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Abstract

We study how training shapes the Riemannian geometry induced by neural network feature
maps. At infinite width, shallow neural networks induce highly symmetric metrics on
input space. Feature learning in networks trained to perform simple classification tasks
magnifies local areas and reduces curvature along decision boundaries. These changes are
consistent with previously proposed geometric approaches for hand-tuning of kernel methods
to improve generalization.

1. Introduction

In a series of influential papers, Amari and Wu proposed that one could improve the
generalization performance of support vector machine (SVM) classifiers through data-
dependent transformations of the kernel to expand the Riemannian volume element near
decision boundaries (Amari and Wu, 1999; Wu and Amari, 2002; Williams et al., 2007).
This proposal was based on the idea that this local magnification of areas improves the
discriminability of classes in input space (Cho and Saul, 2011; Amari and Wu, 1999; Burges,
1999). Over the past decade, SVMs have largely been eclipsed by neural networks, whose
ability to flexibly learn features from data is believed to underlie their superior generalization
performance (LeCun et al., 2015; Zhang et al., 2021). Previous works have explored some
aspects of the Riemannian geometry induced by neural networks with random parameters
(Poole et al., 2016; Amari et al., 2019; Cho and Saul, 2009, 2011; Zavatone-Veth and Pehlevan,
2022), but have not characterized data-dependent changes in representational geometry over
training.

In this work, we explore the possibility that neural networks learn to enhance local input
disciminability automatically over the course of training. We first analytically compute
the curvature of the metric induced by infinitely wide shallow networks with Gaussian
weights and smooth activation functions, showing that it is highly symmetric. We then
empirically show that training on simple classification tasks expands the volume element and
reduces the curvature along decision boundaries, largely consistent with the hand-engineered
modifications proposed by Amari and Wu. In total, our results provide a preliminary picture
of how feature learning shapes local input discriminability.
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2. Preliminaries

Consider a shallow neural network with d-dimensional inputs, and an n-dimensional feature
space given by a feature map Φ of the form

Φj(x) =
1√
n
ϕ(wj · x+ bj) (1)

for weights wj , biases bj , and an activation function ϕ. Here, we index input space dimensions
by µ, ν, ρ, . . . = 1, . . . , d and hidden layer dimensions by i, j, k, . . . = 1, . . . , n, and denote
the Euclidean inner product by wj · x = wjµxµ. We adopt Neural Tangent Kernel (NTK)
parameterization for the feature map—i.e., we include a factor of n−1/2 in its definition—to
ensure that the infinite-width limit n → ∞ is well-defined (Jacot et al., 2018; Yang and
Hu, 2021). Our subsequent results will not assume a particular form for the readout layer
following this feature map. The remainder of the network’s architecture will affect the
training dynamics of the feature map parameters while leaving its functional form unchanged,
hence some of our results carry over to the first hidden layer of a deep network.

We will always assume that n ≥ d, such that the feature map does not compress the
dimensionality of the inputs. Then, if the activation function ϕ is k times continuously
differentiable and the weight vectors are linearly independent, the image of some subset
of input space under the feature map is a d-dimensional Ck manifold M embedded in Rn

(Dodson and Poston, 1991). We will always assume that k ≥ 3, and will generally assume
k = ∞, such that we have a smooth manifold. Then, the Euclidean metric on Rn induces a
metric

gµν(x) = ∂µΦi∂νΦi =
1

n
ϕ′(wj · x+ bj)

2wjµwjν (2)

on the submanifold M, where we write ∂µ ≡ ∂/∂xµ and denote by ϕ′ the first derivative of
ϕ with respect to its argument. For later results, we will also assume that ϕ is exponentially
bounded at infinity.

We will consider two characteristics of the Riemannian geometry of this manifold. First,
the volume element on M is given by

dV =
√

det g ddx, (3)

where the factor
√
det g measures how local areas in input space are magnified by the feature

map (Dodson and Poston, 1991; Amari and Wu, 1999; Burges, 1999). Second, we consider
the intrinsic curvature of the manifold, which is completely characterized by the Riemann
tensor Rµναβ (Dodson and Poston, 1991). For a metric of the form (2), we show in Appendix
A that the Riemann tensor can be expressed in the particularly simple form

Rµναβ = −3

4
gρλ(∂ρgµα∂λgνβ − ∂ρgµβ∂λgνα) (4)

thanks to the symmetry of ∂αgµν under permutation of its indices. As a tractable measure,
we focus on the Ricci curvature scalar R = gβνRα

ναβ, which measures the deviation of the
volume of an infinitesimal geodesic ball in the manifold from that in flat space.
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Figure 1: Evolution of the volume element (top) and scalar curvature (bottom) over training
in a network trained to perform an XOR classification task. Red lines indicate
the decision boundaries of the network. See Appendix C for experimental details.

3. Representational geometry of infinite-width shallow networks

We first characterize the metric induced by infinite-width networks (n → ∞). For Gaussian
weights and biases wj ∼ N (0, σ2Id) and bj ∼ N (0, ζ2), the hidden layer representation at
infinite width is described by the neural network Gaussian process (NNGP) kernel (Neal,
1996; Williams, 1997; Matthews et al., 2018; Lee et al., 2018):

k(x,y) = lim
n→∞

1

n
Φ(x) ·Φ(y) = Ew∼N (0,σ2Id),b∼N (0,ζ2)[ϕ(w · x+ b)ϕ(w · y + b)], (5)

where the limit is almost-sure. As infinite networks with NTK parameterization do not learn
features, this kernel completely describes the representation even after training, including in
deep networks with additional hidden layers following this feature map (Jacot et al., 2018;
Yang and Hu, 2021).

In Appendix B, we use the results of Burges (1999) to show that this kernel induces a
metric

gµν = Ew∼N (0,σ2Id),b∼N (0,ζ2)[ϕ
′(w · x+ b)2wµwν ]. (6)

This is simply the parameter average of the finite-width metric (2), which by the strong law
of large numbers is its almost-sure infinite-width limit. This metric can be written in the
more illuminating form

gµν = eΩ(∥x∥2)[δµν + 2Ω′(∥x∥2)xµxν ], (7)

where the function Ω is defined via

eΩ(∥x∥2) = σ2Ez∼N (0,σ2∥x∥2+ζ2)[ϕ
′(z)2]. (8)
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Figure 2: Evolution of the volume element (top) and scalar curvature (bottom) over training
in a network trained to classify points separated by a sinusoidal boundary. Red
lines indicate the decision boundaries of the network. See Appendix C for details.

Such metrics have det g = edΩ(1 + 2∥x∥2Ω′) and Ricci scalar

R = −3(d− 1)e−Ω(Ω′)2∥x∥2

(1 + 2∥x∥2Ω′)2

[
d+ 2 + 2∥x∥2

(
(d− 2)Ω′ + 2

Ω′′

Ω′

)]
. (9)

Thus, all curvature quantities are spherically symmetric, depending only on ∥x∥2. This
generalizes the results of Cho and Saul (2011) for threshold-power law functions to arbitrary
smooth activation functions. In Appendix B, we explicitly evaluate the curvature quantities
for certain activation functions, such as the Gauss error function, for which the required
integrals are tractable.

4. Changes in geometry during training

We finally consider how the curvature of the induced metric changes during training. Changes
in curvature during gradient descent training are challenging to study analytically, because
solvable models—deep linear networks (Saxe et al., 2013)—trivially yield flat metrics with
constant magnification factors. Therefore, we resort to numerical experiments. In Figures 1
and 2, we show how the volume element and Ricci scalar change over training in networks
trained to perform XOR and sinusoid classification tasks, respectively. For a given draw of
the initial parameters at finite width, the curvature quantities are not exactly symmetric. As
training progresses, we find that the volume element induced by the network grows relatively
large –– and the scalar curvature relatively small –– in the vicinity of the decision boundary.

In Figure 3, we provide preliminary evidence that a similar phenomenon may be present in
networks trained to classify MNIST images. For visualization purposes, we plot a regularized
volume element at synthetic images generated by linearly interpolating between two input
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Figure 3: Effective volume element induced at interpolated images by networks trained to
classify MNIST digits. Each colored line is a replicate network: the abscissa is the
interpolated MNIST image; the ordinate is the log of an effective volume element;
the color is the network’s predicted digit for that image. Black/gray lines show
negative controls (untrained networks). Lower left and right inset images are the
initial and final images of the interpolation, respectively; the middle inset image
is the interpolated image at which the network’s prediction first changes.

images (see Appendix C for details). We find that this volume element is consistently large
at interpolated images near the network’s decision boundary.

5. Conclusions

To conclude, we have shown that training on simple tasks shapes the Riemannian geometry
induced by neural network representations by magnifying area and suppressing curvature
along decision boundaries. The magnification of areas is consistent with the proposal of
Amari and Wu (Amari and Wu, 1999; Wu and Amari, 2002; Williams et al., 2007). In
future work, it will be interesting to investigate whether these phenomena are visible in
deep networks trained to perform more complex tasks, and to investigate the links between
induced geometry and generalization.
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Appendix A. Simplification of the Riemann tensor for a general shallow
network

In this section, we show how the general form of the Riemann tensor can be simplified
for metrics of the form considered here. As elsewhere, our conventions follow Dodson and
Poston (1991). For a metric of the general form

gµν = Ew,b[ϕ
′(w · x+ b)2wµwν ], (A.1)

we have

∂αgµν = 2Ew,b[ϕ
′(w · x+ b)ϕ′′(w · x+ b)wαwµwν ], (A.2)

which is symmetric under permutation of its indices. Therefore, the Christoffel symbols of
the second kind reduce to

Γα
βγ =

1

2
gαµ(∂βgγµ − ∂µgβγ + ∂γgµβ) (A.3)

=
1

2
gαµ∂βgγµ. (A.4)

The (3, 1) Riemann tensor is then

Rµ
ναβ = ∂αΓ

µ
βν − ∂βΓ

µ
αν + Γρ

ανΓ
µ
βρ − Γρ

βνΓ
µ
αρ (A.5)

=
1

2
[∂α(g

µρ∂βgνρ)− ∂β(g
µρ∂αgνρ)]

+
1

4

[
(gρλ∂αgνλ)(g

µσ∂βgρσ)− (gρλ∂βgνλ)(g
µσ∂αgρσ)

]
(A.6)

=
1

2
[∂αg

µρ∂βgνρ − ∂βg
µρ∂αgνρ + gµρ(∂α∂βgνρ − ∂β∂αgνρ)]

+
1

4

[
−∂αgνλ∂βg

µλ + ∂βgνλ∂αg
µλ
]

(A.7)

=
3

4
(∂αg

µρ∂βgνρ − ∂βg
µρ∂αgνρ), (A.8)

where we have used the fact that partial derivatives commute and recalled the matrix calculus
identity

∂αg
µν = −gµρgνλ∂αgρλ. (A.9)

Then, the (4, 0) Riemann tensor is

Rµναβ = gµλR
λ
ναβ (A.10)

= −3

4
gρλ(∂αgµρ∂βgνλ − ∂βgµρ∂αgνλ) (A.11)

which, given the permutation symmetry of the derivatives of the metric, can be re-expressed
as

Rµναβ = −3

4
gρλ(∂ρgµα∂λgνβ − ∂ρgµβ∂λgνα). (A.12)
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It is then easy to see that the simplified formula for the Riemann tensor has the expected
symmetry properties under index permutation:

Rµναβ = −Rµνβα (A.13)

Rµναβ = −Rνµαβ (A.14)

Rµναβ = +Rαβµν (A.15)

and satisfies the Bianchi identity

Rµναβ +Rµαβν +Rµβνα = 0. (A.16)

Finally, the Ricci scalar is

R = gβνRα
ναβ (A.17)

= −3

4
gµαgνβgρλ(∂αgµρ∂βgνλ − ∂βgµρ∂αgνλ) (A.18)

= −3

4
gρλ(∂αg

αρ∂βg
βλ − ∂βg

αρ∂αg
βλ). (A.19)

Appendix B. Derivation of curvature quantities at infinite width

In this section, we derive the curvature quantities for the infinite-width metric (or, equiva-
lently, the average finite-width metric) at initialization:

gµν = Ew∼N (0,σ2Id),b∼N (0,ζ2)[ϕ
′(w · x+ b)2wµwν ]. (B.1)

For the remainder of this section, we will simply write the expectation over w ∼ N (0, σ2Id)
and b ∼ N (0, ζ2) as E[·]. We let

z ≡ w · x+ b, (B.2)

which has an induced N (0, σ2∥x∥2 + ζ2) distribution. We remark that it is easy to show
that (B.1) is the metric induced by the NNGP kernel

k(x,y) = E[ϕ(w · x+ b)ϕ(w · y + b)] (B.3)

using the formula (Burges, 1999)

gµν =
1

2

∂2

∂xµ∂xν
k(x,x)−

[
∂2

∂yµ∂yν
k(x,y)

]
y=x

(B.4)

for a sufficiently smooth activation function.
Applying Stein’s lemma twice, we have

gµν = E[ϕ′(z)2wµwν ] (B.5)

= σ2E[ϕ′(z)2]δµν + 2σ2E[ϕ′(z)ϕ′′(z)wν ]xµ (B.6)

= σ2E[ϕ′(z)2]δµν + 2σ4E[ϕ′′(z)2 + ϕ′(z)ϕ′′′(z)]xµxν . (B.7)

10
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Then, we can see that the metric is of a special form. Noting that E[ϕ′(z)2] ≥ 0 and that

σ2E[ϕ′′(z)2 + ϕ′(z)ϕ′′′(z)] = σ2 d

d(σ2∥x∥2 + ζ2)
E[ϕ′(z)2] (B.8)

=
d

d∥x∥2
E[ϕ′(z)2] (B.9)

by Price’s theorem (Price, 1958) and the chain rule, we may write

gµν = eΩ(∥x∥2)[δµν + 2Ω′(∥x∥2)xµxν ], (B.10)

where we have defined the function Ω(∥x∥2) by

expΩ(∥x∥2) ≡ σ2E[ϕ′(z)2]. (B.11)

B.1. Curvature quantities for metrics of the form induced by the shallow
NNGP kernel

Motivated by the metric induced by the shallow NNGP kernel, we consider metrics of the
general form

gµν = eΩ(∥x∥2)[δµν + 2Ω′(∥x∥2)xµxν ], (B.12)

where Ω is a smooth function with derivative Ω′. For brevity, we will henceforth suppress
the argument of Ω.

Such metrics have determinant

det g = edΩ(1 + 2∥x∥2Ω′) (B.13)

by the matrix determinant lemma, and inverse

gµν = e−Ω

[
δµν −

2Ω′

1 + 2∥x∥2Ω′xµxν

]
(B.14)

by the Sherman-Morrison formula. It is also easy to see that the eigenvalues of the metric at
any given point x are eΩ(1 + 2∥x∥2Ω′) with corresponding eigenvector x/∥x∥, and eΩ with
multiplicity d− 1, with eigenvectors lying in the null space of x.

We now consider the Riemann tensor. For such metrics, we have

∂αgµν = 2eΩΩ′(xαδµν + xµδαν + xνδαµ) + 4eΩ[Ω′′ + (Ω′)2]xαxµxν , (B.15)

which is symmetric under permutation of its indices. Then, we may use the simplified
formula for the (4, 0) Riemann tensor obtained in Appendix A, which yields

Rµναβ = − 3eΩ(Ω′)2

1 + 2∥x∥2Ω′

[
∥x∥2δµαδνβ +

(
1 + 2∥x∥2Ω

′′

Ω′

)
(xνxβδµα + xµxαδνβ)− (α ↔ β)

]
(B.16)

11
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after a straightforward computation, where we have noted that

gρλxρ = e−Ω 1

1 + 2∥x∥2Ω′xλ (B.17)

and

gρλxρxλ = e−Ω ∥x∥2

1 + 2∥x∥2Ω′ (B.18)

We can then compute the Ricci scalar

R = gµαgνβRµναβ (B.19)

= − 3eΩ(Ω′)2

1 + 2∥x∥2Ω′

[
∥x∥2(gααgββ − gαβgβα)

+ 2

(
1 + 2∥x∥2Ω

′′

Ω′

)
(gααgνβxνxβ − gµαgµβxαxβ)

]
(B.20)

which, as

gααgββ − gαβgβα = e−2Ω

(
d− 2

2∥x∥2Ω′

1 + 2∥x∥2Ω′

)
(d− 1) (B.21)

and

gααgνβxνxβ − gµαgµβxαxβ = e−2Ω ∥x∥2

1 + 2∥x∥2Ω′ (d− 1) (B.22)

yields

R = −3(d− 1)e−Ω(Ω′)2∥x∥2

(1 + 2∥x∥2Ω′)2

[
d+ 2 + 2∥x∥2

(
(d− 2)Ω′ + 2

Ω′′

Ω′

)]
. (B.23)

The relation between Gaussian norms of derivatives of the activation function and
input discriminability indicated by this result is consistent with previous studies of how the
activation function affect the expressivity of infinite two-layer networks (Poole et al., 2016;
Daniely et al., 2016; Zavatone-Veth and Pehlevan, 2022, 2021).

B.2. Examples

As an analytically-tractable example, we consider the error function ϕ(x) = erf(x/
√
2). For

such networks, the NNGP kernel is

k(x,y) =
2

π
arcsin

σ2x · y + ζ2√
(1 + σ2∥x∥2 + ζ2)(1 + σ2∥y∥2 + ζ2)

, (B.24)

which is easy to prove using the integral representation of the error function (Saad and Solla,
1995). In this case, we have the simple result ϕ′(x) =

√
2/π exp(−x2/2), hence we can easily

compute

E[ϕ′(z)2] =
2

π
√

1 + 2(σ2∥x∥2 + ζ2)
. (B.25)
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This yields

Ω(∥x∥2) = −1

2
log[1 + 2(σ2∥x∥2 + ζ2)] + log

2σ2

π
(B.26)

hence we easily obtain the volume element

√
det g =

(
2σ2

π

)d/2 √
2ζ2 + 1

[1 + 2(σ2∥x∥2 + ζ2)](d−2)/4
(B.27)

and the Ricci scalar

R = − 3π(d− 1)(d+ 2)σ2∥x∥2

2(2ζ2 + 1)
√
1 + 2(σ2∥x∥2 + ζ2)

. (B.28)

In this case, it is easy to see that R is negative for all d > 1 and that it is a monotonically
decreasing function of ∥x∥, hence curvature becomes increasingly negative with increasing
radius.

Another illustrative example is the monomial ϕ(x) = xq/
√

(2q − 1)!! for integer q ≥ 1,
normalized such that

k(x,x) = E[ϕ(z)2] = (σ2∥x∥2 + ζ2)q. (B.29)

We remark that the resulting NNGP kernel will not in general simply be a polynomial kernel
(x · y)q, as it will include terms that depend on (x · y)q−2, (x · y)q−4, et cetera. An explicit
formula for the NNGP kernel for two distinct inputs could in principle be obtained using
the Mehler expansion of the bivariate Gaussian density (Daniely et al., 2016; Zavatone-Veth
and Pehlevan, 2021), but we will not do so here. For these activation functions, we have

E[ϕ′(z)2] =
q2

2q − 1
(σ2∥x∥2 + ζ2)q−1, (B.30)

yielding the volume element

√
det g =

√
1 + 2(q − 1)

σ2∥x∥2
σ2∥x∥2 + ζ2

(
q2σ2(σ2∥x∥2 + ζ2)q−1

2q − 1

)d/2

(B.31)

and the Ricci scalar

R = −3(d− 1)(q − 1)2(2q − 1)σ2∥x∥2[(d+ 2)ζ2 + (d− 2)(2q − 1)σ2∥x∥2]
q2(σ2∥x∥2 + ζ2)q[(2q − 1)σ2∥x∥2 + ζ2]2

. (B.32)

If ζ = 0, this simplifies substantially to

R

∣∣∣∣
ζ=0

= −3(d− 1)(d− 2)(q − 1)2

q2(σ2∥x∥2)q
. (B.33)

In this case, R < 0 for all d > 2, but, unlike for the error function, |R| is monotonically
decreasing with ∥x∥.
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Appendix C. Numerical methods and supplemental figures

As an especially simple toy problem, we begin by training neural networks to perform a
standard XOR classification task. Single-hidden-layer fully-connected networks with either
sigmoid or Softplus nonlinearities are initialized with widths [2, 2, 1] and trained on a dataset
consisting of the four points

{(−1,−1), (−1, 1), (1,−1), (1, 1)} (C.1)

with respective labels {0, 1, 1, 0}. Networks are trained via stochastic gradient descent
(learning rate 0.02, momentum 0.9, and weight decay 10−4) with mean-squared error loss for
2000 epochs.

For a slightly more complex toy problem, we train neural networks to classify points
according to a sinusoidal decision boundary. Two-hidden-layer fully-connected networks
are initialized with widths [2,8,8,2] and trained on a dataset consisting of 400 points
(x1, x2) ∈ [−1, 1]× [−1, 1] with labels

y(x) =

{
1 x2 >

3
5 sin (7x1 − 1)

0 x2 <
3
5 sin (7x1 − 1)

(C.2)

Networks are trained via stochastic gradient descent (learning rate 0.05, momentum 0.9, and
zero weight decay) with cross-entropy loss for 150,000 epochs.

In both cases, we calculate the volume element and Ricci scalar induced by the network
at 1,600 points evenly spaced on a grid in [−1.5, 1.5]× [−1.5, 1.5] throughout training (the
magnitudes of these two quantities at each of the 1,600 points are plotted as heat maps in
Figures 1 and 2). The metric we consider is the one induced by the map from input space
to the first hidden layer of the network (in the case of XOR, the single hidden layer). We
compute this metric and the resulting curvature quantities using the equations listed in the
main text, (2) and (4). All of the required derivatives with respect to input components are
computed with automatic differentiation in PyTorch (Paszke et al., 2019).

Finally, we compute the metric induced on input space by networks trained to classify
MNIST digits. Fully-connected networks with a single hidden layer of 30 nodes are trained
on the Scikit-learn 8 × 8 pixel handwritten digit image dataset (Pedregosa et al., 2011).
Batches of twelve images and their labels (numbers 0 − 9) are fed to the network for 30
epochs; the networks are trained via the Adam optimizer (learning rate 0.005, weight decay
10−1) with negative log-likelihood loss. The metric induced by the trained network at a
series of input images is then computed with autograd as described above. The images
we consider are either drawn from the dataset, or are images yi interpolated between two
dataset images x1 and x2 as follows:

yj = x1 +
t

64
(x2 − x1) (C.3)

for t ∈ [0, 64). Eigenvalues of the metric matrix gµν tend to become small as training
progresses, and so, due to the high dimensionality of the input space, the metric

√
det gµν
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becomes minuscule and difficult to compute within machine precision. Therefore, instead of√
det gµν , we compute an effective volume element from gµν : the square-root of the product

of the largest six eigenvalues of the metric matrix. We find that this effective volume element
consistently grows (relatively) large at input images near the decision boundary, as shown in
Figure 3.
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