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Abstract

Existing theories on deep nonparametric regres-
sion have shown that when the input data lie on a
low-dimensional manifold, deep neural networks
can adapt to the intrinsic data structures. In real
world applications, such an assumption of data
lying exactly on a low dimensional manifold is
stringent. This paper introduces a relaxed assump-
tion that the input data are concentrated around
a subset of Rd denoted by S, and the intrinsic
dimension of S can be characterized by a new
complexity notation – effective Minkowski di-
mension. We prove that, the sample complexity
of deep nonparametric regression only depends
on the effective Minkowski dimension of S de-
noted by p. We further illustrate our theoreti-
cal findings by considering nonparametric regres-
sion with an anisotropic Gaussian random design
N(0,Σ), where Σ is full rank. When the eigen-
values of Σ have an exponential or polynomial
decay, the effective Minkowski dimension of such
an Gaussian random design is p = O(

√
log n) or

p = O(nγ), respectively, where n is the sample
size and γ ∈ (0, 1) is a small constant depend-
ing on the polynomial decay rate. Our theory
shows that, when the manifold assumption does
not hold, deep neural networks can still adapt to
the effective Minkowski dimension of the data,
and circumvent the curse of the ambient dimen-
sionality for moderate sample sizes.

1School of Industrial and Systems Engineering, Georgia Insti-
tute of Technology, Atlanta, GA, USA 2Electrical and Computer
Engineering, Princeton University, NJ, USA 3School of Mathemat-
ics, Georgia Institute of Technology, Atlanta, GA, USA. Corre-
spondence to: Tuo Zhao <tourzhao@gatech.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
Deep learning has achieved impressive successes in var-
ious real-world applications, such as computer vision
(Krizhevsky et al., 2012; Goodfellow et al., 2014; Long et al.,
2015), natural language processing (Graves et al., 2013; Bah-
danau et al., 2014; Young et al., 2018), and robotics (Gu
et al., 2017). One notable example of this is in the field of
image classification, where the winner of the 2017 ImageNet
challenge achieved a top-5 error rate of just 2.25% (Hu et al.,
2018) using a training dataset of 1 million labeled high res-
olution images in 1000 categories. Deep neural networks
have been shown to outperform humans in speech recogni-
tion, with a 5.15% word error rate using the LibriSpeech
training corpus (Panayotov et al., 2015), which consists of
approximately 1000 hours of 16kHz read English speech
from 8000 audio books.

The remarkable successes of deep learning have challenged
conventional machine learning theory, particularly when
it comes to high-dimensional data. Existing literature has
established a minimax lower bound of sample complexity
n ≳ ϵ−(2s+d)/s for learning s-Hölder functions in Rd with
accuracy ϵ (Györfi et al., 2006). This minimax lower bound,
however, is far beyond the practical limits. For instance,
the images in the ImageNet challenge are of the resolution
224× 224 = 50176, while the sample size of 1.2 million is
significantly smaller than the theoretical bound.

Several recent results have attempted to explain the
successes of deep neural networks by taking the low-
dimensional structures of data into consideration(Chen et al.,
2019; 2022; Nakada & Imaizumi, 2020; Liu et al., 2021;
Schmidt-Hieber, 2019). Specifically, Chen et al. (2022)
shows that when the input data are supported on a p-
dimensional Riemannian manifold embedded in Rd, deep
neural networks can capture the low-dimensional intrinsic
structures of the manifold. The sample complexity in Chen
et al. (2022) depends on the intrinsic dimension p, which
circumvents the curse of ambient dimension d; Nakada &
Imaizumi (2020) assumes that the input data are supported
on a subset of Rd with Minkowski dimension p, and estab-
lishes a sample complexity similar to Chen et al. (2022).
Liu et al. (2021) considers a classification problem, and
show that convolutional residual networks enjoy similar
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theoretical properties to Chen et al. (2022).

Considering the complexity of real world applications,
however, the assumptions of data lying exactly on a low-
dimensional manifold or a set with low Minkowski dimen-
sion are stringent. To bridge such a gap between theory
and practice, we consider a relaxed assumption that the
input data X are approximately supported on a subset of
Rd with certain low-dimensional structures denoted by S.
Roughly speaking, there exists a sufficiently small τ such
that we have P(X /∈ S) = τ , where S can be character-
ized by a new complexity notation – effective Minkowski
dimension. We then prove that under proper conditions, the
sample complexity of nonparametric regression using deep
neural networks only depends on the effective Minkowski
dimension of S denoted by p. Our assumption arises from
practical motivations: The distributions of real-world data
sets often exhibit a varying density. In practice, the low-
density region can be neglected, if our goal is to minimize
the L2 prediction error in expectation.

Furthermore, we illustrate our theoretical findings by con-
sidering nonparametric regression with an anisotropic mul-
tivariate Gaussian randomly sampled from N(0,Σ) de-
sign in Rd. Specifically, we prove that when the eigen-
values of Σ have an exponential decay, we can properly
construct S with the effective Minkowski dimension p =
min(O(

√
log n), d). Moreover, when the eigenvalues of Σ

have a polynomial decay, we can properly construct S with
the effective Minkowski dimension p = min(O(nγ , d)),
where γ ∈ (0, 1) is a small constant. Our proposed effec-
tive Minkovski dimension is a non-trivial generalization
of the manifold intrinsic dimension (Chen et al., 2022) or
the Minkowski dimension (Nakada & Imaizumi, 2020), as
both the intrinsic dimension or Minkowski dimension of the
aforementioned S’s are d, which can be significantly larger
than p for moderate sample size n.

An ingredient in our analysis is an approximation theory
of deep ReLU networks for β-Hölder functions (Yarotsky,
2017; Nakada & Imaizumi, 2020; Chen et al., 2019). Specif-
ically, we show that, in order to uniformly approximate
β-Hölder functions on a properly selected S up to an ϵ er-
ror, the network consists of at most O(ϵ−p/β) neurons and
weight parameters, where p is the effective Minkowski di-
mension of the input data distribution. The network size in
our theory only weakly depends on the ambient dimension d,
which circumvents the curse of dimensionality for function
approximation using deep ReLU networks. Our approxi-
mation theory is established for the L2 norm instead of the
L∞ norm in Nakada & Imaizumi (2020); Chen et al. (2019).
The benefit is that we only need to approximate the function
accurately on the high-density region, and allow for rough
approximations on the low-density region. Such flexibility
is characterized by our effective Minkowski dimension.

The rest of this paper is organized as follows: Section 2
reviews the background; Section 3 presents our functional
approximation and statistical theories; Section 4 provides an
application to Gaussian random design; Section 5 presents
the proof sketch of our main results; Section 6 discusses
related works and draws a brief conclusion.

Notations Given a vector v = (v1, ..., vd)
⊤ ∈ Rd, we

define ∥v∥pp =
∑

j |vj |p for p ∈ [1,∞) and ∥v∥∞ =

maxj |vj |. Given a matrix W = [Wij ] ∈ Rn×m, we define
∥W∥∞ = maxi,j |Wij |. We define the number of nonzero
entries of v and W as ∥v∥0 and ∥W∥0, respectively. For
a function f(x), where x ∈ X ⊆ Rd, we define ∥f∥∞ =

maxx∈X |f(x)|. We define ∥f∥2L2(P ) =
∫
X f2(x)p(x)dx,

where P is a continuous distribution defined on X with the
pdf p(x).

2. Background
In nonparametric regression, the aim is to estimate a ground-
truth regression function f∗ from i.i.d. noisy observations
{(xi, yi)}ni=1. The data are generated via

yi = f∗(xi) + ξi,

where the noise ξi’s are i.i.d. sub-Gaussian noises with
E[ξi] = 0 and variance proxy σ2, which are independent
of the xi’s. To estimate f∗, we minimize the empirical
quadratic loss over a concept class F , i.e.,

f̂ ∈ argmin
f∈F

1

2n

n∑
i=1

(f(xi)− yi)
2
. (1)

We assess the quality of estimator f̂ through bounding L2

distance between f̂ and f∗, that is,∥∥∥f̂ − f∗
∥∥∥2
L2(Pdata)

≤ γ(n).

Here γ(n) is a function of n describing the convergence
speed and Pdata is an unknown sampling distribution ofthe
xi’s supported on Ddata.

Existing literature on nonparametric statistics has estab-
lished an optimal rate of γ(n) ≲ n− 2α

2α+d , when f∗ is α-
smooth with bounded functional norm, and F is properly
chosen (Wahba, 1990; Altman, 1992; Fan & Gijbels, 1996;
Tsybakov, 2008; Györfi et al., 2006).

The aforementioned rate of convergence holds for any data
distribution Pdata. For high-dimensional data, the conver-
gence rate suffers from the curse of dimensionality. How-
ever, in many practical applications, Pdata exhibits impor-
tant patterns. For example, data are highly clustered in
certain regions, while scarce in the rest of the domain. In
literature, a line of work studies when Pdata is supported on
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a low-dimensional manifold (Bickel & Li, 2007; Cheng &
Wu, 2013; Liao et al., 2021; Kpotufe, 2011; Kpotufe & Garg,
2013; Yang et al., 2015). The statistical rate of convergence
γ(n) in these works depends on the intrinsic dimension of
the manifold, instead of the ambient dimension. Recently,
neural networks are also shown to be able to capture the
low-dimensional structures of data (Schmidt-Hieber, 2019;
Nakada & Imaizumi, 2020; Chen et al., 2022).

As mentioned, aforementioned works assume that data ex-
actly lie on a low-dimensional set, which is stringent. Re-
cently, Cloninger & Klock (2020) relaxes the assumption
such that data are concentrated on a tube of the manifold, but
the radius of this tube is limited to the reach (Federer, 1959)
of the manifold. In this paper, we establish a fine-grained
data dependent nonparametric regression theory, where data
are approximately concentrated on a low-dimensional subset
of the support.

To facilitate a formal description, we denote Ddata as the
data support. Given r, τ > 0, we define

N(r; τ) :=inf
S
{Nr(S) :S⊂DdatawithPdata(S)≥ 1− τ},

where Nr(S) is the r-covering number of S with respect to
L∞ distance.

Assumption 2.1. For any sufficiently small r, τ > 0, there
exists a positive constant p = p(r, τ) such that

logN(r; τ)

− log r
≤ p(r, τ).

Furthermore, there exists S ⊂ Ddata such that

Nr(S) ≤ c0N(r; τ) ≤ c0r
−p

for some constant c0 > 1, Pdata(S
c) ≤ τ and |xi| ≤ RS

for any x = (x1, . . . , xd) ∈ S and some constant RS > 0.

We next introduce Hölder functions and the Hölder space.

Definition 2.2 (Hölder Space). Let β > 0 be a degree of
smoothness. For f : X → R, the Hölder norm is defined as

∥f∥H(β,X ) := max
α:∥α∥1<⌊β⌋

sup
x∈X
|∂αf(x)|

+ max
α:∥α∥1=⌊β⌋

sup
x,x′∈X ,x ̸=x′

|∂αf(x)− ∂αf(x′)|
∥x− x′∥β−⌊β⌋

∞

.

Then the Hölder space on X is defined as

H(β,X ) =
{
f ∈ C⌊β⌋(X )

∣∣ ∥f∥H(β,X ) ≤ 1
}
.

Without loss of generality, we impose the following assump-
tion on the target function f∗:

Assumption 2.3. The ground truth function f∗ : Ddata →
R belongs to the Hölder spaceH(β,Ddata) with β ∈ (0, d).

Although the Hölder norm of f∗ is assumed to be bounded
by 1, our results can be easily extended to the case when
∥f∗∥H(β,Ddata)

is upper bounded by any positive constant.
In addition, β < d is a natural assumption. Given that ambi-
ent dimension d is always large, it is unusual for regression
functions to possess a degree of smoothness larger than d.

Our goal is to use multi-layer ReLU neural networks to
estimate the function f∗. Given an input x, an L-layer
ReLU neural network computes the output as

f(x) =WL · ReLU(WL−1 · · ·ReLU(W1x+ b1)

· · ·+ bL−1) + bL,
(2)

where W1, . . . ,WL and b1, . . . , bL are weight matrices and
intercepts respectively. The ReLU(·) activation function
denotes the entrywise rectified linear unit, i.e. ReLU(a) =
max{a, 0}. The empirical risk minimization in (1) is taken
over the function class F given by a network architecture.

Definition 2.4 (Function Class Given by a Network Ar-
chitecture). Given a tuple (L,B,K), a functional class of
ReLU neural networks is defined as follows:

F(L,B,K) :=
{
f |f(x) in the form of (2) with L layers,

∥f∥∞ ≤ 1, ∥Wi∥∞ ≤ B, ∥bi∥∞ ≤ B

for i = 1, . . . , L,

L∑
i=1

∥Wi∥0 + ∥bi∥0 ≤ K
}
.

3. Approximation and Generalization Theory
In this section, we present generic approximation and gen-
eralization theory and defer detailed proofs to Section 5.1
and 5.2 respectively. Firstly, we introduce the approxima-
tion theory of utilizing deep neural networks to approximate
Hölder functions. The approximation error is determined
by effective Minkowski dimension of data distribution and
probability of low-density area. Furthermore, we present the
generalization error when approximating regression func-
tion f∗. The convergence rate also depends on effective
Minkowski dimension.

Theorem 3.1 (Approximation of deep neural networks).
Suppose Assumption 2.1 hold. For β > 0 and any suffi-
ciently small ϵ, τ > 0, consider a tuple (L,B,K)

L = C1, B = O(Rβs
S ϵ−s), and K = C2(RSd)

pϵ−p/β ,

where RS > 0 and p = p(d−1ϵ1/β/2, τ) are given by
Assumption 2.1, and

C1 = O(d), C2 = O
(
d2+⌊β⌋), and s = s(β).

Then for any f∗ ∈ H(β,Ddata), we have

inf
f∈F(L,B,K)

∥f − f∗∥2L2(Pdata)
≤ ϵ2 + 4τ.
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The novelty of Theorem 3.1 is summarized below:

Dependence on Effective Minkowski Dimension. The
approximation rate in Theorem 3.1 is O(K−β/p), which
only depends on effective Minkowski dimension p < d
and function smoothness β, but not on ambient dimension
d. Compared to Yarotsky (2017), our results improves the
exponential dependence of neural network size on d to that
on p. Moreover, unlike Nakada & Imaizumi (2020) and
Chen et al. (2022), our results do not require that data dis-
tribution is exactly supported on a low-dimensional struc-
ture. Instead, our results can work for data distribution with
high-dimensional support as long as its effective Minkowski
dimension is relatively small.

Relaxation to the L2-error. The approximation error in
Theorem 3.1 is established with respect to the L2(Pdata)
norm, while most of existing works focus on the L∞ error
(Yarotsky, 2017; Nakada & Imaizumi, 2020; Chen et al.,
2019). Intuitively, it is not necessary for the network class to
approximate the function value at each point in the domain
Ddata precisely when data distribution is highly concen-
trated at certain subset. Instead, it suffices to approximate
f∗ where the probability density is significant, while the
error for the low-density region can be easily controlled
since the regression function f∗ and the neural network
class f ∈ F(L,B,K) are bounded.

The benefit of using the L2 error is that, we only need to
control the approximation error of f∗ within some chosen
region S ⊆ Ddata. Here S has an effective Minkowski di-
mension p, which ensures that it can be covered by O(r−p)
hypercubes with side length r. Then we design deep neural
networks to approximate f∗ within each hypercube and thus
the network size depends on the number of hypercubes used
to cover S. This explains why network size in Theorem 3.1
depends on p. Meanwhile, the probability out of S is negli-
gible since the data density is low. We further demonstrate
that this probability τ is far less than the approximation
error in Section 4. By this means, we succeed to reduce
the network size and at the same time achieve a small L2

approximation error.

We next establish the generalization result for the estimation
of f∗ using deep neural networks.

Theorem 3.2 (Generalization error of deep neural networks).
Suppose Assumption 2.1 holds. Fix any sufficiently small
r, τ > 0 satisfying r < RS and τ < r4β/4. Set a tuple
(L,B,K) with C1, C2 and s appearing in Theorem 3.1 as

L = C1, B = O(Rβs
S r−βs), and K = C2R

p
Sr

−p

with p = p(r, τ). Let f̂ be the global minimizer of empirical
loss given in (1) with the function class F = F(L,B,K).

Then we have

E∥f̂ − f∗∥2L2(Pdata)
=

O

(
τ + σr2β +

σ2

n

(
RS

r

)p

log

(
(RS/r)

p

r4β − 4τ

))
,

where O(·) hides polynomial dependence on d.

Theorem 3.2 is a statistical estimation result. It implies
that the generalization error also depends on effective
Minkowski dimension p. To establish this result, we de-
compose the squared error into a squared bias term and a
variance term. The bias is tackled with the approximation
error in Theorem 3.1 and the variance depends on the net-
work size. With the network size growing, the variance term
increases while the bias term decreases, since the approxi-
mation capability of neural networks is enhanced as the size
of the network enlarges. Therefore, we need to trade off
between the squared bias and the variance to minimize the
squared generalization error.

Notably, our analysis in Section 3 holds for any sufficiently
small τ and r, and every pair of τ and r determines a p. As
shown in Assumption 2.1, if τ and r decreases, the covering
number will become larger while the approximation can
be more accurate. In order to establish an explicit bound,
we need to trade off τ and r for the given sample size n.
Therefore the “optimal” p eventually becomes functions
of n. We call such an “optimal” p effective Minkowski
dimension.

In the next section, we give two specific classes of Gaussian
random designs to illustrate how effective Minkowski di-
mension p(r, τ) scales with r and τ . We further show that,
under a proper selection of the region S and the covering
accuracy r, the convergence rate for the estimation of f∗

using deep neural networks is Õ(n−2β/(2β+p)), where the
effective Minkowski dimension p is properly chosen.

4. Application to Gaussian Random Design
In literature, it is common to consider random Gaussian de-
sign in nonparametric regression (Anderson, 1962; Muller
& Stewart, 2006; Chatfield, 2018). In this section, we
take anisotropic multivariate Gaussian design as example
to justify Assumption 2.1 and demonstrate the effective
Minkowski dimension. Here we only provide our main the-
orems and lemmas. The detailed proofs are given in Section
5.3.

Consider a Gaussian distribution Pdata ∼ N(0,Σ) in
Rd. The covariance matrix Σ has the eigendecomposi-
tion form: Σ = QΓQ⊤, where Q is an orthogonal matrix
and Γ = diag(γ1, . . . , γd). For notational convenience in
our analysis, we further denote eigenvalue γi = λ2

i for
i = 1, . . . , d. Without loss of generality, assume that
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λ2
1 ≥ λ2

2 ≥ . . . ≥ λ2
d. Furthermore, we assume that

{λ2
i }di=1 has an exponential or polynomial decay rate:

Assumption 4.1 (Exponential decay rate). The eigenvalue
series {γi}di=1 = {λ2

i }di=1 satisfies λi ≤ µ exp{−θi} for
some constants µ, θ > 0.

Assumption 4.2 (Polynomial decay rate). The eigenvalue
series {γi}di=1 = {λ2

i }di=1 satisfies λi ≤ ρi−ω for some
constants ρ > 0 and ω > 1.

When the eigenvalues decay fast, the support of the data
distribution Pdata has degeneracy in some directions. In
this case, the majority of probability lies in some region
S ⊂ Rd, which has an effective Minkowski dimension
p < d. Specifically, consider a “thick” low-dimensional
hyper-ellipsoid in Rd,

S(R, r; p) :=

{
Qz

∣∣∣∣z=(z1, . . . , zd) ∈ Rd,

p∑
i=1

z2i
λ2
i

≤ R2,

|zj | ≤
r

2
for j = p+ 1, . . . , d

}
, (3)

where R, r > 0 and p ∈ N+ are independent parameters.
For the simplicity of notation, we first define a standard
hyper-ellipsoid and then linearly transform it to align with
the distribution N(0,Σ). The set S(R, r; p) can be regarded
as a hyper-ellipsoid scaled by R > 0 in the first p dimen-
sions, and with thickness r > 0 in the rest d− p dimensions.
Then we construct a minimal cover as a union of nonover-
lapping hypercubes with side length r for S(R, r; p). The
following lemma characterizes the relationship between
the probability measure outside S(R, r; p) and its covering
number.

Lemma 4.3. Given the eigenvalue series {λ2
i }di=1, for any

R, r > 0, choose p > 0 such that λ−1
p = 2R/r. If p < R2,

we will have

P(X /∈ S(R, r; p)) = O
(
exp(−R2/3)

)
,

Nr(S(R, r; p)) ≤
(
2R

r

)p

·
p∏

i=1

λi =

p∏
i=1

(
λi

λp

)
.

Remark 4.4. Since data distribution Pdata is supported on
Rd, both the intrinsic dimension and the Minkowski dimen-
sion of Pdata are d. However, Lemma 4.3 indicates that the
effective Minkowski dimension of Pdata is at most p.

According to Lemma 4.3, if we choose scale R >
√
p

properly, the probability outside S can be sufficiently small
while the covering number of S is dominated by r−p, which
gives that the effective Minkowski dimension of Pdata is at
most p. Moreover, under fast eigenvalue decays, the product
of the first p eigenvalues appearing in Nr(S(R, r; p)) is a
small number dependent of p. In these cases, we specify the
selection of R, r and p accordingly and show the effective
Minkowski dimension is reduced to p/2 in Appendix D.

Furthermore, we remark that the effective Minkowski dimen-
sion p is not a fixed number given data distribution Pdata,
but an increasing function of sample size n. As sample
size n increases, the estimation accuracy of f∗ is required
to be higher, so that we are supposed to design more and
smaller hypercubes to enable preciser estimation by neural
networks. Besides, some of the d − p dimensions are not
negligible anymore and thereby become effective compared
to the accuracy. Therefore, we need to incorporate more
dimensions to be effective to achieve higher accuracy.

With this observation, we construct S(R, r; p) such that
its effective Minkowski dimension p(n) increases while
thickness r(n) decreases as sample size n grows to enable
preciser estimation. Then we develop the following sample
complexity:

Theorem 4.5 (Generalization error under fast eigenvalue
decay). Under Assumption 2.3, let f̂ be the global min-
imizer of empirical loss given in (1) with function class
F = F(L,B,K). Suppose Assumption 4.1 hold. Set a
tuple (L,B,K) with the constants C1, C2 and s appearing
in Theorem 3.1 as

L = C1, B = O

(
n

βs

2β+
√

log n/θ (log n)βs
)
,

and K = C2n

√
log n/θ

2β+
√

log n/θ .

Then we have

E
∥∥∥f̂ − f∗

∥∥∥2
L2(Pdata)

= O
(
σ2n

− 2β(1−η)

2β+
√

log n/θ (log n)3/2
)

for sufficiently large n satisfying log(log n)/
√
θ log n ≤ η,

where η > 0 is an arbitrarily small constant. Moreover,
suppose Assumption 4.2 hold instead. Set a tuple (L,B,K)
as

L = C1, B = O
(
n

(1+1/ω)βs
2β+nκ

)
,

and K = C2

(
n

(1+1/ω)nκ/(2β+nκ)

4β+2nκ

)
,

where κ = (1 + 1/ω)/ω. Then we have

E
∥∥∥f̂ − f∗

∥∥∥2
L2(Pdata)

= O
(
σ2n

− 2β

2β+n(1+1/ω)/ω log n
)
.

Theorem 4.5 suggests the effective Minkowski dimension
of Gaussian distribution is

√
log n/θ under exponential

eigenvalue decay with speed θ and effective Minkowski
dimension is n(1+1/ω)/ω under polynomial eigenvalue de-
cay with speed ω. For moderate sample size n, i.e. effective
Minkowski dimension is less that ambient dimension d, The-
orem 4.5 achieves a faster convergence rate. When we have
a vast amount of data, the effective Minkowski dimension is
the same as the ambient dimension d, and then we can apply
standard analysis of deep neural networks for d-dimensional
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inputs to obtain the convergence rate Õ(n−2β/(2β+d)). To
the best of our knowledge, Theorem 4.5 appears to be the
first result for nonparametric regression and deep learning
theory, where the effective dimension varies with the sample
size.

5. Proof Sketch
This section contains proof sketches of Theorem 3.1, 3.2
and Lemma 4.3.

5.1. Proof Sketch of Theorem 3.1

We provide a proof sketch of Theorem 3.1 in this part and
defer technical details of the proof to Appendix A. The
ReLU neural network in Theorem 3.1 is constructed in the
following 5 steps:

1. Choose region S ⊂ Ddata only on which we use ReLU
neural networks to approximate f∗.

2. Construct a covering of S with hypercubes and then
divide these hypercubes into several groups, so that
neural networks constructed with respect to each group
have nonoverlapping supports.

3. Implement ReLU neural networks to assign given input
and estimated function value to corresponding hyper-
cube.

4. Approximate f∗ by a Taylor polynomial and then im-
plement a ReLU neural network to approximate Taylor
polynomial on each hypercube.

5. Sum up all the sub-neural-networks and take maximum
to approximate f∗.

Step 1. Space separation. Firstly, we divide Ddata into
some region S ⊂ Ddata with high probability measure and
Sc = Ddata with large volume. By Assumption 2.1, for any
sufficiently small r, τ > 0 and some constant c0 > 1, there
exists S ⊂ Ddata such that Nr(S) ≤ c0N(r; τ) ≤ c0r

−p

for some positive constant p = p(r, τ) and Pdata(S
c) ≤ τ .

Intuitively, we only need to approximate f∗ on S while Sc

is negligible due to its small probability measure. Therefore,
in the following steps, we only design a covering for S and
approximate f∗ in each hypercube of the covering.

Step 2. Grouping hypercubes. Let C be a minimum set of
hypercubes with side length r covering S. Then we partition
C into C1, . . . , CJ such that each subset Cj is composed
of hypercubes separated by r from each other. Lemma
A.1 shows that the number of Cj’s is at most a constant
dependent of d.

As a consequence, we group hypercubes into several subsets
of C so that constructed neural networks with respect to each
hypercube in Cj have nonoverlapping support.

Step 3. Hypercube Determination. This step is to assign

the given input x and estimated function value y to the
hypercube where they belong. To do so, we design a neural
network to approximate function (x, y) 7→ y 1I(x) where
I ∈ C is some hypercube. To make functions positive, we
firstly consider approximating f0 = f∗ + 2. Notice that
f0 ∈ H(β,Ddata, 3) and 1 ≤ f0(x) ≤ 3 for any x ∈ Ddata.

For any fixed I ∈ C, we define the center of I as (ι1, . . . , ιd).
Then we construct a neural network gind,r

I : Ddata × R≥ →
R≥ with the form:

gind,r
I (x, y) = 4ReLU

( d∑
i=1

1̂
r

I,i(xi) +
y

4
− d

)
, (4)

where 1̂
r

I,i : R→ [0, 1] is the approximated indicator func-
tion given by

1̂
r

I,i(z) =


z−(ιi−r)

r/2 if ιi − r < z ≤ ιi − r
2 ,

1 if ιi − r
2 < z ≤ ιi +

r
2 ,

(ιi+r)−z
r/2 if ιi + r

2 < z ≤ ιi + r,

0 otherwise.

We claim that neural network gind,r
I approximates function

(x, y) 7→ y 1I(x). Moreover, Appendix A.2 provides the
explicit realization of gind,r

I by selecting specific weight
matrices and intercepts.

Step 4. Taylor Approximation. In each cube I ∈ C, we
locally approximate f∗ by a Taylor polynomial of degree
⌊β⌋ and then we define a neural network to approximate
this Taylor polynomial. Firstly, we cite the following lemma
to evaluate the difference between any β-Hölder function
and its Taylor polynomial:

Lemma 5.1 (Lemma A.8 in Petersen & Voigtlaender
(2018)). Fix any f ∈ H(β,Ddata) with ∥f∥H(β,Ddata)

≤ 1

and x̄ ∈ S. Let f̄(x) be the Taylor polynomial of degree
⌊β⌋ of f around x̄, namely,

f̄(x) =
∑

|α|≤⌊β⌋

∂αf(x̄)

α!
(x− x̄)α.

Then, |f(x) − f̄(x)| ≤ dβ ∥x− x̄∥β holds for any x ∈
Ddata.

Next, we design an m-dimensional multiple output neural
network gpolyϵ = (gpolyϵ,1 , . . . , gpolyϵ,m ) to estimate multiple
Taylor polynomials in each output. The existence of such
neural network is ensured in the following lemma, which
is a straightforward extension of Lemma 18 in Nakada &
Imaizumi (2020).

Lemma 5.2 (Taylor approximation on S). Fix any m ∈
N+. Let {ck,α} ⊂ [−1, 1] for 1 ≤ k ≤ m. Let
{xk}mk=1 ⊂ S. Then there exist cpoly1 = cpoly1 (β, d, p),

6
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cpoly2 = cpoly2 (β, d, p) and spoly1 = spoly1 (β, d, p) such that
for any sufficiently small ϵ > 0, there is a neural network
gpolyϵ which satisfies the followings:

1. supx∈S

∣∣gpolyϵ,k (x) −
∑

|α|<β ck,α(x − xk)
α
∣∣ ≤ ϵ for

any k = 1, . . . ,m,
2. L(gpolyϵ ) ≤ 1 + (2 + log2 β)(11 + (1 + β)/p),

3. B(gpolyϵ ) ≤ cpoly1 R
βspoly

1

S ϵ−spoly
1 ,

4. K(gpolyϵ ) ≤ cpoly2 (Rp
Sϵ

−p/β +m).

For any cube Ik ∈ C, we take fIk(x) as a Taylor polynomial
function as with setting x̄← xIk and f ← f0 in Lemma 5.1.
Then we define a neural network to approximate fIk , which
is an ϵ/2-accuracy Taylor polynomial of f0. Let gpolyϵ/2 be
a neural network constructed in Lemma 5.2 with ϵ← ϵ/2,
m ← Nr(S), (xk)

m
k=1 ← (xIk)

Nr(S)
k=1 , and (ck,α)

m
k=1 ←

(∂αf(xIk)/α!)
Nr(S)
k=1 appearing in Lemma 5.2. Then, we

obtain

sup
k=1,...,Nr(S)

sup
x∈S

∣∣fIk(x)− gpolyϵ/2,k(x)
∣∣ ≤ ϵ

2
. (5)

In addition, we construct a neural network to aggregate
the outputs of gpolyϵ/2 . Define a neural network gfilter

k :

Rd+Nr(S) → Rd+1 which picks up the first d inputs and
(d+ k)-th input as

gfilter
k (z) =

(
Id e⊤k
0d e⊤k

)
z, for k = 1, . . . , Nr(S).

Then we design a neural network gsimul
ϵ/2 : Rd → RNr(S) that

simultaneously estimates Taylor polynomial at each cube.
Specifically, gsimul

ϵ/2 is formulated as below

gsimul
ϵ/2 =

(
gind,r
I1
◦ gfilter

1 , . . . , gind,r
INr(S)

◦ gfilter
Nr(S)

)
◦ (gIdd,L, g

poly
ϵ/2 ),

(6)

where gIdd,L : Rd → Rd is the neural network version of
the identity function whose number of layers is equal to
L(gpolyϵ/2 ).

Step 5. Construction of Neural Networks. In this step, we
construct a neural network gf0ϵ to approximate f0 = f∗ + 2.
Let gmax,5d be the neural network version of the maximize
function over 5d numbers. Besides, define

gsum(z1, . . . , zNr(S)) =

( ∑
Ik∈C1

zk, . . . ,
∑

Ik∈CNr(S)

zk

)
,

which aims to sum up the output of gsimul
ϵ/2 in each subset of

covering Cj .

Now we are ready to define gf0ϵ . Let gf0ϵ := gmax,5d ◦
gsum ◦ gsimul

ϵ/2 . Equivalently, gf0ϵ can be written as gf0ϵ =

maxj∈[5d]

∑
Ik∈Cj

gsimul
ϵ/2,k. Then we come to bound the ap-

proximation error of gf0ϵ . When x ∈ S, there exists some
I ∈ C such that x ∈ I . Based on the method to construct
neural networks, we have

gf0ϵ (x) = max
Ik∈Neig(I)

gsimul
ϵ/2,k(x)

≤ max
Ik∈Neig(I)

gpolyϵ/2,k(x),

where Neig(I) = {I ′ ∈ C|(I⊕3r/2)∩I ′ ̸= ∅} denotes the
3r/2-neighborhood of hypercube I . In other words, when
computing gf0ϵ (x), we only need to take maximum over the
estimated function value within hypercubes near x.

Given sufficiently small ϵ > 0, the error is bounded as

|gf0ϵ (x)− f0(x)| ≤ max
Ik∈Neig(I)

∣∣gpolyϵ/2,k(x)− f0(x)
∣∣

≤ max
Ik∈Neig(I)

∣∣gpolyϵ/2,k(x)− fIk(x)
∣∣

+ max
Ik∈Neig(I)

∣∣fIk(x)− f0(x)
∣∣

≤ε

2
+ dβ

(
3r

2

)β

≤ ϵ,

where the last inequality follows from (5) and Lemma 5.1.
Detailed derivation of approximation error is deferred to
Appendix A.3. In terms of parameter tuning, we choose
r = d−1ϵ1/β/2.

To extend results of f0 to f∗, we implement a neural net-
work gmod(z) = (−z+1) ◦ReLU(−z+2) ◦ReLU(z− 1)
and consider gf

∗

ϵ = gmod ◦ gf0ϵ to obtain the desired ap-
proximation error ϵ for any x ∈ S. Then we evaluate the
approximation error with respect to L2-norm:∥∥∥gf∗

ϵ − f∗
∥∥∥
L2(Pdata)

=

(∫
S

+

∫
Sc

)(
gf

∗

ϵ (x)− f∗(x)
)2

dPdata(x)

≤ ϵ2 + 4τ.

This follows from the aforementioned approximation error
within S, boundedness of f∗ and neural networks, as well
as the property that out-of-S probability is upper bounded,
i.e. Pdata(S

c) ≤ τ .

Finally, we sum up sizes of all the sub-neural-networks and
thus obtain the network size of gf

∗

ϵ . See Appendix A.4 for
detailed calculation.

5.2. Proof Sketch of Theorem 3.2

Proof of Theorem 3.2 follows a standard statistical decompo-
sition, i.e. decomposing the mean squared error of estimator
f̂ into a squared bias term and a variance term. We bound
the bias and variance separately, where the bias is tackled

7
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by the approximation results given in Theorem 3.1 and the
variance is bounded using the metric entropy arguments. De-
tails of the proof for Theorem3.2 are provided in Appendix
B. At first, we decompose the L2 risk as follows:

E
∥∥∥f̂ − f∗

∥∥∥2
L2(Pdata)

= 2E
[
1

n

n∑
i=1

(f̂(xi)− f∗(xi))
2

]
︸ ︷︷ ︸

T1

+E
∥∥∥f̂ − f∗

∥∥∥2
L2(Pdata)

−2E
[
1

n

n∑
i=1

(f̂(xi)− f∗(xi))
2

]
︸ ︷︷ ︸

T2

,

where T1 reflects the squared bias of using neural networks
to estimate f∗ and T2 is the variance term.

Step 1. Bounding bias term T1. Since T1 is the empirical
L2 risk of f̂ evaluated on the samples {xi}ni=1, we relate T1

to the empirical risk by rewriting f∗(xi) = yi − ξi, so that
we can apply the approximation error to bound the minimal
empirical risk achieved by f̂ . After some basic calculation,
we have

T1≤2 inf
f∈F(L,B,K)

∥f(x)− f∗(x)∥2L2(Pdata)

+ 4E

[
1

n

n∑
i=1

ξif̂(xi)

]
.

Note that the first term is the squared approximation error of
neural networks, which can be controlled by Theorem 3.1.
We bound the second term by quantifying the complexity
of the network class F(L,B,K). A precise upper bound of
T1 is given in the following lemma.

Lemma 5.3. Fix the neural network class F(L,B,K). For
any δ ∈ (0, 1), there exists some constant c > 0, such that

T1 ≤c inf
f∈F(L,B,K)

∥f(x)− f∗(x)∥2L2(Pdata)

+ cσ2 logN2(δ,F(L,B,K)) + 2

n

+ c

(√
logN2(δ,F(L,B,K)) + 2

n
+ 1

)
σδ,

where N2(δ,F(L,B,K)) denotes the δ-covering number
of F(L,B,K) with respect to the L2 norm, i.e., there ex-
ists a discretization of F(L,B,K) into N2(δ,F(L,B,K))
distinct elements, such that for any f ∈ F , there is f̄ in the
discretization satisfying

∥∥f̄ − f
∥∥
2
≤ ϵ.

Step 2. Bounding variance term T2. We observe that T2

is the difference between the population risk of f̂ and its
empirical risk. However, bounding this difference is distinct
from traditional concentration results because of the scaling
factor 2 before the empirical risk. To do this, we divide the
empirical risk into two parts and use a higher-order moment

(fourth moment) to bound one part. Using a Bernstein-type
inequality, we are able to show that T2 converges at a rate of
1/n, and the upper bound for this is shown in the following
lemma.

Lemma 5.4. For any δ ∈ (0, 1), there exists some constant
c′ > 0, such that

T2 ≤
c′

3n
logN2(δ/4H,F(L,B,K)) + c′δ.

Step 3. Covering number of neural networks. The upper
bounds of T1 and T2 in Lemma 5.3 and 5.4 both rely on
the covering number of the network class F(R, κ, L, p,K).
In this step, we present an upper bound for the covering
number N2(δ,F(L,B,K)) for a given a resolution δ > 0.

Lemma 5.5 (Covering number bound for F (Lemma 21 in
Nakada & Imaizumi (2020))). Given δ > 0, the δ-covering
number of the neural network class F(L,B,K) satisfies

logN2(δ,F(L,B,K)) ≤ K log

(
2L
√
dLKL/2BLRS√
δ2 − 4τ

)
.

Step 4. Bias-Variance Trade-off. Now we are ready to
finish the proof of Theorem 3.2. Combining the upper
bounds of T1 in Lemma 5.3 and T2 in Lemma 5.4 together
and substituting the covering number in Lemma 5.5, we
obtain

E
∥∥∥f̂ − f∗

∥∥∥2
L2(Pdata)

=

O

(
τ + d2βr2β+ σδ +

σ2K

n
log

(√
dLKL/2BLRS√

δ2 − 4τ

))
,

where we set approximation error to be d2βr2β . Plug in our
choice of (L,B,K), and choose δ = r2β . Then we can
conclude

E
∥∥∥f̂ − f∗

∥∥∥2
L2(Pdata)

=

O

(
τ + σr2β +

σ2

n

(
RS

r

)p

log

(
(RS/r)

p

r4β − 4τ

))
.

5.3. Proof Sketch of Lemma 4.3

In this section, we present our basic idea to construct
S(R, r; p) and the proof sketch of Lemma 4.3. For sim-
plicity of proof, we assume Q = I so that Σ = Λ =
diag(λ2

1, . . . , λ
2
d). The detailed proof is given in Appendix

C, which can be easily extended to the case when Q is not
an identity matrix. The proof of Theorem 4.5 is given in
Appendix D.

Given the Gaussian sample distribution, we hope to choose
some region in S ⊂ Rd with high probability measure and
effective Minkowski dimension p < d. Then we can only

8
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apply neural networks to approximate f∗ within each cube
of the small covering of S and thereby significantly reduce
the network size. In literature, it is common to truncate the
ambient space within a hyper-ellipsoid for Gaussian distri-
bution (Ellis & Maitra, 2007; Pakman & Paninski, 2014).
Similarly, we consider the ’thick’ low-dimensional hyper-
ellipsoid S(R, r; p) defined in (3). Then we construct a
minimal cover of S(R, r; p) as a union of nonoverlapping
hypercubes with side length r, which is equal to the thick-
ness of S(R, r; p). In particular, this cover contains multi-
ple layers of hypercubes to cover the first p dimensions of
S(R, r; p) while only needs one layer for the rest dimen-
sions. Intuitively, we only learn about hypercubes that cover
the first p dimensions without paying extra effort to study
dimensions with low probability density.

A natural question arising from the construction of
S(R, r; p) is how to select a proper dimension p. To ad-
dress this problem, we first notice that each side length of
the p-dimension hyper-ellipsoid is supposed to be greater
than the side length of hypercubes r, i.e. 2λiR ≥ r for
i = 1, . . . , p, so that we would not waste hypercubes to
cover dimensions with too small side length. For simplicity
of calculation, we choose p > 0 that satisfies λ−1

p = 2R/r
for any given R, r > 0.

Now we come to prove Lemma 4.3. Firstly, we compute
the probability outside S(R, r; p). By union bound, this
probability can be upper bounded by two parts, the probabil-
ity out of hyper-ellipsoid for the first p dimensions and the
probability out of hypercube with side length r for the rest
d − p dimensions. The first part is equal to the tail bound
of p-dimensional standard Gaussian by the construction of
S(R, r; p). The second part can be solved similarly by lin-
early transforming each dimension to be standard Gaussian.

Then we calculate the covering number of S(R, r; p). No-
tice that the first p dimensions of S(R, r; p) is contained
in a p-dimensional hyper-rectangle with side length 2λiR
for i = 1, . . . , p, while only one hypercube is required to
cover the j-th dimension for j = p + 1, . . . , d. There-
fore, the r-covering number can be upper bounded by∏p

i=1(2λiR)/rp.

6. Discussion and Conclusion
In this paper, we have presented a generic approximation
and generalization theory and applied it to Gaussian Ran-
dom Design. Furthermore, our theory is applicable to scenar-
ios where data are sampled from a mixture of distributions,
denoted as Pdata =

∑
i wiPi. Each distribution Pi is as-

signed a weight wi and has a low-dimensional support. In
such cases, we focus on a subset of distributions with sig-
nificant weights, while neglecting distributions with small
weights. Then the effective Minkowski dimension depends
on the data support of the selected distributions. As the

 

Figure 1. Dimensionality estimates of images obtained using the
MLE method with k nearest neighbors under different sample size.

sample size grows, including more distributions becomes
necessary to achieve higher estimation accuracy. Another
example where our theory can be applied is the case of
an approximate manifold, where the data are concentrated
on a low-dimensional manifold. In this scenario, the ef-
fective Minkowski dimension corresponds to the intrinsic
dimension of the manifold.

To illustrate the concept of effective dimension in real-world
examples, we refer to a study by Pope et al. (2021), which
investigates the intrinsic dimension of several popular bench-
mark datasets for deep learning. The intrinsic dimension
presented in Pope et al. (2021) can be seen as an approxi-
mate estimate of the Minkowski dimension, as demonstrated
in Levina & Bickel (2004); Grassberger & Procaccia (1983).
In our work, we adopt the methodology employed by Pope
et al. (2021) and utilize generative adversarial networks
trained on the ImageNet dataset to generate samples con-
taining varying numbers of daisy images. To estimate the
intrinsic dimension of these generated samples, we employ
the Maximum Likelihood Estimation (MLE) method, which
is achieved by computing the Euclidean distances between
each data point and its k nearest neighbors. The obtained
results are presented in Figure 1, which clearly demonstrates
that the intrinsic dimension estimated from a finite sample
of images increases as the sample size grows. This finding
aligns with our theory that the effective Minkowski dimen-
sion is an increasing function of the sample size.

In conclusion, this paper studies nonparametric regression
of functions supported in Rd under data distribution with
effective Minkowski dimension p < d, using deep neural
networks. Our results show that the L2 error for the es-
timation of f∗ ∈ H(β,Ddata) converges in the order of
n−2β/(2β+p). To obtain an ϵ-error for the estimation of f∗,
the sample complexity scales in the order of ϵ−(2β+p)/β ,
which demonstrates that deep neural networks can capture
the effective Minkowski dimension p of data distribution.
Such results can be viewed as theoretical justifications for
the empirical success of deep learning in various real-world
applications where data are approximately concentrated on
a low-dimensional set.
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A. Proof of Theorem 3.1
In this section, we provide the omitted proof in Section 5.1.

A.1. Lemma A.1

Lemma A.1 (Lemma 20 in Nakada & Imaizumi (2020)). Let C = {Ik}Nr(S)
k=1 be a minimum r-covering of S where Ik’s are

hypercubes with side length r. Then, there exists a disjoint partition {Cj}5
d

j=1 ⊂ C such that C =
⋃5d

j=1 Cj and d(Ii, Il) ≥ r
hold for any Ii ̸= Il ∈ Cj if card(Cj) ≥ 2, where d(A,B) := inf{∥x− y∥ |x ∈ A, y ∈ B} is defined as the distance of any
two sets A and B.

A.2. Realization of hypercube determination function gind,r
I

Hypercube determination function gind,r
I can be realized by weight matrices and intercepts (4, 0) ⊙ (W 2,−d) ⊙

[(W 1
1 , b

1
1), . . . , (W

1
d , b

1
d)] where W 1

i , b
1
i and W 2 are defined by

W 1
i :=

(
e⊤i e⊤i e⊤i e⊤i
0 0 0 0

)⊤

, b1i :=

(
−ιi + r − ιi +

r

2
− ιi −

r

2
− ιi − r

)
,

and

W 2 =

(
2

r
,−2

r
,−2

r
,
2

r
,
2

r
,−2

r
,−2

r
,
2

r
, . . . ,

2

r
,−2

r
,−2

r
,
2

r︸ ︷︷ ︸
4d

,
1

4

)
.

The above realization gives exactly the form in (4). Moreover, we summarize the properties of gind,r
I as following:

Proposition A.2. For any x ∈ Ddata and y ∈ R, we have

gind,r
I (x, y)


= y, x ∈ I and y ∈ [0, 4],

≤ y, x ∈ I ⊕ r
2 and y ∈ [0, 4],

= 0, otherwise.

Furthermore, we obtain the following properties

1. L(gind,r
I ) = 3,

2. B(gind,r
I ) ≤ max{4, d, 1 + r, 2/r},

3. K(gind,r
I ) = 24d+ 6.

A.3. Bounding the approximation error

Firstly, we compute the approximation error of using gf0ϵ to estimate f0 = f∗ + 2. Recall that we defined gf0ϵ :=

gmax,5d ◦ gsum ◦ gsimul
ϵ/2 . When x ∈ S, there exists some I ∈ C such that x ∈ I . Then for this x, we have

gf0ϵ (x) = max
j∈[5d]

∑
Ik∈Cj

gsimul
ϵ/2,k(x)

= max
Ik∈Neig(I)

gsimul
ϵ/2,k(x)

≤ max
Ik∈Neig(I)

gpolyϵ/2,k(x),

where Neig(I) = {I ′ ∈ C|(I ⊕ 3r/2) ∩ I ′ ̸= ∅} denotes the 3r/2-neighborhood of hypercube I . In other words, when
computing gf0ϵ (x), we only need to take maximum over the estimated function value within hypercubes near x. The second
equality follows from the Proposition A.2 that gsimul

ϵ/2,l(x) = 0 for Il ̸∈ Neig(I) and d(Il, Ik) > r holds for Il ̸= Ik ∈ Ci for
all i. The last inequality is due to the construction of gsimul

ϵ/2 in (6).

12
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Given ϵ ∈ (0, 1), we ensure 0 ≤ gsimul
ϵ/2,k(x) ≤ 4 for all Ik ∈ C by Proposition A.2, since gsimul

ϵ/2,k approximates fIk which is an
ϵ/2-accuracy Taylor polynomial of f0 ∈ [1, 3]. When x ∈ It, the error is bounded as

|gf0ϵ (x)− f0(x)| =max
{

max
Ik∈Neig(It)

gsimul
ϵ/2,k(x)− f0(x), f0(x)− max

Ik∈Neig(It)
gsimul
ϵ/2,k(x)

}
≤max

{
max

Ik∈Neig(It)
gpolyϵ/2,k(x)− f0(x), f0(x)− gpoly

ϵ/2,t(x)
}

≤ max
Ik∈Neig(It)

∣∣∣gpolyϵ/2,k(x)− f0(x)
∣∣∣

≤ max
Ik∈Neig(It)

∣∣∣gpolyϵ/2,k(x)− fIk(x)
∣∣∣+ max

Ik∈Neig(It)

∣∣fIk(x)− f0(x)
∣∣

≤ε

2
+ dβ

(
3r

2

)β

≤ ϵ,

where the last inequality follows from (5) and Lemma 5.1. In terms of parameter tuning, we choose r = d−1ϵ1/β/2.

Next, we extend approximation results of f0 to f∗. To do so, we firstly implement a neural network gmod(z) = (−z +
1) ◦ ReLU(−z + 2) ◦ ReLU(z − 1), which has the equivalent form gmod(z) = min(max(1, x), 3)− 2 for any z ∈ R. In
addition, gmod has the following properties:

L(gmod) = 3, B(gmod) ≤ 2, and K(gmod) = 12.

Then consider gf
∗

ϵ = gmod ◦ gf0ϵ to obtain the desired approximation error ϵ for any x ∈ S

sup
x∈Ddata

|gf
∗

ϵ (x)− f∗(x)| = sup
x∈Ddata

∣∣min
(
max

(
1, gf0ϵ (x)

)
, 3
)
− (f∗(x) + 2)

∣∣
= sup

x∈Ddata

∣∣min
(
max

(
1, gf0ϵ (x)

)
, 3
)
− f0(x)

∣∣
≤ sup

x∈Ddata

∣∣gf0ϵ (x)− f0(x)
∣∣

≤ϵ.

A.4. Computing network sizes

Recall that the ReLU neural network gf
∗

ϵ is defined as

gf
∗

ϵ =gmod ◦ gmax,5d ◦ gsum ◦ gsimul
ϵ/2

=gmod ◦ gmax,5d ◦ gsum ◦
(
gind,r
I1
◦ gfilter

1 , . . . , gind,r
INr(S)

◦ gfilter
Nr(S)

)
◦ (gIdd,L, g

poly
ϵ/2 ).

Note that Nr(S) ≤ c0r
−p. Combined with sub-neural network structures given in Appendix B.1.1 of Nakada & Imaizumi

(2020), gf
∗

ϵ has the following properties:

L(gf
∗

ϵ (x)) = L(gmod) + L(gmax,5d) + L(gind,r
I1

) + L(gfilter
1 ) + L(gpolyϵ/2 )

≤ 11 + 2d log2 5 + (11 + (1 + β)/d)(2 + log2 β),

B(gf
∗

ϵ (x)) ≤ max
{
B(gmod), B(gmax,5d), B(gind,r

I1
), B(gfilter

1 ), B(gIdd,L), B(gpolyϵ/2 )
}
,

≤ max{d, 1 + r, 2/r, cpoly1 R
βspoly

1

S ϵ−spoly
1 },

≤ max{4dϵ−1/β , cpoly1 R
βspoly

1

S ϵ−spoly
1 },

K(gf
∗

ϵ (x)) ≤ 2K(gmod) + 2K(gmax,5d) + 2Nr(S) ·K(gind,r
I1
◦ gfilter

1 ) + 2K(gIdd,L) + 2K(gpolyϵ/2 )

≤ 2cpoly2 Rp
Sϵ

−p/β + 2(50d+ 17 + cpoly2 )Nr(S)

+ 2(12 + 42× 5d + 2d+ 2d(11 + (1 + β)/p)(2 + log2 β))),

≤ 2cpoly2 Rp
Sϵ

−p/β + 2(50d+ 17 + cpoly2 )c0(2d)
pϵ−p/β

+ 2(12 + 42× 5d + 2d+ 2d(11 + (1 + β)/p)(2 + log2 β))),

13
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where cpoly2 = O(d2+⌊β⌋). By adjusting several constants, we obtain the statement.

B. Proof of Theorem 3.2
The proof of Theorem 3.2 mainly follows Chen et al. (2022). Our Lemma 5.3 and 5.4 is a slight revision of Lemma 5 and 6
in Chen et al. (2022), where we substitute ℓ∞ covering number with ℓ2 covering number to deal with unbounded domain. In
this section, we compute the ℓ2 covering number of neural network class and then present the proof of Theorem 3.2.

B.1. Proof of Lemma 5.5

Proof of Lemma 5.5. To construct a covering for F(H,L,B,K), we discretize each parameter by a unit grid with grid
size h. Recall that we write f ∈ F(H,L,B,K) as f(x) = WL · ReLU(WL−1 · · ·ReLU(W1x + b1) · · · + bL−1) + bL
in (2). Choose any f, f ′ ∈ F(H,L,B,K) with parameters at most h apart from each other. Denote the weight matrices
and intercepts in f, f ′ as WL, . . . ,W1, bL, . . . , L1 and W ′

L, . . . ,W
′
1, b

′
L, . . . , L

′
1 respectively, where Wl ∈ Rdl×dl−1 and

bl ∈ Rdl for l = 1, . . . , L. Without loss of generality, we assume dl ≤ K since all the parameters have at most K nonzero
entries. If the input dimension is larger than K, we let the redundant dimensions of input equal to zeros.

Notice that for any random variable y ∈ Rdl−1 which is subject to a distribution PY , we have

∫
Rdl−1

∣∣∣∣∣∣∣∣(Wly + bl)− (W ′
l y + b′l)

∣∣∣∣∣∣∣∣2
2

dPY (y) =

∫
Rdl−1

∣∣∣∣∣∣∣∣ dl−1∑
i=1

(Wl,i −W ′
l,i)yi + (bl − b′l)

∣∣∣∣∣∣∣∣2
2

dPY (y).

By the inequality ∥t+ s∥2 ≤ 2 ∥t∥2 + 2 ∥s∥2 which holds for any s, t ∈ Rdl , we obtain

∫
Rdl−1

∣∣∣∣∣∣∣∣(Wly + bl)− (W ′
l y + b′l)

∣∣∣∣∣∣∣∣2
2

dPY (y) ≤2
∫
Rdl−1

∣∣∣∣∣∣∣∣ dl−1∑
i=1

(Wl,i −W ′
l,i)yi

∣∣∣∣∣∣∣∣2 dPY (y) + 2 ∥bl − b′l∥
2
2

≤2 sup
i=1...,dl−1

∥∥Wl,i −W ′
l,i

∥∥2
2
·
∫
Rdl−1

dl−1∑
i=1

y2i dPY (y) + 2 ∥bl − b′l∥
2
2 .

Since parameters Wl, bl differ at most h from W ′
l , b

′
l with respect to each entry, we get

∫
Rdl−1

∣∣∣∣∣∣∣∣(Wly + bl)− (W ′
l y + b′l)

∣∣∣∣∣∣∣∣2
2

dPY (y) ≤ 2dl−1h
2 ∥y∥2L2(PY ) + 2dlh

2

≤ 2Kh2 ∥y∥2L2(PY ) + 2Kh2. (7)

Similarly, we have

∫
Rdl−1

∣∣∣∣∣∣∣∣Wly + bl

∣∣∣∣∣∣∣∣2
2

dPY (y) =

∫
Rdl−1

∣∣∣∣∣∣∣∣ dl−1∑
i=1

Wl,iyi + bl

∣∣∣∣∣∣∣∣2
2

dPY (y)

≤2
∫
Rdl−1

∣∣∣∣∣∣∣∣ dl−1∑
i=1

Wl,iyi

∣∣∣∣∣∣∣∣2 dPY (y) + 2 ∥bl∥22

≤2 sup
i=1...,dl−1

∥Wl,i∥22 ·
∫
Rdl−1

dl−1∑
i=1

y2i dPY (y) + 2 ∥bl∥22

≤2dl−1B
2 ∥y∥2L2(PY ) + 2dlB

2

≤2KB2 ∥y∥2L2(PY ) + 2KB2. (8)

Since the ReLU actiavtion function is 1-Lipschitz continuous for each coordinate, we can apply (7) and (8) repeatedly to
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bound ∥f − f ′∥2L2(Pdata,S):

∥f − f ′∥2L2(Pdata,S) =

∫
S

∣∣WL · ReLU(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1) + bL

−W ′
L · ReLU(W ′

L−1 · · ·ReLU(W ′
1x+ b′1) · · ·+ b′L−1)− b′L

∣∣2 dPdata(x)

≤2
∫
S

∣∣WL · ReLU(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1) + bL

−W ′
L · ReLU(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1)− b′L

∣∣2 dPdata(x)

+ 2 ∥W ′
L∥

2
2

∫
S

∥∥(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1)

− (W ′
L−1 · · ·ReLU(W ′

1x+ b′1) · · ·+ b′L−1)
∥∥2
2
dPdata(x)

≤4Kh2 + 4Kh2

∫
S

∥WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1∥2 dPdata(x)

+ 2KB2

∫
S

∥∥(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1)

− (W ′
L−1 · · ·ReLU(W ′

1x+ b′1) · · ·+ b′L−1)
∥∥2
2
dPdata(x).

Besides, we derive the following bound on ∥WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1∥L2(Pdata,S):∫
S

∥WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1∥2 dPdata(x)

≤ 2KB2

∫
S

∥WL−2 · · ·ReLU(W1x+ b1) · · ·+ bL−2∥2 dPdata(x) + 2KB2

≤ (2KB2)L−1dR2
S + (2KB2)L−1

≤ 2L(KB2)L−1dR2
S ,

where the last inequality is derived by induction and ∥x∥2 =
∑d

i=1 x
2
i ≤ dR2

S for any x ∈ S. Substituting back into the
bound for ∥f − f ′∥2L2(Pdata,S) , we obtain

∥f − f ′∥2L2(Pdata,S) ≤4Kh2 + 2L+2KLB2(L−1)h2dR2
S

+ 4KB2

∫
S

∥∥(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1)

− (W ′
L−1 · · ·ReLU(W ′

1x+ b′1) · · ·+ b′L−1)
∥∥2
2
dPdata(x)

≤4(L− 1)(KB2)L−1h2 + 2L+2(L− 1)KLB2(L−1)h2dR2
S

+ (2KB2)L−1

∫
S

∥W1x+ b1 −W ′
1x− b′1∥

2
2 dPdata(x)

≤4L−1LKLB2Lh2dR2
S ,

where the second inequality is obtained by induction. Therefore, combining the above inequality with ∥f∥∞ ≤ 1 for any
f ∈ F(L,B,K) and Pdata(S

c) ≤ τ , we get

∥f − f ′∥2L2(Pdata)
=

∫
S

|f(x)− f ′(x)|2 dPdata(x) +

∫
Sc

|f(x)− f ′(x)|2 dPdata(x)

≤4L−1LKLB2L−2h2dR2
S + 4τ.

Now we choose h satisfying h =
√
(δ2 − 4τ)/(4L−1LKLB2L−2dR2

S). Then discretizing each parameter uniformly into
2B/h grid points yields a δ-covering on F(L,B,K). Moreover, the covering number N2(δ,F(L,B,K)) satisfies

logN2(δ,F(L,B,K)) ≤ K log

(
2B

h

)
= K log

(
2L
√
dLKL/2BLRS√
δ2 − 4τ

)
.
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B.2. Proof of Theorem 3.2

Proof of Theorem 3.2. The square error of the estimator f̂ can be decomposed into a squared bias term and a variance term,
which can be bounded using the covering number of the function class. According to Lemmas 5.3 and 5.4, for any constant
δ ∈ (0, 1), we have

E∥f̂ − f∗∥2L2(Pdata)
≤c inf

f∈F(L,B,K)
∥f(x)− f∗(x)∥2L2(Pdata)

+ cσ2 logN2(δ,F(L,B,K)) + 2

n

+ c

(√
logN2(δ,F(L,B,K)) + 2

n
+ 1

)
σδ

+
c′

3n
logN2(δ/4H,F(L,B,K)) + c′δ.

(9)

Choose ϵ = (2dr)β in Theorem 3.1. Accordingly, we set tuple (L,B,K) as

L = C1, B = O(Rβs
S r−sβ), and K = C2R

p
Sr

−p.

Then we have
inf

f∈F(L,B,K)
∥f(x)− f∗(x)∥2L2(Pdata)

≤ (2dr)2β + 4τ.

Invoking the upper bound of the covering number in Lemma 5.5, we derive

E
∥∥∥f̂ − f∗

∥∥∥2
L2(Pdata)

≤(2dr)2β + 4τ +
cσ2

n

(
K log

(
2L
√
dLKL/2BLRS√
δ2 − 4τ

)
+ 2c

)

+ c

√
K log(2L

√
dLKL/2BLRS/

√
δ2 − 4τ) + 1

n
σδ

+
c′

3n
K log

(
2L
√
dLKL/2BLRS√
δ2 − 4τ

)
+ (cσ + c′)δ

=O

(
τ + d2βr2β +

σ2K

n
log

(√
dLKL/2BLRS√

δ2 − 4τ

)
+

(
K log(

√
dLKL/2BLRS/

√
δ2 − 4τ)

n

)1/2

σδ + σδ +
1

n

)
.

By Cauchy-Schwartz inequality, for 0 < δ < 1, we have

E
∥∥∥f̂ − f∗

∥∥∥2
L2(Pdata)

=O

(
τ + d2βr2β +

σ2K

n
log

(√
dLKL/2BLRS√

δ2 − 4τ

)
+ σδ +

1

n

)
.

Plugging in our choice of (L,B,K), we get

E
∥∥∥f̂ − f∗

∥∥∥2
L2(Pdata)

=O

(
τ + d2βr2β +

σ2d

n

(
RS

r

)p

log

(
(RS/r)

p

δ2 − 4τ

)
+ σδ +

1

n

)
Now we choose δ = r2β . Then we deduce the desired estimation error bound

E∥f̂ − f∗∥2L2(Pdata)
= O

(
τ + σr2β +

σ2

n

(
RS

r

)p

log

(
(RS/r)

p

r4β − 4τ

)
+

1

n

)
= O

(
τ + σr2β +

σ2

n

(
RS

r

)p

log

(
(RS/r)

p

r4β − 4τ

))
.

The last equality is due to RS/r > 1.
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C. Proof of Lemma 4.3
Proof of Lemma 4.3. For simplicity of proof, set Q = I . By the construction of S(R, r; p) in (3), we notice that

P(X /∈ S(R, r; p)) ≤P
( p∑

i=1

x2
i

λ2
i

> R2

)
+ P

(
|xj | >

r

2
for some j ∈ [p+ 1, d]

)
.

Since X1:p = (x1, . . . , xp) ∼ N(0,Λp) where Λp = diag(λ2
1, . . . , λ

2
p), the variable Z = Λ

−1/2
p X1:p ∼ N(0, Ip) is a

standard Gaussian. Then for any fixed R > 0, the probability P(
∑p

i=1 x
2
i /λ

2
i > R2) is equal to P(∥Z∥2 > R2). Moreover,

by Lemma E.2, if we choose R2 > p, we will have

P
(
∥Z∥2 > R2

)
≤
(
2R2 + p

p

) p
2

exp

(
− R4

2R2 + p

)
=exp

(
− p

2
· R4/p2

R2/p+ 1/2
+

p

2
· log

(
2R2

p
+ 1

))
=O

([
exp

(
− 2R2

3p
+ log

(
3R2

p

))] p
2

)
.

Besides, by Lemma E.1, for j = p+ 1, . . . , d, we derive

P
(
|xj | >

r

2

)
= P

(∣∣∣∣xj

λj

∣∣∣∣ > r

2λi

)
= O

(
exp

{
− r2

8λ2
j

})
.

Then we can apply the union bound of probability to get

P
(
|xj | >

r

2
for some j ∈ [p+ 1, d]

)
≤

d∑
j=p+1

P
(
|xj | >

r

2

)
= O

( d∑
j=p+1

exp

(
− r2

8λ2
j

))
.

Recall that we choose λ−1
p = 2R/r. Then we have

P
(
|xj | >

r

2
for some j ∈ [p+ 1, d]

)
=O

( d∑
j=p+1

exp

(
−

λ2
p

2λ2
j

R2

))

≤O
( d∑

j=p+1

exp

(
− R2

2

))

=O

(
exp

(
− R2

2
+ log(d− p)

))
,

where the inequality comes from λ2
j ≤ λ2

p for j = p+ 1, . . . , d. Therefore, we have

P(X /∈ S(R, r; p)) = O

([
exp

(
− 2R2

3p
+ log

(
3R2

p

))] p
2

)
+O

(
exp

(
− R2

2
+ log(d− p)

))
.

Next, we compute the covering number of S(R, r; p) using hypercubes with side length r > 0, which is denoted as
Nr(S(R, r; p)). Notice that the first-p-dimensional hyper-ellipsoid of S(R, r; p) is contained in a p-dimensional hyper-
rectangle with side length 2λiR for i = 1, . . . , p, while only one hypercube is required to cover the j-th dimension for
j = p+ 1, . . . , d. With this observation, we derive the upper bound for Nr(S(R, r; p)):

Nr(S(R, r; p)) ≤
p∏

i=1

(
2λiR

r

)
=

p∏
i=1

(
λi

λp

)
,

where the last equality results from our choice of p.
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D. Proof of Theorem 4.5
D.1. Generalization error under exponential eigenvalue decay

Combining the criteria λ−1
p = 2R/r and the exponential eigenvalue decay in Assumption 4.1, we have

1

µ
exp(θp) =

2R

r
.

Moreover, by Lemma 4.3, we can compute the covering number of S(R, r, p):

Nr(S(R, r; p)) ≤
p∏

i=1

(
λi

λp

)
=

p∏
i=1

exp(θ(p− i)) ≤ exp

(
θp2

2

)
=

(
2µR

r

)p/2

,

which indicates that effective Minkowski dimension of Pdata is at most p/2. Let r = n−(1−η)/(2β+
√

logn/θ) and R = log n
where η ∈ (0, 1) is an arbitrarily small constant. Then we obtain

θp = log

(
2µR

r

)
=

1

θ
log(2µ) + log(log n) +

(1− η) log n

2β +
√

log n/θ
≤ 2(1− η) log n

2β +
√
log n/θ

.

Thereby, we can compute the probability ourside S(R, r; p):

P(X /∈ S(R, r; p)) =O

([
exp

(
− 2R2

3p
+ log

(
3R2

p

))] p
2

+ exp

(
−R2

2
+ log(d− p)

))
= O(n− logn/3).

Apply Theorem 3.2 with our choice of R, r and p. Accordingly, the tuple (L,B,K) is set as

L = C1, B = O

(
n

βs

2β+
√

log n/θ (log n)βs
)
, and K = O

(
n

√
log n/θ

2β+
√

log n/θ

)
.

Then we can get

E
∥∥∥f̂ − f∗

∥∥∥2
L2(Pdata)

= O

(
P(X /∈ S(R, r; p)) + σr2β +

σ2

n
·
(
RS

r

)p/2

log

(
(RS/r)

p/2

r4β − 4τ

))
= O

(
σn

− 2β(1−η)

2β+
√

log n/θ +
σ2

n
· n

(1−η)2 log n/θ

(2β+
√

log n/θ)2 · (log n)
(1−η) log n/θ

2β+
√

log n/θ · log n/θ

2β +
√
log n/θ

· log n
)

= O

(
σn

− 2β(1−η)

2β+
√

log n/θ + σ2n
−1+

(1−η)2 log n/θ

(2β+
√

log n/θ)2
+

(1−η) log(log n)/θ

2β+
√

log n/θ · (log n)3/2
)
.

The last equality utilizes the fact that (log n)logn = nlog(logn). Furthermore, notice that for sufficiently large n satisfying
log(log n)/

√
θ log n ≤ η, we have

(1− η)2 log n/θ

(2β +
√
log n/θ)2

+
(1− η) log(log n)/θ

2β +
√
log n/θ

≤ (1− η)2 log n/θ

(2β +
√

log n/θ)2
+

(1− η)η
√
log n/θ

2β +
√

log n/θ

≤
(1− η)2

√
log n/θ

2β +
√

log n/θ
+

(1− η)η
√
log n/θ

2β +
√
log n/θ

≤
(1− η)

√
log n/θ

2β +
√
log n/θ

.

Therefore, we use the above observation to derive the following upper bound for generalization error:

E
∥∥∥f̂ − f∗

∥∥∥2
L2(Pdata)

= O
(
σ2n

− 2β(1−η)

2β+
√

log n/θ (log n)3/2
)
.
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D.2. Generalization error under polynomial eigenvalue decay

Similarly to last section, we firstly combine the criteria λ−1
p = 2R/r and the polynomial eigenvalue decay in Assumption

4.2,

p =

(
2ρR

r

)1/ω

.

Moreover, by Lemma 4.3, we can compute the covering number of S(R, r, p):

Nr(S(R, r; p)) ≤
p∏

i=1

(
λi

λp

)
=

p∏
i=1

(
p

i

)ω

=

(
pp

p!

)ω

≤
(

pp

pp/2

)ω

= pωp/2 =

(
2ρR

r

)p/2

,

which indicates that effective Minkowski dimension of Pdata is at most p/2. Let r = n−1/(2β+nκ) and R = n1/(2ωβ+ωnκ)

with κ = (1 + 1/ω)/ω. Then we obtain

p =

(
2ρR

r

)1/ω

= n
(1+1/ω)/ω

2β+nκ = n
κ

2β+nκ .

Thereby, we can compute the probability outside S(R, r; p):

P(X /∈ S(R, r; p)) =O

([
exp

(
− 2R2

3p
+ log

(
3R2

p

))] p
2

+ exp

(
−R2

2
+ log(d− p)

))
= O

(
exp
(
−n

2
(2ωβ+ωnκ) /3

))
.

Apply Theorem 3.2 with our choice of R, r and p. Accordingly, the tuple (L,B,K) is set as

L = C1, B = O
(
n

(1+1/ω)βs
2β+nκ

)
, and K = O

(
n

(1+1/ω)nκ/(2β+nκ)

4β+2nκ

)
.

Then we have

E
∥∥∥f̂ − f∗

∥∥∥2
L2(Pdata)

= O

(
P(X /∈ S(R, r; p)) + σr2β +

σ2

n
·
(
RS

r

)p/2

log

(
(RS/r)

p/2

r4β − 4τ

))
= O

(
σn− 2β

2β+nκ +
σ2

n
· n

1+1/ω
2β+nκ · 12n

κ
2β+nκ

· n
κ

2β+nκ log n

)
= O

(
σn− 2β

2β+nκ + σ2n−1+
1+1/ω
2β+nκ · 12n

κ
2β+nκ + κ

2β+nκ log n
)
.

(10)

Notice that

1 + 1/ω

2β + nκ
· 1
2
n

κ
2β+nκ +

κ

2β + nκ
=

1 + 1/ω

2β + nκ

(
1

2
n

κ
2β+nκ +

1

ω

)
≤ 2

2β + nκ

(
1

2
n

κ
2β+nκ + 1

)
≤ nκ

2β + nκ
,

where the first inequality is due to ω > 1. Therefore, plug the above inequality in (10), we derive the following upper bound
for generalization error:

E
∥∥∥f̂ − f∗

∥∥∥2
L2(Pdata)

= O
(
σ2n− 2β

2β+nκ log n
)
.

E. Auxiliary Lemmas
In this section, we investigate the probability tail bound of standard Gaussian variable, which is useful for the proof of
Lemma 4.3. At first, we compute the tail bound for multivariate Gaussian variable.
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Lemma E.1. Suppose Z = (z1, . . . , zp) ∼ N(0, Ip) is a standard Gaussian variable in Rp. Then for any t > 0, we have

P
(
∥Z∥ > t

)
≤
(
2t2 + p

p

) p
2

exp

(
− t4

2t2 + p

)
.

Proof. By the Markov’s inequality, for any µ ∈ (0, 1/2), we have

P
(
∥Z∥ > t

)
=P
(
exp(µ∥Z∥2) > exp(µt2)

)
≤E exp(µ∥Z∥2)

exp(µt2)

=

∏p
i=1 E exp(µz2i )

exp(µt2)
,

where the last equality comes from the independence of zi’s. To bound E exp(µz2i ), we first examine the moment generating
function of zi: for any t ∈ R,

E exp(tzi) =

∫
R
exp(tw)ϕ(w) dw = exp(t2/2),

where ϕ(w) = (2π)−p/2 exp(−w2/2) denotes the probability density function of stardard Gaussian. Then multiply
exp(−t2/(2µ)) on both sides,

∫
R
exp

(
tw − t2

2µ

)
ϕ(w) dw = exp

(
t2(µ− 1)

2µ

)
.

By integrating both sides with respect to t, we have

√
2πµ

∫
R
exp

(
µw2

2

)
ϕ(w) dw =

√
2πµ

1− µ
,

which indicates

E exp(µz2i ) = E exp

(
2µz2i
2

)
=

√
1

1− 2µ
.

Therefore, for any µ ∈ (0, 1/2), we have

P
(
∥Z∥ > t

)
≤ (1− 2µ)−

p
2 exp(−µt2).

Let µ = t2/(2t2 + p) and thereby we can conclude the proof of the lemma.

For standard Gaussian in R, we derive a tighter upper bound in the following lemma.

Lemma E.2. Suppose z ∼ N(0, 1) is a standard Gaussian variable in R. Then for any t > 0, we have

P
(
∥z∥ > t

)
≤ exp

(
− 1

2
t2
)
.
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Proof. Firstly, for any t > 0, compute the probability that z > t:

P(z > t) =

∫ ∞

t

1√
2π

exp

(
− 1

2
z2
)
dz

=

∫ ∞

0

1√
2π

exp

(
− 1

2
(u+ t)2

)
du

=exp

(
− 1

2
t2
)∫ ∞

0

exp(−tu) · 1√
2π

exp

(
− 1

2
u2

)
du

≤ exp

(
− 1

2
t2
)∫ ∞

0

1√
2π

exp

(
− 1

2
u2

)
du

=
1

2
exp

(
− 1

2
t2
)
.

Then notice that

P
(
∥z∥ > t

)
= P(z > t) + P(z < −t) = 2P(z > t).

Thereby, we can conclude the proof.
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