific weights. It loops over each feature feature Fj, checks if the user-specified norm
parameter p is 0, 1, or 2, then computes the contribution of changing Fj accordingly.
Specifically, Ly counts how many features differ (adding the corresponding weight if a
feature changed), L; sums the weighted absolute differences, and Lo sums the weighted
squared differences. Crucially, if any feature’s weight is zero (for example, because it was
altered automatically due to causal dependencies), it contributes nothing to the distance,
ensuring only direct user-initiated changes inflate the overall distance/cost. By summing
these per-feature contributions, the algorithm outputs a single numeric cost reflecting the
magnitude of the change required to transform s into s’ = g.
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Algorithm 4: compute_weighted_Lp: Computes weighted Lo, L1, or Lo cost between

two states
Input: States s, s’ € S, Feature Weights W, Norm Parameter p € {0,1, 2}

Output: Overall Cost cost
cost <~ 0 // Initialize total cost
foreach feature Fy, in s do
if p =0 then
// LO norm counts number of changed features
if §'[F}] # s[Fy] then
| cost < cost + W[Fy]
end
Ise if p =1 then
// L1 norm sums absolute differences
A« | §'[Fg] — s[Fy]| cost < cost + W[Fy] x A
nd
Ise if p =2 then
// L2 norm sums squared differences
A« (s'[Fy] — s[Fy]) cost < cost + W[F}] x (A)?
end

)

o O

end
return cost

5. Experiment

5.1. Generate Causally Constrained Counterfactuals

Table 1: Performance of MC3G against counterfactual based methods

Dataset Model Causally Compliant Causal Consistency (%)
Borderline-CF FALSE 30
DiCE Indirectly 80
Adult MACE FALSE 80
C3G TRUE 100
MC3G TRUE 100
Borderline-CF FALSE 80
DiCE Indirectly 80
Statlog MACE FALSE 20
C3G TRUE 100
MC3G TRUE 100
Borderline-CF FALSE N/A
DiCE Indirectly N/A
Car MACE FALSE N/A
C3G TRUE N/A
MC3G TRUE N/A
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To see the kinds of counterfactuals produced, we use datasets that have well defined causal
dependencies known to us: the Adult dataset by Becker and Kohavi (1996) and the Statlog
(German Credit) dataset by Hofmann (1994). For comparison, we use the Car Evaluation
dataset for which no causal dependencies are used. We compare our MC3G method against
Borderline Counterfactuals, DICE, MACE and C3G and check the type of counterfactu-
als produced. From Table 1, we see that MC3G like C3G produces causally compliant
counterfactuals 100% of the time. The code for MC3G is provided by Dasgupta (2025).
5.2. Comparison of Counterfactual Proximity

Table 2 demonstrates that MC3G consistently produces closer counterfactuals than C3G
across all metrics—mnearest, furthest, and average distances—regardless of norm—L1 or L2
norm—used. This is because MC3G correctly accounts for causal dependencies, treating
causally induced changes as cost-free, whereas C3G incorrectly assigns a cost to all fea-
ture modifications, including those that occur naturally. For both the Adult and German
datasets, MC3G counterfactuals exhibit lower nearest (K=1), furthest (K=20), and average
distances (Avg.) than C3G. This highlights that MC3G identifies more efficient intervention
strategies, ensuring that users receive recourse recommendations requiring minimal effort
while remaining causally compliant. The reduced distance across all metrics confirms that
MC3G outperforms C3G in generating counterfactuals that are not only feasible but also
require fewer modifications to achieve the desired outcome.

Table 2: Comparison of Nearest and Furthest Counterfactuals for C3G and MC3G

K =20
Metric Used to Sort the Closest
Dataset | Model I L2 L0
K=1| K=20| Avg. | K=1 | K=20| Avg. | K=1 | K=20| Avg

Adult C3G 1.012] 1.470 | 1.296 | 1.012| 1.221 | 1.113 | 1 1 1

MC3G | 0.701| 1.031 | 0.907 | 0.701 ] 0.903 | 0.829 | 1 1 1
German C3G 3.334 | 3.341 | 3.337 | 1.764 | 1.764 | 1.764 | 4 4 4

MC3G | 2.334 | 2.341 | 2.337 | 1.453 | 1.453 | 1.453 | 3 3 3
Cars C3G 1 3 2.3 1 1.732 | 1.499 | 1 3 2.3

MC3G | 1 3 2.3 1 1.732 | 1.499 | 1 3 2.3

6. Conclusion and Future Work

In this paper, we introduced MC3G, a novel, model-agnostic framework for generating
causally consistent counterfactual explanations. Unlike previous methods—including C3G
and other approaches that either neglect causal dependencies or fail to distinguish between
user-initiated and automatic changes—MC3G leverages Answer Set Programming to ensure
that every counterfactual adheres to real-world causal relationships while computing inter-
vention costs accurately. By zeroing out the cost contributions from automatically induced
feature changes, MC3G delivers more realistic, actionable, and cost-efficient recourse for
individuals affected by adverse decisions. While MC3G currently incurs a higher computa-
tional cost and is limited to tabular data, future work will focus on optimizing the search
space and extending the framework to handle non-tabular data, such as images. Over-
all, MC3G represents a significant advancement in counterfactual explanation methods,
enhancing both interpretability and practical utility in diverse decision-making contexts.
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