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Abstract

Multi-level compositional optimization is a fundamental framework in machine
learning with broad applications. While recent advances have addressed composi-
tional minimization problems, the stochastic multi-level compositional minimax
problem introduces significant new challenges—most notably, the biased nature of
stochastic gradients for both the primal and dual variables. In this work, we address
this gap by proposing a novel stochastic multi-level compositional gradient descent-
ascent algorithm, incorporating a smoothing technique under the nonconvex-PL
condition. We establish a convergence rate to an (ϵ, ϵ/

√
κ)-stationary point with

improved dependence on the condition number at O(κ3/2), where ϵ denotes the
solution accuracy and κ represents the condition number. Moreover, we design a
novel stage-wise algorithm with variance reduction to address the biased gradient
issue under the two-sided PL condition. This algorithm successfully enables a
translation from and (ϵ, ϵ/

√
κ)-stationary point to an ϵ-stationary point. Finally,

extensive experiments validate the effectiveness of our algorithms.

1 Introduction

This paper investigates the stochastic multi-level compositional minimax optimization problem:

min
x∈Rdx

max
y∈Rdy

f(G(x), y) , (1)

where f(G(x), y) = E[f(G(x), y; ζ)] and ζ denotes a random variable. The function G(x) ≜
g(K)(· · · (g(1)(x))) is a K-level compositional function with K > 1, where each inner-level function
g(k)(·) = E[g(k)(·; ξ(k))] depends on the random sample ξ(k) for k ∈ {1, · · · ,K}. The function
f(·, ·) is referred to as the outer-level objective. In this paper, we consider the general nonconvex–PL
setting, where f(G(x), y) is nonconvex in the primal variable x and satisfies the Polyak-Lojasiewicz
(PL) condition with respect to the dual variable y.

Multi-level compositional optimization has emerged as a vital framework in machine learning, with
broad applications across numerous domains. In meta-learning, it enhances model adaptability across
tasks [12, 22]; in finance, it supports risk-averse portfolio optimization under uncertainty [3, 20]; and
in reinforcement learning, it aids policy evaluation and decision refinement [8, 24]. The widespread
impact of the multi-level compositional structure highlights its importance in handling complex and
structured optimization problems. Moreover, the scope of multi-level compositional optimization
extends naturally to the minimax setting, with applications in areas such as deep AUC maximization
[33], multi-instance learning [40], and multi-objective learning [19], etc. Despite the importance of
these applications, the stochastic multi-level compositional minimax optimization problem remains
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Table 1: The comparison of convergence rate between our algorithms and existing stochastic
compositional minimax algorithms.

Algorithms Convergence Rate Assumption Level
SCGDA [17] O(κ4/ϵ3) Nonconvex-strongly-concave Two-level
SCGDAM [33] O(κ4/ϵ4) Nonconvex-strongly-concave Two-level
CODA-Primal [9] O(κ4/ϵ4) Nonconvex-strongly-concave Two-level
NSTORM [26] O(κ3/ϵ3) Nonconvex-strongly-concave Two-level
Smoothed-SMCGDA-VR (Thm. 4.1) O(κ3/2/ϵ3) Nonconvex-PL Multi-level
Onestage-SMCGDA-VR (Thm. C.1) O(κ3/ϵ3) Nonconvex-PL Multi-level
Stagewise-SMCGDA-VR (Thm. C.2) O(κ6/ϵ) Two-sided-PL Multi-level

largely underexplored. This gap in the literature motivates our study, which aims to develop an
effective algorithmic solution for this challenging class of problems.

Solving multi-level compositional problems is challenging, even in the minimization setting. In
particular, when the inner-level functions are nonlinear, the stochastic gradient is no longer an
unbiased estimator of the full gradient. Recent research has proposed new algorithms to address this
issue. Notably, [31] introduced a K-level stochastic compositional gradient descent algorithm, and
subsequent efforts [5, 23, 35] have developed algorithms specifically tailored to address the biased
characteristics inherent in the stochastic multi-level compositional framework. Unfortunately, these
minimization-targeted algorithms cannot directly address the stochastic multi-level compositional
minimax optimization problem in Eq. (1), as the stochastic gradients for both primal and dual
variables are biased estimators in stochastic multi-level compositional minimax problems—posing
greater algorithmic and theoretical challenges.

In addition, although [17, 26, 9] investigate the two-level compositional minimax problem, it remains
within the classical minimax framework and does not consider more advanced techniques that can
improve convergence. In contrast, recent progress in classical minimax optimization has demonstrated
that smoothed techniques can significantly improve convergence. For instance, [36] proposed a
smoothed alternating gradient method for general nonconvex–concave problems, which achieves
superior performance compared to conventional approaches. Building on this, [30] further applied
this technique to the nonconvex-PL setting—a milder condition than strong concavity—and showed
that stochastic smoothed techniques yield improved complexity bounds with better dependence on
the condition number κ. However, despite the clear benefits of smoothed techniques in traditional
minimax optimization, its application to multi-level compositional minimax problems remains
unexplored. This observation motivates a key question: Can smoothed techniques be effectively
integrated into the multi-level compositional framework to improve convergence performance?

Addressing this question is not straightforward and presents substantial algorithmic and theoretical
challenges. On the one hand, while existing studies [36, 30] demonstrate that smoothing techniques
are effective for unbiased stochastic gradient estimators, the biased nature of stochastic gradients for
both the primal and dual variables in Eq. (1) introduces uncertainty regarding the effectiveness of
applying such techniques. It remains unclear whether their use may lead to additional convergence
issues. Therefore, it is essential to develop new algorithms that can accommodate biased gradient
estimators and guarantee convergence when using smoothing techniques for Eq. (1). On the other
hand, as demonstrated in [30], smoothed algorithms typically guarantee an (ϵ1, ϵ2)-stationary point,
rather than a standard ϵ-stationary point, which are defined in Definition 3.5. This necessitates
a translation between the two measures. While such a translation introduces negligible iteration
complexity in classical minimax problems when using an unbiased gradient estimator as shown in
[30], there is no known algorithm capable of performing this translation in the context of multi-level
compositional minimax optimization. In particular, it remains unclear how to design a translation
algorithm without degrading the iteration complexity of the smoothed algorithm in the presence
of a multi-level compositional structure. Therefore, these challenges motivate us to address the
problem through the following contributions:

• We develop a novel smoothed multi-level compositional minimax optimization algorithm
for Eq. (1) by leveraging the variance reduction technique to mitigate the biased gradient
estimator issue, and establish a convergence rate of O(κ3/2/ϵ3) to an (ϵ, ϵ/

√
κ)-stationary

point. Compared to existing algorithms, our method achieves a better dependence on the
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condition number κ: improving over the O(κ3) rate of standard two-level compositional
minimax algorithms.

• To bridge the gap between an (ϵ, ϵ/
√
κ)-stationary point and a standard ϵ-stationary point,

we further propose a stage-wise variance-reduced algorithm for Eq. (1) under the two-sided
PL condition. We show that the algorithm achieves a convergence rate of O(1/ϵ2) to an
ϵ-stationary point. As a result, the iteration complexity from the translation is dominated by
the complexity of finding an (ϵ, ϵ/

√
κ)-stationary point.

• Meanwhile, we obtain two additional results, which may be of independent interest: the
convergence rates for the multi-level compositional minimax problem under the nonconvex-PL
and two-sided-PL assumptions without using the smooth technique, as summarized in Table 1.

• We conduct extensive experiments to validate the effectiveness of our proposed algorithms,
demonstrating superior performance compared to existing baselines.

2 Related Work
2.1 Stochastic Compositional Minimization Optimization

Recently, a general class of stochastic compositional gradient descent methods [29, 18, 32, 15, 16]
was developed for two-level compositional minimization problems and established convergence rates
for nonconvex loss functions. Aiming to address practical problems with a more general stochastic
compositional structure, the stochastic two-level compositional problem has been extended to the
stochastic multi-level compositional problem. Stochastic multi-level compositional learning has
various applications, including multi-step model-agnostic meta-learning [12], the stochastic training
of graph neural networks [6], the neural networks with batch-normalization [25], etc. Consequently, a
series of stochastic multi-level compositional minimization algorithms [31, 2, 5, 35, 23, 13, 14] have
been developed to solve this important problem. Notably, [31] introduced the first stochastic multi-
level compositional gradient descent algorithm. Then, [2] employed a moving-average estimator,
and [5] used the STORM variance-reduction estimator [7] for each inner-level function, achieving a
convergence rate of O(1/ϵ4). Later, [35] improved the sample complexity to O(1/ϵ3) by applying the
SPIDER variance-reduction technique [11, 27] to both the inner-level function and Jacobian matrix
at each level. Nevertheless, the large batch size required by this method makes it impractical for
large-scale models, and the learning rate must be sufficiently small to maintain Lipschitz continuity
of the variance-reduced gradient. By applying the STORM variance-reduction approach to both the
function value and its Jacobian matrix at each level, [23] developed a convergence rate of O(1/ϵ3)
for the stochastic multi-level compositional problem with a mini-batch size of O(1). More recently,
for the first time, [13] showed that the variance-reduction estimator is not necessary for the Jacobian
matrix in each level to achieve a convergence rate of O(1/ϵ3). However, these stochastic multi-
level compositional algorithms focus exclusively on minimization problems and therefore cannot be
directly applied to multi-level compositional minimax problems.

2.2 Stochastic Compositional Minimax Optimization

Stochastic compositional minimax optimization [17, 33, 9, 26, 37, 38] has attracted increasing
attention due to its important applications in machine learning. To solve the two-level compositional
minimax problem, [17] developed the first compositional minimax algorithm based on the mini-batch
compositional gradient, achieving a convergence rate of O(κ4/ϵ4) for nonconvex-strongly-concave
loss functions. [33] incorporated the momentum technique to reduce the mini-batch size to O(1) while
achieving the same convergence rate as [17]. Similarly, [9] used a variance-reduced estimator for the
inner-level function, also reducing the mini-batch size to O(1) and achieving the same convergence
rate as [17]. [26] introduced the STORM technique for estimating the inner-level function and
gradient, achieving a convergence rate of O(κ3/ϵ3). Recently, [9] claimed to achieve a convergence
rate of O(κ2/ϵ3). However, this convergence rate is established with respect to the stationary point
of the Moreau envelope of the primal function, rather than that of the original primal function. As a
result, it corresponds to the convergence rate for a strongly-convex–strongly-concave loss function,
rather than for nonconvex–strongly-concave or nonconvex-PL loss functions. More recently, [37]
developed the first stochastic multi-level compositional minimax algorithm for nonconvex-strongly-
concave loss functions in the federated learning setting. However, its convergence rate O(1/ϵ4) is
suboptimal compared to the multi-level compositional minimization algorithm. On the other hand, the
smoothed technique was first introduced for nonconvex–concave minimax problems in [36], where
the convergence rate of a full alternating gradient descent ascent method was established. Later, [30]
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extended this technique to the nonconvex–PL setting and further investigated the relationship between
two stationarity measures. However, none of these algorithms are equipped to handle the challenges
posed by multi-level compositional minimax problems, which remain largely unexplored.

3 Preliminaries
3.1 Notations

We begin by simplifying the complex formulation in Eq. (1) to facilitate analysis:

G(k)(x) = g(k)(G(k−1)(x)), ∇G(k)(x) = ∇G(k−1)(x)∇g(k)(G(k−1)(x)), (2)

where k ∈ {1, · · · ,K}, G(0)(x) = x, and G(x) = G(K)(x).

The partial gradients of the objective function can then be expressed as follows:

∇xf(G(x), y) = ∇G(K)(x)∇1f(G
(K)(x), y) , ∇yf(G(x), y) = ∇2f(G

(K)(x), y) . (3)

Following prior works [36, 30], we introduce an auxiliary variable z alongside the primal variable x
as part of the smoothed technique, and define the smoothed loss function as:

fω(G(x), y; z) = f(G(x), y) + ω
2 ∥x− z∥2 , (4)

where ω > 0 is a constant and fω(G(x), y; z) is strongly convex with respect to x by selecting an
appropriate ω. Using the smoothed loss, we can derive stochastic estimators of the compositional
gradients with respect to the primal and dual variables at the t-th iteration:

∇xfω(·, ·; ·; ξ̂t, ζt) = ∇g(1)(xt; ξ
(1)
t )∇g(2)(g(1)(xt; ξ

(1)
t ); ξ

(2)
t ) · · ·∇g(K−1)(g(K−2)(·; ξ(K−2)

t ); ξ
(K−1)
t )

×∇g(K)(g(K−1)(·; ξ(K−1)
t ); ξ

(K)
t )∇1f(g

(K)(·; ξ(K)
t ), yt; ζt) + ω(xt − zt) ,

∇yfω(·, ·; ·; ξ̂t, ζt) = ∇yf(g
(K)(·; ξ(K)

t ), yt; ζt) , (5)

where ξ̂t = {ξ(1)t , ξ
(2)
t , · · · , ξ(K)

t }.

3.2 Assumptions

We next introduce the following standard assumptions, which are commonly used in stochastic
compositional optimization [17, 26, 9, 38, 37, 30].
Assumption 3.1. (Smoothness):

• For any k ∈ {1, 2, · · · ,K}, g(k)(·) and g(k)(·; ξ) are Cg-Lipschitz continuous, ∇g(k)(·) and
∇g(k)(·; ξ) are Lg-Lipschitz continuous,where Cg > 0 and Lg > 0;

• f(·, ·) and f(·, ·; ζ) are Cf -Lipschitz continuous, ∇f(·, ·) and ∇f(·, ·; ζ) are Lf -Lipschitz
continuous, where Cf > 0 and Lf > 0.

Assumption 3.2. (Variance):

• For any k ∈ {1, · · · ,K}, the stochastic gradients ∇g(k)(·; ξ(k)) and ∇f(·, ·; ζ) have upper
bounded variance σ2, where σ > 0.

Assumption 3.3. (PL Condition):

• For any fixed x ∈ Rdx , the maximization problem y∗ = maxy∈Rdy f(G(x), y) has a non-empty
solution set and a finite optimal value. Moreover, for all x ∈ Rdx , there exists a constant value
µ > 0 such that ∥∇yf(G(x), y)∥2 ≥ 2µ(f(G(x), y∗)− f(G(x), y)).

Here, we define ℓ = max{Lf , C
2K
g Lf + Cf

∑K−1
k=0 LfC

K−1+k
g }, and κ = ℓ

µ denotes the condition
number. Then, when ω > ℓ, fω(G(x), y; z) is strongly convex with respect to x. We also introduce
the following definitions.
Definition 3.4. (Two-sided PL Condition):

• f(x, y) satisfies the two-sided PL condition, if there exist constants µx > 0 and µy > 0 such
that f(·, y) is µx-PL for any y ∈ Rdy , and −f(x, ·) is µy-PL for any x ∈ Rdx .
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Definition 3.5. (Stationarity measures):

• (x, y) is an (ϵ1, ϵ2)-stationary point of f(·, ·), if ∥∇xf(G(x), y)∥ ≤ ϵ1 and
∥∇yf(G(x), y)∥ ≤ ϵ2.

• x is an ϵ-stationary point of Φ(·), if ∥∇Φ(x)∥ ≤ ϵ, where Φ(x) = f(G(x), y∗) and y∗ =
argmaxy∈Rdy f(G(x), y).

3.3 Challenges

From the algorithmic design perspective, one of the primary challenges in incorporating
smoothed techniques is managing the intrinsic bias of stochastic gradients for both the primal
and dual variables. Specifically, as shown in Eq.(3), the partial gradient regarding the dual variable y
relies on the stochastic estimator of K-level function G(K)(·), while that regarding the primal variable
x depends on the stochastic estimator of both G(K)(·) and ∇G(K)(·). In the stochastic setting,
however, computing the stochastic estimator for both the k-th level function and its corresponding
gradient introduces bias, as illustrated below:

E[g(k)(g(k−1)(·; ξ(k−1)); ξ(k))] ̸= G(k)(·) ,
E[∇xg

(k−1)(·; ξ(k−1))∇g(k−1)g(k)(g(k−1)(·; ξ(k−1)); ξ(k))] ̸= ∇xG
(k)(·) . (6)

As a result, the stochastic gradients with respect to both primal and dual variables are biased
estimators of the full gradient. Moreover, as shown in Eq. (6), the estimation biases accumulate
across all compositional levels when estimating both the inner-level functions and their gradient.
This accumulation of bias introduces greater complexity compared to the two-level case and raises
concerns about whether the deeper compositional structure might undermine the effectiveness of
smoothed techniques, as all existing smoothed minimax methods handle deterministic gradients or
unbiased stochastic gradients.

From the theoretical analysis perspective, a major challenge arises from the gap between
different stationarity measures induced by smoothed techniques. As demonstrated in [30], a
translation is required from an (ϵ1, ϵ2)-stationary point to an ϵ-stationary point. In standard minimax
settings, this can be achieved by applying a stochastic gradient descent-ascent algorithm to the
auxiliary problem minx∈Rdx maxy∈Rdy f(x, y) + ℓ∥x− z̃∥2, where z̃ is the output of the smoothed
algorithm. Owing to the fact that this formulation satisfies the the PL condition in both x and y,
with an iteration complexity of Õ(1/ϵ2). Therefore, if the cost of this translation remains lower
than that of the smoothed algorithm itself, it does not affect the overall complexity. However, for
multi-level compositional minimax problems, there do not exist algorithms for handling the
two-sided PL condition to complete the translation, and it is unclear whether the iteration
complexity of the translation is smaller than that of the smoothed algorithm or not. In particular,
the existing study [31] showed that the standard compositional gradient descent algorithm can only
achieve a convergence rate with an exponential dependence on the number of levels, even for strongly
convex loss functions. As a result, the complexity of the translation phase could dominate the overall
complexity. Therefore, it remains unclear whether there exists an efficient algorithm to translate from
an (ϵ1, ϵ2)-stationary point to an ϵ-stationary point for multi-level compositional minimax problems.

4 Algorithm 1: Smoothed-SMCGDA-VR
4.1 Algorithmic Design

To address the smoothed loss in Eq. (4), we design a novel algorithm, named stochastic smoothed
multi-level compositional gradient descent ascent with variance reduction (Smoothed-SMCGDA-VR),
as presented in Algorithm 1. To mitigate the accumulation of bias at each compositional level, our
method incorporates a STORM-like variance-reduced estimator. Specifically, for each inner-level
function g(k)(·), where k ∈ {1, . . . ,K}, we apply a recursive step that updates the estimator h(k)

while controlling variance. This variance reduction technique is also employed for the stochastic
gradients: ∇xfω(·, ·; ·; ξ̂t, ζt) and ∇yfω(·, ·; ·; ξ̂t, ζt).
More concretely, the variance-reduced estimator for each level-k function is computed as:

h
(k)
t+1 = g(k)(h

(k−1)
t+1 ; ξ

(k)
t+1) + (1− αη2)(h

(k)
t − g(k)(h

(k−1)
t ; ξ

(k)
t+1)), (7)

where h
(0)
t+1 = xt+1 when k = 0, and α > 0 is a hyperparameter such that αη2 ∈ (0, 1).
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Algorithm 1 Stochastic Smoothed Multi-Level Compositional Gradient Descent Ascent with
Variance Reduced ( Smoothed -SMCGDA-VR)

Input: η > 0, α > 0, ρx > 0, ρy > 0, γx > 0, γy > 0, γz > 0, ρxη2 < 1, ρyη2 < 1, αη2 < 1,
γzη < 1.
Initialization: h(0)

0 = x0, h(k)
0 = g(k)(h

(k−1)
0 ; ξ

(k)
0 ), for k ∈ {1, · · · ,K},

p0 = ∇g(1)(x0; ξ
(1)
0 ) · · · ∇g(K)(h

(K−1)
0 ; ξ

(K)
0 )∇1f(h

(K)
0 , y0; ζ0) + ω(x0 − z0) ,

q0 = ∇2f(h
(K)
0 , y0; ζ0), u0 = p0, v0 = q0.

1: for t = 0, · · · , T − 1 do
2: Update x and y: xt+1 = xt − γxηpt , yt+1 = yt + γyηqt ,
3: Update z: zt+1 = zt + γzη(xt+1 − zt) ,

4: h
(0)
t+1 = xt+1 ,

5: for k = 1, · · · ,K do
6: Compute k-th inner-level function:

h
(k)
t+1 = g(k)(h

(k−1)
t+1 ; ξ

(k)
t+1) + (1− αη2)(h

(k)
t − g(k)(h

(k−1)
t ; ξ

(k)
t+1))

7: end for
8: Compute stochastic compositional gradient ut+1 and vt+1:

ut+1;t+1 = ∇g(1)(h
(0)
t+1; ξ

(1)
t+1) · · · ∇g(K−1)(h

(K−2)
t+1 ; ξ

(K−1)
t+1 )∇g(K)(h

(K−1)
t+1 ; ξ

(K)
t+1 ) ×

∇1f(h
(K)
t+1, yt+1; ζt+1) + ω(xt+1 − zt+1) ,

vt+1;t+1 = ∇2f(h
(K)
t+1, yt+1; ζt+1) ,

9: Compute variance-reduced gradient pt+1 and qt+1:
pt+1 = ut+1;t+1 +(1− ρxη

2)(pt −ut;t+1) , qt+1 = vt+1;t+1 +(1− ρyη
2)(qt − vt;t+1) ,

10: end for

For the outer-level update, we compute the stochastic gradient of the smoothed loss defined in Eq. (5),
based on the variance-reduced estimator {h(k)

t+1}Kk=1 of the inner-level function, as presented in Step
8. Here, ut+1;t+1 denotes the stochastic compositional gradient regarding primal variable, where the
first index indicates the t+ 1-th iteration of the variable, and the second reflects the sample indices
ξ̂t+1 = {{ξ(k)t+1}Kk=1, ζt+1}. Similarly, we compute the stochastic gradient with respect to the dual
variable based on the variance-reduced estimator h(K)

t+1 of the inner-level function. The algorithm then
performs STORM-like updates on pt+1 and qt+1, as presented in Step 9, where ρx > 0 and ρy > 0
are two hyperparameters such that ρxη2 ∈ (0, 1) and ρyη

2 ∈ (0, 1).

4.2 Theoretical Analysis

We derive the convergence rate of Algorithm 1 in the following theorem 2.
Theorem 4.1. Given Assumptions 3.1-3.3, when ρx > 0, ρy > 0, α > 0, ω = O(ℓ), and the
hyperparameter conditions in Eq. (94) are satisfied, Algorithm 1 achieves the following convergence
upper bound:

1

T

T−1∑
t=0

(
E[∥∇xf(G(xt), yt)∥2] + κE[∥∇yf(G(xt), yt)∥2]

)
≤ O

(
κP0

γxηT

)
+O

( κσ2

ρxη2TS

)
+O

( κσ2

ρyη2TS

)
+O

( κσ2

αη2TS

)
+O

(
κ
α2η2σ2

ρx

)
+O

(
κρxη

2σ2
)
+O

(
κ
α2η2σ2

ρy

)
+O

(
κρyη

2σ2
)
+O

(
καη2σ2

)
, (8)

where P0 = fω(G(x0), y0; z0)− 2fω,d(y0; z0) + 2g(z0), with the definitions of the involved terms
provided in Eq. (25).
Corollary 4.2. Given Assumptions 3.1-3.3, by setting γx = O(1), γy = O(1), γz = O (1/κ),
η = O

(
ϵ/κ1/2

)
, ρx = O (1), ρy = O (1), α = O (1), S = O

(
κ1/2/ϵ

)
, T = O

(
κ3/2/ϵ3

)
,

2Due to space limitations, the theorem with the full hyperparameter conditions is provided in the Ap-
pendix B.2.
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Algorithm 1 can achieve the O(ϵ, ϵ/
√
κ)-stationary solution, where ϵ > 0 denotes the solution

accuracy, and S is the batch size in the initial iteration.

Note that our Theorem 4.1 provides the convergence rate in terms of the stationary point of the
original loss function f(G(xt), yt), rather than that of the smoothed loss function fω(G(x), y; z).
Therefore, this result corresponds to the convergence rate for a nonconvex-PL loss function, rather
than for a two-sided-PL loss function. As a result, the comparison of convergence rates with existing
methods in Table 1 is fair and consistent with the comparison made in the context of classical
smoothed minimax optimization in [30].

Proof Sketch. To establish the convergence rate of Algorithm 1, we propose a novel potential
function as follows:

Ht = fω(G(xt), yt; zt)− 2hω,d(yt; zt) + 2h(zt)︸ ︷︷ ︸
Pt≜ Optimization Error: Lemmas B.3,B.4

+νa E[∥pt −∇xfω(H(xt), yt; zt)∥2]︸ ︷︷ ︸
Gradient Error regarding x: Lemma B.6

+ νb E[∥qt −∇yfω(H(xt), yt; zt)∥2]︸ ︷︷ ︸
Gradient Error regarding y: Lemma B.7

+

K∑
k=1

λk E[∥h(k)
t − g(k)(h

(k−1)
t )∥2]︸ ︷︷ ︸

Inner-level Estimation Error: Lemma B.5

, (9)

where the coefficient νa, νb and {λk}Kk=1 are positive, where the notations of ∇xfω(H(xt), yt; zt)
and ∇yfω(H(xt), yt; zt) can be found in Eq. (23).

To analyze the descent of the potential function, we decompose and bound each term through a
sequence of lemmas. First, we bound:

Pt = fω(G(xt), yt; zt)− 2hω,d(yt; zt) + 2h(zt) , (10)

which characterizes the optimization error introduced by the smoothed technique. Each component
of Pt depends on x, y and z, and the compositional gradient introduces additional bias:

• We first derive upper bounds for each component in Pt.
• We then combine these bounds in Appendix B.2.1 to analyze and quantify their dependence,

providing a clear characterization of how the three terms interact.

Second, three additional terms in Eq. (9) arise from the gradient errors regarding x and y, and the
inner-level estimation error in the multi-level compositional loss.

Third, the four terms in Ht are interdependent. We analyze these dependencies in Appendix B.2.2 and
show that Ht satisfies a sufficient descent property, i.e., Ht+1 −Ht can be bounded under suitable
hyperparameter conditions, ensuring convergence to an (ϵ, ϵ/

√
κ)-stationary point. The complete

proof is provided in Appendix B.

5 Algorithm 2: Stagewise-SMCGDA-VR
5.1 Algorithmic Design

Algorithm 2 Stagewise-SMCGDA-VR
Input: ρx > 0, ρy > 0, α > 0, ηx,r > 0, ηy,r > 0.

1: for Stage r = 0, · · · , R− 1 do
2: xr,0 = x̃r, yr,0 = ỹr, h(k)

r,0 = h̃
(k)
r for k ∈ {0, · · · ,K − 1},

pr,0 = p̃r, qr,0 = q̃r.
3: for t = 0, · · · , Tr − 1, do
4: Perform one iteration t of SMCGDA-VR update
5: Randomly select (x̃r+1, ỹr+1, h̃

(k)
r+1, p̃r+1, q̃r+1) from {(xr,t, yr,t, h

(k)
r,t , pr,t, qr,t)}

Tr−1
t=0 .

6: end for
7: end for

However, to facilitate a fair comparison between the convergence rate of Algorithm 1 and existing
stochastic two-level compositional minimax methods, which establish the rate in terms of ϵ-stationary
point instead of (ϵ1, ϵ2)-stationary point, it is necessary to convert the (ϵ, ϵ/

√
κ)-stationary solution

into an ϵ-stationary solution. As discussed in Section 3.3, making this translation is challenging for
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multi-level compositional minimax optimization problems. Specifically, in the classical minimax
setting, [30] showed that the standard stochastic gradient descent ascent (SGDA) algorithm is
sufficient for the translation by solving a strongly-convex–strongly-concave problem, since its
convergence rate is only Õ(1/ϵ2), which is dominated by that of the smoothed algorithm. However,
this approach does not work for the multi-level compositional minimax optimization problem.
Specifically, even for the multi-level compositional minimization optimization problem, the classical
stochastic compositional gradient descent algorithm can only achieve a convergence rate with an
exponential dependence on the number of levels for strongly convex loss functions, as shown in [31].

The aforementioned challenge motivates the development of a new algorithm to handle the translation
from an (ϵ, ϵ/

√
κ)-stationary solution into an ϵ-stationary solution. To this end, we aim to develop a

new algorithm to solve the multi-level compositional minimax optimization problem that satisfies the
two-sided PL condition. Specifically, assume z̃ is the output of Algorithm 1, then we complete the
translation by solving the following problem.

min
x∈Rdx

max
y∈Rdy

f̂(G(x), y) := f(G(x), y) + ω
2 ∥x− z̃∥2 . (11)

Note that z̃ is the output x from Algorithm 1 and it is fixed when solving this problem. Moreover,
since ω is selected such that f̂(G(x), y) is strongly convex with respect to x, f̂(G(x), y) naturally
satisfies the two-sided PL condition. Then, our next goal is to develop an efficient algorithm to solve
Eq. (11) such that its iteration complexity is better than that of Algorithm 1, i.e., the translation does
not hurt the overall convergence rate.

To this end, we propose a novel stage-wise algorithm, named Stagewise-SMCGDA-VR, as shown
in Algorithm 2 (Note that a more general algorithm is presented in Algorithm 3 for the multi-level
compositional minimax optimization problem satisfying the two-sided PL condition. This algorithm
may be of independent interest, beyond its use for the translation phase.). The overall optimization is
divided into R stages, and in each stage, we run the SMCGDA-VR algorithm without updating z (i.e.,
removing the component highlighted in blue) and replacing z with z̃ in Step 8. At the end of each
stage r, the algorithm randomly selects a tuple from the set {(xr,t, yr,t, h

(k)
r,t , pr,t, qr,t)}

Tr−1
t=0 , where

k ∈ {1, . . . ,K}, to be used as the initialization for the next stage r + 1. A complete description of
the algorithm is given in the Appendix C.

5.2 Theoretical Analysis

We establish the convergence rate of Algorithm 2 in the following theorem. More general results for
the extended Algorithm 3, which may be of independent interest, are presented in Theorems C.1-C.2.

Theorem 5.1. Given Assumption 3.1-3.4, by setting c0 =
25L2

f

µ2 , ρx = 6400c0L
2
β , ρy = 640L2

β , α =

640c0L
2
β , ηy,0 = 1

20Lβ
, T0 = max{225, 16V0

Lβσ2 }, and for r ≥ 1, ηx,r = O(µ2/(
√
2r−1Lβ)), ηy,r =

O(1/(
√
2r−1Lβ)), Tr = O(c0/(µ × 2r−1)), after running Algorithm 2 for the total number of

iterations (not stages) O(1/ϵ2), we can get E[∥∇Φ(x̃R)∥2] ≤ ϵ2.

Remark 5.2. From Theorem 5.1, it can be observed that the iteration complexity O(1/ϵ2) of the
translation phase is much smaller than that of Algorithm 1. Therefore, the translation does not hurt
the overall convergence rate.

Remark 5.3. Since the overall iteration complexity is determined by Algorithm 1, we can conclude
that our algorithm achieves an iteration complexity of T = O

(
κ3/2/ϵ3

)
, improving upon the

O
(
κ4/ϵ4

)
complexity of the two-level compositional minimax problem in [17, 9] by offering better

dependence on both κ and ϵ and the O
(
κ3/ϵ3

)
complexity in [26] by a better dependence on κ. To

the best of our knowledge, this is the first algorithm to achieve an O(κ3/2) dependence for (multi-level
compositional) minimax problems under the nonconvex-PL setting.

Proof Sketch. To prove Theorem 5.1, we use an induction approach to handle the stage-wise
structure of Algorithms 2. We introduce two metrics to facilitate convergence analysis:

E[Vr] = E[Φ(x̃r)− Φ(x∗)]︸ ︷︷ ︸
Lemma C.3

+
c0ηx,r
ηy,r

E[Φ(x̃r)− f(G(x̃r), ỹr)]︸ ︷︷ ︸
Lemma C.5

,

E[Ur] = E[∥∇xf(H(x̃r), ỹr)− p̃r∥2] + E[∥∇yf(H(x̃r), ỹr)− q̃r∥2]
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+ 56

K∑
k=1

λ′
kE[∥g(k)(h̃(k−1)

r )− h̃(k)
r ∥2] , (12)

where Vt denotes the optimization error, and Ut is similar to the last three terms of Eq. (9), c0 is a
positive constant such that c0ηx,t

ηy,t
= 1

10 . Importantly, following Lemma C.6 and C.7, we establish
how Vt and Ut affect each other across stages and derive the following inequalities in Appendix C.3:

E[Ur+1] ≤
20c0
ηy,rTr

E[Vr] +
320c0

ρyη2
y,rTr

E[Ur] + 338c0ρyη
2
y,tL

2
βσ

2 ,

E[Vr+1] ≤
1

µ

( 20c0
ηy,rTr

E[Vr] +
320c0

ρyη2
y,tTr

E[Ur] + 338c0ρyη
2
y,tL

2
βσ

2
)
. (13)

These bounds differ only by a factor of 1/µ. Using induction, at the r-th stage, we assume

E[Vr] ≤ ϵr , E[Ur] ≤ µϵr , (14)

where ϵr > 0 is a constant. Finally, by selecting appropriate hyperparameters, we prove that

E[Vr+1] ≤ ϵr+1 ≜
ϵr
2

, E[Ur+1] ≤ µϵr+1 . (15)

As such, we establish the desired convergence rate. The complete proof is provided in Appendix C.

6 Experiment
6.1 Deep AUC Maximization
In the deep AUC maximization problem, applying K-step gradient descent to minimize the cross-
entropy loss function results in a K-level inner function G(·) in Eq. (1), with a detailed discussion
provided in Appendix A. We compare our smoothed method with three baselines: SCGDA [17],
SCGDAM [33], and NSTORM [26] across three datasets: CATvsDOG, CIFAR10 and STL10.
Imbalanced binary datasets are generated following the approach described in [33], with an imbalance
ratio of 0.05. ResNet20 is employed as the model. For all algorithms, we set both the learning rate
and the momentum or variance reduction coefficient to 0.1. In our proposed method, we employ
smoothed techniques during the first 90 epochs, followed by stage-wise updates for the remaining 10
epochs.
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(a) CATvsDOG
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(c) STL10

Figure 1: The test AUC score versus the number of stochastic first-order gradient evaluations.

We conduct experiments using our smoothed method for both K = 1 and K = 5, with results
presented in Figure 1. Notably, NSTORM applies STORM-like updates to the two-level(K = 1)
compositional minimax problem without smoothed techniques. Our results show that the smoothed
approach consistently outperforms all baselines. Moreover, as the number of levels increases, the
smoothed method does not degrade the performance, demonstrating its robustness to increased
compositional levels. This improvement is observed consistently across all datasets, highlighting the
effectiveness of incorporating deeper compositional structures. Additional experiments with varying
K are provided in the Appendix A.

6.2 Multi-Instance Learning
Following [39], multi-instance learning can be reformulated as a multi-level compositional minimax
problem as shown in Eq. 1, with details provided in Appendix A. For multi-instance learning tasks,
our proposed approach utilizes two types of stochastic pooling operations: log-sum-exp (smx)
pooling and attention-based (att) pooling. We compare the performance of our smoothed methods
against six baseline methods: MIDAM(smx) and MIDAM(att) [40], both utilizing stochastic pooling
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Figure 2: The test AUC score versus the number of epochs for Tabular Datasets.

operations; DAM(mean), DAM(max), DAM(smx), and DAM(att), all of which update the AUC loss
with traditional PESG optimizer [34].

We conduct experiments on five commonly used tabular benchmark datasets [10, 1] for MIL tasks –
MUSK1, MUSK2, Fox, Tiger, and Elephant – as well as one histopathological image dataset, namely
Breast Cancer. For the tabular datasets, we use a two-layer feed-forward neural network with tanh
activation and a sigmoid output for AUC loss normalization. For the Breast Cancer dataset, each
image is divided into 32× 32 patches and treated as a bag of 672 local patches to enable efficient
multi-instance processing, using ResNet20 as the model. All datasets are randomly split into training
and testing sets with a 0.9/0.1 ratio.
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Figure 3: The test AUC score versus the number of epochs
for Breast Cancer Dataset.

For the tabular datasets, we perform 5-
fold cross-validation, repeating each run
with three random seeds. For the image
dataset, we use two random seeds. The
learning rate for the primal variables
is tuned within the set {1e-1, 1e-2, 1e-
3}, while the learning rate for the dual
variables is fixed at 1. We vary the value
of K from 1 to 5 and ultimately fix it at
3 to achieve more stable performance.
We present the experimental results on
the tabular datasets in Figure 2, and on
the image dataset in Figure 3. For the tabular datasets, to ensure clearer visualizations, we omit error
bars in the plots and instead report both the mean and standard deviation of the results in Table 2,
as shown in Appendix A. For the image dataset, we focus our comparison on the softmax-based
and attention-based methods. In both experimental settings, our proposed algorithms consistently
outperform all baseline methods, demonstrating superior optimization behavior and generalization
performance across a range of tasks and datasets.

7 Conclusion
In this work, we addressed the challenging problem of stochastic multi-level compositional mini-
max optimization by proposing a smoothed variance-reduced algorithm. Our theoretical analysis
demonstrates that the proposed smoothed method achieves a convergence rate of O

(
κ3/2/ϵ3

)
to an

(ϵ, ϵ/
√
κ)-stationary point. Furthermore, to bridge the gap between different stationarity measures,

we developed a stage-wise algorithm under the two-sided PL condition, enabling a translation to an
ϵ-stationary point. Extensive experiments on deep AUC maximization and multi-instance learning
tasks validate the superior performance of our approach.
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Every relevant detail is covered.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The multi-instance task includes error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Every relevant detail is covered.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All ethical standards are satisfied.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This is a theoretical paper and not relevant to societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: Every relevant detail is covered.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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• For initial submissions, do not include any information that would break anonymity (if
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16. Declaration of LLM usage
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non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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A Applications and Experiments

A.1 Deep AUC Maximization

AUC(Area under the ROC curve) is widely used to evaluate the classifiers for binary classification
with imbalanced data. [33] reformulated the AUC maximization problem as the following two-level
compositional minimax problem:

min
w̃,a,b

max
α

LAUC(w̃, a, b, α;x, y)

s.t. w̃ = w − η̃∇wLCE(w;x, y) ,
(16)

where w ∈ Rd are model parameters while (a, b, α) are parameters for AUC loss, (x, y) represents
feature and label of a sample.
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Figure 4: Different K on CIFAR10.

Here, LCE indicates the standard cross-entropy loss func-
tion, w − η̃∇wLCE denotes using the gradient descent ap-
proach on cross-entropy loss to update the model parameters,
where η̃ > 0 is the learning rate. Then, the obtained model
parameter w̃ can be optimized through the AUC loss. The
following serves as a generic representation of Eq. (16) as
a two-level compositional minimax optimization problem:

min
x∈Rdx

max
y∈Rdy

f(g(x), y) , (17)

where g denotes the inner-level function with one-step gradi-
ent descent and f denotes the outer-level function. Inspired
by the achievements in addressing the multi-level compositional minimization problem, we extend
the one-step gradient descent for the inner-level function to a multi-step update. In detail, for
k ∈ {1, · · · ,K}, the k-th inner-level function is defined as:

g(k)(·) ≜

{
E[g(1)(x; ξ(1))] = E[x− η̃∆(x; ξ(1))], k = 1,

E[g(k)(g̃; ξ(k))] = E[g̃ − η̃∆(g̃; ξ(k))], k ̸= 1,
(18)

where g̃ refers to g(k−1)(·) when k ∈ {2, · · · ,K}, ξ(k) represents the data distribution for the k-th
level function. The learning rate for the inner-level functions is denoted by η̃. Consequently, Eq. (17)
can be reformulated as a multi-level compositional minimax optimization problem exactly as the
Eq. (1).

A.2 Multi-Instance Learning

Multi-instance learning [10] is designed for tasks with training data structured into bags containing
many instances, with only bag-level labels known. The symmetric function, also known as the pooling
operation, is a critical component of multi-instance learning. Diverse pooling strategies have been
investigated, including mean pooling, max pooling, and softmax pooling [28] and attention-based
pooling [21]. Then, to address memory concerns, [40] provided a class of variance-reduced stochastic
pooling approaches by reformulating the AUC loss function with the pooled prediction as a three-level
compositional minimax function as follows:

min
w,a,b

max
α

F(w, a, b, α) : = Ei∈D+
[(h(w;Xi)− a)2] + Ei∈D− [(h(w;Xi)− b)2]

+ α(c+ Ei∈D− [h(w;Xi)]− Ei∈D+
[h(w;Xi)])−

α2

2
, (19)

where Xi = {x1
i , · · · , x

ni
i } denotes a bag of data instances, D+ represents only containing positive

bags with label yi = 1, D− represents only containing negative bags with label yi = 0. The pooled
prediction h(w;Xi) = f2(f1(w;Xi)) denotes the predicted score of the bag i over all its instance,
which is a two-level compositional function. For example, for the log-sum-exp(smx) pooling, we
have:

f1(w;Xi) =
1

|Xi|
∑

xj
i∈Xi

exp(ϕ(w;xj
i ))/τ), f2(si) = τ log(si). (20)

For the attention-based (att) pooling, we have:
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f1(w;Xi) =

[
1

|Xi| exp(g(w;x
j
i ))w

T
c e(we;x

j
i )

1
|Xi|

∑
xj
i∈Xi

exp(g(w;xj
i ))

]
, f2(si) = σ

(si1
si2

)
. (21)

Similarly, the three-level compositional minimax problem in Eq. (19) can be reformulated as a stochas-
tic multi-level compositional minimax problem by integrating it with cross-entropy loss minimization,
as in Eq. (16), after computing the predicted score h(w;Xi). In particular, applying K inner gradient
steps to optimize the cross-entropy loss results in a K-level inner function. Consequently, Eq.(19)
can be expressed in the unified form of Eq. (1), which corresponds to a stochastic (K + 3)-level
compositional minimax problem.

A.3 More Experimental Results

Here, we provide additional empirical results. Specifically, for the deep AUC maximization task, we
perform experiments to evaluate the impact of the number of levels K on performance. As shown in
Figure 4, increasing the number of inner levels leads to further improvements in testing performance.
For the multi-instance learning task, we report both the mean and standard deviation of the results on
tabular datasets in Table 2.

Table 2: The test AUC score of different methods on all Tabular Datasets.

Methods MUSK1 MUSK2 Fox Tiger Elephant

Ours(att) 0.942(0.039) 0.965(0.029) 0.738(0.018) 0.942(0.017) 0.931(0.034)
Ours(smx) 0.921(0.047) 0.939(0.025) 0.770(0.034) 0.928(0.026) 0.942(0.026)
MIDAM(att) 0.841(0.142) 0.868(0.087) 0.718(0.078) 0.918(0.030) 0.919(0.029)
MIDAM(smx) 0.841(0.142) 0.905(0.117) 0.702(0.056) 0.909(0.031) 0.903(0.039)
DAM(att) 0.770(0.143) 0.782(0.075) 0.686(0.050) 0.870(0.027) 0.861(0.022)
DAM(smx) 0.802(0.175) 0.847(0.116) 0.684(0.049) 0.889(0.014) 0.908(0.025)
DAM(max) 0.745(0.112) 0.822(0.123) 0.591(0.082) 0.895(0.047) 0.875(0.028)
DAM(mean) 0.795(0.138) 0.826(0.072) 0.653(0.103) 0.855(0.021) 0.895(0.020)

B Appendix: Smoothed-SMCGDA-VR

To begin with, we introduce the following terminology to simplify the complex expressions, which
will be useful in the subsequent analysis:

∇xf(G(xt), yt) = ∇g(1)(xt)∇g(2)(G(1)(xt)) · · · ∇g(K)(G(K−1)(xt))∇1f(G
(K)(xt), yt) ,

∇yf(G(xt), yt) = ∇2f(G
(K)(xt), yt) ,

∇xf(H(xt), yt) = ∇g(1)(xt)∇g(2)(h
(1)
t ) · · · ∇g(K−1)(h

(K−2)
t )∇g(K)(h

(K−1)
t )∇1f(h

(K)
t , yt) ,

∇yf(H(xt), yt) = ∇2f(h
(K)
t , yt) . (22)

Therefore, for the smoothed loss, we have

∇xfω(H(xt), yt; zt) = ∇xf(H(xt), yt) + ω(xt − zt) ,

∇yfω(H(xt), yt; zt) = ∇yf(H(xt), yt) . (23)

Moreover, we introduce C2
p as follows:

C2
p = max

{
(K + 1)C2(K−1)

g (KC2
f + C2

g ) , (K + 1)ℓ2
}
. (24)

Following [30], we introduce the following auxiliary functions for convergence analysis:

hω,d(y; z) = min
x∈Rdx

fω(G(x), y; z) , dual function

hω,p(x; z) = max
y∈Rdy

fω(G(x), y; z) , primal function
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h(z) = min
x∈Rdx

max
y∈Rdy

fω(G(x), y; z) ,

x∗(y, z) = arg min
x∈Rdx

fω(G(x), y; z) ,

x∗(z) = arg min
x∈Rdx

hω,p(x; z) ,

y∗(z) = arg max
y∈Rdy

hω,d(y; z) . (25)

Proof Structure. Our proof consists of two key components. The first component, including
Lemma B.3 and Lemma B.4, addresses the smoothing technique. The second component, comprising
Lemma B.5, Lemma B.6, and Lemma B.7, deals with the multi-level compositional structure. In
Section B.2, we complete the proof by carefully combining these two components while addressing
their interdependence.

B.1 Useful Lemmas

Lemma B.1. Given Assumptions 3.1-3.3, we can know

1. G(k)(x) is Ck
g -Lipschitz continuous for k ∈ {1, · · · ,K − 1} and G(x) is CG-Lipschitz

continuous where CG = CK
g ;

2. ∇G(x) is LG-Lipschitz continuous where LG =
∑K−1

j=0 LgC
K−1+j
g ;

3. ∇xf(G(x), y) is L̂-Lipschitz continuous where L̂ = C2
GLf + CfLG;

4. Φ(x) ≜ maxy∈Rdy f(G(x), y) , Φ(x) is LΦ-Lipschitz continuous where LΦ =
2C2

GL2
f

µ +

CfLG.

Proof. The first three properties follow from Lemma B.1. in [37]. The last property is based

on Lemma A.3. in [30] and can be established by showing that ∥Φ(x2) − Φ(x1)∥ ≤ (
2C2

GL2
f

µ +

CfLG)∥x2 − x1∥.

Lemma B.2. [30] Given Assumptions 3.1-3.3, the following inequality holds:

∥x∗(y1, z)− x∗(y2, z)∥ ≤ Cx1
yz
∥y1 − y2∥ ,

∥x∗(y, z1)− x∗(y, z2)∥ ≤ Cx2
yz
∥z1 − z2∥ ,

∥x∗(z1)− x∗(z2)∥ ≤ Cxz
∥z1 − z2∥ , (26)

where Cx1
yz

= ω+ℓ
ω−ℓ , Cx2

yz
= ω

ω−ℓ , and Cxz
= ω

ω−ℓ and ω > ℓ.

Lemma B.3. Given Assumptions 3.1-3.3, and γzη ≤ 1, the following inequality holds:

1. The smoothed function fω(G(xt), yt; zt) satisfies:

fω(G(xt+1), yt+1; zt)− fω(G(xt+1), yt+1; zt+1) ≥
ω

2γzη
∥zt+1 − zt∥2 . (27)

2. The dual function E[hω,d(yt; zt)] satisfies:

E[hω,d(yt+1; zt+1)] ≥ E[hω,d(yt; zt)] + γyηE[⟨∇yfω(x
∗(yt, zt), yt; zt), qt⟩]

−
γ2
yη

2Lω,d

2
E[∥qt∥2] +

ω

2
⟨zt+1 − zt, zt+1 + zt − 2x∗(yt+1; zt+1)⟩ . (28)

3. The function h(zt) satisfies:

h(zt+1)− h(zt) ≤
ω

2
⟨zt+1 − zt, zt+1 + zt − 2x∗(y∗(zt+1); zt)⟩ . (29)
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Proof. (1). From the update rule zt+1 = zt + γzη(xt+1 − zt), we obtain

fω(G(xt+1), yt+1; zt)− fω(G(xt+1), yt+1; zt+1)

=
ω

2
(∥xt+1 − zt∥2 − ∥xt+1 − zt+1∥2)

=
ω

2
(

1

γ2
zη

2
∥zt+1 − zt∥2 − ∥(1− γzη)(xt+1 − zt)∥2)

=
ω

2
(

1

γ2
zη

2
∥zt+1 − zt∥2 −

(1− γzη)
2

γ2
zη

2
∥zt+1 − zt∥2)

=
ω

2

1− 1 + 2γzη − γ2
zη

2

γ2
zη

2
∥zt+1 − zt∥2

=
ω

2

2− γzη

γzη
∥zt+1 − zt∥2

≥ ω

2γzη
∥zt+1 − zt∥2 , (30)

where the last step holds uses the fact that γzη ≤ 1.

Proof. (2). Since the dual function hω,d(yt; zt) is Lω,d-smooth, it satisfies that

E[hω,d(yt+1; zt)] ≥ E[hω,d(yt; zt)] + E[⟨∇yhω,d(yt; zt), yt+1 − yt⟩]−
Lω,d

2
E[∥yt+1 − yt∥2]

= E[hω,d(yt; zt)] + γyηE[⟨∇yfω(x
∗(yt, zt), yt; zt), qt⟩]−

γ2
yη

2Lω,d

2
E[∥qt∥2] . (31)

On the other hand, we have

hω,d(yt+1; zt+1)− hω,d(yt+1; zt)

= fω(x
∗(yt+1; zt+1), yt+1; zt+1)− fω(x

∗(yt+1; zt+1), yt+1; zt)

≥ fω(x
∗(yt+1; zt+1), yt+1; zt+1)− fω(x

∗(yt+1; zt), yt+1; zt)

=
ω

2
(∥zt+1 − x∗(yt+1; zt+1)∥2 − ∥zt − x∗(yt+1; zt+1)∥2)

=
ω

2
⟨zt+1 − zt, zt+1 + zt − 2x∗(yt+1; zt+1)⟩ , (32)

where we use the fact ⟨a− b, a+ b⟩ = ∥a∥2 − ∥b∥2 in the second-to-last step.

By combining the above two inequalities, the proof is complete.

Proof. (3). From the definition of h(zt), we obtain

h(zt+1)− h(zt)

= hω,d(y
∗(zt+1); zt+1)− hω,d(y

∗(zt); zt)

≤ hω,d(y
∗(zt+1); zt+1)− hω,d(y

∗(zt+1); zt)

= fω(x
∗(y∗(zt+1); zt+1), y

∗(zt+1); zt+1)− fω(x
∗(y∗(zt+1); zt), y

∗(zt+1); zt)

≤ fω(x
∗(y∗(zt+1); zt), y

∗(zt+1); zt+1)− fω(x
∗(y∗(zt+1); zt), y

∗(zt+1); zt)

=
ω

2
(∥zt+1 − x∗(y∗(zt+1); zt)∥2 − ∥zt − x∗(y∗(zt+1); zt)∥2)

=
ω

2
⟨zt+1 − zt, zt+1 + zt − 2x∗(y∗(zt+1); zt)⟩ , (33)

where we use the fact ⟨a− b, a+ b⟩ = ∥a∥2 − ∥b∥2 in the last step.

Lemma B.4. Given Assumptions 3.1-3.3, when η ≤ 1
2γx(ω+ℓ) , and γzη ≤ 1, the following inequali-

ties hold:

E[fω(G(xt+1), yt+1; zt+1)] ≤ E[fω(G(xt), yt; zt)]−
γxη

2
E[∥∇xfω(G(xt), yt; zt)∥2]

+
γyη

2
E[∥∇yfω(G(xt), yt; zt)∥2]−

ω

2γzη
E[∥zt+1 − zt∥2] + γxηE[∥∇xfω(G(xt), yt; zt)− pt∥2]
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+ γxηK

K∑
k=1

AkE[∥g(k)(h(k−1)
t )− h

(k)
t ∥2] +

(
4γyηγ

2
xη

2ℓ2 − γxη

4

)
E[∥pt∥2]

+
(3γyη

4
+

ω + ℓ

2
γ2
yη

2
)
E[∥qt∥2] . (34)

Proof. First, from Lemma B.1, it follows that the smoothed loss function fω(G(xt), yt; zt) is (ω+ℓ)-
smooth with respect to x. Therefore, we have

E[fω(G(xt+1), yt; zt)]

≤ E[fω(G(xt), yt; zt)] + E[⟨∇xfω(G(xt), yt; zt), xt+1 − xt⟩] +
ω + ℓ

2
E[∥xt+1 − xt∥2]

= E[fω(G(xt), yt; zt)]− γxηE[⟨∇xfω(G(xt), yt; zt), pt⟩] +
ω + ℓ

2
γ2
xη

2E[∥pt∥2]

= E[fω(G(xt), yt; zt)]−
γxη

2
E[∥∇xfω(G(xt), yt; zt)∥2] +

γxη

2
E[∥∇xfω(G(xt), yt; zt)− pt∥2]

− γxη

2
E[∥pt∥2] +

ω + ℓ

2
γ2
xη

2E[∥pt∥2]

≤ E[fω(G(xt), yt; zt)]−
γxη

2
E[∥∇xfω(G(xt), yt; zt)∥2] + γxηE[∥∇xfω(H(xt), yt; zt)− pt∥2]

+ γxηE[∥∇xfω(G(xt), yt; zt)−∇xfω(H(xt), yt; zt)∥2]−
γxη

4
E[∥pt∥2]

≤ E[fω(G(xt), yt; zt)]−
γxη

2
E[∥∇xfω(G(xt), yt; zt)∥2] + γxηE[∥∇xfω(H(xt), yt; zt)− pt∥2]

+ γxηK

K∑
k=1

AkE[∥g(k)(h(k−1)
t )− h

(k)
t ∥2]− γxη

4
E[∥pt∥2] , (35)

where the second-to-last step holds due to η ≤ 1
2γx(ω+ℓ) .

Similarly, since fω(G(xt), yt; zt) is (ω + ℓ)-smooth with respect to y, we obtain

E[fω(G(xt+1), yt+1; zt)]

≤ E[fω(G(xt+1), yt; zt)] + E[⟨∇yfω(G(xt+1), yt; zt), yt+1 − yt⟩] +
ω + ℓ

2
E[∥yt+1 − yt∥2]

= E[fω(G(xt+1), yt; zt)] + γyηE[⟨∇yfω(G(xt+1), yt; zt)−∇yfω(G(xt), yt; zt), qt⟩]

+ γyηE[⟨∇yfω(G(xt), yt; zt), qt⟩] +
ω + ℓ

2
γ2
yη

2E[∥qt∥2]

≤ E[fω(G(xt+1), yt; zt)] + 4γyηE[∥∇yfω(G(xt+1), yt; zt)−∇yfω(G(xt), yt; zt)∥2] +
γyη

4
E[∥qt∥2]

+
γyη

2
E[∥∇yfω(G(xt), yt; zt)∥2] +

γyη

2
E[∥qt∥2] +

ω + ℓ

2
γ2
yη

2E[∥qt∥2]

≤ E[fω(G(xt+1), yt; zt)] +
γyη

2
E[∥∇yfω(G(xt), yt; zt)∥2] + 4γyηγ

2
xη

2ℓ2E[∥pt∥2]

+
(3γyη

4
+

ω + ℓ

2
γ2
yη

2
)
E[∥qt∥2] . (36)

By combining the inequalities above with Lemma B.3, the proof is complete.

Lemma B.5. Given Assumptions 3.1-3.3, the following inequality holds:

1. The estimation error between ∇xf(G(xt), yt) and ∇xf(H(xt), yt) satisfies:

E[∥∇xf(G(xt), yt)−∇xf(H(xt), yt)∥2] ≤ K

K∑
k=1

AkE[∥g(k)(h(k−1)
t )− h

(k)
t ∥2] , (37)

where Ak =

(
C

2(K−1)
g C2

fL
2
g

(∑K−1
j=k Cj−k

g

)2
+ C2K

g L2
fC

2(K−k)
g

)
.
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2. The bounded error between ∇xfω(H(xt), yt; zt; ξ̂t+1) and ∇xfω(H(xt), yt; zt) satisfies:

E[∥∇xfω(H(xt), yt; zt; ξ̂t+1)−∇xfω(H(xt), yt; zt)∥2] ≤ C2
pσ

2 . (38)

3. For any k ∈ {1, · · · ,K}, the descent error between h
(k)
t+1 and h

(k)
t satisfies:

E[∥h(k)
t+1 − h

(k)
t ∥2] ≤ 2α2η4

k∑
j=1

(2C2
g )

k−jE[∥h(j)
t − g(j)(h

(j−1)
t )∥2]

+ (2C2
g )

kγ2
xη

2E[∥pt∥2] + 2α2η4σ2
k∑

j=1

(2C2
g )

j−1 . (39)

4. For any λk > 0 where k ∈ {1, · · · ,K}, the estimation error between g(k)(h
(k−1)
t ) and h

(k)
t

satisfies:
K∑

k=1

λkE[∥g(k)(h(k−1)
t+1 )− h

(k)
t+1∥2] ≤ (1− αη2)

K∑
k=1

λkE[∥g(k)(h(k−1)
t )− h

(k)
t ∥2]

+ 2α2η4
K∑

k=1

( K∑
j=k+1

λj(2C
2
g )

j−k
)
E[∥g(k)(h(k−1)

t )− h
(k)
t ∥2] + γ2

xη
2

K∑
k=1

λk(2C
2
g )

kE[∥pt∥2]

+ 2α2η4σ2
K∑

k=1

λk

k−1∑
j=0

(2C2
g )

j . (40)

Proof. First, we have
E[∥∇xfω(G(xt), yt; zt)−∇xfω(H(xt), yt; zt)∥2]

= E[∥∇xf(G(xt), yt) + ω(xt − zt)−∇xf(H(xt), yt)− ω(xt − zt)∥2]
= E[∥∇xf(G(xt), yt)−∇xf(H(xt), yt)∥2]

≤ K

K∑
k=1

AkE[∥g(k)(h(k−1)
t )− h

(k)
t ∥2] , (41)

where the last step follows from Lemma B.2, Eq. (25) in [37].

Similarly,

E[∥∇xfω(H(xt), yt; zt; ξ̂t+1)−∇xfω(H(xt), yt; zt)∥2]

= E[∥∇g(1)(h
(0)
t ; ξ

(1)
t+1) · · · ∇g(K)(h

(K−1)
t ; ξ

(K)
t+1 )∇1f(h

(K)
t , yt; ζt+1) + ω(xt − zt)

−∇g(1)(h
(0)
t ) · · · ∇g(K−1)(h

(K−2)
t )∇g(K)(h

(K−1)
t )∇1f(h

(K)
t , yt) + ω(xt − zt)∥2]

= E[∥∇g(1)(h
(0)
t ; ξ

(1)
t+1) · · · ∇g(K)(h

(K−1)
t ; ξ

(K)
t+1 )∇1f(h

(K)
t , yt; ζt+1)

−∇g(1)(h
(0)
t ) · · · ∇g(K−1)(h

(K−2)
t )∇g(K)(h

(K−1)
t )∇1f(h

(K)
t , yt)∥2]

≤ (K + 1)C2(K−1)
g (KC2

f + C2
g )σ

2 , (42)

where the last step follows from Lemma B.2, Eq. (28) in [37]. From the definition of C2
p , the proof is

complete.

Subsequently, the remaining inequalities follow from Lemma B.4 and Lemma B.5 in [37].

Lemma B.6. Given Assumptions 3.1-3.3, we derive
E[∥pt+1 −∇xfω(H(xt+1), yt+1; zt+1)∥2] ≤ (1− ρxη

2)E[∥pt −∇xfω(H(xt), yt; zt)∥2]

+ 2C2
p2α

2η4
K∑

k=1

( K∑
j=k

(2C2
g )

j−k
)
E[∥h(k)

t − g(k)(h
(k−1)
t )∥2] + 2C2

p

K∑
k=0

(2C2
g )

kγ2
xη

2E[∥pt∥2]

+ 2C2
pγ

2
yη

2E[∥qt∥2] + 4C2
pα

2η4
K∑

k=1

k∑
j=1

(2C2
g )

j−1σ2 + 2ρ2xη
4C2

pσ
2 . (43)
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Proof.

E[∥pt+1 −∇xfω(H(xt+1), yt+1; zt+1)∥2]
= E[∥(1− ρxη

2)(pt −∇xfω(H(xt), yt; zt; ξ̂t+1)) +∇xfω(H(xt+1), yt+1; zt+1; ξ̂t+1)

−∇xfω(H(xt+1), yt+1; zt+1)∥2]

= E
[∥∥∥(1− ρxη

2)
(
pt −∇xfω(H(xt), yt; zt)

)
+
(
∇xfω(H(xt+1), yt+1; zt+1; ξ̂t+1)

−∇xfω(H(xt), yt; zt; ξ̂t+1) +∇xfω(H(xt), yt; zt)−∇xfω(H(xt+1), yt+1; zt+1)
)

+ ρxη
2
(
∇xfω(H(xt), yt; zt; ξ̂t+1)−∇xfω(H(xt), yt; zt)

)∥∥∥2]
≤ (1− ρxη

2)2E[∥pt −∇g(1)(h
(0)
t ) · · · ∇g(K)(h

(K−1)
t )∇1fω(h

(K)
t , yt; zt)∥2]

+ 2E[∥∇g(1)(h
(0)
t+1; ξ

(1)
t+1) · · · ∇g(K)(h

(K−1)
t+1 ; ξ

(K)
t+1 )∇1f(h

(K)
t+1, yt+1; ζt+1)

−∇g(1)(h
(0)
t ; ξ

(1)
t+1) · · · ∇g(K)(h

(K−1)
t ; ξ

(K)
t+1 )∇1f(h

(K)
t , yt; ζt+1)∥2]

+ 2ρ2xη
4E[∥∇xfω(H(xt), yt; zt; ξ̂t+1)−∇xfω(H(xt), yt; zt)∥2]

≤ (1− ρxη
2)E[∥pt −∇xfω(H(xt), yt; zt)∥2] + 2T1 + 2ρ2xη

4C2
pσ

2 , (44)

where the last step holds due to Lemma B.5 and third step holds due to the following inequality:

E[∥∇xfω(H(xt+1), yt+1; zt+1; ξ̂t+1)−∇xfω(H(xt), yt; zt; ξ̂t+1)

+∇xfω(H(xt), yt; zt)−∇xfω(H(xt+1), yt+1; zt+1)∥2]
= E[∥∇xf(H(xt+1), yt+1; ξ̂t+1) + ω(xt+1 − zt+1)−∇xf(H(xt), yt; ξ̂t+1)− ω(xt − zt)

+∇xf(H(xt), yt) + ω(xt − zt)−∇xf(H(xt+1), yt+1)− ω(xt+1 − zt+1)∥2]
≤ E[∥∇xf(H(xt+1), yt+1; ξ̂t+1)−∇xf(H(xt), yt; ξ̂t+1)∥2]

= E[∥∇g(1)(h
(0)
t+1; ξ

(1)
t+1) · · · ∇g(K)(h

(K−1)
t+1 ; ξ

(K)
t+1 )∇1f(h

(K)
t+1, yt+1; ζt+1)

−∇g(1)(h
(0)
t ; ξ

(1)
t+1) · · · ∇g(K)(h

(K−1)
t ; ξ

(K)
t+1 )∇1f(h

(K)
t , yt; ζt+1)∥2] . (45)

Next, we bound T1 as follows:

T1 = E[∥∇g(1)(h
(0)
t+1; ξ

(1)
t+1) · · · ∇g(K)(h

(K−1)
t+1 ; ξ

(K)
t+1 )∇1f(h

(K)
t+1, yt+1; ζt+1)

−∇g(1)(h
(0)
t ; ξ

(1)
t+1) · · · ∇g(K)(h

(K−1)
t ; ξ

(K)
t+1 )∇1f(h

(K)
t , yt; ζt+1)∥2]

≤ (K + 1)C2K
g L2

fE[∥h
(K)
t+1 − h

(K)
t ∥2] + (K + 1)C2K

g L2
fE[∥yt+1 − yt∥2]

+ (K + 1)C2(K−1)
g C2

fL
2
gE[∥h

(K−1)
t+1 − h

(K−1)
t ∥2] + · · ·+ (K + 1)C2(K−1)

g C2
fL

2
gE[∥h

(1)
t+1 − h

(1)
t ∥2]

+ (K + 1)C2(K−1)
g C2

fL
2
gE[∥xt+1 − xt∥2]

≤ C2
p

K∑
k=1

E[∥h(k)
t+1 − h

(k)
t ∥2] + C2

pE[∥xt+1 − xt∥2] + C2
pE[∥yt+1 − yt∥2]

≤ C2
p2α

2η4
K∑

k=1

( K∑
j=k

(2C2
g )

j−k
)
E[∥h(k)

t − g(k)(h
(k−1)
t )∥2] + C2

p

K∑
k=0

(2C2
g )

kγ2
xη

2E[∥pt∥2]

+ C2
pγ

2
yη

2E[∥qt∥2] + 2C2
pα

2η4
K∑

k=1

k∑
j=1

(2C2
g )

j−1σ2 . (46)

Combining this with the previous inequalities completes the proof.

Lemma B.7. Given Assumption 3.1-3.3, we derive:

E[∥qt+1 −∇yfω(H(xt+1), yt+1; zt+1)∥2] ≤ (1− ρyη
2)E[∥qt −∇yfω(H(xt), yt; zt)∥2]

+ 4α2η4L2
f

K∑
k=1

(2C2
g )

K−kE[∥h(k)
t − g(k)(h

(k−1)
t )∥2] + 2L2

f (2C
2
g )

Kγ2
xη

2E[∥pt∥2]
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+ 2L2
fγ

2
yη

2E[∥qt∥2] + 4α2η4L2
fσ

2
K∑

k=1

(2C2
g )

k−1 + 2ρ2yη
4σ2 . (47)

Proof.

E[∥qt+1 −∇yfω(H(xt+1), yt+1; zt+1)∥2]

≤ (1− ρyη
2)E[∥qt −∇yfω(H(xt), yt; zt)∥2] + 2E[∥∇2f(h

(K)
t+1, yt+1; ζt+1)−∇2f(h

(K)
t , yt; ζt+1)∥2]

+ 2ρ2yη
4E[∥∇2fω(h

(K)
t , yt; zt; ζt+1)−∇2fω(h

(K)
t , yt; zt)∥2]

≤ (1− ρyη
2)E[∥qt −∇yfω(H(xt), yt; zt)∥2] + 2L2

fE[∥h
(K)
t+1 − h

(K)
t ∥2] + 2L2

fE[∥yt+1 − yt∥2]
+ 2ρ2yη

4σ2 , (48)

by applying Lemma B.5, the proof is complete.

B.2 Proof of the Theorem 4.1

Theorem B.8. (Restatement of Theorem 4.1) Given Assumptions 3.1-3.3, when ρx > 0, ρy > 0,
α > 0, ω = O(ℓ), and the hyperparameter conditions are satisfied:

γx ≤ min

{
ℓ2

6ω(ω + ℓ)2
,

64ℓ

(ω − ℓ)2
√
C2

x1
yz

+ 1
,

1

48ωcγzCx2
yz

,
1

8
√
cγyℓ

,
1

16cγy (2Lω,d + ω + ℓ)
,

√
ρx

4Cp

√
2
∑K

k=0(2C
2
g )

k

,

√
ρy

4
√
5cγy

(2C2
g )

KLf

,

√
α

8
√∑K

k=1 dk(2C
2
g )

k

,

√
ρx

8
√
cγyCp

,

√
ρx

16Cp

√
2
∑K

k=1

∑K
j=k(2C

2
g )

j
,

√
ρy

16
√

5cγy (2C
2
g )

K
,

√
ρy

4
√
10cγy

Lf

}

γy = γx
(ω − ℓ)2

64ℓ2︸ ︷︷ ︸
cγy

, γz = γx
(ω − ℓ)3µ

98304ωℓ2︸ ︷︷ ︸
cγz

,

η ≤ min

 1
√
ρx

,
1

√
ρy

,
1√
α
,
1

γz
,

1

2γx(ω + ℓ)
,
1

2

√√√√ λ̂k

α
(∑K

j=k+1 λ̂j(2C2
g )

j−k
)
 , (49)

Algorithm 1 achieves the following convergence upper bound:

1

T

T−1∑
t=0

(
E[∥∇xf(G(xt), yt)∥2] + κE[∥∇yf(G(xt), yt)∥2]

)
≤ O

(
κP0

γxηT

)
+O

( κσ2

ρxη2TS

)
+O

( κσ2

ρyη2TS

)
+O

( κσ2

αη2TS

)
+O

(
κ
α2η2σ2

ρx

)
+O

(
κρxη

2σ2
)
+O

(
κ
α2η2σ2

ρy

)
+O

(
κρyη

2σ2
)
+O

(
καη2σ2

)
, (50)

where P0 = fω(G(x0), y0; z0)− 2fω,d(y0; z0) + 2g(z0), with the definitions of the involved terms
provided in Eq. (25).

Proof. To establish the convergence rate of Algorithm 1, we propose a novel potential function as
follows:

Ht = fω(G(xt), yt; zt)− 2hω,d(yt; zt) + 2h(zt)︸ ︷︷ ︸
Pt

+ νaE[∥pt −∇xfω(H(xt), yt; zt)∥2] + νbE[∥qt −∇yfω(H(xt), yt; zt)∥2]
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+

K∑
k=1

λkE[∥h(k)
t − g(k)(h

(k−1)
t )∥2] , (51)

where the coefficient νa, νb and {λk}Kk=1 are positive.

B.2.1 Bound Pt+1 − Pt

First, we aim to derive an upper bound for Pt+1−Pt. To this end, we begin by applying Lemmas B.3
and B.4, from which we obtain

Pt+1 − Pt

≤ fω(G(xt+1), yt+1; zt+1)− fω(G(xt), yt; zt)− 2
(
hω,d(yt+1; zt+1)− hω,d(yt; zt)

)
+ 2
(
h(zt+1)− h(zt)

)
≤ −γxη

2
E[∥∇xfω(G(xt), yt; zt)∥2] +

γyη

2
E[∥∇yfω(G(xt), yt; zt)∥2]−

ω

2γzη
E[∥zt+1 − zt∥2]

+ γxηE[∥∇xfω(G(xt), yt; zt)− pt∥2] + γxηK

K∑
k=1

AkE[∥g(k)(h(k−1)
t )− h

(k)
t ∥2]

+
(
4γyηγ

2
xη

2ℓ2 − γxη

4

)
E[∥pt∥2] +

(3γyη
4

+
ω + ℓ

2
γ2
yη

2
)
E[∥qt∥2]

− 2γyηE⟨∇yfω(x
∗(yt, zt), yt; zt), qt⟩] + γ2

yη
2Lω,dE[∥qt∥2]

− ω⟨zt+1 − zt, zt+1 + zt − 2x∗(yt+1; zt+1)⟩+ ω⟨zt+1 − zt, zt+1 + zt − 2x∗(y∗(zt+1); zt)⟩

= −γxη

2
E[∥∇xfω(G(xt), yt; zt)∥2] +

γyη

2
E[∥∇yfω(G(xt), yt; zt)∥2]−

ω

2γzη
E[∥zt+1 − zt∥2]

+ γxηE[∥∇xfω(G(xt), yt; zt)− pt∥2] + γxηK

K∑
k=1

AkE[∥g(k)(h(k−1)
t )− h

(k)
t ∥2]

+
(
4γyηγ

2
xη

2ℓ2 − γxη

4

)
E[∥pt∥2] +

(3γyη
4

+
ω + ℓ

2
γ2
yη

2 + γ2
yη

2Lω,d

)
E[∥qt∥2]

− 2γyηE⟨∇yfω(x
∗(yt, zt), yt; zt), qt⟩] + 2ω⟨zt+1 − zt, x

∗(yt+1; zt+1)− x∗(y∗(zt+1); zt)⟩ .
(52)

Next, we derive

2⟨zt+1 − zt, x
∗(yt+1; zt+1)− x∗(y∗(zt+1); zt)⟩

= 2⟨zt+1 − zt, x
∗(yt+1; zt+1)− x∗(y∗(zt+1); zt+1)⟩

+ 2⟨zt+1 − zt, x
∗(y∗(zt+1); zt+1)− x∗(y∗(zt+1); zt)⟩

≤ 1

6γzη
∥zt+1 − zt∥2 + 6γzη∥x∗(yt+1; zt+1)− x∗(y∗(zt+1); zt+1)∥2

+ 2∥zt+1 − zt∥∥x∗(y∗(zt+1); zt+1)− x∗(y∗(zt+1); zt)∥

≤ 1

6γzη
∥zt+1 − zt∥2 + 6γzη∥x∗(yt+1; zt+1)− x∗(y∗(zt+1); zt+1)∥2 + 2Cx2

yz
∥zt+1 − zt∥2

= (
1

6γzη
+ 2Cx2

yz
)∥zt+1 − zt∥2 + 6γzη∥x∗(yt+1; zt+1)− x∗(y∗(zt+1); zt+1)∥2 , (53)

where the third step follows from Lemma B.2.

Additionally, we have

− 2γyηE[⟨∇yfω(x
∗(yt, zt), yt; zt), qt⟩]

= −2γyηE[⟨∇yfω(x
∗(yt, zt), yt; zt)−∇yfω(G(xt), yt; zt), qt⟩]− 2γyηE[⟨∇yfω(G(xt), yt; zt), qt⟩]

= −2γyηE[⟨∇yfω(x
∗(yt, zt), yt; zt)−∇yfω(G(xt), yt; zt), qt⟩]

− γyηE[∥∇yfω(G(xt), yt; zt)∥2]− γyηE[∥qt∥2] + γyηE[∥∇yfω(G(xt), yt; zt)− qt∥2]
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≤ γyη
1

c
E[∥∇yfω(x

∗(yt, zt), yt; zt)−∇yfω(G(xt), yt; zt)∥2] + γyηcE[∥qt∥2]

− γyηE[∥∇yfω(G(xt), yt; zt)∥2]− γyηE[∥qt∥2] + 2γyηE[∥∇yfω(G(xt), yt; zt)−∇yfω(H(xt), yt; zt)∥2]
+ 2γyηE[∥∇yfω(H(xt), yt; zt)− qt∥2]

≤ γyη
1

c
E[∥∇yfω(x

∗(yt, zt), yt; zt)−∇yfω(G(xt), yt; zt)∥2]− γyηE[∥∇yfω(G(xt), yt; zt)∥2]

+ 2γyηL
2
fK

K∑
k=1

C2(K−k)
g E[∥g(k)(h(k−1)

t )− h
(k)
t ∥2] + 2γyηE[∥∇yfω(H(xt), yt; zt)− qt∥2]

− (1− c)γyηE[∥qt∥2] , (54)

where c > 0 is a constant, and the last step follows from

E[∥∇yfω(G(xt), yt; zt)−∇yfω(H(xt), yt; zt)∥2]
= E[∥∇yf(G(xt), yt)−∇yf(H(xt), yt)∥2]

≤ L2
fE[∥G(K)(xt)− h

(K)
t ∥2]

≤ L2
fK

K∑
k=1

C2(K−k)
g E[∥g(k)(h(k−1)

t )− h
(k)
t ∥2] . (55)

Setting c = 1
8 , we obtain

Pt+1 − Pt

≤ −γxη

2
E[∥∇xfω(G(xt), yt; zt)∥2] +

γyη

2
E[∥∇yfω(G(xt), yt; zt)∥2]−

ω

2γzη
E[∥zt+1 − zt∥2]

+ γxηE[∥∇xfω(G(xt), yt; zt)− pt∥2] + γxηK

K∑
k=1

AkE[∥g(k)(h(k−1)
t )− h

(k)
t ∥2]

+
(
4γyηγ

2
xη

2ℓ2 − γxη

4

)
E[∥pt∥2] +

(3γyη
4

+
ω + ℓ

2
γ2
yη

2 + γ2
yη

2Lω,d −
7

8
γyη
)
E[∥qt∥2]

+ 8γyηE[∥∇yfω(x
∗(yt, zt), yt; zt)−∇yfω(G(xt), yt; zt)∥2]− γyηE[∥∇yfω(G(xt), yt; zt)∥2]

+ 2γyηL
2
fK

K∑
k=1

C2(K−k)
g E[∥g(k)(h(k−1)

t )− h
(k)
t ∥2] + 2γyηE[∥∇yfω(H(xt), yt; zt)− qt∥2]

+ ω(
1

6γzη
+ 2Cx2

yz
)E[∥zt+1 − zt∥2] + 6ωγzηE[∥x∗(yt+1; zt+1)− x∗(y∗(zt+1); zt+1)∥2]

≤ −γxη

2
E[∥∇xfω(G(xt), yt; zt)∥2]−

γyη

2
E[∥∇yfω(G(xt), yt; zt)∥2] + ω(2Cx2

yz
− 1

3γzη
)E[∥zt+1 − zt∥2]

+ γxηE[∥∇xfω(G(xt), yt; zt)− pt∥2] + 2γyηE[∥∇yfω(H(xt), yt; zt)− qt∥2]

+

K∑
k=1

(
γxηKAk + 2γyηL

2
fKC2(K−k)

g

)
E[∥g(k)(h(k−1)

t )− h
(k)
t ∥2]

+
(
4γyηγ

2
xη

2ℓ2 − γxη

4

)
E[∥pt∥2] +

(3γyη
4

+
ω + ℓ

2
γ2
yη

2 + γ2
yη

2Lω,d −
7

8
γyη
)
E[∥qt∥2]

+ 8γyηℓ
2E[∥x∗(yt, zt)− xt∥2] + 6ωγzηE[∥x∗(yt+1; zt+1)− x∗(y∗(zt+1); zt+1)∥2] . (56)

Furthermore, due to the strong convexity of fω(G(xt), yt; zt) regarding x, we obtain

E[∥x∗(yt, zt)− xt∥2] ≤
1

(ω − ℓ)2
E[∥∇xfω(G(xt), yt; zt)∥2] . (57)

In addition, by introducing

y+(zt) = yt + γyη∇yfω(x
∗(yt, zt), yt; zt) , (58)
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we obtain

E[∥x∗(yt+1; zt+1)− x∗(y∗(zt+1); zt+1)∥2]
= E[∥x∗(yt+1; zt+1)− x∗(zt+1)∥2]
≤ 4E[∥x∗(zt+1)− x∗(zt)∥2] + 4E[∥x∗(zt)− x∗(y+(zt); zt)∥2]
+ 4E[∥x∗(y+(zt); zt)− x∗(yt+1; zt)∥2] + 4E[∥x∗(yt+1; zt)− x∗(yt+1; zt+1)∥2]

≤ 4C2
xz
E[∥zt+1 − zt∥2] + 4E[∥x∗(zt)− x∗(y+(zt); zt)∥2] + 4C2

x1
yz
E[∥y+(zt)− yt+1∥2]

+ 4C2
x2
yz
E[∥zt − zt+1∥2]

= 4(C2
xz

+ C2
x2
yz
)E[∥zt+1 − zt∥2] + 4E[∥x∗(zt)− x∗(y+(zt); zt)∥2]

+ 4γ2
yη

2C2
x1
yz
E[∥∇yfω(x

∗(yt, zt), yt; zt)− qt∥2]

≤ 4(C2
xz

+ C2
x2
yz
)E[∥zt+1 − zt∥2] + 4E[∥x∗(zt)− x∗(y+(zt); zt)∥2]

+ 8γ2
yη

2C2
x1
yz
E[∥∇yfω(x

∗(yt, zt), yt; zt)−∇yfω(G(xt), yt; zt)∥2]

+ 8γ2
yη

2C2
x1
yz
E[∥∇yfω(G(xt), yt; zt)− qt∥2]

≤ 4(C2
xz

+ C2
x2
yz
)E[∥zt+1 − zt∥2] + 4E[∥x∗(zt)− x∗(y+(zt); zt)∥2]

+ 8γ2
yη

2C2
x1
yz
ℓ2E[∥x∗(yt, zt)−G(xt)∥2] + 16γ2

yη
2C2

x1
yz
E[∥∇yfω(H(xt), yt; zt)− qt∥2]

+ 16γ2
yη

2C2
x1
yz
E[∥∇yfω(G(xt), yt; zt)−∇yfω(H(xt), yt; zt)∥2]

≤ 4(C2
xz

+ C2
x2
yz
)E[∥zt+1 − zt∥2] + 4E[∥x∗(zt)− x∗(y+(zt); zt)∥2]

+ 8γ2
yη

2C2
x1
yz
ℓ2E[∥x∗(yt, zt)− xt∥2] + 16γ2

yη
2C2

x1
yz
E[∥∇yfω(H(xt), yt; zt)− qt∥2]

+ 16γ2
yη

2C2
x1
yz
L2
fK

K∑
k=1

C2(K−k)
g E[∥g(k)(h(k−1)

t )− h
(k)
t ∥2] . (59)

Moreover, we derive

∥x∗(zt)− x∗(y+(zt); zt)∥2

≤ 2

ω − ℓ
(hω,p(x

∗(y+(zt); zt); zt)− hω,p(x
∗(zt); zt))

≤ 2

ω − ℓ
(hω,p(x

∗(y+(zt); zt); zt)− fω(x
∗(y+(zt); zt), y

+(zt); zt)

+ fω(x
∗(y+(zt); zt), y

+(zt); zt)− hω,p(x
∗(zt); zt))

≤ 1

(ω − ℓ)µ
∥∇yfω(x

∗(y+(zt); zt), y
+(zt); zt)∥2

≤ 2

(ω − ℓ)µ
∥∇yfω(x

∗(y+(zt); zt), y
+(zt); zt)−∇yfω(x

∗(yt, zt), yt; zt)∥2

+
2

(ω − ℓ)µ
∥∇yfω(x

∗(yt, zt), yt; zt)∥2

≤
2ℓ2C2

x1
yz

(ω − ℓ)µ
∥y+(zt)− yt∥2 +

2ℓ2

(ω − ℓ)µ
∥y+(zt)− yt∥2 +

2

(ω − ℓ)µ
∥∇yfω(x

∗(yt, zt), yt; zt)∥2

≤
2(1 + γ2

yη
2ℓ2C2

x1
yz

+ γ2
yη

2ℓ2)

(ω − ℓ)µ
∥∇yfω(x

∗(yt, zt), yt; zt)∥2

≤
4(1 + γ2

yη
2ℓ2C2

x1
yz

+ γ2
yη

2ℓ2)

(ω − ℓ)µ
∥∇yfω(x

∗(yt, zt), yt; zt)−∇yfω(G(xt), yt; zt)∥2

+
4(1 + γ2

yη
2ℓ2C2

x1
yz

+ γ2
yη

2ℓ2)

(ω − ℓ)µ
∥∇yfω(G(xt), yt; zt)∥2
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≤
4(1 + γ2

yη
2ℓ2C2

x1
yz

+ γ2
yη

2ℓ2)ℓ2

(ω − ℓ)µ
∥x∗(yt, zt)− xt∥2

+
4(1 + γ2

yη
2ℓ2C2

x1
yz

+ γ2
yη

2ℓ2)

(ω − ℓ)µ
∥∇yfω(G(xt), yt; zt)∥2

≤
4(1 + γ2

yη
2ℓ2C2

x1
yz

+ γ2
yη

2ℓ2)ℓ2

(ω − ℓ)3µ
∥∇xfω(G(xt), yt; zt)∥2

+
4(1 + γ2

yη
2ℓ2C2

x1
yz

+ γ2
yη

2ℓ2)

(ω − ℓ)µ
∥∇yfω(G(xt), yt; zt)∥2 . (60)

Therefore, we obtain the following upper bound for Pt+1 − Pt:

Pt+1 − Pt

≤ −γxη

2
E[∥∇xfω(G(xt), yt; zt)∥2]−

γyη

2
E[∥∇yfω(G(xt), yt; zt)∥2] + ω(2Cx2

yz
− 1

3γzη
)E[∥zt+1 − zt∥2]

+ γxηE[∥∇xfω(G(xt), yt; zt)− pt∥2] + 2γyηE[∥∇yfω(H(xt), yt; zt)− qt∥2]

+

K∑
k=1

(
γxηKAk + 2γyηL

2
fKC2(K−k)

g

)
E[∥g(k)(h(k−1)

t )− h
(k)
t ∥2] + 24ωγzη(C

2
xz

+ C2
x2
yz
)E[∥zt+1 − zt∥2]

+
(
4γyηγ

2
xη

2ℓ2 − γxη

4

)
E[∥pt∥2] +

(3γyη
4

+
ω + ℓ

2
γ2
yη

2 + γ2
yη

2Lω,d − 7

8
γyη
)
E[∥qt∥2]

+

(
8γyηℓ

2 + 48ωγzγ
2
yη

3C2
x1
yz
ℓ2

(ω − ℓ)2
+

96ωγzη(1 + γ2
yη

2ℓ2C2
x1
yz

+ γ2
yη

2ℓ2)ℓ2

(ω − ℓ)3µ

)
E[∥∇xfω(G(xt), yt; zt)∥2]

+ 24ωγzη
4(1 + γ2

yη
2ℓ2C2

x1
yz

+ γ2
yη

2ℓ2)

(ω − ℓ)µ
E[∥∇yfω(G(xt), yt; zt)∥2]

+ 96ωγzγ
2
yη

3C2
x1
yz
E[∥∇yfω(H(xt), yt; zt)− qt∥2]

+ 96ωγzγ
2
yη

3C2
x1
yz
L2

fK

K∑
k=1

C2(K−k)
g E[∥g(k)(h(k−1)

t )− h
(k)
t ∥2]

≤
(8γyηℓ2 + 48ωγzγ

2
yη

3C2
x1
yz
ℓ2

(ω − ℓ)2
+

96ωγzη(1 + γ2
yη

2ℓ2C2
x1
yz

+ γ2
yη

2ℓ2)ℓ2

(ω − ℓ)3µ
− γxη

2

)
E[∥∇xfω(G(xt), yt; zt)∥2]

+

(
24ωγzη

4(1 + γ2
yη

2ℓ2C2
x1
yz

+ γ2
yη

2ℓ2)

(ω − ℓ)µ
− γyη

2

)
E[∥∇yfω(G(xt), yt; zt)∥2]

+ ω

(
24γzη(C

2
xz

+ C2
x2
yz
) + 2Cx2

yz
− 1

3γzη

)
E[∥zt+1 − zt∥2]

+ γxηE[∥∇xfω(G(xt), yt; zt)− pt∥2] +
(
2γyη + 96ωγzγ

2
yη

3C2
x1
yz

)
E[∥∇yfω(H(xt), yt; zt)− qt∥2]

+

K∑
k=1

(
γxηKAk + 2γyηL

2
fKC2(K−k)

g + 96ωγzγ
2
yη

3C2
x1
yz
L2

fKC2(K−k)
g

)
E[∥g(k)(h(k−1)

t )− h
(k)
t ∥2]

+
(
4γyηγ

2
xη

2ℓ2 − γxη

4

)
E[∥pt∥2] +

(3γyη
4

+
ω + ℓ

2
γ2
yη

2 + γ2
yη

2Lω,d − 7

8
γyη
)
E[∥qt∥2] . (61)

B.2.2 Bound Ht+1 −Ht

In the following, we aim to derive an upper bound for Ht+1 −Ht:

Ht+1 −Ht

≤
(8γyηℓ2 + 48ωγzγ

2
yη

3C2
x1
yz
ℓ2

(ω − ℓ)2
+

96ωγzη(1 + γ2
yη

2ℓ2C2
x1
yz

+ γ2
yη

2ℓ2)ℓ2

(ω − ℓ)3µ
− γxη

2

)
E[∥∇xfω(G(xt), yt; zt)∥2]

+

(
24ωγzη

4(1 + γ2
yη

2ℓ2C2
x1
yz

+ γ2
yη

2ℓ2)

(ω − ℓ)µ
− γyη

2

)
E[∥∇yfω(G(xt), yt; zt)∥2]
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+ ω

(
24γzη(C

2
xz

+ C2
x2
yz
) + 2Cx2

yz
− 1

3γzη

)
E[∥zt+1 − zt∥2]

+
(
γxη − ρxη

2νa
)
E[∥∇xfω(G(xt), yt; zt)− pt∥2]

+
(
2γyη + 96ωγzγ

2
yη

3C2
x1
yz

− ρyη
2νb
)
E[∥∇yfω(H(xt), yt; zt)− qt∥2]

+

K∑
k=1

(
γxηKAk + 2γyηL

2
fKC2(K−k)

g + 96ωγzγ
2
yη

3C2
x1
yz
L2

fKC2(K−k)
g + 2C2

p2α
2η4νa

( K∑
j=k

(2C2
g )

j−k
)

+ 4α2η4νbL
2
f (2C

2
g )

K−k + 2α2η4
( K∑

j=k+1

λj(2C
2
g )

j−k
)
− αη2λk

)
E[∥g(k)(h(k−1)

t )− h
(k)
t ∥2]

+
(
4γyηγ

2
xη

2ℓ2 + 2C2
p

K∑
k=0

(2C2
g )

kγ2
xη

2νa + 2L2
f (2C

2
g )

Kγ2
xη

2νb + γ2
xη

2
K∑

k=1

λk(2C
2
g )

k − γxη

4

)
E[∥pt∥2]

+
(3γyη

4
+

ω + ℓ

2
γ2
yη

2 + γ2
yη

2Lω,d + 2C2
pγ

2
yη

2νa + 2L2
fγ

2
yη

2νb −
7

8
γyη
)
E[∥qt∥2]

+ 4C2
pα

2η4σ2νa

K∑
k=1

k∑
j=1

(2C2
g )

j−1 + 2ρ2xη
4νaC

2
pσ

2 + 4α2η4νbL
2
fσ

2
K∑

k=1

(2C2
g )

k−1

+ 2ρ2yη
4νbσ

2 + 2α2η4σ2
K∑

k=1

λk

k−1∑
j=0

(2C2
g )

j . (62)

We consider the following choice for bounding E[∥∇xfω(G(xt), yt; zt)∥2] and
E[∥∇yfω(G(xt), yt; zt)∥2]:

8γyηℓ
2

(ω − ℓ)2
− γxη

8
≤ 0 ,

48ωγzγ
2
yη

3C2
x1
yz
ℓ2

(ω − ℓ)2
− γxη

512
≤ 0 ,

96ωγzη(1 + γ2
yη

2ℓ2C2
x1
yz

+ γ2
yη

2ℓ2)ℓ2

(ω − ℓ)3µ
− γxη

512
≤ 0 ,

24ωγzη
4(1 + γ2

yη
2ℓ2C2

x1
yz

+ γ2
yη

2ℓ2)

(ω − ℓ)µ
− γyη

8
≤ 0 . (63)

Since γzη ≤ 1 and Cx1
yz

= ω+ℓ
ω−ℓ , we set

γy = γx
(ω − ℓ)2

64ℓ2︸ ︷︷ ︸
cγy

, γz = γx
(ω − ℓ)3µ

98304ωℓ2︸ ︷︷ ︸
cγz

,

γx ≤ min{ ℓ2

6ω(ω + ℓ)2
,

64ℓ

(ω − ℓ)2
√

C2
x1
yz

+ 1
} . (64)

Additionally, we consider the following choice for bounding E[∥zt+1 − zt∥2], we set

ω
(
2Cx2

yz
+ 24γzη(C

2
xz

+ C2
x2
yz
)− 1

3γzη

)
≤ − ω

4γzη
. (65)

Specifically, we enforce

2ωCx2
yz

≤ ω

24γzη
, 24ωγzη(C

2
xz

+ C2
x2
yz
) ≤ ω

24γzη
. (66)

Then, based on Eq. (64), from Cxz = Cx2
yz

and η < 1, we obtain

γx ≤ 1

48ωcγz
Cx2

yz

. (67)

To remove the term E[∥∇xfω(H(xt), yt; zt)− pt∥2], we impose

γxη − ρxη
2νa ≤ 0 . (68)
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From this, we obtain the parameter choice

νa =
γx
ρxη

. (69)

Similarly, to remove the term E[∥∇yfω(H(xt), yt; zt)− qt∥2], we impose

2γyη + 96ωγzγ
2
yη

3C2
x1
yz

− ρyη
2νb ≤ 0 . (70)

From the second inequality in Eq. (63) and definition of cγy , we have

96ωγzγ
2
yη

3C2
x1
yz

≤ 2γxη

512

(ω − ℓ)2

ℓ2
=

2γxη

512
64cγy

≤ 1

2
γyη . (71)

As a result, we require
5

2
γyη ≤ ρyη

2νb , (72)

which leads to the parameter choice

νb =
5γy
2ρyη

. (73)

Then, for any k ∈ {1, · · · ,K}, to remove the term E[∥g(k)(h(k−1)
t )− h

(k)
t ∥2], we set

γxηKAk + 2γyηL
2
fKC2(K−k)

g + 96ωγzγ
2
yη

3C2
x1
yz
L2
fKC2(K−k)

g + 4α2η4C2
pνa

( K∑
j=k

(2C2
g )

j−k
)

+ 4α2η4νbL
2
f (2C

2
g )

K−k + 2α2η4
K∑

k=1

( K∑
j=k+1

λj(2C
2
g )

j−k
)
− αη2λk ≤ 0 . (74)

Plugging the value of νa and νb, we obtain

γxηKAk + 2γyηL
2
fKC2(K−k)

g + 96ωγzγ
2
yη

3C2
x1
yz
L2
fKC2(K−k)

g + 4α2η4C2
p

γx
ρxη

( K∑
j=k

(2C2
g )

j−k
)

+ 4α2η4
5γy
2ρyη

L2
f (2C

2
g )

K−k + 2α2η4
( K∑

j=k+1

λj(2C
2
g )

j−k
)
− αη2λk ≤ 0 . (75)

To analyze this, we first simplify the expression:

γxηKAk + 2γyηL
2
fKC2(K−k)

g + 96ωγzγ
2
yη

3C2
x1
yz
L2
fKC2(K−k)

g + 4α2η4C2
p

γx
ρxη

( K∑
j=k

(2C2
g )

j−k
)

+ 4α2η4
5γy
2ρyη

L2
f (2C

2
g )

K−k − 1

2
αη2λk

≤ γxηKAk + 2γyηL
2
fKC2(K−k)

g +
1

2
γyηL

2
fKC2(K−k)

g + 4α2η4C2
p

γx
ρxη

( K∑
j=k

(2C2
g )

j−k
)

+ 4α2η4
5γy
2ρyη

L2
f (2C

2
g )

K−k − 1

2
αη2λk

≤ αη2
[ 1

αη
γxKAk +

1

αη

5

2
γyL

2
fKC2(K−k)

g + 4αηC2
p

γx
ρx

( K∑
j=k

(2C2
g )

j−k
)

+ 10αη
γy
ρy

L2
f (2C

2
g )

K−k − 1

2
λk

]
. (76)

Due to αη2 ≤ 1, we enforce the following to be non-positive:

λk ≥ γx
αη

[
2KAk + 5cγy

L2
fKC2(K−k)

g

]
+ γxαη

[
8C2

p

1

ρx

( K∑
j=k

(2C2
g )

j−k
)
+ 20

cγy

ρy
L2
f (2C

2
g )

K−k
]
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=
γx
αη

[
2KAk + 5cγy

L2
fKC2(K−k)

g

]
+ α2η2

γx
αη

[
8C2

p

1

ρx

( K∑
j=k

(2C2
g )

j−k
)
+ 20

cγy

ρy
L2
f (2C

2
g )

K−k
]
.

(77)

Therefore, we obtain the parameter choice for any λk where k ∈ {1, · · · ,K}:

λk =
γx
αη

[
2KAk + 5cγy

L2
fKC2(K−k)

g + 8C2
p

α

ρx

( K∑
j=k

(2C2
g )

j−k
)
+ 20

αcγy

ρy
L2
f (2C

2
g )

K−k
]

≜
γx
αη

λ̂k . (78)

Moreover, we enforce

2α2η4
( K∑

j=k+1

λj(2C
2
g )

j−k
)
− αη2λk ≤ −1

2
αη2λk , (79)

for k ∈ {1, · · · ,K}, which leads to

η ≤ 1

2

√√√√ λ̂k

α
(∑K

j=k+1 λ̂j(2C2
g )

j−k
) . (80)

To guarantee that E[∥pt∥2] cancels out, we enforce

4γyηγ
2
xη

2ℓ2 + 2C2
p

K∑
k=0

(2C2
g )

kγ2
xη

2νa + 2L2
f (2C

2
g )

Kγ2
xη

2νb + γ2
xη

2
K∑

k=1

λk(2C
2
g )

k − γxη

4
≤ 0 .

(81)

This is equivalent to enforce

4γyηγ
2
xη

2ℓ2 + 2C2
pγ

2
xη

2 γx
ρxη

K∑
k=0

(2C2
g )

k + γ2
xη

2 5γy
2ρyη

2L2
f (2C

2
g )

K + γ2
xη

2
K∑

k=1

γx
αη

λ̂k(2C
2
g )

k − γxη

4
≤ 0 .

(82)

Specifically, we enforce

4γyηγ
2
xη

2ℓ2 ≤ γxη

16
, 2C2

pγ
2
xη

2 γx
ρxη

K∑
k=0

(2C2
g )

k ≤ γxη

16
,

γ2
xη

2 5γy
2ρyη

2L2
f (2C

2
g )

K ≤ γxη

16
, γ2

xη
2

K∑
k=1

γx
αη

λ̂k(2C
2
g )

k ≤ γxη

16
. (83)

To solve the first third inequalities, we obtain

γx ≤

{
1

8
√
cγy

ℓ
,

√
ρx

4Cp

√
2
∑K

k=0(2C
2
g )

k

,

√
ρy

4
√

5cγy (2C
2
g )

KLf

}
. (84)

For the last inequality, it is equivalent to enforce

γ2
xη

2
K∑

k=1

γx
αη

(
dk + 8C2

p

α

ρx

( K∑
j=k

(2C2
g )

j−k
)
+ 20

αcγy

ρy
L2
f (2C

2
g )

K−k

)
(2C2

g )
k ≤ γxη

16
, (85)

where

dk = 2KAk + 5cγy
L2
fKC2(K−k)

g . (86)
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Specifically, we enforce

γ2
xη

2
K∑

k=1

γx
αη

dk(2C
2
g )

k ≤ γxη

64
,

γ2
xη

2
K∑

k=1

γx
αη

8C2
pα

ρx

K∑
j=k

(2C2
g )

j ≤ γxη

64
,

γ2
xη

2
K∑

k=1

γx
αη

20αcγy

(2C2
g )

K

ρy
≤ γxη

64
. (87)

For the first inequality, since dk is independent of hyperparameters, we obtain

γx ≤
√
α

8
√∑K

k=1 dk(2C
2
g )

k

. (88)

For the remaining inequalities, we obtain

γx ≤

{ √
ρx

16Cp

√
2
∑K

k=1

∑K
j=k(2C

2
g )

j
,

√
ρy

16
√
5cγy

(2C2
g )

K

}
. (89)

As for E[∥qt∥2], we enforce

3γyη

4
+

ω + ℓ

2
γ2
yη

2 + γ2
yη

2Lω,d + 2C2
pγ

2
yη

2νa + 2L2
fγ

2
yη

2νb −
7

8
γyη ≤ 0 . (90)

This is equivalent to enforce

3γyη

4
+

ω + ℓ

2
γ2
yη

2 + γ2
yη

2Lω,d + 2C2
pγ

2
yη

2 γx
ρxη

+ 2L2
fγ

2
yη

2 5γy
2ρyη

− 7

8
γyη ≤ 0 . (91)

Specifically, we enforce

γ2
yη

2Lω,d +
γ2
yη

2(ω + ℓ)

2
≤ γyη

32
,

2C2
pγ

2
yη

2 γx
ρxη

≤ γyη

32
, 2L2

fγ
2
yη

2 5γy
2ρyη

≤ γyη

32
. (92)

To solve these inequalities, we obtain

γx ≤

{
1

16cγy
(2Lω,d + ω + ℓ)

,

√
ρx

8
√
cγy

Cp
,

√
ρy

4
√
10cγyLf

}
. (93)

In summary, by setting

γx ≤ min

{
ℓ2

6ω(ω + ℓ)2
,

64ℓ

(ω − ℓ)2
√
C2

x1
yz

+ 1
,

1

48ωcγz
Cx2

yz

,
1

8
√
cγy

ℓ
,

1

16cγy
(2Lω,d + ω + ℓ)

,

√
ρx

4Cp

√
2
∑K

k=0(2C
2
g )

k

,

√
ρy

4
√
5cγy

(2C2
g )

KLf

,

√
α

8
√∑K

k=1 dk(2C
2
g )

k

,

√
ρx

8
√
cγy

Cp
,

√
ρx

16Cp

√
2
∑K

k=1

∑K
j=k(2C

2
g )

j
,

√
ρy

16
√

5cγy
(2C2

g )
K

,

√
ρy

4
√
10cγy

Lf

}
,

γy = γx
(ω − ℓ)2

64ℓ2︸ ︷︷ ︸
cγy

, γz = γx
(ω − ℓ)3µ

98304ωℓ2︸ ︷︷ ︸
cγz

,

36



η ≤ min
{ 1
√
ρx

,
1

√
ρy

,
1√
α
,
1

γz
,

1

2γx(ω + ℓ)
,
1

2

√√√√ λ̂k

α
(∑K

j=k+1 λ̂j(2C2
g )

j−k
)} , (94)

we obtain

Ht+1 −Ht

≤ −γxη

4
E[∥∇xfω(G(xt), yt; zt)∥2]−

γyη

4
E[∥∇yfω(G(xt), yt; zt)∥2]−

ω

4γzη
E[∥zt+1 − zt∥2]

+ 4C2
pα

2η4σ2 γx
ρxη

K∑
k=1

k∑
j=1

(2C2
g )

j−1 + 2ρ2xη
4 γx
ρxη

C2
pσ

2 + 4α2η4σ2 5γy
2ρyη

L2
f

K∑
k=1

(2C2
g )

k−1

+ 2ρ2yη
4 5γy
2ρyη

σ2 + 2α2η4σ2
K∑

k=1

γx
αη

λ̂k

k−1∑
j=0

(2C2
g )

j

≤ −γxη

4
E[∥∇xfω(G(xt), yt; zt)∥2]− cγy

γxη

4
E[∥∇yfω(G(xt), yt; zt)∥2]− cγzω

γxη

4
E[∥xt − zt∥2]

+ 4C2
pα

2η4σ2 γx
ρxη

K∑
k=1

k∑
j=1

(2C2
g )

j−1 + 2ρ2xη
4 γx
ρxη

C2
pσ

2 + 4α2η4σ2 5γxcγy

2ρyη
L2
f

K∑
k=1

(2C2
g )

k−1

+ 2ρ2yη
4 5γxcγy

2ρyη
σ2 + 2α2η4σ2

K∑
k=1

γx
αη

λ̂k

k−1∑
j=0

(2C2
g )

j . (95)

From

∥∇xf(G(xt), yt)∥2 ≤ 2∥∇xfω(G(xt), yt; zt)∥2 + 2ω2∥xt − zt∥2 ,
∥∇yf(G(xt), yt)∥2 = ∥∇yfω(G(xt), yt; zt)∥2 , (96)

by summing over t from 0 to T − 1 and reformulate it, we obtain

1

T

T−1∑
t=0

(
E[∥∇xf(G(xt), yt)∥2] + κE[∥∇yf(G(xt), yt)∥2]

)
≤ 1

T

T−1∑
t=0

(
2E[∥∇xfω(G(xt), yt; zt)∥2] + 2κE[∥∇yfω(G(xt), yt; zt)∥2] + 2ω2E[∥xt − zt∥2]

)
≤ max

{
8

γxη
,

8κ

γxηcγy

,
8ω

γxηcγz

}(
H0 −HT

T
+ 4C2

p

α2η2

ρx

K∑
k=1

k∑
j=1

(2C2
g )

j−1σ2 + 2ρxη
2C2

pσ
2

+ 10cγy

α2η2

ρy
L2
f

K∑
k=1

(2C2
g )

k−1σ2 + 5ρyη
2cγy

σ2 + 2αη2σ2
K∑

k=1

λ̂k

k−1∑
j=0

(2C2
g )

j

)
. (97)

When t = 0, we derive

H0 = P0 +
γx
ρxη

E[∥p0 −∇xfω(H(x0), y0; z0)∥2] +
5γy
2ρyη

E[∥q0 −∇yfω(H(x0), y0; z0)∥2]

+

K∑
k=1

γx
αη

λ̂kE[∥h(k)
0 − g(k)(h

(k−1)
0 )∥2]

≤ P0 +
γx
ρxη

σ2

S
+

5γxcγy

2ρyη

σ2

S
+

K∑
k=1

γx
αη

λ̂k
σ2

S
. (98)

Finally, we have

1

T

T−1∑
t=0

(
E[∥∇xf(G(xt), yt)∥2] + κE[∥∇yf(G(xt), yt)∥2]

)
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≤ O
( κP0

γxηT

)
+O

( κσ2

ρxη2TS

)
+O

( κσ2

ρyη2TS

)
+O

( κσ2

αη2TS

)
+O

(
κ
α2η2σ2

ρx

)
+O

(
κρxη

2σ2
)
+O

(
κ
α2η2σ2

ρy

)
+O

(
κρyη

2σ2
)
+O

(
καη2σ2

)
. (99)

C Appendix: Stagewise-SMCGDA-VR

Note that in this section, we provide a general algorithm for the multi-level compositional minimax
optimization problem satisfying the two-sided PL condition. Specifically, we aim to solve the
following problem:

min
x∈Rdx

max
y∈Rdy

f(G(x), y) , (100)

where f(·, ·) satisfies the two-sided PL condition. To simplify the analysis, we further assume that
the loss function satisfies the same continuity, smoothness, and bounded variance assumptions as
stated in the main text.

In this general setting, we can obtain two results which may be of independent interest beyond their
use for the translation phase.

First, when the number of stages is just one, i.e., R = 1, we can obtain the convergence rate for the
multi-level compositional minimax optimization problem satisfying the nonconvex-PL assumption in
Theorem C.1.

Theorem C.1. Given Assumption 3.1-3.3, when R = 1, by setting ηy,1 = O(ϵ/κ), ηx,1 = O(ϵ/κ3),
and the initial batch size as O(κ/ϵ), after running Algorithm 3 for T1 = O(κ3/ϵ3) total iterations,
we have 1

T1

∑T1−1
t=0 E[∥∇Φ(x1,t)∥2] ≤ ϵ2.

Note that in the proof of Theorem C.1, we do not use the PL condition with respect to x. Therefore,
the result provides a convergence rate for the nonconvex-PL minimax problem. In addition, this
convergence rate corresponds to the standard compositional minimax algorithm without the use of the
smoothing technique. Therefore, in Table C, we compare the convergence rate and learning rate with
and without the use of the smoothing technique. It can be seen that we should use a smaller learning
rate for x compared to y when not using the smoothing technique, as the condition number κ > 1.

Table 3: The comparison of the convergence rate and learning rate with and without the use of the
smoothing technique. LR-x denotes the learning rate for x, and LR-y denotes that for y.

Algorithms Convergence Rate LR-x LR-y LR-x/LR-y
Smoothed-SMCGDA-VR (Thm. 4.1) O(κ3/2/ϵ3) O(ϵ/κ1/2) O(ϵ/κ1/2) O(1)
Onestage-SMCGDA-VR (Thm. C.1) O(κ3/ϵ3) O(ϵ/κ3) O(ϵ/κ) O(1/κ2)

Second, when the number of stages is greater than one, i.e., R > 1, we can obtain the convergence
rate for the multi-level compositional minimax optimization problem satisfying the two-sided PL
condition in Theorem C.2.

Theorem C.2. Given Assumption 3.1-3.4, by setting c0 =
25L2

f

µ2 , ρx = 6400c0L
2
β , ρy = 640L2

β , α =

640c0L
2
β , ηy,0 = 1

20Lβ
, T0 = max{225, 16V0

Lβσ2 }, and for r ≥ 1, ηx,r = O(µ2/(
√
2r−1Lβ)), ηy,r =

O(1/(
√
2r−1Lβ)), Tr = O(c0/(µ× 2r−1)), after running Algorithm 3 for O(κ6/ϵ) total iterations,

we can get E[Φ(x̃R)− Φ(x∗)] ≤ ϵ.

C.1 Useful Lemmas

Lemma C.3. Given Assumptions 3.1-3.3 and ηx,r ≤ 1
2LΦ

, we know

E[Φ(xr,t+1)] ≤ E[Φ(xr,t)]−
ηx,r
2

E[∥∇Φ(xr,t)∥2]−
ηx,r
4

E[∥pr,t∥2]
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Algorithm 3 Stagewise Stochastic Multi-level Compositional Gradient Descent Ascent with Variance
Reduced Algorithm (Stagewise-SMCGDA-VR)
Input: ρx > 0, ρy > 0, α > 0, ηx,r > 0, ηy,r > 0.

h̃
(0)
0 = x0 and h̃

(k)
0 = g(k)(h̃

(k−1)
0 ; ξ

(k)
0,0 ), for k ∈ {1, · · · ,K}.

p̃0 = ∇g(1)(x0; ξ
(1)
r,0 ) · · · ∇g(K)(h̃

(K−1)
0 ; ξ

(K)
r,0 )∇1f(h̃

(K)
0 , y0; ζ0,0),

q̃0 = ∇2f(h̃
(K)
0 , y0; ζ0,0),

1: for r = 0, · · · , R− 1 do
2: xr,0 = x̃r, yr,0 = ỹr, h(k)

r,0 = h̃
(k)
r for k ∈ {0, · · · ,K − 1},

pr,0 = p̃r, qr,0 = q̃r.
3: for t = 0, · · · , Tr − 1, do
4: xr,t+1 = xr,t − ηx,rpr,t ,

yr,t+1 = yr,t + ηy,rqr,t .
5: h

(0)
r,t+1 = xr,t+1,

6: for k = 1, · · · ,K do
7: Compute k-th inner-level function:

h
(k)
r,t+1 = g(k)(h

(k−1)
r,t+1 ; ξ

(k)
r,t+1) + (1− αη2x,r)(h

(k)
r,t − g(k)(h

(k−1)
r,t ; ξ

(k)
r,t+1)),

8: end for
9: Compute stochastic compositional gradient ur,t+1 and vr,t+1:

ur,t+1;t+1 = ∇g(1)(h
(0)
r,t+1; ξ

(1)
r,t+1) · · · ∇g(K−1)(h

(K−2)
r,t+1 ; ξ

(K−1)
r,t+1 )∇g(K)(h

(K−1)
r,t+1 ; ξ

(K)
r,t+1)×

∇1f(h
(K)
r,t+1, yr,t+1; ζr,t+1) ,

vr,t+1;t+1 = ∇2f(h
(K)
r,t+1, yr,t+1; ζr,t) ,

10: Compute variance-reduced gradient pr,t+1 and qr,t+1:
pr,t+1 = ur,t+1;t+1 + (1− ρxη

2
x,r)(pr,t − ur,t;t+1),

qr,t+1 = vr,t+1;t+1 + (1− ρyη
2
y,r)(qr,t − vr,t;t+1),

11: end for
12: Randomly select (x̃r+1, ỹr+1, h̃

(k)
r+1, p̃r+1, q̃r+1) from {(xr,t, yr,t, h

(k)
r,t , pr,t, qr,t)}

Tr−1
t=0 .

13: end for

+ ηx,rE[∥∇Φ(xr,t)−∇xf(G(xr,t), yr,t)∥2] + 2ηx,rK

K∑
k=1

AkE[∥g(k)(h(k−1)
r,t )− h

(k)
r,t ∥2]

+ 2ηx,rE[∥∇xf(H(xr,t), yr,t)− pr,t∥2] . (101)

Proof.

E[Φ(xr,t+1)] ≤ E[Φ(xr,t)] + E[⟨∇Φ(xr,t), xr,t+1 − xr,t⟩] +
LΦ

2
E[∥xr,t+1 − xr,t∥2]

= E[Φ(xr,t)]− ηx,rE[⟨∇Φ(xr,t), pr,t⟩] +
η2x,rLΦ

2
E[∥pr,t∥2]

= E[Φ(xr,t)]−
ηx,r
2

E[∥∇Φ(xr,t)∥2]−
ηx,r
2

E[∥pr,t∥2] +
ηx,r
2

E[∥∇Φ(xr,t)− pr,t∥2] +
η2x,rLΦ

2
E[∥pr,t∥2]

≤ E[Φ(xr,t)]−
ηx,r
2

E[∥∇Φ(xr,t)∥2] + (
η2x,rLΦ

2
− ηx,r

2
)E[∥pr,t∥2]

+ ηx,rE[∥∇Φ(xr,t)−∇xf(G(xr,t), yr,t)∥2] + ηx,rE[∥∇xf(G(xr,t), yr,t)− pr,t∥2]

≤ E[Φ(xr,t)]−
ηx,r
2

E[∥∇Φ(xr,t)∥2]−
ηx,r
4

E[∥pr,t∥2] + ηx,rE[∥∇Φ(xr,t)−∇xf(G(xr,t), yr,t)∥2]

+ 2ηx,rE[∥∇xf(G(xr,t), yr,t)−∇xf(H(xr,t), yr,t)∥2] + 2ηx,rE[∥∇xf(H(xr,t), yr,t)− pr,t∥2]

≤ E[Φ(xr,t)]−
ηx,r
2

E[∥∇Φ(xr,t)∥2]−
ηx,r
4

E[∥pr,t∥2] + ηx,rE[∥∇Φ(xr,t)−∇xf(G(xr,t), yr,t)∥2]

+ 2ηx,rK

K∑
k=1

AkE[∥g(k)(h(k−1)
r,t )− h

(k)
r,t ∥2] + 2ηx,rE[∥∇xf(H(xr,t), yr,t)− pr,t∥2] , (102)
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where the second-to-last step holds due to ηx,r ≤ 1
2LΦ

.

Lemma C.4. Given Assumption 3.1-3.3 , ηy,r ≤ 1
ℓ , we have

E[f(G(xr,t), yr,t)]

≤ E[f(G(xr,t+1), yr,t+1)] +
3ηx,r
2

E[∥∇xf(G(xr,t), yr,t)∥2]−
ηy,r
4

E[∥∇yf(G(xr,t), yr,t)∥2]

+ ηx,rK

K∑
k=1

AkE[∥g(k)(h(k−1)
r,t )− h

(k)
r,t ∥2] + 2ηy,rL

2
fK

K∑
k=1

C2(K−k)
g E[∥g(k)(h(k−1)

r,t )− h
(k)
r,t ∥2]

+ ηx,rE[∥∇xf(H(xr,t), yr,t)− pr,t∥2] + 2ηy,rE[∥∇yf(H(xr,t), yr,t)− qr,t∥2]

+ 2η2x,rℓE[∥pr,t∥2]−
ηy,r
4

E[∥qr,t∥2] . (103)

Proof. First, from Lemma B.1, we obtain

E[f(G(xr,t), yr,t)]

≤ E[f(G(xr,t+1), yr,t)]− E[⟨∇xf(G(xr,t), yr,t), xr,t+1 − xr,t⟩] +
ℓ

2
E[∥xr,t+1 − xr,t∥2]

= E[f(G(xr,t+1), yr,t)] + ηx,rE[⟨∇xf(G(xr,t), yr,t), pr,t⟩] +
η2x,rℓ

2
E[∥pr,t∥2]

= E[f(G(xr,t+1), yr,t)] + ηx,rE[∥∇xf(G(xr,t), yr,t)∥2]

+ ηx,rE[⟨∇xf(G(xr,t), yr,t), pr,t −∇xf(G(xr,t), yr,t)⟩] +
η2x,rℓ

2
E[∥pr,t∥2]

≤ E[f(G(xr,t+1), yr,t)] +
3ηx,r
2

E[∥∇xf(G(xr,t), yr,t)∥2] +
ηx,r
2

E[∥∇xf(G(xr,t), yr,t)− pr,t∥2]

+
η2x,rℓ

2
E[∥pr,t∥2]

≤ E[f(G(xr,t+1), yr,t)] +
3ηx,r
2

E[∥∇xf(G(xr,t), yr,t)∥2] +
η2x,rℓ

2
E[∥pr,t∥2]

+ ηx,rE[∥∇xf(G(xr,t), yr,t)−∇xf(H(xr,t), yr,t)∥2] + ηx,rE[∥∇xf(H(xr,t), yr,t)− pr,t∥2]

≤ E[f(G(xr,t+1), yr,t)] +
3ηx,r
2

E[∥∇xf(G(xr,t), yr,t)∥2] +
η2x,rℓ

2
E[∥pr,t∥2]

+ ηx,rK

K∑
k=1

AkE[∥g(k)(h(k−1)
r,t )− h

(k)
r,t ∥2] + ηx,rE[∥∇xf(H(xr,t), yr,t)− pr,t∥2] . (104)

Moreover, we obtain

E[f(G(xr,t+1), yr,t)]

≤ E[f(G(xr,t+1), yr,t+1)]− E[⟨∇yf(G(xr,t+1), yr,t), yr,t+1 − yr,t⟩] +
ℓ

2
E[∥yr,t+1 − yr,t∥2]

= E[f(G(xr,t+1), yr,t+1)]− ηy,rE[⟨∇yf(G(xr,t+1), yr,t), qr,t⟩] +
η2y,rℓ

2
E[∥qr,t∥2]

≤ E[f(G(xr,t+1), yr,t+1)]−
ηy,r
2

E[∥∇yf(G(xr,t+1), yr,t)∥2] +
ηy,r
2

E[∥∇yf(G(xr,t+1), yr,t)− qr,t∥2]

+ (
η2y,rℓ

2
− ηy,r

2
)E[∥qr,t∥2]

≤ E[f(G(xr,t+1), yr,t+1)]−
ηy,r
2

E[∥∇yf(G(xr,t+1), yr,t)∥2] + (
η2y,rℓ

2
− ηy,r

2
)E[∥qr,t∥2]

+ ηy,rE[∥∇yf(G(xr,t+1), yr,t)−∇yf(G(xr,t), yr,t)∥2] + ηy,rE[∥∇yf(G(xr,t), yr,t)− qr,t∥2]

≤ E[f(G(xr,t+1), yr,t+1)]−
ηy,r
4

E[∥∇yf(G(xr,t), yr,t)∥2] + (
η2y,rℓ

2
− ηy,r

2
)E[∥qr,t∥2]
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+
3

2
ηy,rE[∥∇yf(G(xr,t+1), yr,t)−∇yf(G(xr,t), yr,t)∥2] + ηy,rE[∥∇yf(G(xr,t), yr,t)− qr,t∥2]

≤ E[f(G(xr,t+1), yr,t+1)]−
ηy,r
4

E[∥∇yf(G(xr,t), yr,t)∥2] + (
η2y,rℓ

2
− ηy,r

2
)E[∥qr,t∥2]

+
3

2
ηy,rℓ

2E[∥xr,t+1 − xr,t∥2] + ηy,rE[∥∇yf(G(xr,t), yr,t)− qr,t∥2]

≤ E[f(G(xr,t+1), yr,t+1)]−
ηy,r
4

E[∥∇yf(G(xr,t), yr,t)∥2]−
ηy,r
4

E[∥qr,t∥2] +
3

2
η2x,rℓE[∥pr,t∥2]

+ 2ηy,rE[∥∇yf(G(xr,t), yr,t)−∇yf(H(xr,t), yr,t)∥2] + 2ηy,rE[∥∇yf(H(xr,t), yr,t)− qr,t∥2]

≤ E[f(G(xr,t+1), yr,t+1)]−
ηy,r
4

E[∥∇yf(G(xr,t), yr,t)∥2]−
ηy,r
4

E[∥qr,t∥2] +
3

2
η2x,rℓE[∥pr,t∥2]

+ 2ηy,rL
2
fE[∥G(xr,t)− h

(K)
r,t ∥2] + 2ηy,rE[∥∇yf(H(xr,t), yr,t)− qr,t∥2]

≤ E[f(G(xr,t+1), yr,t+1)]−
ηy,r
4

E[∥∇yf(G(xr,t), yr,t)∥2]−
ηy,r
4

E[∥qr,t∥2] +
3

2
η2x,rℓE[∥pr,t∥2]

+ 2ηy,rL
2
fK

K∑
k=1

C2(K−k)
g E[∥g(k)(h(k−1)

r,t )− h
(k)
r,t ∥2] + 2ηy,rE[∥∇yf(H(xr,t), yr,t)− qr,t∥2] ,

(105)

where the sixth step holds due to ηy,r ≤ 1
ℓ , the fourth step follows from the following inequality:

− ∥∇yf(G(xr,t+1), yr,t)∥2

≤ −1

2
∥∇yf(G(xr,t), yr,t)∥2 + ∥∇yf(G(xr,t+1), yr,t)−∇yf(G(xr,t), yr,t)∥2 . (106)

By combining these two inequalities, the proof is complete.

Lemma C.5. Given Assumption 3.1-3.3 , ηx,r ≤ 1
16ℓ , we have

E[Φ(xr,t+1)− f(G(xr,t+1), yr,t+1)]− E[Φ(xr,t)− f(G(xr,t), yr,t)]

≤ 5ηx,r
2

E[∥∇Φ(xr,t)∥2]−
ηy,r
4

E[∥∇yf(G(xr,t), yr,t)∥2] + 4ηx,rE[∥∇Φ(xr,t)−∇xf(G(xr,t), yr,t)∥2]

+ 3ηx,rK

K∑
k=1

AkE[∥g(k)(h(k−1)
r,t )− h

(k)
r,t ∥2] + 2ηy,rL

2
fK

K∑
k=1

C2(K−k)
g E[∥g(k)(h(k−1)

r,t )− h
(k)
r,t ∥2]

+ 3ηx,rE[∥∇xf(H(xr,t), yr,t)− pr,t∥2] + 2ηy,rE[∥∇yf(H(xr,t), yr,t)− qr,t∥2]

− ηx,r
8

E[∥pr,t∥2]−
ηy,r
4

E[∥qr,t∥2] . (107)

Proof. In terms of Lemma C.3 and Lemma C.4, we obtain

E[Φ(xr,t+1)− f(G(xr,t+1), yr,t+1)]− E[Φ(xr,t)− f(G(xr,t), yr,t)]

≤ −ηx,r
2

E[∥∇Φ(xr,t)∥2]−
ηx,r
4

E[∥pr,t∥2] + ηx,rE[∥∇Φ(xr,t)−∇xf(G(xr,t), yr,t)∥2]

+ 2ηx,rK

K∑
k=1

AkE[∥g(k)(h(k−1)
r,t )− h

(k)
r,t ∥2] + 2ηx,rE[∥∇xf(H(xr,t), yr,t)− pr,t∥2]

+
3ηx,r
2

E[∥∇xf(G(xr,t), yr,t)∥2]−
ηy,r
4

E[∥∇yf(G(xr,t), yr,t)∥2]

+ ηx,rK

K∑
k=1

AkE[∥g(k)(h(k−1)
r,t )− h

(k)
r,t ∥2] + 2ηy,rL

2
fK

K∑
k=1

C2(K−k)
g E[∥g(k)(h(k−1)

r,t )− h
(k)
r,t ∥2]

+ ηx,rE[∥∇xf(H(xr,t), yr,t)− pr,t∥2] + 2ηy,rE[∥∇yf(H(xr,t), yr,t)− qr,t∥2]

+ 2η2x,rℓE[∥pr,t∥2]−
ηy,r
4

E[∥qr,t∥2]

≤ −ηx,r
2

E[∥∇Φ(xr,t)∥2]−
ηx,r
4

E[∥pr,t∥2] + ηx,rE[∥∇Φ(xr,t)−∇xf(G(xr,t), yr,t)∥2]
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+ 3ηx,rK

K∑
k=1

AkE[∥g(k)(h(k−1)
r,t )− h

(k)
r,t ∥2] + 2ηy,rL

2
fK

K∑
k=1

C2(K−k)
g E[∥g(k)(h(k−1)

r,t )− h
(k)
r,t ∥2]

+
3ηx,r
2

E[∥∇xf(G(xr,t), yr,t)∥2]−
ηy,r
4

E[∥∇yf(G(xr,t), yr,t)∥2]

+ 3ηx,rE[∥∇xf(H(xr,t), yr,t)− pr,t∥2] + 2ηy,rE[∥∇yf(H(xr,t), yr,t)− qr,t∥2]

+ 2η2x,rℓE[∥pr,t∥2]−
ηy,r
4

E[∥qr,t∥2]

≤ 5ηx,r
2

E[∥∇Φ(xr,t)∥2]−
ηy,r
4

E[∥∇yf(G(xr,t), yr,t)∥2] + 4ηx,rE[∥∇Φ(xr,t)−∇xf(G(xr,t), yr,t)∥2]

+ 3ηx,rK

K∑
k=1

AkE[∥g(k)(h(k−1)
r,t )− h

(k)
r,t ∥2] + 2ηy,rL

2
fK

K∑
k=1

C2(K−k)
g E[∥g(k)(h(k−1)

r,t )− h
(k)
r,t ∥2]

+ 3ηx,rE[∥∇xf(H(xr,t), yr,t)− pr,t∥2] + 2ηy,rE[∥∇yf(H(xr,t), yr,t)− qr,t∥2]

− ηx,r
8

E[∥pr,t∥2]−
ηy,r
4

E[∥qr,t∥2] , (108)

where the last step follows from ∥∇xf(G(xr,t), yr,t)∥2 ≤ 2∥∇Φ(xr,t)∥2 +2∥∇xf(G(xr,t), yr,t)−
∇Φ(xr,t)∥2 and ηx,r ≤ 1

16ℓ .

Lemma C.6. Given Assumption 3.1-3.3 , by setting

ηx,r ≤ min
{ 1

2LΦ
,

1

16ℓ
,
1

2

√√√√ λ̃k

α(
∑K

j=k+1 λ̃j(2C2
g )

j−k)

}
, ηy,r ≤ min

{ 1

2ℓ

}
,

ρy = 640L2
β , ρx = 6400c0L

2
β , α = 640c0L

2
β , c0 =

25ℓ2

µ2
. (109)

where λ̃k is defined in Eq. (116), Lβ is defined in Eq. (132), such that ηx,r =
ηy,r

10c0
, we have

1

Tr

Tr−1∑
t=0

(
E[∥∇Φ(xr,t)∥2] +

c0ηx,r
ηy,r

E[∥∇yf(G(xr,t), yr,t)∥2]
)

≤ 40c0Vr,0

ηy,rTr
+

160c0
ρyη2y,rTr

(σx
r,0 + σy

r,0 + 56σh
r,0) + 330c0L

2
βρyη

2
y,rσ

2 . (110)

Proof. We first propose a novel Lyapunov function as follows:

Hr,t+1 = E[Φ(xr,t+1)]− Φ(x∗) +
c0ηx,r
ηy,r

(E[Φ(xr,t+1)]− E[f(G(xr,t+1), yr,t+1)])

+
4

ρxηx,r
E[∥∇xf(H(xr,t+1), yr,t+1)− pr,t+1∥2] +

4

ρyηy,r
E[∥∇yf(H(xr,t+1), yr,t+1)− qr,t+1∥2]

+

K∑
k=1

λkE[∥g(k)(h(k−1)
r,t+1 )− h

(k)
r,t+1∥2] , (111)

where ηx,r =
ηy,r

10c0
. Then, from Lemma C.5, B.5, B.6 and B.7, we obtain

Hr,t+1 −Hr,t ≤ −ηx,r
4

E[∥∇Φ(xr,t)∥2]−
c0ηx,r

4
E[∥∇yf(G(xr,t), yr,t)∥2]

+ (ηx,r +
4c0η

2
x,r

ηy,r
)E[∥∇Φ(xr,t)−∇xf(G(xr,t), yr,t)∥2]

+ (2ηx,r +
3c0η

2
x,r

ηy,r
− 4ηx,r)E[∥∇xf(H(xr,t), yr,t)− pr,t∥2]

+ (2c0ηx,r − 4ηy,r)E[∥∇yf(H(xr,t), yr,t)− qr,t∥2]

+
(
η2x,r

K∑
k=1

λk(2C
2
g )

k +
8ηx,r
ρx

C2
p

K∑
k=0

(2C2
g )

k + 2L2
f (2C

2
g )

K
4η2x,r
ρyηy,r

− ηx,r
4

− c0ηx,r
ηy,r

ηx,r
8

)
E[∥pr,t∥2]
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+
( 8η2y,r
ρxηx,r

C2
p +

8ηy,r
ρy

L2
f − c0ηx,r

4

)
E[∥qr,t∥2]

+

K∑
k=1

(
2ηx,rKAk +

3c0η
2
x,r

ηy,r
KAk + 2c0ηx,rL

2
fKC2(K−k)

g +
16α2η4x,r
ρxηx,r

C2
p

( K∑
j=k

(2C2
g )

j−k
)

+
16α2η4x,r
ρyηy,r

L2
f (2C

2
g )

K−k + 2α2η4x,r

( K∑
j=k+1

λj(2C
2
g )

j−k
)
− αη2x,rλk

)
E[∥h(k)

r,t − g(k)(h
(k−1)
r,t )∥2]

+
16α2η3x,r

ρx
C2

pσ
2

K∑
k=1

k∑
j=1

(2C2
g )

j−1 + 8ρxη
3
x,rC

2
pσ

2 + 2α2η4x,rσ
2

K∑
k=1

λk

k−1∑
j=0

(2C2
g )

j

+
16α2η4x,r
ρyηy,r

L2
fσ

2
K∑

k=1

(2C2
g )

k−1 + 8ρyη
3
y,rσ

2 . (112)

To begin with, for any k ∈ {1, · · · ,K}, to remove the term E[∥h(k)
r,t − g(k)(h

(k−1)
r,t )∥2], we set

2ηx,rKAk +
3c0η

2
x,r

ηy,r
KAk + 2c0ηx,rL

2
fKC2(K−k)

g +
16α2η4x,r
ρxηx,r

C2
p

( K∑
j=k

(2C2
g )

j−k
)

+
16α2η4x,r
ρyηy,r

L2
f (2C

2
g )

K−k + 2α2η4x,r

( K∑
j=k+1

λj(2C
2
g )

j−k
)
− αη2x,rλk ≤ 0 . (113)

Since ηx,r =
ηy,r

10c0
, we enforce

3ηx,rKAk + 2c0ηx,rL
2
fKC2(K−k)

g +
16α2η4x,r
ρxηx,r

C2
p

K∑
j=k

(2C2
g )

j−k

+
16α2η4x,r
ρyηy,r

L2
f (2C

2
g )

K−k − 1

2
αη2x,rλk ≤ 0 . (114)

By solving this, we obtain

λk =
8KAk

αηx,r
+

8c0L
2
fKC

2(K−k)
g

αηx,r
+

32

ρxηx,r
C2

p

K∑
j=k

(2C2
g )

j−k +
32

ρyηy,r
L2
f (2C

2
g )

K−k

≜
8λk,1

αηx,r
+

8c0λk,2

αηx,r
+

32λk,3

ρxηx,r
+

32λk,4

ρyηy,r
, (115)

where k ∈ {1, · · · ,K} and λ′
k = max{λk,1, λk,2, λk,3, λk,4}. Given that λk can be organized as:

λk =
1

ηx,r

(8λk,1

α
+

8c0λk,2

α
+

32λk,3

ρx
+

32λk,4

10c0ρy

)
≜

1

ηx,r
λ̃k . (116)

Moreover, we enforce

2α2η4x,r

K∑
j=k+1

λj(2C
2
g )

j−k − αη2x,rλk ≤ −1

2
αη2x,rλk , (117)

for k ∈ {1, · · · ,K}, which leads to

ηx,r ≤ 1

2

√√√√ λ̃k

α(
∑K

j=k+1 λ̃j(2C2
g )

j−k)
. (118)

Additionally, by plugging the value of λk, we obtain

2ηx,rK

K∑
k=1

Ak +
3c0η

2
x,r

ηy,r
K

K∑
k=1

Ak + 2c0ηx,rL
2
fK

K∑
k=1

C2(K−k)
g + 2α2η4

x,r

K∑
k=1

( K∑
j=k+1

λj(2C
2
g )

j−k
)
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+
16α2η4

x,r

ρxηx,r
C2

p

K∑
k=1

( K∑
j=k

(2C2
g )

j−k
)
+

16α2η4
x,r

ρyηy,r
L2

f

K∑
k=1

(2C2
g )

K−k − αη2
x,r

K∑
k=1

λk

≤ 23

10
ηx,rK

K∑
k=1

Ak + 2c0ηx,rL
2
fK

K∑
k=1

C2(K−k)
g +

16α2η4
x,r

ρxηx,r
C2

p

K∑
k=1

( K∑
j=k

(2C2
g )

j−k
)
+

16α2η4
x,r

ρyηy,r
L2

f

K∑
k=1

(2C2
g )

K−k

− 1

2
αη2

x,r

K∑
k=1

(8KAk

αηx,r
+

8c0L
2
fKC

2(K−k)
g

αηx,r
+

32

ρxηx,r
C2

p

K∑
j=k

(2C2
g )

j−k +
32

ρyηy,r
L2

f (2C
2
g )

K−k
)

≤ 23

10
ηx,rK

K∑
k=1

Ak + 2c0ηx,rL
2
fK

K∑
k=1

C2(K−k)
g +

16αη2
x,r

ρxηx,r
C2

p

K∑
k=1

( K∑
j=k

(2C2
g )

j−k
)
+

16αη2
x,r

ρyηy,r
L2

f

K∑
k=1

(2C2
g )

K−k

−
K∑

k=1

(
4KAkηx,r + 4c0ηx,rL

2
fKC2(K−k)

g +
16αη2

x,r

ρxηx,r
C2

p

K∑
j=k

(2C2
g )

j−k +
16αη2

x,r

ρyηy,r
L2

f (2C
2
g )

K−k
)

= −17

10
ηx,rK

K∑
k=1

Ak − 2c0ηx,rL
2
fK

K∑
k=1

C2(K−k)
g . (119)

To guarantee that E[∥pr,t∥2] cancels out, we enforce

η2x,r

K∑
k=1

λk(2C
2
g )

k +
8ηx,r
ρx

C2
p

K∑
k=0

(2C2
g )

k + 2L2
f (2C

2
g )

K
4η2x,r
ρyηy,r

− ηx,r
4

− c0ηx,r
ηy,r

ηx,r
8

≤ 0 .

(120)

This can be done by setting

ηx,r

K∑
k=1

λ̃k(2C
2
g )

k − ηx,r
16

≤ 0 ,

8ηx,r
ρx

C2
p

K∑
k=0

(2C2
g )

k − ηx,r
16

≤ 0 ,

2L2
f (2C

2
g )

K
4η2x,r
ρyηy,r

− ηx,r
16

≤ 0 . (121)

For the first inequality, we enforce
K∑

k=1

8λk,1

α
(2C2

g )
k − 1

64
≤ 0 ,

K∑
k=1

8c0λk,2

α
(2C2

g )
k − 1

64
≤ 0 ,

K∑
k=1

32λk,3

ρx
(2C2

g )
k − 1

64
≤ 0 ,

K∑
k=1

32λk,4

10c0ρy
(2C2

g )
k − 1

64
≤ 0 . (122)

It is easy to obtain

α ≥ max{
K∑

k=1

512λk,1(2C
2
g )

k ,

K∑
k=1

512c0λk,2(2C
2
g )

k} ,

ρx ≥
K∑

k=1

2048λk,3(2C
2
g )

k , ρy ≥
K∑

k=1

1024λk,4

5c0
(2C2

g )
k . (123)

For the second and third inequalities, we obtain

ρx ≥ 128C2
p

K∑
k=0

(2C2
g )

k , ρy ≥ 64

5c0
L2
f (2C

2
g )

K . (124)

Similarly, to guarantee that E[∥qr,t∥2] cancels out, we enforce

8η2y,r
ρxηx,r

C2
p +

8ηy,r
ρy

L2
f − c0ηx,r

4
≤ 0 . (125)
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With ηx,r =
ηy,r

10c0
, we obtain

80c0ηy,r
ρx

C2
p +

8ηy,r
ρy

L2
f − ηy,r

40
≤ 0 . (126)

To solve this inequality, we enforce

80c0
ρx

C2
p ≤ 1

80
,

8

ρy
L2
f ≤ 1

80
. (127)

We obtain

ρx ≥ 6400c0C
2
p , ρy ≥ 640L2

f . (128)

In summary, the hyperparameters should be set as follows:

ηx,r ≤ min
{ 1

2LΦ
,

1

16ℓ
,
1

2

√√√√ λ̃k

α(
∑K

j=k+1 λ̃j(2C2
g )

j−k)

}
, ηy,r ≤ min

{1
ℓ

}
,

ρx ≥ max{
K∑

k=1

2048λk,3(2C
2
g )

k , 128C2
p

K∑
k=0

(2C2
g )

k , 6400c0C
2
p} ,

ρy ≥ max{
K∑

k=1

1024λk,4

5c0
(2C2

g )
k ,

64

5c0
L2
f (2C

2
g )

K , 640L2
f} ,

α ≥ max{
K∑

k=1

512λk,1(2C
2
g )

k ,

K∑
k=1

512c0λk,2(2C
2
g )

k} . (129)

Moreover, by setting c0 = 25ℓ2

µ2 , we get(
ηx,r +

4c0η
2
x,r

ηy,r

) ℓ2
µ2

≤ c0ηx,r
16

. (130)

Then from Lemma A.7 in [4] , we have (ηx,r +
4c0η

2
x,r

ηy,r
)E[∥∇Φ(xr,t) − ∇xf(G(xr,t), yr,t)∥2] ≤

c0ηx,r

16 E[∥∇yf(G(xr,t), yr,t)∥2].
As a result, we have

Hr,t+1 −Hr,t

≤ −ηx,r
4

E[∥∇Φ(xr,t)∥2]−
c0ηx,r

4
E[∥∇yf(G(xr,t), yr,t)∥2] +

c0ηx,r
16

E[∥∇yf(G(xr,t), yr,t)∥2]

− 17ηx,r
10

E[∥∇xf(H(xr,t), yr,t)− pr,t∥2]−
19ηy,r

5
E[∥∇yf(H(xr,t), yr,t)− qr,t∥2]

−
(17
10

ηx,rK

K∑
k=1

Ak + 2c0ηx,rL
2
fK

K∑
k=1

C2(K−k)
g

)
E[∥h(k)

r,t − g(k)(h
(k−1)
r,t )∥2]

+
16α2η3x,r

ρx
C2

pσ
2

K∑
k=1

k∑
j=1

(2C2
g )

j−1 + 8ρxη
3
x,rC

2
pσ

2 + 2α2η4x,rσ
2

K∑
k=1

λk

k−1∑
j=0

(2C2
g )

j

+
16α2η4x,r
ρyηy,r

L2
fσ

2
K∑

k=1

(2C2
g )

k−1 + 8ρyη
3
y,rσ

2

≤ −ηx,r
4

E[∥∇Φ(xr,t)∥2]−
ηx,r
4

c0ηx,r
ηy,r

E[∥∇yf(G(xr,t), yr,t)∥2]−
c0ηx,r
16

E[∥∇yf(G(xr,t), yr,t)∥2]

− 17ηx,r
10

E[∥∇xf(H(xr,t), yr,t)− pr,t∥2]−
19ηy,r

5
E[∥∇yf(H(xr,t), yr,t)− qr,t∥2]

−
(17
10

ηx,rK

K∑
k=1

Ak + 2c0ηx,rL
2
fK

K∑
k=1

C2(K−k)
g

)
E[∥h(k)

r,t − g(k)(h
(k−1)
r,t )∥2]
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+
16α2η3x,r

ρx
C2

pσ
2

K∑
k=1

k∑
j=1

(2C2
g )

j−1 + 8ρxη
3
x,rC

2
pσ

2 + 2α2η4x,rσ
2

K∑
k=1

λk

k−1∑
j=0

(2C2
g )

j

+
16α2η4x,r
ρyηy,r

L2
fσ

2
K∑

k=1

(2C2
g )

k−1 + 8ρyη
3
y,rσ

2 , (131)

where the last step holds due to αη2x,r ≤ 1, and −ηx,r

4 ≥ −ηy,r

8 since ηx,r =
ηy,r

10c0
, c0 = 25ℓ2

µ2 .

Then, we set

L2
β = max{1 ,

K∑
k=1

λ′
k

k∑
j=0

(2C2
g )

j + C2
p

K∑
k=1

k∑
j=0

(2C2
g )

j} ,

ρy = 640L2
β , ρx = 6400c0L

2
β , α = 640c0L

2
β , (132)

where λ′
k is defined in Eq.(115). It is easy to verify that the conditions in Eq. (129) are satisfied.

Meanwhile, this indicates ρx = 10c0ρy, α = c0ρy .

By summing t from 0 to Tr − 1, we obtain

1

Tr

Tr−1∑
t=0

(
E[∥∇Φ(xr,t)∥2] +

c0ηx,r
ηy,r

E[∥∇yf(G(xr,t), yr,t)∥2]
)

≤ 4(Hr,0 −Ht,Tr
)

ηx,rTr
+

64α2η2x,r
ρx

C2
pσ

2
K∑

k=1

k∑
j=1

(2C2
g )

j−1 + 32ρxη
2
x,rC

2
pσ

2

+ 8α2η3x,rσ
2

K∑
k=1

λk

k−1∑
j=0

(2C2
g )

j +
64α2η3x,r
ρyηy,r

L2
fσ

2
K∑

k=1

(2C2
g )

k−1 +
32ρyη

3
y,r

ηx,r
σ2

≤ 4Vr,0

ηx,rTr
+

16σx
r,0

ρxη2x,rTr
+

16σy
r,0

ρyηx,rηy,rTr
+

4σh,k
r,0

ηx,rTr

( 8λk,1

αηx,r
+

8c0λk,2

αηx,r
+

32λk,3

ρxηx,r
+

32λk,4

ρyηy,r

)
+

64α2η2x,r
ρx

C2
pσ

2
K∑

k=1

k∑
j=1

(2C2
g )

j−1 + 32ρxη
2
x,rC

2
pσ

2 +
64α2η3x,r
ρyηy,r

L2
fσ

2
K∑

k=1

(2C2
g )

k−1

+ 8α2η3x,rσ
2

K∑
k=1

( 8λk,1

αηx,r
+

8c0λk,2

αηx,r
+

32λk,3

ρxηx,r
+

32λk,4

ρyηy,r

) k−1∑
j=0

(2C2
g )

j +
32ρyη

3
y,r

ηx,r
σ2

≤ 40c0Vr,0

ηy,rTr
+

160σx
r,0

ρyη2y,rTr
+

160c0σ
y
r,0

ρyη2y,rTr
+

8960c0σ
h
r,0

ρyη2y,rTr

+
8

125
ρyη

2
y,rC

2
pσ

2
K∑

k=1

k∑
j=1

(2C2
g )

j−1 +
32

10
ρyη

2
y,rC

2
pσ

2 +
8

125
c0ρyη

2
y,rL

2
fσ

2
K∑

k=1

(2C2
g )

k−1

+ 8λ′
kσ

2
K∑

k=1

( 8

100
ρyη

2
y,r +

8

100
c0ρyη

2
y,r +

32ρyη
2
y,r

1000
+

32c0ρyη
2
y,r

1000

) k−1∑
j=0

(2C2
g )

j + 320c0ρyη
2
y,rσ

2

≤ 40c0Vr,0

ηy,rTr
+

160c0
ρyη2y,rTr

(σx
r,0 + σy

r,0 + 56σh
r,0) + 330c0L

2
βρyη

2
y,rσ

2 , (133)

where Vr,0 = E[Φ(xr,0)] − Φ(x∗) +
c0ηx,r

ηy,r
(E[Φ(xr,0)] − E[f(g(xr,0), yr,0)]), σx

r,0 =

E[∥∇xf(H(xr,0), yr,0) − pr,0∥2], σy
r,0 = E[∥∇yf(H(xr,0), yr,0) − qr,0∥2] and σh,k

r,0 =

E[∥g(k)(h(k−1)
r,0 )− h

(k)
r,0∥2], σh

r,0 =
∑K

k=1 λ
′
kσ

h,k
r,0 .
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C.2 Proof of the Theorem C.1

Proof. Based on Lemma C.6, we have

1

Tr

Tr−1∑
t=0

(
E[∥∇Φ(xr,t)∥2] +

c0ηx,r
ηy,r

E[∥∇yf(G(xr,t), yr,t)∥2]
)

≤ 40c0Vr,0

ηy,rTr
+

160c0
ρyη2y,rTr

(σx
r,0 + σy

r,0 + 56σh
r,0) + 330c0L

2
βρyη

2
y,rσ

2 . (134)

Since c0 = O(κ2), then it is easy to verify that by setting by setting ηy,1 = O(ϵ/κ), ηx,1 = O(ϵ/κ3),
T1 = O(κ3/ϵ3), and the initial batch size as O(κ/ϵ), we have

40c0Vr,0

ηy,rTr
≤ O(ϵ2) ,

160c0
ρyη2y,rTr

(σx
r,0 + σy

r,0 + 56σh
r,0) ≤ O(ϵ2) ,

330c0L
2
βρyη

2
y,rσ

2 ≤ O(ϵ2) . (135)

As a result, we can conclude 1
T1

∑T1−1
t=0 E[∥∇Φ(x1,t)∥2] ≤ ϵ2.

C.3 Proof of the Theorem C.2

Lemma C.7. Assumption 3.1-3.4 , we have

σx
r+1,0 + σy

r+1,0 + 56σh
r+1,0 ≤ 320c0

ρyη2
y,rTr

(
σx
r,0 + σy

r,0 + 56σh
r,0

)
+

20c0Vr,0

ηy,rTr
+ 338c0ρyη

2
y,rL

2
βσ

2 .

(136)

Proof. In the following, we will bound σx
r,0 + σy

r,0 + 56σh
r,0. At first, from Lemma B.5, we get

1

Tr

Tr−1∑
t=0

K∑
k=1

λ′
kE[∥h

(k)
r,t − g(k)(h

(k−1)
r,t )∥2]

≤ 1

αη2
x,rTr

K∑
k=1

λ′
kE[∥h

(k)
r,0 − g(k)(h

(k−1)
r,0 )∥2] +

2αη2
x,r

Tr

K∑
k=1

K∑
j=k+1

λ′
j(2C

2
g )

j−kE[∥h(k)
r,0 − g(k)(h

(k−1)
r,0 )∥2]

+
1

α

K∑
k=1

λ′
k(2C

2
g )

k 1

Tr

Tr−1∑
t=0

E[∥pr,t∥2] + 2αη2
x,rσ

2
K∑

k=1

λ′
k

k−1∑
j=0

(2C2
g )

j

≤ 1

αη2
x,rTr

K∑
k=1

λ′
kE[∥h

(k)
r,0 − g(k)(h

(k−1)
r,0 )∥2] +

2α2η4
x,r

αη2
x,rTr

K∑
k=1

K∑
j=k+1

λ′
j(2C

2
g )

j−kE[∥h(k)
r,0 − g(k)(h

(k−1)
r,0 )∥2]

+
1

α

K∑
k=1

λ′
k(2C

2
g )

k 1

Tr

Tr−1∑
t=0

E[∥pr,t∥2] + 2αη2
x,rσ

2
K∑

k=1

λ′
k

k−1∑
j=0

(2C2
g )

j

≤ 100

ρyη2
y,rTr

K∑
k=1

λ′
kE[∥h

(k)
r,0 − g(k)(h

(k−1)
r,0 )∥2] + 50

ρyη2
y,rTr

K∑
k=1

λ′
kE[∥h

(k)
r,0 − g(k)(h

(k−1)
r,0 )∥2]

+
L2

β

c20ρy

1

Tr

Tr−1∑
t=0

E[∥pr,t∥2] +
ρyη

2
y,r

50
σ2

K∑
k=1

λ′
k

k−1∑
j=0

(2C2
g )

j , (137)

where the last step holds due to αη2x,r ≤ 1. Then, according to the random sampling operation, we
have

σh
r+1,0 =

K∑
k=1

λ′
kE[∥g(k)(xr+1,0)− h

(k)
r+1,0∥

2] =
1

Tr

Tr−1∑
t=0

K∑
k=1

λ′
kE[∥g(k)(h

(k−1)
r,t )− h

(k)
r,t ∥

2]

47



≤ 150

ρyη2
y,rTr

K∑
k=1

λ′
kσ

h,k
r,0 +

L2
β

c20ρy

1

Tr

Tr−1∑
t=0

E[∥pr,t∥2] +
ρyη

2
y,r

50
σ2

K∑
k=1

λ′
k

k−1∑
j=0

(2C2
g )

j

≤ 150

ρyη2
y,rTr

σh
r,0 +

L2
β

ρy

( 1

Tr

Tr−1∑
t=0

E[∥pr,t∥2] +
1

10

1

Tr

Tr−1∑
t=0

E[|qr,t∥2]
)
+

ρyη
2
y,r

50
σ2

K∑
k=1

λ′
k

k−1∑
j=0

(2C2
g )

j

≤
150σh

r,0

ρyη2
y,rTr

+
1

640

( 1

Tr

Tr−1∑
t=0

E[∥pr,t∥2] +
1

10

1

Tr

Tr−1∑
t=0

E[|qr,t∥2]
)
+

1

50
ρyη

2
y,rL

2
βσ

2 , (138)

where the last step holds due to ρy = 640L2
β .

Then, based on Lemma B.6, we have

1

Tr

Tr−1∑
t=0

E[∥∇xf(H(xr,t), yr,t)− pr,t∥2]

≤ 1

ρxη2
x,rTr

E[∥∇xf(H(xr,0), yr,0)− pr,0∥2] +
2η2

y,r

ρxη2
x,r

C2
p
1

Tr

Tr−1∑
t=0

E[∥qr,t∥2]

+
4α2η2

x,r

ρx
C2

p
1

Tr

Tr−1∑
t=0

K∑
k=1

( K∑
j=k

(2C2
g )

j−k
)
E[∥h(k)

r,t − g(k)(h
(k−1)
r,t )∥2] + 2

ρx
C2

p

K∑
k=0

(2C2
g )

k 1

Tr

Tr−1∑
t=0

E[∥pr,t∥2]

+
4α2η2

x,r

ρx
C2

pσ
2

K∑
k=1

k∑
j=1

(2C2
g )

j−1 + 2ρxη
2
x,rC

2
pσ

2 (139)

≤ 10

ρyη2
y,rTr

E[∥∇xf(H(xr,0), yr,0)− pr,0∥2] +
2L2

β

10c20ρy

1

Tr

Tr−1∑
t=0

E[∥pr,t∥2] +
20L2

β

ρy

1

Tr

Tr−1∑
t=0

E[∥qr,t∥2]

+
1

250

1

Tr

Tr−1∑
t=0

K∑
k=1

λ′
kE[∥h

(k)
r,t − g(k)(h

(k−1)
r,t )∥2] +

ρyη
2
y,r

250
C2

pσ
2

K∑
k=1

k∑
j=1

(2C2
g )

j−1 +
1

5
ρyη

2
y,rC

2
pσ

2 ,

where the last step holds due to the definition of λ′
k and αη2x,r ≤ 1. Then, due to the random

sampling in each outer iteration, it is easy to know

σx
r+1,0 = E[∥∇xf(H(xr+1,0), yr+1,0)− pr+1,0∥2] =

1

Tr

Tr−1∑
t=0

E[∥∇xf(H(xr,t), yr,t)− pr,t∥2]

≤ 10

ρyη2
y,rTr

E[∥∇xf(H(xr,0), yr,0)− pr,0∥2] +
200L2

β

ρy

(
1

Tr

Tr−1∑
t=0

E[∥pr,t∥2] +
1

10

1

Tr

Tr−1∑
t=0

E[∥qr,t∥2]

)

+
1
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(
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ρyη2
y,rTr

σh
r,0 +

1

640

( 1

Tr

Tr−1∑
t=0

E[∥pr,t∥2] +
1
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1

Tr

Tr−1∑
t=0

E[|qr,t∥2]
)
+

1

50
ρyη

2
y,rL

2
βσ

2

)

+
4ρyη

2
y,r

1000
C2

pσ
2

K∑
k=1

k∑
j=1

(2C2
g )

j−1 +
1

5
ρyη

2
y,rC

2
pσ

2

≤
10σx

r,0

ρyη2
y,rTr

+
σh
r,0

ρ2yη2
y,rTr

+
201

640

( 1

Tr

Tr−1∑
t=0

E[∥pr,t∥2] +
1

10

1

Tr

Tr−1∑
t=0

E[|qr,t∥2]
)
+

2

5
ρyη

2
y,rL

2
βσ

2 , (140)

where the last step holds due to ρy = 640L2
β , c0 > 1 and c0ηx,r

ηy,r
= 1

10 .

Similarly, from Lemma B.7, we get

1

Tr

Tr−1∑
t=0

E[∥∇yf(H(xr,t), yr,t)− qr,t∥2]

≤ 1

ρyη2
y,rTr

E[∥∇yf(H(xr,0), yr,0)− qr,0∥2] +
4α2η4

x,r

ρyη2
y,r

L2
f
1

Tr

Tr−1∑
t=0

K∑
k=1

(2C2
g )

K−kE[∥h(k)
r,t − g(k)(h

(k−1)
r,t )∥2]

+
2η2

x,r

ρyη2
y,r

L2
f (2C

2
g )

K 1

Tr

Tr−1∑
t=0

E[∥pr,t∥2] +
2L2

f

ρy

1

Tr

Tr−1∑
t=0

E[∥qr,t∥2] +
4α2η4

x,r

ρyη2
y,r

L2
fσ

2
K∑

k=1

(2C2
g )

k−1 + 2ρyη
2
y,rσ

2
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≤ 1

ρyη2
y,rTr

E[∥∇yf(H(xr,0), yr,0)− qr,0∥2] +
1

25

1

Tr

Tr−1∑
t=0

K∑
k=1

λ′
kE[∥h

(k)
r,t − g(k)(h

(k−1)
r,t )∥2] (141)

+
L2

β

50c20ρy

1

Tr

Tr−1∑
t=0

E[∥pr,t∥2] +
2L2

β

ρy

1

Tr

Tr−1∑
t=0

E[∥qr,t∥2] +
4ρyη

2
y,r

100
L2

fσ
2

K∑
k=1

(2C2
g )

k−1 + 2ρyη
2
y,rσ

2 ,

where the second step holds due to the definition of λ′
k, and the last step holds due to αη2x,r ≤ 1.

Then, due to the randomly sampling operation in each outer iteration, it is easy to know

σy
r+1,0 = E[∥∇yf(H(xr+1,0), yr+1,0)− qr+1,0∥2] =

1

Tr

Tr−1∑
t=0

E[∥∇yf(H(xr,t), yr,t)− qr,t∥2]

≤ 1

ρyη2
y,rTr

E[∥∇yf(H(xr,0), yr,0)− qr,0∥2] +
L2

β

50c20ρy

1

Tr

Tr−1∑
t=0

E[∥pr,t∥2] +
2L2

β

ρy

1

Tr

Tr−1∑
t=0

E[∥qr,t∥2]

+
1

25

1

Tr

Tr−1∑
t=0

K∑
k=1

λ′
kE[∥h

(k)
r,t − g(k)(h

(k−1)
r,t )∥2] +

4ρyη
2
y,r
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L2

fσ
2

K∑
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(2C2
g )

k−1 + 2ρyη
2
y,rσ

2

≤ 1

ρyη2
y,rTr

E[∥∇yf(G(xr,0), yr,0)− qr,0∥2] +
20L2

β

ρy

(
1

Tr

Tr−1∑
t=0

E[∥pr,t∥2] +
1

10

1

Tr

Tr−1∑
t=0

E[∥qr,t∥2]

)

+
1
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(
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ρyη2
y,rTr

σh
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1

640

( 1

Tr

Tr−1∑
t=0

E[∥pr,t∥2] +
1

10

1

Tr

Tr−1∑
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E[|qr,t∥2]
)
+

1

50
ρyη

2
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2
βσ

2

)

+
4ρyη

2
y,r
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L2

fσ
2

K∑
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(2C2
g )

k−1 + 2ρyη
2
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2 (142)

≤
σy
r,0

ρyη2
y,rTr

+
6σh

r,0

ρyη2
y,rTr

+
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640

( 1

Tr

Tr−1∑
t=0

E[∥pr,t∥2] +
1
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1

Tr
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E[|qr,t∥2]
)
+

11

5
ρyη

2
y,rL

2
βσ

2 ,

where the last step holds due to ρy = 640L2
β .

Then, we combine these three inequalities together as follows:

σx
r+1,0 + σy

r+1,0 + 56σh
r,0

≤
10σx

r,0

ρyη2
y,rTr

+
σh
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ρ2yη2
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+
201
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Tr
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1

Tr
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)
+

2

5
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2
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2
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r,0
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+
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+
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1

10

1

Tr

Tr−1∑
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)
+
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5
ρyη

2
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2
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2

+
8400σh
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+
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2
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2 (143)

≤
10σx

r,0

ρyη2
y,rTr

+
σy
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ρyη2
y,rTr

+
8407σh
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y,rTr

+
1
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( 1
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1
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1

Tr

Tr−1∑
t=0

E[|qr,t∥2]
)
+ 8ρyη

2
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2
βσ

2 .

Then, we need to bound 1
Tr

∑Tr−1
t=0 E[∥pr,t∥2] + c0ηy,r

ηx,r

1
Tr

∑Tr−1
t=0 E[∥qr,t∥2]. In particular, we have

E[∥pr,t∥2] +
c0ηx,r
ηy,r

E[∥qr,t∥2]

≤ 2E[∥pr,t −∇Φ(xr,t)∥2] + 2E[∥∇Φ(xr,t)∥2]

+
c0ηx,r
ηy,r

(
2E[∥qr,t −∇yf(H(xr,t), yr,t) +∇yf(H(xr,t), yr,t)−∇yf(G(xr,t), yr,t)∥2]

+ 2E[∥∇yf(G(xr,t), yr,t)∥2]
)

≤ 4E[∥∇Φ(xr,t)−∇xf(G(xr,t), yr,t)∥2] + 8E[∥∇xf(G(xr,t), yr,t)−∇xf(H(xr,t), yr,t)∥2]
+ 8E[∥∇xf(H(xr,t), yr,t)− pr,t∥2] + 2E[∥∇Φ(xr,t)∥2]

+
c0ηx,r
ηy,r

(
4E[∥∇yf(H(xr,t), yr,t)− qr,t∥2] + 4E[∥∇yf(H(xr,t), yr,t)−∇yf(G(xr,t), yr,t)∥2]
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+ 2E[∥∇yf(G(xr,t), yr,t)∥2]
)

≤ 8

ηx,r

(ηx,r
4

E[∥∇Φ(xr,t)∥2] +
ηx,r
4

c0ηx,r
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(144)

+ 4
L2

f

µ2
E[∥∇yf(G(xr,t), yr,t)∥2] + 8K

K∑
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f
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2] .

By plugging Eq. (131), we obtain
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2
βρyη

2
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2 , (145)

where c0 = 25ℓ2

µ2 .

By summing up t from 0 to Tr − 1, we get

1
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+
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2
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2 . (146)

By plugging this inequality to Eq. (143), we get
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2 . (147)

In the following, we prove Theorem C.2.

Proof. Under the two-sided PL condition, we get

2µ
(
E[Φ(xr,t)]− Φ(x∗) +

c0ηx,r
ηy,r

(E[Φ(xr,t)]− E[f(G(xr,t), yr,t)])
)
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≤ E[∥∇Φ(xr,t)∥2] +
c0ηx,r
ηy,r

E[∥∇yf(G(xr,t), yr,t)∥2] . (148)

Due to the random sampling in each outer iteration, we get
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1
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2
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+
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2
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2
βσ

2
)
. (149)

Therefore, when r = 0, we have σx
0,0+σy

0,0+56σh
0,0 = 58L2

βσ
2. Based on Eq. (149) and Lemma C.7,

we have

σx
1,0 + σy

1,0 + 56σh
1,0 ≤
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2
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ρyη2y,0T0
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+ 338c0ρyη

2
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2
βσ

2 ,
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µ
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ηy,0R0
+ 338c0ρyη

2
y,0L

2
βσ

2
)
. (150)

When r = 0, by setting ηy,0 = 1
30Lβ

and R0 = max{225, 16V0,0

Lβσ2 }, we have

σx
1,0 + σy

1,0 + 56σh
1,0 ≤

18560× 45c0L
2
β

32R0
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+ 338c0L

2
βσ

2 ≤ 500c0L
2
βσ

2 ,

V1,0 ≤
500c0L

2
βσ

2

µ
, (151)

where the second step holds due to ρy = 640L2
β .

Therefore, we denote ϵ1 ≜ 500c0L
2
βσ

2/µ such that

σx
1,0 + σy

1,0 + 56σh
1,0 ≤ µϵ1, V1,0 ≤ ϵ1 . (152)

In the following, we use the inductive approach to prove the desired result. Specifically, suppose
σx
r,0 + σy

r,0 + 56σh
r,0 ≤ µϵr and Vr,0 ≤ ϵr, we will prove σx

r+1,0 + σy
r+1,0 + 56σh

r+1,0 ≤ µϵr/2 and
Vr+1,0 ≤ ϵr/2. At first, we have

σx
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r+1,0 + 56σh
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320c0L
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β

ρyη2y,rTr
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20c0
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ϵr + 338c0ρyη
2
y,rL

2
βσ

2 . (153)

To make σx
r+1,0 + σy

r+1,0 + 56σh
r+1,0 ≤ µϵr/2, we enforce each term to be smaller than ϵr/6. In

particular, by setting

338c0ρyη
2
y,rL

2
βσ

2 ≤ µϵr
6

, (154)

we set

338c0640L
2
βη

2
y,rL

2
βσ

2 ≤ µϵr
6

,

ηy,r =

√
µϵr

1140
√
c0L2

βσ
. (155)

It is easy to verify that ρyη2y,r < 1 for t ≥ 1.
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By setting

20c0
ηy,rTr

ϵr ≤ µϵr
6

, (156)

we get

Tr ≥
120× 1140c0L

2
β

√
c0σ

µ
√
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. (157)

By setting

320c0L
2
β

ρyη2y,rTr
µϵr ≤ µϵr

6
, (158)

we get

Tr ≥
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4
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2
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Therefore, by setting ηy,r =
√
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1140
√
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βσ
and Tr = O(
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), we get
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and
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2
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2
. (161)

Since ϵr = ϵ1
2r−1 =

500c0L
2
βσ

2

2r−1µ , we get
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4
βσ
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=
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4
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µ
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2
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βc0 × 2r−1 ,

c0L
2
β

√
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=
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√
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µ

×
√
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√
c0Lβσ

=
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µ
×

√
2r−1 ≤ c0Lβ

µ
× 2r−1 . (162)

Therefore, we set Tr = O( c0µ × 2r−1). Finally, to achieve VR,0 ≤ ϵ, we need ϵ1
2(R−1) = ϵ so that

R = log2
2ϵ1
ϵ . As such, the total number of iterations is

O(T0 +

R∑
r=1

Tr) = O(max{225, 16V0,0

Lβσ2
}+

R∑
r=1

c0
µ

× 2r−1) = O

(
c0ϵ1
µϵ

)
= O

(
κ6

ϵ

)
, (163)

where the second step holds due to

R∑
r=1

2(r−1) =
c0
µ

2R − 1

2− 1
= O

(
c0
µ
2log2

2ϵ1
ϵ

)
= O

(
c0ϵ1
µϵ

)
. (164)

Moreover, we get

ηy,r =

√
µϵr

1140
√
c0L2

βσ
=

√
µ

1140
√
c0L2

βσ

√
500c0L2

βσ
2

2r−1µ
= O(1/

√
2r−1Lβ) , (165)

and it is easy to know ηx,r = O(µ2/
√
2r−1Lβ).
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C.4 Proof of the Theorem 5.1

Proof. Because f̂(G(x), y) is strongly convex with respect to x and satisfies the PL condition with
respect to y, we have

E[∥xR̃ − x∗∥2] ≤ 2

ℓ
E[Φ̂(xR̃)− Φ̂(x∗)] , (166)

where we set ω = 2ℓ such that f̂(G(x), y) is ℓ-strongly convex with respect to x, and we define
Φ̂(x) = maxy f̂(G(x), y∗) with y∗ = argmaxy∈Rdy f̂(G(x), y). Then, according to Proposition
2.1 in [30], to guarantee E[∥xR̃ −x∗∥2] ≤ O(ϵ2) such that E[∥∇Φ(x̃R)∥2] ≤ O(ϵ2), we can enforce
E[Φ̂(xR̃)−Φ̂(x∗)] ≤ O(ϵ2). Then, from Theorem C.2, it is easy to see that after running Algorithm 2
for the total number of iterations O(1/ϵ2) (Note that 1/ϵ is usually large in practice [30] so that we
omit other factors.), we have E[∥xR̃ − x∗∥2] ≤ O(ϵ2) and then E[∥∇Φ(x̃R)∥2] ≤ O(ϵ2).
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