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Abstract

For partial differential equations on domains of
arbitrary shapes, existing works of neural opera-
tors attempt to learn a mapping from geometries
to solutions. It often requires a large dataset of
geometry-solution pairs in order to obtain a suf-
ficiently accurate neural operator. However, for
many industrial applications, e.g., engineering de-
sign optimization, it can be prohibitive to satisfy
the requirement since even a single simulation
may take hours or days of computation. To ad-
dress this issue, we propose reference neural oper-
ators (RNO), a novel way of implementing neural
operators, i.e., to learn the smooth dependence
of solutions on geometric deformations. Specifi-
cally, given a reference solution, RNO can predict
solutions corresponding to arbitrary deformations
of the referred geometry. This approach turns out
to be much more data efficient. Through exten-
sive experiments, we show that RNO can learn
the dependence across various types and different
numbers of geometry objects with relatively small
datasets. RNO outperforms baseline models in
accuracy by a large lead and achieves up to 80%
error reduction.

1. Introduction
Recently, neural operators (Lu et al., 2021; Li et al., 2020a;
Bhattacharya et al., 2021; Nelsen & Stuart, 2021; Patel
et al., 2021) as surrogate models for solving partial differ-
ential equations (PDEs) have rapidly gained attention due
to the success in many applications in physics simulation,
e.g., weather forecasting, fluid dynamics, etc. (Wang et al.,
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Figure 1. Comparison between two approaches. (Left) Neural op-
erators map directly from geometries/functions a to solutions u,
which often requires large amount of data to cover various geome-
tries. (Right) Alternatively, given a reference solution ur on Ωr ,
we hope to query solutions to various deformations of its geometry.
Let φ : Ωr 7→ Ωq be a smooth deformation, a reference neural
operator can predict the difference between the queried solution
and the pushforward of the reference solution δu = uq−ur ◦φ−1.

2023; Bi et al., 2023; Zhang et al., 2023b; Pathak et al.,
2022). One of the greatest advantages of neural operators is
fast inference speed, which may reduce computational cost
by orders of magnitude while maintaining good accuracy.
These methods deal with problems on fixed domains, e.g.,
Earth. However, for engineering design, e.g., sensitivity
analysis, optimization and robustness study, iterations of
solving PDEs on deformable domains are required. Existing
works (Shukla et al., 2023; Li et al., 2022a; 2023; Hao et al.,
2023) of neural operators on deformable domains attempt to
learn a mapping from geometry space to solution space (G-
S) of PDEs. Such methods require large amount of training
data to achieve satisfying accuracy. Unlike some physics
simulation problems in fixed domains, such as weather fore-
casting where climate data is available from research of
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meteorology, engineering design usually deals with individ-
ual cases and needs to simulate various designs to collect
data. For industrial applications, it often takes hours or days
to simulate a single design. Meanwhile, the geometric de-
sign space can be huge, since geometric objects may be a
composition of any number of intersection, union and differ-
ence. Therefore, learning the mapping from geometries to
solutions becomes an extremely challenging and expensive
task.

To address this problem, we think out of the box and ask a
different question:

With a limited budget on training set, can neu-
ral operators learn the change of solution corre-
sponding to the change of geometry?

See Fig. 1 for illustration of the idea. Instead of predicting
the solution of an arbitrary design as G-S, we ask, given a
reference design what impact some geometric deformation
will cause to the reference solution. Intuitively, similar
changes of different geometry shapes can cause similar
impact on the solution. For example, considering a flow
through a channel with holes, to enlarge, shrink or shift a
hole close to the inlet of the channel will cause similar effect
to the flow, regardless of how many holes the channel have.
In this paper, we propose a novel approach, reference neural
operators (RNO) to predict the change of solution due to
the change of geometry. G-S essentially interpolates sparse
data in a vast space, and RNO focuses on estimation in the
neighborhood of a reference solution. Based on extensive
experiments, compared to G-S, RNO turns out to be more
data efficient and exhibits superior learning efficacy.

Specifically, RNO takes a reference solution, a correspond-
ing geometry and a deformation to a queried geometry as
inputs and outputs its prediction on the difference between
reference solution and query solution. In the study of shape
optimization, the target difference is defined as material
derivative (Sokolowski & Zolésio, 1992). It brings several
challenges to us, e.g., how to describe a deformation from
reference to query? How to combine multiple input func-
tions on irregular meshes in neural network? Our main
contributions include:

• We proposed RNO, a novel type of neural operators on
irregular meshes. Given a reference solution (ur,Ωr),
RNO can estimate the solution of PDEs on deforma-
tions of Ωr.

• We provide a simple method of constructing a domain
deformation φ based on the boundary of two domains.

• To handle multiple input functions and strengthen the
signal from geometric deformation, we implemented
distance-aware cross attention (DACA) in RNO. Since

cross attention is known for quadratic complexity and
may suffer from scalability issue, additionally, we pro-
pose an alternative linear-complexity DACA. To our
best knowledge, this is a novel design of linear atten-
tion weighted by distance.

• We comprehensively benchmarked RNO in multiple
challenging 2D and 3D PDE problems. Results show
that even with small size datasets, RNO can learn the
smooth dependence of solutions on geometric defor-
mations and outperforms several baseline neural opera-
tors.

2. Related Works
Neural operators. Learning solution operators of PDEs
using neural networks has gained growing attention. A
revolutionary wave starts with DeepONet (Lu et al., 2021)
and its followup works (Wang et al., 2021; 2022; Jin et al.,
2022). DeepONet is a meshless model, and it can learn
various maps from all sorts of functions, e.g., initial data,
boundary conditions, coefficient functions, etc. to solutions.

Another principled architecture for neural operators is pro-
posed by (Li et al., 2020b), and Fourier Neural Operator
(FNO) (Li et al., 2020a) emerged as a successful special
case. One of the key ideas is to formulate neural opera-
tors as kernel integrals. Similarly, (Cao, 2021) reinterpreted
attention mechanism as kernel integrals and proposed to con-
struct neural operators by transformers. However, all these
works are not dedicated to dealing with varying shapes and
geometries. In fact, FNO and its variations need to work
on regular mesh grids due to the embedded Fast Fourier
Transform in FNO layers.

Geo-FNO (Li et al., 2022a) is designed to handle vary-
ing shapes and it learns the operator map from geometries
to solutions by a composition of deformation and FNO.
The deformation map between regular domains to irregular
ones should be either provided in advance or learned from
data. GINO (Li et al., 2023) combines graph neural network
with FNO and deals with varying geometry problems in
3D space. NUNO (Liu et al., 2023) generalizes FNO to
irregular meshes by partitioning irregular domains into reg-
ular subdomains. GCNN (Chen et al., 2021) learns laminar
flow around random 2D objects with graph convolutional
neural networks. These works aim to enable generalization
of neural operators on shapes and geometries, but such gen-
eralization heavily relies on the diversity and the quantity
of training samples. For practical applications, where return
on investment must be considered, these approaches may be
too expensive to apply.

Similarly, (Li et al., 2022b; Hao et al., 2023) improved
transformer-structured neural operators both on the versa-
tility of input functions and on the performance. While
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transformer-based models can naturally handle irregular
meshes, they still require enough data to learn the mapping
from geometries to solutions.

In contrast to all previous methods, RNO aims to learn the
change of solution caused by geometric deformation.

Hybrid methods. There exists a type of hybrid methods
that combines ML with traditional numerical solvers. In
contrast to pure neural operators that only forward pass once,
these methods often require iterations. Neural networks
work as a replacement of some expensive parts of iterations
in numerical solvers. Some representative works include
(Kochkov et al., 2021), an equation-specific method that
replaces an expensive component inside computational fluid
dynamics (CFD). (Tompson et al., 2017) and (Obiols-Sales
et al., 2020) can generalize even to unseen geometries. They
also requires being combined with CFD solvers, and the
idea is to leverage ML models to accelerate convergence of
iterations. (Kahana et al., 2023) implements a more subtle
way of interweaving ML models with iterative numerical
solvers and can generalize to unseen geometries through
transfer learning.

However, all these hybrid methods are either problem spe-
cific or require tailored combination with numerical solvers.
In contrast, RNO does not involve direct interactions with
numerical solvers. For unseen geometries, it can refer to a
numerically solved example and predict on various defor-
mations.

Distance-aware transformers. Encoding position informa-
tion in transformers is a vibrant topic (Dufter et al., 2022).
For example, (Wu et al., 2020) proposed distance-aware
transformer to re-scale attention weights according to dis-
tance between tokens. OFormer (Li et al., 2022b) and Fact-
Former (Li et al., 2024) utilize RoPE (Su et al., 2024) to
encode token position. These works do not utilize phys-
ical distance, e.g., Eulidean distance. On the other hand,
(Ying et al., 2021) successfully brought transformer to graph-
structure problem by encoding structure information includ-
ing physical distance between nodes. (Zhang et al., 2023a)
theoretically proved that distance is a key ingredient to the
expressive power of transformer based GNN models.

3. Method
3.1. Problem Formulation

Let D ⊂ Rn be a Lipschitz domain and T ∈ T be a signed
distance function such that ΩT = {x ∈ D|T (x) > 0}.
Depending on the problem we study, ΩT can be either a
domain with holes or an interior domain of D. Hereafter,
ΩT can stand for a domain, and when it is self-evident ΩT

can also stand for an element in the function space T to
simplify notation. Consider the following PDE problem

Figure 2. (Left) Given geometry space T and solution space U ,
a reference neural operator Ψθ learns the material derivative of
a solution operator G : T → U at a given reference geometry
Ωr . It provides an approximation of the solution on a deformed
geometry Ωq = φ(Ωr) with ur ◦ φ−1 +Ψθ(ur,Ωr, φ). (Right)
The transform (gray vectors) from ∂Ωq (orange circle) to ∂Ωr

(blue circle) is used to construct a vector field that represents a
deformation φ−1 : Ωq 7→ Ωr .

with Dirichlet boundary condition:

N (u) = 0 in ΩT (1)
u = 0 on ∂ΩT (2)

where N is a differential operator and ∂ΩT is the boundary
of the domain. Suppose the problem has a unique solution
uT ∈ UT , and UT is a Banach space of functions on ΩT .
Also, let U be a Banach space of functions on D, and assume
UT ⊆ U with a family of linear and bounded extension from
UT to U . Then we can define a solution operator

G : T → U ,
T 7→ uT ,

(3)

Such operators have some nice properties such as smooth
dependence on T within a small neighborhood in T , given
some suitable conditions. For elliptic, parabolic and hy-
perbolic problems, readers can find classic analysis in
(Sokolowski & Zolésio, 1992). For Stokes equation and
Navier-Stokes equation, shape holomorphy of solutions is
analyzed by (Cohen et al., 2018).

Given a reference solution (ur,Ωr), we hope to learn about
solution uq on Ωq, where Ωq is a small perturbation of
Ωr, i.e., there exists a smooth deformation φ with smooth
inverse, i.e., φ,φ−1 ∈ Ck(D;D), k ≥ 1, such that

φ : Ωr 7→ Ωq. (4)

See Fig. 2 (Left) for conceptual illustration, and the con-
struction of φ will be discussed in Section 3.3. Formally,
we define Ψθ as a neural operator parameterized by θ,

Ψθ : U × T × Ck(T )→ U
(ur,Ωr, φ) 7→ uq − ur ◦ φ−1,

(5)
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Figure 3. Overview of model architecture which composes of two stages. The first stage is the preprocessing of input data. Input sequences
ur , Ωr = {xrj}j and Ωq = {xqi}i are tensors with shape Nr × ds, Nr × n, Nq × n, where n, ds are spatial dimension and dimension
of target space. δxq = φ−1(xq)− xq is the shift of every point xq ∈ Ωq . The second stage is the forward passing of neural network. ⊙
is element-wise product, ⊗ is matrix product, + is element-wise sum. δu is the predicted change of solution, and ûq = ur ◦ φ−1 + δu.

and its training objective is

min
θ

E[∥Ψθ(ur,Ωr, φ)− (uq − ur ◦ φ−1)∥], (6)

where ∥·∥ is the norm on U . In practice, the norm usually
is chosen to be Lp-norm, p > 0, for computational simplic-
ity. In Appendix D, we derive this objective from material
derivative.

Suppose every queried domain Ωq has a set of points
{xqi}i ⊂ Ωq i = 1, · · · , Nq. For N queries, each one
is paired with a reference triplet (ur,Ωr, φ). Then the ob-
jective function (6) is approximated by

(7)min
θ

1

N

∑
q

∑
i

∥Ψθ(ur,Ωr, φ)(xqi)

− (uq − ur ◦ φ−1)(xqi)∥.

Let δu = Ψθ(ur,Ωr, φ) and then predicted solution ûq =
ur ◦ φ−1 + δu. Given ground truth uq , the above objective
is implemented as the metric loss between ûq and uq .

Note that we assume the deformation φ and its inverse φ−1

between reference and query domains exist and are smooth.
It sets the boundary for application of the proposed method.
Namely, we should not apply the method to cases where no
such deformation exist and expect good learning results. For
example, a query has different topology from a reference by
introducing or removing a hole. In fact, such topological
change can cause sharp change to solutions.

3.2. Reference Neural Operator

Following the principle for neural operators established by
(Li et al., 2020b;a), we also formulate the architecture of

RNO as a stack of kernel integrals,

Ψ = Q ◦ LL ◦ · · · ◦ L1 ◦ P. (8)

P is an encoder that lifts function values to hidden space
Rs, where s is feature dimension, and it should be able to
encode different numbers of geometries. Ll, l = 1, · · · , L
are integral operator layers. Q : Rs → Rds is a decoder
that projects hidden variables back to target space Rds .

3.2.1. GEOMETRY ENCODER

If the domain ΩT we consider have multiple geometry ob-
jects, i.e., the boundary of ΩT has multiple components,
∂ΩT = ∪iΓi∪∂D where ∂D is the boundary of D (or sim-
ply ∂ΩT = ∪iΓi if ΩT is an interior domain), we need to
design an encoder capable of handling these different num-
bers of components. Inspired by (Molinaro et al., 2023),
we encode each change of geometries by a shared encoder
P : U × T × Ck(T ) → Rs and sum their outputs, where
s is the dimension of features. Suppose at a point x with
value ur(x), P is defined as

v(x) = P(x, ur(x),Ωr, φ) =
∑
i

P(x, ur(x),Γi, φ). (9)

Unlike (Molinaro et al., 2023) where output of P is aver-
aged, here we sum all outputs to reflect the composition
of changes of all geometry components. For any location
x ∈ Ωq, we encode it to P(x) in the latent space Rs. Here-
after, when it is self-evident, we still use x to refer latent
encoding of these locations for simplicity.

Here for the encoder, we use the geometric parameters to
represent Γi’s, e.g., centers, radius, length, etc. Thus, we
simply takes the difference between geometric parameters
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pr, pq of reference and query to represent φ. Note that we
also represent φ as a vector function on mesh grids and com-
bine this information by cross attention. See next sections
for cross attention and construction of vector function φ.

3.2.2. DISTANCE-AWARE CROSS-ATTENTION

In order to handle multiple input functions, e.g., reference
solution and deformation, let’s consider an integral operator
K : U × · · · × U → U with M input functions vj , j =
1, · · · ,M ,

w(x) = K(v1, · · · , vM )(x) =

∫
D

M∑
j=1

κj(x, y)v
j(y)dy (10)

Note that we are dealing with irregular meshes deformable
geometries. Inspired by (Cao, 2021; Hao et al., 2023),
we apply attention mechanism (Vaswani et al., 2017) to
approximate the kernels κj(·, ·) on irregular meshes. For
q,k,v ∈ Rs and a sequence of inputs X = {xi}1≤i≤N ,,
we have q(X),k(X),vj(X) ∈ RN×s. Then attention
works as a kernel and is defined by

attn(x, yi) = softmax(q(x)kT (yi)). (11)

Distance weight is helpful to strengthen attention according
to spatial relation between elements of q and k (Ying et al.,
2021; Zhang et al., 2023a). Considering the change of solu-
tion can be strongly related to the location of deformation
in some problems, e.g., fluid dynamics, we apply distance
weighting and approximate (10) by a distance-aware cross
attention (DACA) layer,

w(x) ≈ 1

α

N∑
i=1

M∑
j=1

attnj(x, yi) · hγ(d(x, yi)) · vj(yi),

(12)
where d is a distance function, e.g., Euclidean dis-

tance, h(t) = e
− t2

γ2 and γ is a hyperparameter. α =∑
i

∑
j attnj(x, yi) · hγ(d(x, yi)) is a normalization factor.

Each attnj can have its own qj and kj to learn different ker-
nels κj(·, ·), but the computation cost would be O(MN2)
for each layer. In practice, we find a shared kernel in each
layer sufficient for our purpose and keep the cost as O(N2).
In Appendix C, we describe a DACA layer of linear com-
plexity.

Finally, we construct each integral operator layer Ll as

vl+1(x) = Ll(vl)(x) = vl(x) + f (wl(x)) , (13)

where wl is defined by (12) and f is a composition of
a layer normalization and an MLP with nonlinear ac-
tivation function GELU (Hendrycks & Gimpel, 2016).
For input functions vj of wl, we choose the triplet(
vl,P1(ur ◦ φ−1(xq)),P2(φ

−1(xq)− xq)
)
, where Pi’s,

i = 1, 2, are encoders that lift input function values to
hidden variables. See overall architecture in Fig. 3.

Algorithm 1 Forward function of RNO

Input: Query (xq, pq,Γq) and reference
((xr, ur), pr,Γr)
# Preprocessing
δxq ← Construct Phi(Γq,Γr, xq)
xs ← xq + δxq

uinterp ← Interpolate((xr, ur), xs)

# Forward passing of neural network
ûq ← uinterp +Ψθ(xq, uinterp, δxq, pq, pr)
Output: ûq

3.3. Algorithms

In this section, we deal with the following questions. How
to construct a vector function to represent deformation φ?
How to obtain a pushforward function ur ◦ φ−1?

Interpolation for pushforward. Notice that the pushfor-
ward of ur, ur ◦ φ−1(xq), can be obtained by interpolation.
One can construct a triangular mesh on Ωr from reference
data {(xri , uri)}i, and then interpolate {ur ◦ φ−1(xqj )}j .

Ref-Query Dataloader. We need a dataloader that loads
data in pairs of reference and query. If training dataset is
constructed in pairs, where two solutions and geometries
in one pair are close to each other, reference and query are
paired naturally. If training set is constructed by sampling
from geometric design space, for each query, reference can
be determined by K-nearest-neighbor. Here the distance
between examples can be Euclidean distance between geo-
metric parameters.

In our implementation, a dataset has format ((x, u), p,Γ),
where p stands for the geometry parameters and Γ is the set
of boundary points. Then a paired data loaded from the dat-
aloader has format ((xq, uq), (pq, pr), ((xr, ur),Γr,Γq)).

Constructing φ. φ should avoid folding or tearing which
means positive Jacobian everywhere. In practice, we take a
naı̈ve approach as approximation. Step 1. Find shifting vec-
tors from points on boundaries of Ωr to points on boundaries
of Ωq . This requires 1-to-1 matching between points. If the
deformation from reference to query is obtained by some
deformation methods, e.g., free-form deformation (Seder-
berg & Parry, 1986), then the 1-to-1 matching is automatic.
Or we can reconstruct boundaries of simple geometries with
parameters to create such matching. Step 2. For each point
xq, set its shifting vector equal to the shifting vector of the
closest boundary point, and then put on the weight by the
distance between xq and the closest boundary point. The

weight function is h(t) = e
− t2

γ2
φ , and γφ is another hyper-

parameter. Step 3. Protect the wall ∂D of domain D, i.e.,
to prevent points being shifted outside of the domain. Let
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Dataset Component GNOT Geo-FNO R-GNOT R-FNO-i R-MIONet RNO (Ours)

NS2d-360
u 1.6e-1 4.6e-1 1.0e-1 2.7e-1 3.7e-1 3.9e-2
v 4.2e-1 9.0e-1 2.5e-1 7.5e-1 6.6e-1 1.1e-1
p 2.1e-1 4.3e-1 9.5e-2 2.1e-1 3.6e-1 4.2e-2

NS2d-sq-360
u 1.1e-1 3.4e-1 8.6e-2 2.3e-1 3.2e-1 5.3e-2
v 3.2e-1 8.5e-1 2.7e-1 7.3e-1 7.0e-1 1.8e-1
p 2.0e-1 4.3e-1 1.6e-1 2.4e-1 4.4e-1 9.1e-2

Inductor2d-320
Az 5.8e-2 1.4e-1 2.5e-2 3.0e-2 3.8e-2 4.3e-3
Bx 6.2e-2 3.4e-1 4.5e-2 5.5e-2 1.1e-1 1.7e-2
By 7.0e-2 4.2e-1 5.6e-2 6.0e-2 1.2e-1 2.2e-2

Heatsink3d-80

u 1.1e-1 - 5.0e-2 - 2.0e-1 4.2e-2
v 3.2e-1 - 1.9e-1 - 5.6e-1 1.6e-1
w 2.6e-1 - 1.4e-1* - 4.8e-1 1.4e-1
T 8.4e-3 - 4.3e-3 - 1.9e-2 3.7e-3

Table 1. The number following the name of datasets is the size of datasets. The prefix “R-” indicates modified models that take reference
solution ur and deformation φ as inputs. See definition of baseline models in Section 4. Bold is the best. *The 2nd digit after the decimal
is higher than RNO.

d be the distance between xr and ∂D. We define a smooth
cutoff function on [0,∞),

η(d) =


0, d = 0

e1−
d2max

d2 , 0 < d < dmax

1, d ≥ dmax

(14)

where dmax is chosen to be the shortest distance between
Γi’s to ∂D. Then apply the cutoff function on all shifting
vectors obtained from step 2. Note that all steps are smooth
procedures except step 1. Here, our choice of step 1 may
not be smooth, but it provides a simple yet effective approx-
imation of smooth φ. See Fig. 2 (Right) for the illustration
of the construction.

Preprocessing and RNO. Given a dataset, all previous
procedures are processed before feeding data into forward
pass of neural networks. The pipeline is summarized in
Algorithm 1. Obviously, for scaling purpose, one may move
the entire procedure of preparing reference and query pairs
outside of the training loop of RNO.

4. Experiments
Datasets. We consider several PDE problems in both 2D
and 3D space. Problems are defined on various geomet-
ric domains, including different shapes, different positions,
different sizes and different numbers of geometric objects.
All datasets are generated in pairs. For each pair, the two
domains are deformations of each other, and during train-
ing and testing the two data samples are used as reference
and query for each other. We intentionally limit the size of
datasets in order to evaluate all methods for practical use.
The dataset sizes of 2D problems are no more than 400, and
for more expensive 3D problems, we use a dataset of 80
samples. Training and testing sets are split in ratio 8 : 2. For

more details of each dataset, please check Appendix A. For
all problems, we choose γφ = 0.1 to construct deformation
φ, see Section 3.3.

• Steady 2D-Navier-stokes equations models flows
though a 2D channel with holes. There are two types
of holes, circle (NS2d) and square (NS2d-sq). The
number of holes ranges from 1 ∼ 9, and the size and
the position of holes varies.

• Maxwell equations (Inductor2d) is a model of circu-
lar shape inductor with different numbers of circular
copper wire.

• Heat transfer and CFD (Heatsink3d) is a 3D model
of heatsink with hexagon shaped pin-fins. The number
of pin-fins ranges from 2 ∼ 14. The gap between rows
of pin-fins varies.

The above challenging datasets are featured with random
number of simple geometries which can be deformed by
shifting and resizing. In Appendix B, we benchmarked
RNO from a different angle, namely to expand example sce-
narios to complex geometry shapes such as airfoil. With two
more datasets, Airfoil-Euler(Li et al., 2022a) and Airfoil-
RANS(Bonnet et al., 2022), we showcase that RNO can
flexibly be applied to free-form type of deformations be-
yond previous examples.

Baselines. Also, we compare RNO to several baseline
models. In particular, we modify some of the models to
learn the operator: (ur,Ωr, φ) 7→ uq . The modified models
are prefixed by “R-”.

• MIONet (Jin et al., 2022) is similar to DeepONet (Lu
et al., 2021) as a mesh-free model, and it requires fixed
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Figure 4. (Left) Mean error of all components versus the size of dataset. (Right) Error versus distance.

sensors in the domain. So we interpolate all input data
on uniform grids as sensors.

• Geo-FNO (Li et al., 2023) is able to learn deformations
of the domain and generalize on different geometric
shapes. It can work with irregular meshes, so we make
no change on this model except for downsampling data
with the same number of grids.

• FNO (Li et al., 2020a) should be applied on uniform
grids. So we interpolate data on 64 by 64 uniform grids.
Additionally, we modify the input of FNO and name it
as R-FNO-i.

• GNOT (Hao et al., 2023) is versatile with the formats
of input functions, including geometric parameters,
boundary shapes. etc. So, we use vanilla GNOT as
one of the baseline models. Additionally, we also use
R-GNOT as a baseline.

All baselines except MIONet use up to 4 times more parame-
ters than RNO. MIONet uses roughly 30% fewer parameters
than RNO.

Evaluation metric and hyperparameters. The metric of
evaluation is l2 relative error. Suppose u and û are ground
truth solution and predicted solution,

∥u− û∥rel2=
(∑

i|ui − ûi|2∑
i|ui|2

) 1
2

. (15)

We train all models with AdamW optimizer (Loshchilov
& Hutter, 2017) with cyclical learning rate (Smith, 2017).
All experiments are ran 100 epochs with batchsize 1 ∼ 4
depending on the number of nodes in meshes.

4.1. Main Results

In Table 1, we summarize main results of the experiment.
There are two types of baseline models, with or without

reference solution (ur,Ωr) and discretized deformation φ
as inputs, distinguished by prefix “R-”. Models without “R-”
belong to traditional G-S neural operators. RNO outper-
forms all baseline models in all problems.

Note that R-GNOT outperforms GNOT for all problems,
indicating that the extra information about reference solution
and deformation is helpful for prediction. Meanwhile, R-
GNOT is still not as good as RNO, suggesting that the
performance of RNO is not only due to extra inputs but a
key fact that the target of RNO is approximating the material
derivative of solution operators.

The performance of linear RNO (RNO-L) is summarized
in Table 6. RNO-L has a little higher error most likely due
to the randomness introduced by RFM. We point out that a
drawback of linear DACA is O(d2D) memory cost. When
D is taken a high integer value to improve the accuracy of es-
timation of the distance weight function hγ(d), the memory
cost grows by D times compared to vanilla linear attention.
However, it can be mitigated by increasing number of heads
of attention, with number of heads nhead, the memory cost
is reduced to O( d2D

nhead
).

A natural baseline of RNO may be the pushforward of refer-
ence solution, ur ◦φ−1, i.e., Ψθ ≡ 0. We compare the mean
l2 relative error of the pushforward reference solution and
RNO. See Table 7 in Appendix E, RNO has smaller errors
for all problems, and some error is reduced by 50% ∼ 80%.
It shows that RNO has essentially learned to predict the
difference uq − ur ◦ φ−1.

4.2. Scaling Experiment

Size of dataset. In the discussion above, we see that even
with small dataset, RNO is able to learn the change of so-
lution due to the change of geometry and hence provides
an approximation of the queried solution. We wonder how
size of dataset would affect the performance of RNO. We
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Figure 5. (Left) Error versus number layers. (Right) Error versus γ of DACA.

u v p
GNOT 5.9e-2 1.6e-1 7.1e-2

R-GNOT 4.3e-2 1.1e-1 4.4e-2
RNO 1.9e-2 5.1e-2 2.3e-2

Table 2. Results of models on NS2d-1440.

choose the dataset NS2d which has 1440 samples in total.
Then we down sample the dataset to smaller datasets with
sampling rate r = 1, 2, 4, 8, 16. The baseline models are
GNOT and R-GNOT, which are two best models besides
RNO. In Figure 4 (Left), we plot GNOT and R-GNOT repre-
senting vanilla and modified neural operators against RNO
on NS2d. The error on three models all decrease as size of
dataset increases. Though with more data the gap between
RNO and the other methods narrows, RNO consistently
outperforms the other two. We emphasize that the ability of
learning from small amount of data is highly desirable to
shape optimization and other engineering design problem.

Notice that some components are more challenging than
others to predict, and l2 relative errors can be higher than
10%, see Table 1. However, this problem can be mitigated
when the size of dataset increases. On the full NS2d dataset
with 1440 samples, GNOT and R-GNOT still have an error
larger than 10% on v, but RNO achieved reducing error by
almost 50%. See Table 2.

Number layers of RNO. The performance of RNO will
gain little improvement for number of layers L > 3, see Fig.
5 (Left), so we choose L = 3 to balance cost and benefit.

4.3. Error Analysis

Since RNO learns to approximate the material derivative
of solution operators, a natural question is how geometric
distance relates to prediction error In Figure 4 (Right), we
plot the mean l2 relative error of components versus the
geometric distance for NS2d, and error grows with distance.
Here the geometric distance is defined by Euclidean distance

NS2d NS2d-sq Inductor2d
w/o δu 7.4e-2 1.2e-1 3.6e-2

w/o DACA 9.9e-2 2e-1 3.8e-2
All 6.3e-2 1.1e-1 1.5e-2

Table 3. Ablation study on learning target and DACA.

between geometry parameters of reference and query. In
general, for non-parametric geometries, we can define the
norm of discretized deformation as the geometric distance.
See more error analysis for other datasets in Appendix E.

4.4. The Hyperparameter of DACA

The hyperparameter γ in (12) is crucial to the performance
of RNO, and it is problem dependent. See Fig. 5 (Right).
For NS2d, the mean l2 relative error increases as γ increases.
One way of reasoning this effect is that for fluid dynamics,
a local geometry change will most likely impact nearby
flow. On the other hand, for Inductor2d, the mean l2 relative
error decreases as γ increases. This interesting opposite
trend is due to the well-known fact that magnetic-electronic
phenomenon is governed by Maxwell equations, and such
elliptic equations have slow-decay kernel functions for solu-
tions (Evans, 2022). Therefore, long distance impact will
be significant. In our implementation, for NS2d, NS2d-sq
and Heatsink3d, we choose γ = 0.3. For Inductor2d, we
choose γ =∞ (disable distance weighting).

4.5. Ablation Study

We conduct ablation study on the components of RNO. Re-
sults in Table 3 show that both the target δu and DACA are
key components. Values are mean l2 relative errors. “With-
out DACA” means to remove entire DACA layers.“Without
δu” means to learn the operator (ur,Ωr, φ) 7→ uq instead
of (ur,Ωr, φ) 7→ δu, which is the same as “R-” type of
baseline models except for model architecture. To rational-
ize why predicting δu is better than predicting uq directly,

8
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RNO explicitly determines the pushforward ur ◦ φ−1 in û,
which reduces the complexity of the target.

5. Conclusion
Learning the operator mapping from geometry shapes to
solutions of PDEs is a challenging problem due to the fact
that geometry space is extremely huge and complicated. It
can be prohibitive to sample sufficient data from geometry
space and train neural operators. We propose an alterna-
tive approach that neural operators learn the change of a
reference solution corresponding to a queried deformation.
We conduct extensive experiments and show that RNO can
learn this target efficiently. Our method may direct a new
and practical path of applying neural operators as surrogate
models for shape optimization and other downstream tasks.
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A. Datasets
All datasets are generated by by COMSOL 6.0. All data has format ((x, u), p,Γ), where p stands for the geom-
etry parameters and Γ is the set of boundary points. Then we construct a dataloader to load a pair of data as
((xq, uq), (pq, pr), ((xr, ur),Γr,Γq)). All experiments run on NVIDIA Tesla V100.

NS2d and NS2d-sq describes fluid flows through a square channel with holes, namely, D = [0, 8]× [0, 8], Ω = D\
⋃M

i=1 Ri,
where M = 1, · · · , 9 and Ri’s are disks or squares. Boundary condition is “no-slip”. Steady Navier-Stokes equation is

u · ∇u =
1

Re
∇2u−∇p (16)

∇ · u = 0 (17)

where Re = 1 is the Reynolds number and u = (u, v). We sample uniformly the number of holes with random positions
and sizes. Additionally, for each sample we perturb its geometry parameters and make them a reference and query pair. In
total, there are 1440 samples, 1152 for training and 288 for testing. The pairing of data is kept after splitting. For smaller
dataset experiments, we down sample the dataset. Below are some examples of the dataset, see Fig. 6.

Figure 6. Columns are u, v, p. Rows are circle and square. White dots are boundary points.

Inductor2d models a circular-shape magnetic core wrapped by some number of copper coils. The governing equations are
steady Maxwell equations,

∇×H = J (18)
B = ∇×A (19)
J = σE (20)
B = µ0µrH (21)

with interface condition

n×A = 0 (22)
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Figure 7. Plots of Az, Bx, By . White dots are boundary points.

where µ0 is the vacuum permeability and µr is the permeability of the magnetic core. For 2d problem, suppose A = (0, 0, Az)
and B = (∂yAz,−∂xAz, 0), the above equations simplify to an elliptic type of equation of Az . Particularly, if µr is a
constant, it is a Poisson equation.

Heatsink3d models a heatsink with pin-fins. The detail of the model is omitted. Readers can find details in (Multiphysics,
1998).

Figure 8. (Left) The mesh of a 3d model of heatsink with 10 hexgon pin-fins. (Right) A data sample of 6 pin-fins. The color of each point
in space is the value of a component of u, v, w, T . Orange dots are boundary points.

B. Additional Experiments
In this section, we present benchmark on two additional datasets, Airfoil-Euler (Li et al., 2022a) and Airfoil-RANS (Bonnet
et al., 2022) to demonstrate RNO working with complex geometry shapes and free-form type of deformations. The
differences between this section and previous experiments are: 1. The number of geometry object is fixed to one, but the
type of deformations is extended beyond shifting and resizing to squeezing, stretching, rotation, etc.; 2. When testing,
instead of pairing queries and references among testing set, we find the nearest neighbor of a test query from training set and
use it as reference. Note that this setting mimics practical usage of RNO in real world. The nearest neighbor is determined
by geometric distance, which is implemented as either distance between geometry parameters or norm of deformation.

Airfoil-Euler is a simplified model of airfoil with Euler equation with no viscosity, where the boundary conditions are
fixed and also angle of attack is set to zero. The target physical field is fluid density, which is a 1D field. See details in (Li
et al., 2022a). We notice that many state of the art neural operators have achieved quite low error rates, order of magnitude
1e− 3 ∼ 1e− 2 on this dataset, see e.g., (Serrano et al., 2024). One reason is that airfoil area is less than 1% of the whole
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domain, and the error is averaged to be low since most area is almost constant and easy to fit. Another reason is that the
training set contains 1000 samples. Therefore, we made two changes to the dataset: 1. Cropping the data to a smaller
neighborhood of airfoil (see Fig. 10); 2. Limiting training set to 200 samples to fit our setting, which is also called “scarce
data regime” in (Bonnet et al., 2022).

Another feature of this dataset is that all mesh grids are deformed from one standard uniform mesh grids, so that the tensors
of mesh grids have the same shape. As a result, a natural 1-1 mapping of grids exists among data, which saves the need of
constructing deformation from reference to query and the following interpolation, greatly simplifying implementation of
RNO. Baseline models are CORAL (Serrano et al., 2024), NU-FNO (Liu et al., 2023), Geo-FNO (Li et al., 2022a) and
GNOT (Hao et al., 2023). RNO outperforms all other baselines on this modified dataset, see Table 4. More importantly, it
shows RNO can be applied to general deformations. Metric is l2, ∥u− û∥l2= 1

N

∑N
i |ui − ûi|2.

Model CORAL NU-FNO Geo-FNO GNOT RNO
l2 Error 8.1e-2 1.5e-1 7.9e-2 4.0e-2 3.4e-2

Table 4. l2 Error on Airfoil-Euler.

Airfoil-RANS is a much more challenging CFD dataset generated from simulation of Reynolds-Averaged Navier–Stokes
(RANS), which contains complex patterns of turbulent viscosity. Besides varying geometry, the boundary conditions, e.g.,
inlet velocity, angle of attack, Reynolds number, etc., also vary in the dataset, It brings challenge to determine suitable
reference data for RNO. Ideally, reference and query should have the same boundary conditions and small difference in
geometry. However, we manage to show that RNO still outperforms G-S type neural operators with only 180 training data.
It shows that the methodology of RNO can be applied to real-life problems where data can be scarce and problems can be
complicated.

In our implementation, we use both geometry shape and boundary conditions to determine the top-3 nearest neighbors as
reference for training, and use the top-1 neighbor in training set as reference for testing. We found that different target
components prefers different strategies of reference. For example, dominant factors for pressure may be inlet velocity and
angle of attack. So, a closer reference on these two factor can help predicting pressure. We feel there is great potential to
explore, however, due to scope of this paper, we present our primitive study on this dataset.

Baseline models are GNOT and its modified version R-GNOT which adds reference as input. Note that unlike Airfoil-Euler
where the mesh grids of every case is deformed from a standard uniform grids, many aforementioned baselines can not
be easily implemented here since no such standard grids exists and the number of mesh grids are different from case to
case. All metric is l2. RNO achieves competitive results. See Table 5. We note that, since AirfRANS was not designed to
generate data for RNO, potentially RNO can improve its performance. We recommend generating datasets of reference and
query pairs with fixed boundary conditions (BCs) within a pair (BCs can be different between pairs) and varying geometry,
such that RNO can learn the change of solution due to the change of variable that we are interested in. Such setting can be
particularly useful for e.g. sensitivity and robustness analysis. See qualitative examples in Fig. 11.

Models u v p νt
GNOT 0.51 0.44 0.61 0.31

R-GNOT 0.30 0.19 0.11 0.19
RNO 0.32 0.32 0.10 0.22

Table 5. Bold indicates the best and Italic the second. u, v are velocity components, p the pressure, and νt the turbulent viscosity.

C. Distance-Aware Linear Attention
To construct a linear attention for (12), we implement random feature mapping (RFM) (Rahimi & Recht, 2007) to
approximate the distance weighing function exp(−∥·∥2/γ2). The same trick is applied by (Peng et al., 2021) with a different
purpose, to modify the softmax function in attention mechanism and achieve linear complexity1.

1We found a typo in the paper of (Peng et al., 2021). In theorem 1. wi should be sampled from N (0, σ2Id), and then Ewi [ϕ(x) ·
ϕ(y)] = exp(−∥x− y∥2·σ2/2), instead of exp(−∥x− y∥2/2σ2)
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Let linear attention be attn(x, yj) = 1
Ndiv

q(x) · k(yj) where Ndiv =
∑

j q · kj is a normalizing constant (see details of
linear attention in (Hao et al., 2023)), and (12) becomes

w(x) ≈
N∑
j

M∑
t

q(x) · k(yj) · hγ(d(x, yj)) · vt(yj), (23)

To approximate hγ(d(x, y)) = exp(−∥x − y∥2/γ2), sample ωi from N (0, σ2Id) where σ =
√
2

γ , and then define
ϕ : Rn → R2D as

ϕ(x) =
1√
D

[sin(ω1 · x), · · · , sin(ωD · x), cos(ω1 · x), · · · , cos(ωD · x)] (24)

Then according to RFM we have Eωi
[ϕ(x) ·ϕ(y)] = exp(−∥x−y∥2/γ2). Let q,k,v, ϕ(x) be indexed by qab, kab, vab, ϕac,

where a = 1, · · · , N , b = 1, · · · , d, c = 1, · · · , D. Then let j,m correspond to the first and the second indices a, b, and l
corresponds to c, the second index of ϕ. We have

wab =
∑
m,l,j

qamkjmϕalϕjlvjb

=
∑
m,l

qamϕal

∑
j

kjmϕjlvjb

=
∑
m

qam
∑
l

ϕalHmlb

=
∑
m

qamHamb,

where Hmlb =
∑

j kjmϕjlvjb and Hamb =
∑

l ϕalHmlb. The computational cost of Hmlb, Hamb is O(Nd2D) and
O(d2D). For all wab, 1 ≤ a ≤ N and 1 ≤ b ≤ d, the cost is O(Nd2D).

The performance of linear RNO is summarized in Table 6,

NS2d-360 NS2d-1440
u v p u v p

RNO-L 4.2e-2 1.1e-1 4.1e-2 2.5e-2 6.6e-2 2.6e-2
RNO 3.9e-2 1.1e-1 4.2e-2 1.9e-2 5.1e-2 2.3e-2

Table 6. RNO-L stands for linear RNO and is comparable with RNO in accuracy.

RNO-L has a little higher error most likely due to the randomness introduced by RFM. We point out that a drawback of
linear DACA is O(d2D) memory cost. When D is taken a high integer value to improve the accuracy of estimation of the
distance weight function hγ(d), the memory cost grows by D times compared to vanilla linear attention. However, it can be
mitigated by increasing number of heads of attention, with number of heads nhead, the memory cost is reduced to O( d2D

nhead
).

D. Learning Objective
Consider a reference solution ur on Ωr and a query domain Ωq. Given a vector field V = V (x, t) and the corresponding
flow Tt, recall the material derivative (Sokolowski & Zolésio, 1992) of the solution operator G at Ωr,

u̇(Ωr, V ) = lim
t→0

1

t
(uTt(Ωr) ◦ Tt − uΩr

), (25)

where ◦ is composition of functions and uTt(Ωr) ◦ Tt is the pullback of uTt(Ωr). The limit exists in a suitable topology, for
example a Sobolev space Wm,p(Ω) or H1

0 (Ω) (Evans, 2022). Suppose t = ε and Tε = φ, then we can rewrite the above
equation as

uΩq
◦ φ = uΩr

+ ε · u̇(Ωr, V ) + o(ε). (26)
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where uΩq
= uq . Suppose ε · u̇(Ωr, V ) is approximated by a neural operator Ψθ. Then for x ∈ Ωr,

uq ◦ φ(x) ≈ ur(x) + Ψθ ((x, ur),Ωr, φ) . (27)

For a set of points {xqi}i ⊂ Ωq, and a collection of Ωq’s of size N , each paired with a reference triplet (ur,Ωr, φ), the
objective function (6) is approximated by

(28)min
θ

1

N

∑
q

∑
i

∥Ψθ(ur,Ωr, φ)(xri)− (uq ◦ φ− ur)(xri)∥.

Note that this objective is computed on the domain Ωr. Alternatively, we can transform the problem to Ωq . Let {xri}i ⊂ Ωr

and φ(xri) = xqi ∈ Ωq for all i = 0, 1, 2 . . . The above objective can be rewritten as

(29)min
θ

1

N

∑
q

∑
i

∥Ψθ(ur,Ωr, φ)(φ
−1(xqi))− (uq − ur ◦ φ−1)(xqi)∥.

Let δu = Ψθ(ur,Ωr, φ) ◦φ−1, and then predicted solution ûq = ur ◦φ−1+ δu. Given ground truth uq , the above objective
is implemented as the metric loss between ûq and uq .

A minor difference between (28) and (29) is due to interpolation. Namely, uq ◦φ(xri) can be approximated by interpolating
uq on φ(xri) in Ωq , and ur ◦ φ−1(xqi) can be approximated by interpolating ur on φ−1(xqi) in Ωr. In our implementation,
we adopt (7) to leave the target uq unchanged, but the other way is obviously also valid.

E. Error Analysis
We compare a natural baseline, the pushforward of reference solution, ur ◦ φ−1, with RNO. See Table 7. It shows that RNO
shrinks the gap between ur ◦ φ−1 and target uq . In fact, what RNO is actually learning is to fill this gap.

NS2d NS2d-sq Inductor2d Heatsink3d
ur ◦ φ−1 1.2e-1 2.5e-1 7.3e-2 1.6e-1

RNO 6.3e-2 1.1e-1 1.5e-2 8.6e-2

Table 7. Mean error of the pushforward reference solution and RNO.

In Fig. 9, we plot mean l2 relative error versus geometric distance for other datasets besides NS2d. Error grows as distance
increases except for Inductor2d. Our speculation is that geometric distance defined by the Euclidean distance between
parameters of reference and query may not accurately measure deformations in this case. A more accurate alternative for
geometric distance can be the norm of deformation φ from reference to query geometry.

Figure 9. Left to right: Error versus distance of NS2d-sq, Inductor2d, Heatsink3d.
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Figure 10. Qualitative example of RNO on the fluid density of Airfoil-Euler.

Figure 11. Qualitative example of RNO on the turbulent viscosity of Airfoil-RANS.
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