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Abstract

Large Language Models (LLMs) are increas-001
ingly being used for interactive decision-002
making tasks requiring planning and adapt-003
ing to the environment. Recent works em-004
ploy LLMs-as-agents in broadly two ways:005
iteratively determining the next action (itera-006
tive executors) or generating plans and execut-007
ing sub-tasks using LLMs (plan-and-execute).008
However, these methods struggle with task009
complexity, as the inability to execute any010
sub-task may lead to task failure. To ad-011
dress these shortcomings, we introduce As-012
Needed Decomposition and Planning for com-013
plex Tasks (ADAPT), an approach that explic-014
itly plans and decomposes complex sub-tasks015
as-needed, i.e., when the LLM is unable to ex-016
ecute them. ADAPT recursively decomposes017
sub-tasks to adapt to both task complexity and018
LLM capability. Our results demonstrate that019
ADAPT substantially outperforms established020
strong baselines, achieving success rates up to021
28.3% higher in ALFWorld, 27% in WebShop,022
and 33% in TextCraft – a novel compositional023
dataset that we introduce. Through extensive024
analysis, we illustrate the importance of multi-025
level decomposition and establish that ADAPT026
dynamically adjusts to the capabilities of the027
executor LLM as well as to task complexity.1028

1 Introduction029

Recent advances in Large Language Models030

(LLMs) have expanded their application beyond031

conventional NLP tasks to more complex tasks032

involving mathematical, symbolic, and common-033

sense reasoning (Wei et al., 2022; Huang and034

Chang, 2023). Recent models have even been ap-035

plied to decision-making tasks, such as performing036

household chores, navigating a webpage, etc., that037

require interactions with external environments or038

tools (Yao et al., 2023b; Qin et al., 2023).039

1We will publicly release our code upon acceptance.

Prior works on using LLMs for decision-making, 040

such as ReAct (Yao et al., 2023b), iteratively gen- 041

erate the next action to be executed in the environ- 042

ment given the history of actions and observations 043

(see Fig. 1; top-left). However, as the tasks become 044

more complex, LLMs struggle due to their limited 045

composition ability (Dziri et al., 2023) and inability 046

to deal with the distractors (Shi et al., 2023) in a 047

long action-observation trajectory. 048

To mitigate this, modular approaches (Khot et al., 049

2023; Yang et al., 2023; Sun et al., 2023) incorpo- 050

rate a separate planner module that utilizes an LLM 051

to create a high-level plan.2 The planner then dele- 052

gates simpler sub-tasks to an executor LLM module 053

thereby reducing the compositional complexity and 054

length of action trajectory required by the execu- 055

tor. We refer to this category broadly as plan-and- 056

execute approaches (see Fig. 1; top-right). While 057

the plans enable these methods to guide the execu- 058

tion and track progress (Wang et al., 2023b), their 059

non-adaptive nature poses a limitation when con- 060

fronting unachievable sub-tasks. These approaches 061

inherently lack the flexibility to adapt to task com- 062

plexity and manage execution failures, as shown 063

in Fig. 1(top-right), where just one sub-task that is 064

too complex results in overall task failure. 065

To address such failures, we propose As-Needed 066

Decomposition and Planning for complex Tasks 067

(ADAPT), a recursive algorithm that further de- 068

composes sub-tasks when necessary, to dynami- 069

cally accommodate to task complexity. We uti- 070

lize separate planner and executor LLM modules 071

within our framework but only decompose a task 072

using the planner, if the executor LLM detects a 073

failure. As shown in Fig. 1, the overall task of 074

putting a clean mug on a desk in an unfamiliar 075

2By “planning”, we refer to the colloquial concept of
designing a list of sub-tasks to accomplish a complex task
rather than its usage in classical AI-planning literature. E.g.,
a “plan” for preparing a lasagna could be to cook the pasta,
prepare the sauce, layer the ingredients, and then bake it.
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> Go to countertop 1.

You reached loc 1...

> Go to cabinet 12.

...

> Think: Mug not found.
Task failed!

You reached loc 20 ...

Iterative Executor (ReAct)

Plan:
Step 1: Find and
take the mug AND

Step 2: Clean the
mug AND

Step 3: Put the
clean mug on desk

Plan-and-Execute

   ADaPT (Recursive Decomposition, As-needed)

Task: Put a clean mug on desk.

Not Executed

Execute: Task

Plan: 
Step 1: Find and take the mug AND
Step 2: Clean the mug AND
Step 3: Put the clean mug on desk

Execute: Step 1

Plan: 
Step 1a: Find and take the mug from countertops OR
Step 1b: Find and take the mug from cabinets OR

Execute: Step 1a

Execute: Step 1b

Execute: Step 3

Execute: Step 2

...

On execution failure,
decompose further

Successful sub-task allows
execution to resume

Execute:
Step 1

Execute:
Step 2

Execute:
Step 3

OR

ADaPT(Task)

ADaPT(Step1)

Figure 1: Top-Left: Iterative executors such as Re-
Act (Yao et al., 2023b) interact directly with the envi-
ronment, performing planning implicitly. Top-Right:
Plan-and-Execute, e.g., Yang et al. (2023), creates a
fixed plan for the task, without accounting for complex-
ity in executing step 1. Bottom: ADAPT dynamically
decomposes based on success of the executor.

household is too complex for the model, leading to076

failure of the iterative executor. While a plan-and-077

execute-style approach initially breaks down the078

task into three sub-tasks, it falls short in accounting079

for the complexity in finding a mug. Moreover, it is080

challenging to anticipate the difficulty of such a sub-081

task in advance, as the executor could find a mug082

in the first attempt or in an obscure location. There-083

fore, ADAPT employs its recursive structure to084

dynamically adapt to execution failures (assessed085

by LLMs), by further decomposing the complex086

sub-task of finding a mug via the planner.087

Empirically, we demonstrate the effectiveness088

of ADAPT on three datasets involving interactive089

environments: ALFWorld (Shridhar et al., 2021),090

WebShop (Yao et al., 2022), and a new compo-091

sitional text game for crafting Minecraft recipes092

called TextCraft (Sec. 4.1). Using GPT-3.5 as the093

underlying LLM, ADAPT outperforms strong base-094

lines (discussed in Sec. 4.2) such as ReAct (Yao095

et al., 2023b), and Plan-and-Solve (Wang et al.,096

2023b) by up to 28.3%, 27%, and 33% absolute 097

points on ALFWorld, WebShop, and TextCraft re- 098

spectively (Sec. 5). Compared to Reflexion (Shinn 099

et al., 2023), an adaptive approach that addresses 100

failures in the full task trajectory, ADAPT yields 101

higher success rates by 14.1%, 9%, and 20% on 102

ALFWorld, WebShop, and TextCraft respectively. 103

Through extensive analysis of ADAPT, we es- 104

tablish the importance of recursive decomposi- 105

tion (Sec. 6.1) and showcase dynamic adaptation 106

to the capabilities of the executor LLM includ- 107

ing open-source models such LLaMA-2 (Touvron 108

et al., 2023) and Lemur (Xu et al., 2023) in Sec. 6.2. 109

Lastly, we demonstrate that ADAPT incorporates 110

task complexity (Sec. 6.3), where the extent of re- 111

cursive decomposition aligns with the inherent task 112

complexity. To summarize, our contributions are: 113

1. We present ADAPT, a recursive algorithm that 114

dynamically decomposes complex sub-tasks on 115

an as-needed basis, i.e., intervening only if the 116

task is too complex for the executor. 117

2. On three diverse datasets, ALFWorld, WebShop, 118

and TextCraft, ADAPT improves success rate 119

of GPT-3.5 over previous approaches by up to 120

28.3%, 27%, and 33% points respectively. 121

3. Analysis of ADAPT underscores the signifi- 122

cance of recursive decomposition and the ability 123

to adapt dynamically to varying LLM execution 124

capabilities and task complexities. 125

2 Related Work 126

LLMs for Decision-Making. LLMs have been 127

successfully used as agents to perform a wide vari- 128

ety of decision-making tasks such as robotic nav- 129

igation (Ahn et al., 2022; Huang et al., 2023b; 130

Singh et al., 2023), complex multi-modal games 131

like Minecraft (Fan et al., 2022; Wang et al., 2023a), 132

text-based environments (Shridhar et al., 2021; Liu 133

et al., 2023). While most of these works focus 134

on learning from trajectories, ReAct (Yao et al., 135

2023b) uses few-shot prompting to build an agent 136

that reasons about the current state (thoughts) and 137

generates the next action in the environment, given 138

prior actions and observations. Their iterative ap- 139

proach (shown in Fig. 1; top-left) can handle fail- 140

ures, but they have to keep track of the entire plan 141

implicitly while deciding every local action (c.f. 142

ADAPT in Fig. 8 of Appendix A). By incorporat- 143

ing planning and execution into separate modules 144

and enabling dynamic adaptation we are able to 145

achieve higher success rates (refer to Sec. 5). 146
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Several follow-up works improve upon the Re-147

Act framework by incorporating feedback in future148

trials (Madaan et al., 2023; Shinn et al., 2023), or149

using LLMs to develop heuristics for search (Yao150

et al., 2023a; Zhou et al., 2023). In contrast to151

ADAPT, they do not employ task decomposition,152

leading to unnecessary computation as they explore153

multiple trajectories or trials for the whole task,154

even though the LLM struggles with just one sub-155

task. Such works are complementary to ADAPT156

as they can be incorporated within the planner or157

executor modules to strengthen LLM performance158

(just like they are incorporated in ReAct).159

Decomposition and Modularity. Our work fol-160

lows extensive literature in NLP on decomposing161

tasks into neural modules (Andreas et al., 2016;162

Gupta et al., 2019; Jiang and Bansal, 2019) or163

seq2seq models (Min et al., 2019; Talmor and Be-164

rant, 2018; Khot et al., 2021; Perez et al., 2020;165

Saha et al., 2023b). With the advent of few-shot166

prompted black-box LLMs, this paradigm of pro-167

grammatic decomposition into LLMs has become168

more popular (Yao et al., 2023b; Khot et al., 2023;169

Wang et al., 2023b, inter alia), referred to as LLM170

Programs (Schlag et al., 2023; Dohan et al., 2022).171

ADAPT not only decomposes tasks via the plan-172

ner module and delegates them to the executor173

module but also automatically adapts to execu-174

tor failures by further decomposing complex tasks175

as-needed. This dynamic capability distinguishes176

ADAPT from prior works with a non-adaptive177

structure. ADAPT extends the recursive and hi-178

erarchical decomposition in Khot et al. (2023), en-179

abling inter-module communications, and robust180

strategies for execution failures, excelling in real-181

world textual environments like online shopping.182

Hierarchical Problem Solving. In AI problem-183

solving, there is a longstanding tradition of hi-184

erarchical task decomposition employed in plan-185

ning (Ghallab et al., 2004; Georgievski and Aiello,186

2014; Höller et al., 2020), reinforcement learning187

(Sutton et al., 1999; Barto and Mahadevan, 2003;188

Nachum et al., 2018; Zhang et al., 2021), and navi-189

gation (She et al., 2014; Sharma et al., 2022; Blukis190

et al., 2022; Min et al., 2022; Song et al., 2023).191

These approaches, such as Hierarchical Task Net-192

works (Erol et al., 1994), leverage domain knowl-193

edge, e.g., hand-specified library of plans, to break194

complex problems into simpler tasks. Our work em-195

braces this tradition but distinguishes itself by ex-196

ploring how LLMs can autonomously decompose197

tasks by leveraging their extensive world knowl- 198

edge, without predefined plan libraries. Lastly, 199

ADAPT performs dynamic hierarchical planning 200

by employing its recursive structure. 201

3 Methodology 202

We introduce As-Needed Decomposition and 203

Planning for complex Tasks (ADAPT), a mod- 204

ular approach for decision-making that integrates 205

an LLM as an executor and a planner (Secs. 3.1 206

and 3.2) within an LLM program called the con- 207

troller (Sec. 3.3). In Fig. 1, when ADAPT is given 208

a complex task, it first attempts to accomplish the 209

entire task by running the executor iteratively, and 210

resorting to the LLM planner for further decom- 211

position into sub-tasks if the executor fails. Sub- 212

sequently, ADAPT is recursively called for each 213

sub-task to ensure their successful completion, ulti- 214

mately leading to overall task success. 215

3.1 LLM as an Executor 216

Overview. In a given environment, the executor 217

is provided with a concise natural language task 218

specification, as shown in Fig. 2 (left). Following 219

Yao et al. (2023b), the executor iteratively interacts 220

with the environment via actions generated by the 221

LLM. This interaction continues until the task is 222

either completed or a preset maximum iteration 223

limit is reached. Consistent with Ahn et al. (2022), 224

we provide the LLM with in-context demonstra- 225

tions of low-level “atomic” skills specific to the 226

environment (listed in Table 4 of Appendix A), 227

such as knowing how to correctly heat objects in 228

ALFWorld. This approach offers two advantages: 229

(i) it allows us to employ the same executor with 230

environment-specific knowledge for all baselines 231

(Sec. 4.2); and (ii) it enables the planner (discussed 232

in Sec. 3.2) to work at a higher level of abstraction, 233

leveraging the LLM’s general world knowledge. 234

Execution Capabilities of an LLM. At a min- 235

imum, the LLM executor should reliably execute 236

atomic skills. While we provide demonstrations for 237

successful execution of atomic skills, LLMs can 238

adapt to failures by combining multiple skills to 239

perform complex tasks, as discussed in Sec. 6.2. 240

For instance, in Fig. 2 (left), we show the LLM suc- 241

cessfully cleaning a mug it’s carrying (an atomic 242

skill). An advanced executor could combine “find- 243

ing a mug” with the “cleaning” skill to accomplish 244

“find a clean mug” without an explicit planner. 245
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[LLM] Think:  Input assumption: I am carrying a
mug. Now I need to verify this.

[LLM]> inventory

[LLM]> go to sinkbasin 1

[LLM]> clean mug 1 with sinkbasin 1

[LLM] Think: I cleaned the mug.Task completed!

ADaPT(Task, k)

Executor(Task)

Success?

Planner(Task)

Step 2

Step 1

Step 3

ADaPT(Step1,k+1)

ADaPT(Step2,k+1)

ADaPT(Step3,k+1)

Task: Put a clean mug on desk

True
False

Logic

True
False

Clean the mugExecutor(           )

OK.

You are carrying: a mug 1

You reached loc 13, you see ...

You clean mug 1

# Think: To do this task, I first need to find a
mug, then clean, it and put it on the desk. I
need to perform these tasks sequentially.
Step 1: Find and take a mug AND
# Think: Now I found a mug, I will clean it.
Step 2: Clean the mug with sinkbasin AND
# Think: Now I cleaned the mug, I will put
the clean mug on the desk.
Step 3: Put clean mug on desk

 LLM

Planner(           )Put a clean
mug on desk

Controller

AND

Figure 2: Block diagram of the ADAPT pipeline with an example from ALFWorld. Left: Use of LLM as an
executor to interact iteratively with the environment along with an example execution trajectory. Middle: Overall
recursive algorithm (depth k ≤ dmax) that embeds the executor and planner, refer to Algorithm 1 for details. Right:
Outline of using LLM as a planner to generate sub-tasks (steps) and logical operators combining them.

Self-generated Success Heuristic. In order to246

decompose based on the abilities of the executor,247

we need to determine whether the executor is capa-248

ble of finishing the given (sub-)task independently249

or if further decomposition is required. To this250

end, we employ the executor LLM to determine251

the completion of the (sub-)task without relying252

on the environment for obtaining gold rewards for253

(sub-)tasks. We include a simple instruction in the254

executor prompt to output “task completed” if it de-255

termines it has succeeded, otherwise output “task256

failed” in case it cannot proceed. Refer to example257

in Fig. 2 (left). Our success heuristic aligns with bi-258

nary classification models employed in Shinn et al.259

(2023), providing a way to simulate intermediate260

rewards, which complements end-of-task environ-261

ment rewards (Rengarajan et al., 2022). We study262

this LLM-generated heuristic in Appendix F and263

show that it closely matches the gold reward.264

3.2 LLM as a Planner265

Overview. The objective of the planner is to266

break down complex tasks into smaller sub-tasks.267

To achieve this, we instruct the LLM to generate268

a concise yet comprehensive plan consisting of a269

few steps, typically 3-5, as shown in Fig. 2 (right).270

We opt for shorter, more abstract plans because ex-271

pecting a detailed, fine-grained plan upfront can be272

impractical, especially in unexplored environments.273

E.g., devising a 10-step plan to put a clean mug274

on a desk without prior knowledge of the mug’s275

location can lead to cascading errors due to incor-276

rect assumptions. Therefore, we task the LLM to277

generate short plans, with the flexibility to decom-278

pose further in subsequent iterations, based on the279

executor’s capabilities.280

Composition Logic for Sub-tasks. Along with 281

the sub-tasks, we prompt the planner to generate 282

logical operators to combine various sub-tasks in 283

the plan to accomplish the task. We allow for two 284

logical operators: “AND” and “OR”. Sub-tasks 285

are linked using AND when they must be executed 286

sequentially for the task to succeed. However, in 287

cases requiring exploration, such as finding an item 288

in an unknown room, we employ the OR operator 289

to simulate conditional checks. Here, the task suc- 290

ceeds if any of the sub-tasks are successful. For 291

instance, in Fig. 1, the plan to “find a mug” would 292

be to “find a mug on the countertop” OR “find a 293

mug in the cabinet”. We execute the latter only 294

if the agent has not found the mug yet. While ex- 295

amples in Figs. 1 and 2 show homogeneous logic, 296

ADAPT can handle complex logical expressions 297

as described in Appendix B. 298

3.3 Controller – LLM Program 299

Overall Pipeline. Thus far, we describe two 300

LLM-based modules that can perform the roles 301

of low-level execution and high-level planning. We 302

incorporate these modules into ADAPT via the 303

controller which is a pre-determined and recursive 304

algorithm – making the overall pipeline of ADAPT 305

an LLM program (Schlag et al., 2023; Dohan et al., 306

2022), shown in Algorithm 1. The overall flow of 307

the controller program is as follows: (i) given an 308

input task, the controller calls the executor to check 309

if it can succeed in performing the task directly; (ii) 310

if the executor does not succeed, the controller dele- 311

gates decomposing the complex task to the planner 312

and recursively calls ADAPT for each sub-task un- 313

til we hit a termination criterion, i.e., if a maximum 314

depth dmax (≥1) is reached. 315
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Fig. 2 (mid) shows the control flow of ADAPT.316

A complex task such as “put a clean mug on the317

desk” is first assigned to the executor. If the execu-318

tor does not succeed, then ADAPT calls the planner319

to decompose the task into sub-tasks along with a320

logical operator (AND or OR) indicating how to321

compose them. Each sub-task (referred to as ‘step’322

in Fig. 2) is then assigned recursively to ADAPT323

and is combined using the logical operator. In the324

end, the success of sub-tasks after recursive decom-325

position ensures overall task success (unrolled calls326

to planner and executor are shown in Fig. 1).327

4 Experimental Setup328

We describe the datasets used in our experiments329

and baselines used for comparison with ADAPT.330

4.1 Datasets331

We employ LLMs-as-agents to perform tasks in the332

following three environments and use task success333

rate as our evaluation metric in Secs. 5 and 6.334

ALFWorld. ALFWorld (Shridhar et al., 2021)335

is a text-based game version of the embodied AL-336

FRED benchmark (Shridhar et al., 2020) imple-337

mented in the TextWorld environment (Côté et al.,338

2019). It encompasses 6 distinct task types, where339

an agent is required to accomplish high-level tasks340

through navigation and interaction via text-based341

actions in a simulated household that gives textual342

feedback to an agent (e.g., put a clean mug on desk343

discussed earlier in Fig. 2). Following Shridhar344

et al. (2021), we present results on 134 unseen eval-345

uation games (test set) with a separate dev set of346

10 games per task from the seen evaluation games347

split. Along with atomic skills, we add example348

gold trajectories, following Yao et al. (2023b), for349

two tasks: heat and look in the executor prompt.3350

WebShop. WebShop (Yao et al., 2022) is an on-351

line shopping website environment featuring 1.18352

million real-world products containing 500 user353

queries in the test set. It serves as a complex354

decision-making environment with practical appli-355

cations wherein an agent must navigate a website356

through a variety of commands to purchase an item357

matching a user specification (e.g., grey sectional358

sofa priced less than $300 with fast delivery). Fol-359

lowing Shinn et al. (2023), we report performance360

3Unlike Yao et al. (2023b), we use a standardized executor
prompt for all ALFWorld tasks, avoiding the agent to know the
task-type apriori. Table 5 in Appendix C further demonstrates
that ADAPT still improves over task-specific executors.

Crafting Commands:
craft 4 oak planks using 1 oak log
craft 1 honeycomb block using 4 honeycomb
craft 1 beehive using 6 planks, 3 honeycomb

Goal: craft beehive

[Action] get 1 oak log
[Env] Got 1 oak log

[Action] craft 4 oak planks using 1 oak log
[Env] Crafted 4 minecraft:dark_oak_planks

[Action] get 1 oak log
[Env] Got 1 oak log

[Action] craft 4 oak planks using 1 oak log
[Env] Crafted 4 minecraft:dark_oak_planks

[Action] craft 1 beehive using 6 oak planks, 3 honeycomb 
[Env] Crafted 1 minecraft:beehive

...

1x1x

4x 4x 3x

1x

Figure 3: Example gold trajectory in TextCraft for a
task with recipe depth of 2.

on 100 user instructions and use a different subset 361

of 40 queries as the dev set. 362

TextCraft. We create a new text-only environ- 363

ment for crafting Minecraft4 items similar to Word- 364

Craft (Coenen et al., 2021). Unlike existing agent- 365

based environments, tasks in TextCraft exhibit a 366

natural compositional structure, resembling cook- 367

ing recipes with steps of varying complexity, where 368

some sub-tasks are more intricate, such as layering 369

a lasagna, while others are simpler, like baking it. 370

Tasks in TextCraft are inherently decomposable. 371

In Fig. 3, crafting a beehive necessitates crafting 372

its ingredients, like planks and honeycomb, which 373

may require further decomposition. The agent thus 374

needs to identify and adapt to varying task com- 375

plexity, e.g., crafting a plank is easier than crafting 376

a beehive. Moreover, some recipes allow using any 377

item from a particular category. For instance, craft- 378

ing a beehive uses planks (a category), requiring 379

the agent to use linguistic knowledge for proper 380

item selection (e.g., select oak planks, a specific 381

item in the category planks). We evaluate our ap- 382

proach on a test set of 200 tasks where the target 383

items have recipe trees of depth 2, 3, and 4 (exam- 384

ple tree of depth 2 is shown in Fig. 3). We use the 385

items with recipe tree depth of 3 (123 tasks), depth 386

of 4 (11 tasks) and depth of 2 (77 out of 297) in 387

our test set, and the rest of depth 2 tasks constitute 388

the dev set. Additional details about creating the 389

environment are present in Appendix E. 390

4https://www.minecraft.net
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Method (dmax = 3) Pick Clean Heat Cool Look Pick2 All

ReAct 33.3 67.7 43.5 33.3 55.6 11.8 43.3
Plan-and-Execute 29.2 61.3 47.8 38.1 61.1 11.8 43.3
Try Again with ReAct 50.0 51.6 60.8 47.6 61.1 5.9 47.8
Reflexion 70.8 61.3 61.0 66.7 61.1 5.9 57.5
ADAPT (Ours) 87.5 80.6 60.8 76.2 61.1 52.9 71.6

Table 1: ADAPT yields the highest the overall success rates (%)
compared to baselines from prior work (discussed in Sec. 4.2) on
ALFWorld (test split). Best (highest) success rates are highlighted
in bold and second-highest rates are underlined.

Method WebShop TextCraft

ReAct 32.0 19.0
Plan-and-Execute 17.0 27.0
Try Again with ReAct 30.0 15.0
Reflexion 35.0† 32.0
LATS (Zhou et al., 2023) 38.0† −
ADAPT (Ours) 44.0 52.0

Table 2: ADAPT yields the highest success
rate on WebShop and TextCraft (test split) with
dmax = 3 and 4 respectively. †Performance
reported by Zhou et al. (2023)

4.2 Baseline Approaches391

We compare ADAPT with four classes of baseline392

approaches described below.393

Iterative Executor-Only (ReAct). In this setting,394

we employ the executor to interact iteratively with395

the environment, adopting the think-act-observe396

prompting style from ReAct (Yao et al., 2023b). All397

methods discussed below, including ADAPT, share398

the same executor, ensuring a standardized impact399

of the executor’s strength and design choices when400

comparing relative performance in Sec. 5. When401

dmax=1, ADAPT solely relies on this executor.402

Plan-and-Execute. As shown in Fig. 1, in this403

setting, we generate a plan first and then assign404

each sub-task to the executor. This approach only405

plans once and as a result has a non-adaptive struc-406

ture (consistent with Wang et al. (2023b); Yang407

et al. (2023); Sun et al. (2023)). To ensure each408

plan step is executable without further decompo-409

sition, we design new prompts with more detailed410

plans. Note that ADAPT with dmax = 2 differs411

from plan-and-execute as it is adaptive, i.e., de-412

composes only when executor fails and generates413

relatively shorter plans (refer to Appendix B).414

Try Again with ReAct. By design, ADAPT415

makes multiple calls to the executor module, al-416

beit with different (sub-)tasks. Like Yang et al.417

(2023), we design a simple controller that requests418

the executor to retry the task in a total of dmax419

separate trials and then uses the trial with the best420

performance for each task instance.421

Reflexion. Shinn et al. (2023) execute the en-422

tire task first, and if unsuccessful, reflect and store423

feedback in memory for subsequent dmax−1 trials.424

While adaptive, this approach repeats the entire425

trial even if a single sub-task fails, redundantly426

re-executing previously successful sub-tasks.427

ADAPT and Shared Implementation Details. 428

Following (Yao et al., 2023b; Shinn et al., 2023; 429

Zhou et al., 2023), by default, we use the GPT- 430

3.5 (Ouyang et al., 2022) LLM for both planning 431

and execution in ADAPT and other baselines. We 432

use the completion-based models for ALFWorld 433

and TextCraft and the chat-based model for Web- 434

Shop.5 Further, we use ADAPT (and other base- 435

lines) with dmax=3 for ALFWorld, and WebShop 436

and increase to dmax=4 for TextCraft to accommo- 437

date recipes with a depth of 4 (Sec. 4.1). For addi- 438

tional details, refer to Appendix A. We increase the 439

maximum number of iterations for the ReAct base- 440

line by a factor of dmax and ensure all baselines use 441

a comparable number of LLM calls (Appendix H). 442

5 Main Results 443

Using GPT-3.5 as the underlying LLM, in this sec- 444

tion, we show that ADAPT yields the highest suc- 445

cess rate compared to baselines from prior work on 446

ALFWorld, WebShop, and TextCraft datasets. 447

ALFWorld. In Table 1, we observe that ADAPT 448

achieves the highest overall success rate, while 449

using ReAct alone results in the lowest overall 450

performance. By leveraging adaptive decomposi- 451

tion, ADAPT improves over ReAct’s performance 452

by 28.3% points (absolute) as well as over Plan- 453

and-Execute and Try Again by 28.3% and 23.8% 454

points, respectively. Lastly, we find that ADAPT 455

yields 14.1% points higher overall success rate 456

than Reflexion, despite the latter having access 457

to dedicated memory and natural language feed- 458

back. Specifically, we find baselines yield poor 459

results on ‘pick2’ tasks (<12% success rate) as 460

they require the agent to compose two ‘pick’-style 461

tasks involving a longer action history. However, 462

5We use the completion model as chat variants of GPT-3.5
consistently underperform their completion counterparts (Liu
et al., 2023; Yang et al., 2023). We discuss the effectiveness
of ADAPT different LLMs in Sec. 6.2.
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ADAPT yields significant improvements (by over463

a factor of 4×) for this type of tasks.464

WebShop. Table 2 shows a similar trend with465

ADAPT surpassing all baselines and achieving466

the highest success rate. ADAPT outperforms Re-467

Act, Plan-and-Execute, and Try-Again baselines468

by up to 27% points. We corroborate the findings469

of Shinn et al. (2023) and observe that natural lan-470

guage feedback offers limited gains in performance,471

as compared to ADAPT (which surpasses Reflex-472

ion by 9% points). Additionally, we compare with473

a recent search-based baseline LATS (Zhou et al.,474

2023) and find that ADAPT outperforms the suc-475

cess rate of LATS by 6% points.476

TextCraft. Our results on TextCraft are summa-477

rized in Table 2. First, we observe that ADAPT478

achieves an improvement of 33% compared to the479

ReAct executor. In contrast to Plan-and-Execute,480

i.e., starting with a fixed plan, having the dynamic481

ability to adapt to complex sub-tasks (in this case,482

crafting complex ingredients) in ADAPT improves483

performance by 25% points. Lastly, ADAPT out-484

performs Reflexion by 20% points, highlighting the485

importance of adaptive and as-needed planning.486

6 Analysis and Discussion487

We analyze ADAPT in detail by addressing the488

following research questions on dev data splits.489

6.1 How does performance of ADAPT scale490

with the depth of decomposition?491

Setup. To assess the impact of adaptive decom-492

position, we study ADAPT under three settings493

with increasing maximum depth dmax ∈ {1, 2, 3}494

for ALFWorld, WebShop, and TextCraft. Note495

that dmax = 1 setting corresponds to the iterative496

executor-only baseline (ReAct).497

Results. Fig. 4 shows that across all datasets, per-498

formance of ADAPT scales with increasing the499

maximum depth dmax. Consistently, we find a sig-500

nificant improvement in success rates as we move501

from dmax=1 to dmax=2, i.e., adding the planner502

to decompose a complex task when executor fails503

proves to be effective. Finally, the performance504

increase from dmax=2 to dmax=3 validates our505

hypothesis that some sub-tasks are difficult for the506

LLM to directly execute successfully, and decom-507

posing these further boosts overall performance.508

1 2 3
Value of dmax in ADaPT

20

40

60

Su
cc

es
s R

at
e

ALFWorld WebShop TextCraft

Figure 4: Success rate of ADAPT increases with the
maximum depth dmax for all datasets (dev splits).

6.2 Does ADAPT cater to different execution 509

capabilities of LLMs? 510

Same LLM, different execution capabilities. 511

We run ADAPT on three different executor 512

prompts on ALFWorld: (i) task-specific gold tra- 513

jectories, (ii) atomic skills and common gold- 514

trajectories for 2 tasks used in Sec. 5 (hybrid), and 515

(iii) only atomic skills. Using gold trajectories 516

aligns closely with the task at inference-time and 517

thus, should exhibit high performance. In contrast, 518

executor using only atomic skills relies on the in- 519

herent composition abilities of the LLM, yielding 520

weaker performance. Here we examine if ADAPT 521

can improve success rates for all three settings. 522

Results. In Fig. 5, we observe that ADAPT con- 523

sistently improves over the executor-only baseline 524

for all diverse executor settings. As expected, the 525

executor prompted with task-specific trajectories 526

performs the best (left), while the executor with 527

only atomic skills performs the worst (right). No- 528

tably, ADAPT substantially improves performance 529

of the relatively weak executor, improving success 530

rate from 3.3% to 41.7%. 531

Task-Specific Hybrid Atomic
Executor Setting

0

20

40

60

Su
cc

es
s R

at
e

Executor-Only ADaPT (dmax=3)

Figure 5: ADAPT improves success rates across varying
settings capturing different executor capabilities (i.e.,
executor-only performance) on ALFWorld (dev).
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Figure 6: ADAPT improves (test) performance of GPT-3.5, GPT-4, LLaMA, and Lemur LLMs across datasets.

ADAPT with different LLMs. We study the532

ability of ADAPT to improve performance across533

different LLMs (as planners and executors): (i)534

GPT-3.5, (ii) GPT-4 (OpenAI, 2023), (iii) LLaMA-535

2 70B (Touvron et al., 2023), and (iv) Lemur536

70B (Xu et al., 2023) on test splits of all datasets.537

Results. Fig. 6 shows that ADAPT consistently538

improves downstream performance for all models539

across all three datasets. Consistent with Liu et al.540

(2023), we find that the gated GPT models outper-541

form the open-source models based on absolute542

success rates. Nevertheless, ADAPT is effective543

across LLMs and improves performance of GPT-544

4, the strongest LLM, by up to 37%, as well as545

LLaMA, the least performant LLM, by up to 15%546

on the TextCraft dataset. In Appendix G, we show547

that our planner LLM also adapts to different ex-548

ecutor LLMs allowing for a cost-accuracy tradeoff.549

6.3 Does ADAPT handle task complexity?550

Setup. By the compositional design of TextCraft,551

complexity of each task in the dataset can be de-552

fined with respect to the depth of the crafting recipe,553

i.e., recipes with higher depth would be more com-554

plex to craft. We evaluate efficacy of ADAPT555

and the ReAct baseline on the test set of TextCraft556

with increasing recipe depth.6 Furthermore, while557

we provide ADAPT with a maximum budget of558

dmax = 4, we study how the maximum decompo-559

sition depth utilized by ADAPT to succeed (kmax)560

varies with task complexity.561

Results. In Table 3 we observe that ADAPT im-562

proves success rates for games with recipe depth of563

2 from 26.9% to 78.2%, and of depth 3 from 1.8%564

to 38.7% as compared to the ReAct baseline. As565

expected, the executor alone is unable to handle566

complex recipes with depth ≥ 3, but with the help567

6As we have only 11 tasks with recipe depth of 4, we
exclude them from this analysis.

Method Recipe Depth kmax Success Rate

ReAct 2 1.0 26.9
ADAPT (dmax = 4) 2 1.9 78.2

ReAct 3 1.0 1.8
ADAPT (dmax = 4) 3 2.8 38.7

Table 3: ADAPT improves TextCraft (test) performance
even as recipe depth increases. The maximum decom-
position depth used by ADAPT to succeed at the task
(kmax) also scales with the recipe depth.

of ADAPT the performance improves significantly. 568

Additionally, given the same budget dmax=4, as 569

the recipe depth (complexity) increases from 2 to 570

3, ADAPT’s level of decomposition (kmax) also 571

increases from 1.9 to 2.8. This showcases that 572

ADAPT leverages as-needed decomposition in or- 573

der to handle task complexity. 574

7 Conclusion 575

We introduce ADAPT, a recursive algorithm de- 576

signed to harness the planning capabilities of 577

LLMs, dynamically decomposing complex tasks 578

when the LLM acting as an executor encoun- 579

ters challenges. Our evaluation across three di- 580

verse decision-making tasks, ALFWorld, WebShop, 581

and TextCraft, reveals impressive performance of 582

ADAPT, surpassing existing baselines by substan- 583

tial margins of up to 28.3%, 27%, and 33% points, 584

respectively. This not only underscores the effec- 585

tiveness of ADAPT but also highlights the signif- 586

icance of as-needed decomposition in enhancing 587

task performance. Moreover, our findings demon- 588

strate that ADAPT not only adapts to the capabili- 589

ties of the underlying executor LLM but also takes 590

into account the complexity of individual task in- 591

stances, showcasing its versatility and effectiveness. 592

593
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Limitations594

ADAPT relies on the success heuristic generated595

by the executor LLM to determine if the model596

is capable of performing a complex task. For597

decision-making tasks studied in this work, we598

find that LLMs can reliably determine task success599

based on past action trajectories and textual feed-600

back from the environment (see Appendix F). How-601

ever, Huang et al. (2023a); Stechly et al. (2023)602

discuss the limits of LLM’s ability to self-evaluate603

and self-refine. In such situations, future works604

may additionally employ external verifiers (Light-605

man et al., 2023; Shridhar et al., 2023), theory-of-606

mind strategies among multiple LMs (Saha et al.,607

2023a), and other calibration and self-evaluation608

techniques (Kadavath et al., 2022). These improved609

self-evaluation techniques could be useful to extend610

our framework to non-decision making tasks such611

as question answering.612
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Atomic Skill Description
A

L
FW

or
ld

put Assuming that the robot is carrying
an object, put it on a given receptacle.

take Take a specified object from a speci-
fied receptacle.

clean/heat/cool Assuming that the robot is carrying
an object, clean/heat/cool the object.

examine Assuming the robot is at a desk with a
desk lamp, use it to look at an object.

W
eb

Sh
op

search Put a given query in the search box,
results in a page with list of products.

shortlist Based on the search page and query,
get list of any matching products.

match Given a product ID and query, navi-
gate to the product page and verify it
matches the query.

buy Given a product ID and query, buy
product by selecting relevant options.

Te
xt

C
ra

ft

craft Assuming the agent has all the ingre-
dients in the inventory, craft a target
object by picking an appropriate com-
mand from the list of crafting recipes.

fetch Look for a given object in the inven-
tory or get it directly from the game.

inventory Look-up the game inventory.

Table 4: Overview of atomic skills used in Sec. 3.1.
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A ADAPT Implementation Details939

Executor. We use a common ReAct executor for940

each dataset. To this end, we provide the LLM941

in the executor with in-context example trajecto-942

ries for each atomic skill (refer to Table 4 for an943

exhaustive list). Atomic skills are inherently task944

dependent, and thus, vary with the underlying envi-945

ronment. For ALFWorld, in which the agent needs946

to navigate and perform tasks in the household, the947

atomic skills include: taking an object, putting it948

down at a location, cleaning, heating, etc. On the949

other hand, the goal in WebShop is to buy a product950

based on user queries, thus, atomic skills include:951

searching a specified query, shortlisting products952

Algorithm 1 Algorithm for ADAPT
1: function ADAPT(Task T , Current depth k)
2: // ADAPT(·) Generates success heuristic value

completed for the task T . Initialized with k = 1.
3: // Base case: terminate on reaching maximum depth
4: if k > dmax then return False
5: // Execute the task/sub-task to assess if the LLM can

directly perform it using LLM-generated success.
6: completed← executorLLM(T )
7: // Plan only when the executor fails.
8: if completed is False then
9: // Using the LLM, decompose the task into a set

of sub-tasks,P , and a Boolean function, logic(·),
that combines output of the sub-tasks.

10: P, logic← plannerLLM(T )
11: // Get the outputs for individual sub tasks
12: O = {ADAPT(Tsub, k+1)|Tsub ∈ P}
13: // Combine the outputs of the sub tasks
14: completed← logic(O)
15: return completed

based on search page, matching if a product sat- 953

isfies a criteria, and buying a product. Lastly, the 954

atomic skills in TextCraft are fetching objects from 955

the environment, and crafting them given the recipe 956

and the ingredients. Following Yao et al. (2023b), 957

we add gold trajectories for two tasks: heat and 958

look in the executor prompt for ALFWorld, and 959

one full gold trajectory for TextCraft. 960

Planner. We provide the LLM with a brief de- 961

scription of atomic skills and in-context demonstra- 962

tions of few task decompositions for each dataset. 963

• ALFWorld: The planner includes 6 demon- 964

strations of task decompositions for one house- 965

hold configuration. Specifically, “find” is not an 966

atomic skill for the executor, and therefore, needs 967

to be handled by the planner (refer to Fig. 2). 968

• WebShop: The planner breaks down a given task 969

in terms of the atomic skills described in Table 4 970

via 2 in-context demonstrations. 971

• TextCraft: The planner determines the neces- 972

sary ingredients for each item and creates a plan 973

to obtain them and then craft the item, illustrated 974

via 2 examples with different crafting commands. 975

Controller. The controller performs two crucial 976

roles in the overall functioning of ADAPT. First, it 977

serves as the communication bridge between plan- 978

ner and executor, propagating salient information 979

across the two depending on the task. Second, since 980

ADAPT is a recursive algorithm, the controller de- 981

termines the termination criterion using the logical 982

expression from the planner and success heuristic 983

from the executor or if a maximum depth dmax 984

(≥1) is reached. The controller propagates task- 985

dependent salient information described below: 986
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Method Pick Clean Heat Cool Look Pick2 All

ReAct 66.7 41.9 47.8 80.9 83.3 23.5 56.7
Plan-and-Execute 87.5 58.1 73.9 52.4 83.3 17.6 63.4
Try Again with ReAct 75.0 38.7 60.9 76.2 66.7 23.5 56.7
Reflexion 83.3 61.3 73.9 85.7 61.1 29.4 67.2
ADAPT (Ours) 91.7 67.7 78.3 81.0 100 64.7 79.8

Table 5: Comparison of success rates (%) achieved by ADAPT
and other baselines from prior work on ALFWorld (test split)
with executor used by Yao et al. (2023b)

Method Score Success Rate

Iterative Executor-Only 42.1 29.0
Static Decomposition 27.7 17.0
Retry Execution 45.4 30.0
Naive 58.3 24.0
Reflexion* 64.2 35.0
LATS (Zhou et al., 2023)* 75.9 38.0
ADAPT (Ours) 60.0 44.0

Table 6: Performance comparison of differ-
ent methods on WebShop.

• ALFWorld: In the controller, we propagate the987

last successful action from a previous execution988

run to subsequent calls of the executor. Note that989

information is only propagated from successful990

sub-tasks. For sub-tasks connected via “OR”,991

each receives the same information from the con-992

troller. Unlike Shinn et al. (2023), executor does993

not get text feedback from prior failures.994

• WebShop: We propagate the current page vis-995

ible to the agent along with past unsuccessful996

executor tasks to the planner (without any ratio-997

nales). Once we find a matching product, we also998

propagate the product ID in future executor calls.999

• TextCraft: We propagate the current inventory1000

of the agent to the executor. This is akin to ex-1001

ecutors starting with the inventory command1002

as the first step to keep stock of which items are1003

missing and need to be fetched or crafted.1004

For partial rolled-out trajectories with ADAPT re-1005

fer to Figs. 8 to 10. Communication between plan-1006

ner and executor is highlighted in gray box(es) .1007

LLM-related Hyperparameters. Following pre-1008

vious works (Shinn et al., 2023; Liu et al., 2023)1009

we use text-davinci-003 from the OpenAI1010

API for ALFWorld. For WebShop, we use the1011

gpt-3.5-turbo models, and for TextCraft we use1012

the gpt-3.5-turbo-instruct models. All execu-1013

tors have a maximum budget of iterations to inter-1014

act with the environment and execute the task. We1015

set this budget to 20, 15, and 20 respectively for1016

ALFWorld, WebShop, and TextCraft respectively.1017

For try again with ReAct, we sample additional tra-1018

jectories with a temperature of 0.7. As discussed in1019

Sec. 4.2, we run the iterative executor-only baseline1020

for 60, 45, 60 iterations for ALFWorld, WebShop,1021

and TextCraft respectively. In Sec. 6.2, we use pub-1022

licly available checkpoints for LLaMA 70B7 and1023

7https://huggingface.co/meta-llama/
Llama-2-70b-hf

Plan: Put a clean mug on desk
# Think: To do this task, ....
Step 1: Find and take the mug AND
# Think: Now that I have found it, ....
Step 2: Clean the mug using sinkbasin AND
# Think: Now that I have cleaned ....
Step 3: Put clean mug on desk

Plan: Find and take the mug
# Think: To do this task, ....
Step 1: Find and take mug from countertop OR
# Think: If I do not find the mug, ....
Step 2: Find and take mug from cabinet OR
# Think: If I do not find the mug, ....
Step 3: Find and take mug from drawer

Plan: Put a clean mug on desk
# Think: To do this task, ....
Step 1: Find and take mug from
countertop OR
# Think: If I do not find the mug, ....
Step 2: Find and take mug from cabinet OR
# Think: If I do not find the mug, ....
Step 3: Find and take mug from drawer AND
# Think: Now that I have found it, ....
Step 4: Clean the mug using sinkbasin AND
# Think: Now that I have cleaned ....
Step 5: Put clean mug on desk

Logic: ((Step 1 OR Step 2 OR Step 3) AND
Step 4 AND Step 5)

Adaptive Multi-level Plans in ADaPT

Detailed Plans in Plan-and-Execute

Figure 7: Illustration of how multiple levels of plans
from ADAPT, can be collapsed into one detailed plan
in non-adaptive settings as used in the plan-and-execute
baseline (Sec. 4.2). Our controller can handle complex
(non-homogeneous) logical expressions.

Lemur 70B8 available on Huggingface (Wolf et al., 1024

2019). For both planner and executor modules, we 1025

use a fixed prompt consisting of few in-context 1026

examples (as described above) for each dataset. 1027

We show all executor and planner prompts to the 1028

LLM in Appendix I. Due to cost constraints, we 1029

report success rates for a single run of each LLM 1030

in Secs. 5 and 6. 1031

8https://huggingface.co/OpenLemur/
lemur-70b-chat-v1
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B Handling Complex Logic in Plans1032

While the examples in Figs. 1 and 2 show homoge-1033

neous logic across sub-tasks in the plan, our con-1034

troller can handle complex logical expressions in-1035

cluding both “AND” and “OR” operators. Specif-1036

ically, we provide instructions to the planner to1037

output this logical expressing at the end of the plan1038

with a fixed prefix: Execution Order. We then1039

build a deterministic parser that can parse complex1040

logical expressions that the controller can process.1041

We do so by splitting the logical expression into a1042

series of homogeneous expression each passed to1043

ADAPT. Whenever the task given to ADAPT com-1044

prises of multiple sub-tasks connected via (one)1045

logical operator, we automatically decompose this1046

task as per the logical expression. For example,1047

in Fig. 7, a detailed plans used by the plan-and-1048

execute baseline (discussed in Sec. 4.2) comprised1049

of logical expressions using both AND, and OR1050

operators. Therefore, the parser will break auto-1051

matically break this into multiple levels, i.e., Step1052

6 = Step 1 OR Step 2 OR Step 3, followed by Step1053

6 AND Step 4 AND Step 5. While such complex1054

logical expressions are mostly associated with the1055

plan-and-execute baseline, they can be easily used1056

within the ADAPT framework. Furthermore, this1057

allows the plan-and-execute baseline to simulate1058

a multi-level planning structure via detailed plans1059

without being adaptive to the executor.1060

C Task-specific Executors in ALFWorld1061

In Table 1, we use a standardized executor with1062

in-context demonstrations of atomic skills and two1063

gold trajectories. While this allows for a common1064

executor across different sub-tasks, task-specific1065

executors yield higher performance on the specific1066

sub-tasks. We now show ADAPT can also be used1067

on top of task-specific executors used by Yao et al.1068

(2023b). The results are shown in Table 5. First,1069

we observe that ADAPT yields the overall success1070

rate by up to 23.1% points and also surpasses base-1071

lines on all but 1 task types. Interestingly, we find1072

strong performance of the plan-and-execute base-1073

line when using a stronger executor (as compared1074

to Table 1) possibly as such an executor can handle1075

complex sub-tasks better. Consistent with Table 1,1076

ADAPT outperforms Reflexion by 12.6% points1077

despite lack of dedicated memory and natural lan-1078

guage feedback.1079

Method #Products Success Rate

ReAct 3 27.5
ADAPT (dmax = 3) 3 47.5

ReAct 10 20.0
ADAPT (dmax = 3) 10 42.5

Table 7: ADAPT improves WebShop (dev) performance
irrespective of how many products (3 or 10) are chosen
from the search page.

D Additional WebShop Experiments 1080

Evaluation Metrics. We focus on success rate 1081

and not the (soft) score as the primary metric for 1082

this task because it is possible to get a non-zero 1083

score by naively buying a product. To this effect, 1084

we construct a naive executor that inputs the user 1085

query in the search bar and buys the first available 1086

product. Table 6 shows that while this baseline 1087

yields the lowest success rate, it surprisingly yields 1088

a high success rate of 58.3. In contrast, our ex- 1089

ecutors often do not buy products especially when 1090

the previous sub-goals fail which can adversely im- 1091

pact scores even though the success rate remains 1092

unaffected. Therefore, we argue for optimizing the 1093

success rate instead of the score as opposed to prior 1094

works (Zhou et al., 2023). 1095

ADAPT accommodating task complexity. By 1096

default, Yao et al. (2023b) use a search page with 1097

only the top-3 search results displayed. Intuitively, 1098

increasing the number of products on the search 1099

page requires the model to choose from a wider 1100

array of products and track all their information to 1101

determine the best fit to the user query, making the 1102

overall task harder. Therefore, we apply ADAPT 1103

on Webshop in two settings with 3, and 10 products 1104

per search page. 1105

Results. From Table 7, we observe that ADAPT 1106

effectively improves success rate by 20.0% and 1107

22.5% for 3 and 10 products respectively over the 1108

ReAct baseline. The difference in ReAct perfor- 1109

mance for both settings corroborates our hypothesis 1110

that increasing number of products on the search 1111

page increases task complexity, all else equal. No- 1112

tably, we show that ADAPT yields higher improve- 1113

ment for more complex task settings. 1114

E TextCraft 1115

TextCraft: Environment Details. In TextCraft, 1116

the objective is to obtain target Minecraft items 1117

by crafting them from available items in the envi- 1118
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Room: You are in the middle of a room. Looking quickly around you, you
see a cabinet 21, a cabinet 20, a cabinet 19, a cabinet 18, a cabinet 17,
a cabinet 16, a cabinet 15, a cabinet 14, a cabinet 13, a cabinet 12, a
cabinet 11, a cabinet 10, a cabinet 9, a cabinet 8, a cabinet 7, a cabinet
6, a cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a
coffeemachine 1, a countertop 2, a countertop 1, a diningtable 1, a
drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a fridge 1, a
garbagecan 1, a microwave 1, a sinkbasin 1, a stoveburner 4, a
stoveburner 3, a stoveburner 2, a stoveburner 1, desk 1, and a toaster 1.
Your task is to: Put a clean mug on desk.

Execute: Put a clean mug on desk
> Go to countertop 1

You reached loc 1, ...
> Go to countertop 2

You reached loc 2, ...

> Think: Mug not found, task failed!

Plan: Put a clean mug on desk
# Think: To do this task, ....
Step 1: Find and take the mug AND
# Think: Now that I have found it, ....
Step 2: Clean the mug using sinkbasin AND
# Think: Now that I have cleaned ....
Step 3: Put clean mug on desk

Execute: Find and take the mug

> Think: Task failed!

Plan: Find and take the mug
# Think: To do this task, ....
Step 1: Find and take mug from countertop OR
# Think: If I do not find the mug, ....
Step 2: Find and take mug from cabinet OR
# Think: If I do not find the mug, ....
Step 3: Find and take mug from drawer

Execute: Find and take mug from countertop

> Think: Task failed!

Execute: Find and take mug from cabinet

> Think: Task completed!

Execute: Clean the mug using sinkbasin

> Think: Task completed!

Execute: Find and take the mug from countertop

> Think: Task completed!

Previously executed: 
> take mug 1 from cabinet 7

You picked up mug 1

...

...

Room: You are in the middle of a room. Looking quickly around you, you
see a cabinet 21, a cabinet 20, a cabinet 19, a cabinet 18, a cabinet 17,
a cabinet 16, a cabinet 15, a cabinet 14, a cabinet 13, a cabinet 12, a
cabinet 11, a cabinet 10, a cabinet 9, a cabinet 8, a cabinet 7, a cabinet
6, a cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a
coffeemachine 1, a countertop 2, a countertop 1, a diningtable 1, a
drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a fridge 1, a
garbagecan 1, a microwave 1, a sinkbasin 1, a stoveburner 4, a
stoveburner 3, a stoveburner 2, a stoveburner 1, desk 1, and a toaster 1.
Your task is to: Put a clean mug on desk.

Execute: Put a clean mug on desk
> Think: To solve the task, I need to find and take a mug, then clean it
with sinkbasin, then put on the desk.

OK.
> Think: First I need to find a mug. A mug is more likely to appear in
fridge (1), countertop (1-2), dining table (1), cabinet (1-21), drawer
(1-5). I can check one by one, starting with fridge 1.

OK.
> open fridge 1

Nothing happens.
> go to fridge 1

You arrive at loc 15, fridge 1 is closed.
> open fridge 1
        You open the fridge 1. The fridge 1 is open. In it, you see a bowl 1, a

cup 1, a egg 1, a lettuce 1, a plate 1, and a tomato 1.
> Think: There is no mug in fridge 1, I need to go to countertop 1 next.

OK.
> go to countertop 1

You reached loc 1, on it you see a cd 2, a cellphone 3, a
cellphone 1, a keychain 3, a pen 2, a pencil 3 and a pencil 2.

> go to countertop 2
    You reached loc 2, on it you see a egg 3, a knife 2, a knife 1, a potato

1, a potato 2, a bread 1, a dishsponge 3, and a saltshaker 1.
> Think: There is no mug in countertop 2, I need to go to cabinet 1.

OK.
> go to cabinet 1

You arrive at loc 4, cabinet 1 is closed.
> open cabinet 1
                    You open cabinet 1. Cabinet 1 is open. In it, you see bowl 3,

fork 2, soapbottle 1, and a cloth 1.
> go to cabinet 2

You arrive at loc 5, cabinet 2 is closed.
> open cabinet 2

You open cabinet 2. Cabinet 2 is open. In it, you see nothing.
> open cabinet 4

Nothing happens.
> go to cabinet 4

You arrive at loc 7, cabinet 4 is closed.
> open cabinet 4

        You open cabinet 4. Cabinet 4 is open. In it, you see a spatula 1, a
cloth 2, a peppershaker 1, cup 3, a apple 2, and a toiletpaper 1.

> take mug 3 from cabinet 4
Nothing happens.

> take cup 3 from cabinet 4
You pick up cup 3 from cabinet 4

> Think: Now I found cup (3). Next I need to clean it. For this ......

   ADaPT (Adaptive Decomposition, Dynamic Depth)Iterative Executor (ReAct)

...
...

...
...

Figure 8: Comparison of iterative executors such as ReAct with ADAPT. On left, ReAct uses interleaved “thought”
statements to set milestones and track their progress. However, due to a large action history, it struggles to follow
the plan exactly and hallucinates the wrong object (highlighted in red). ADAPT, on the right, decomposes complex
tasks into smaller sub-tasks whenever the executor fails, leading to shorter action trajectories for easy execution.

ronment. We define an environment with three ac-1119

tions: craft <item> using <ingredients>, get1120

<item>, and inventory. We utilize Minecraft’s1121

crafting recipes to specify craftable items and their1122

ingredients, assuming that all other items are ob-1123

tainable from the environment. Similar to Alf-1124

World, our agent can directly execute these op-1125

erations in the embodied game. The game begins1126

with a list of crafting commands provided to the1127

agent that detail recipes that can be used to craft1128

the final target, its ingredients along with some dis-1129

tractors (details in Appendix E). A reward of 1 is1130

generated when the target item gets added to the 1131

agent’s inventory. An illustrative gold trajectory 1132

from TextCraft is shown in Fig. 3. 1133

We create the TextCraft environment using 1134

Minecraft v1.16.5 recipes. We only consider the 1135

recipes craftable using a crafting table. We consider 1136

both shapeless (only count matters) and shaped 1137

(position of ingredients matters) recipes and con- 1138

vert them into crafting commands (e.g. craft 4 1139

sticks using 2 planks). Items that do not have 1140

any recipe are considering obtainable via the get 1141

command, e.g. get 4 diamond. 1142
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Webpage: [Search]
Task: I am looking to buy a product. i need a leak proof travel bottle that
is reusable and comes in 6 pack, and price lower than 30.00 dollars

Execute: Task
> search[leak proof reusable bottle]

Page: 
[B0956WL7LT] ...

[B098XRX6M2] ...

> Think: Task failed!

Plan: Task
# Think: To do this task, ....
Step 1: Search "leak proof travel bottle reusable 6 pack"  AND
# Think: Now that I have found it, ....
Step 2: Match product on search page AND
# Think: Now that I have matched ....
Step 3: Buy matching product

Execute: Search "leak proof travel bottle reusable 6 pack"

> Think: Task completed!

Plan: Match product on search page
# Think: To do this task, ....
Step 1: Detail Match [B09...7LT] on product page OR
# Think: If that does not match, ....
Step 2: Detail Match [B08...GBG] on product page OR
# Think: If that does not match, ....
Step 3: Search "leak proof bottle reusable 6 pack $30"

Execute: Detail Match [B09...7LT] on product page

> Think: Task failed!

Execute: Detail Match [B08...GBG] on product page

> Think: Task completed!

Execute: Buy matching product

> Think: Task completed!

Matching Product: 
[B08BGBPGBG] 

...

...

   ADaPT (Adaptive Decomposition, Dynamic Depth)

...
...

...

Execute: Match product on search page

> Think: Task failed!

...

Search Results:
[B0956WL7LT] Portable Travel Bottles Set ...
[B08BGBPGBG] JND Plastic Squeeze Bottle ...
 
Prev: Failed Match product on search page

...

Figure 9: Partial rolled out trajectories for WebShop
with ADAPT. In the gray box we communicate to the
planner the current (search) page that is visible to the
agent, and once a matching product is found, we propa-
gate it to future executor runs. Note “match on search
page” corresponds to shortlist skill in Table 4, and “de-
tail match on product page” corresponds to match skill.

Since the entire set of crafting commands would1143

not fit in the context of modern LLMs, we create1144

a set of relevant crafting commands for every task.1145

Apart from the set of gold crafting commands (i.e,1146

crafting commands for all the items in the recipe1147

tree), we also add up to 10 distractor commands.1148

To create this distractor set, we sub-sample up to1149

10 recipes for every ingredient in the recipes of our1150

gold recipe tree. We finally sub-sample up to 101151

distractors from this entire set to ensure a reason-1152

able context size. Note that we do not provide the1153

list of valid get commands as that can be inferred1154

from the craft commands.1155

Crafting Commands: 
craft andesite slab using 3 andesite
craft 2 andesite using 1 diorite, 1 cobblestone
craft 6 diorite wall using 6 diorite
craft 2 diorite using 2 quartz, 2 cobblestone

Task: craft andesite slab

Execute: craft andesite slab
> get 3 andesite

Could not execute: get 3 andesite
> get 1 diorite

Could not execute: get 1 diorite

> Think: Task failed!

Plan: craft andesite slab
# Think: To do this task, ....
Step 1: Fetch 3 andesite  AND
# Think: Now that I have found it, ....
Step 2: Craft andesite slab using 3 andesite

Execute: Fetch 3 andesite

> Think: Task failed!

Plan: Fetch 3 andesite
# Think: To do this task, ....
Step 1: Fetch 1 diorite AND
# Think: Fetch the next ingredient, ....
Step 2: Fetch 1 cobblestone AND
# Think: Now that I have found, ....
Step 3: Craft 2 andesite using 1 diorite, 1 cobblestone AND
# Think: Since I need 3 andesite, ....
Step 4: Craft 2 andesite using 1 diorite, 1 cobblestone

Execute: Fetch 1 diorite

> Think: Task completed!

Execute: Fetch 1 cobblestone

> Think: Task completed!

Execute: Craft andesite slab using 3 andesite

> Think: Task completed!

...

...

   ADaPT (Adaptive Decomposition, Dynamic Depth)

...
...

...

...

Inventory: [diorite] (2)

Inventory: [diorite] (2), [cobblestone] (1)

Execute:  Craft 2 andesite using 1 diorite, 1
cobblestone

> Think: Task completed!

...

Inventory: [diorite] (1), [cobblestone] (1), [andesite] (2)

Execute:  Craft 2 andesite using 1 diorite, 1
cobblestone

> Think: Task completed!

Inventory: [andesite] (4)

Figure 10: Partial rolled out trajectories for TextCraft
using ADAPT. In the gray box, we propagate the in-
ventory of the agent to subsequent executor calls. Note
that while “diorite” is not directly present in the envi-
ronment, i.e., it needs to be crafted. The executor LLM
is able to inherently compose skills to fetch it without
further decomposition.

F Evaluation of Success Heuristic 1156

In Sec. 3.1, we describe the executor module used 1157

in ADAPT. For tasks assigned to the executor, 1158

we prompt the LLM to generate a binary success 1159

heuristic. We use this heuristic repeatedly to evalu- 1160

ate if the (sub-)task needs to be decomposed further. 1161

We now study the ability of LLMs to generate this 1162

success heuristic on all our datasets. To this end, 1163
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Figure 11: Comparison of LLM-generated success
heuristic with gold environment rewards to compute
success rates for all datasets.

we run ADAPT and in the end compare the success1164

rate when using the LLM’s self-assessed task suc-1165

cess with the gold reward from the environment in1166

Fig. 11. On ALFWorld and TextCraft, we find the1167

LLM slightly over-estimates its overall task suc-1168

cess. This is to be expected as the underlying tasks1169

involve minimal subjectivity (e.g., the agent either1170

has an item on its inventory or not). However, on1171

WebShop, where a product can match the user crite-1172

ria to different degrees (partially or fully), we find1173

that the LLM’s assessment is significantly inflated1174

compared to the environment reward (>30 points).1175

This imperfect feedback affects downstream per-1176

formance of ADAPT, as the algorithm terminates1177

even though further decomposition is needed. We1178

leave it to future work to address the shortcomings1179

of self-evaluation with LLMs (Huang et al., 2023a;1180

Stechly et al., 2023).1181

G Using Different Planner and Executor1182

LLMs1183

Different executor LLMs. The planner and ex-1184

ecutor modules of ADAPT do not need to necessar-1185

ily use the same underlying model. Following, Lin1186

et al. (2023) we explore if a relatively smaller LLM1187

can be used to perform local actions in the executor1188

and a more advanced LLM be used to devise plans.1189

To this end, we explore different combinations of1190

planner and executor LLM, with the latter using1191

both gated and open-source models on ALFWorld.1192

Results. Table 8 shows that ADAPT can suc-1193

cessfully be used to generate plans from one LLM1194

that are useful to a different, possibly smaller, ex-1195

ecutor LLM, improving success rates by up to1196

19.9% compared to the executor-only (ReAct) set-1197

ting. Interestingly, using an open-source model,1198

Executor LM Planner LM Success Rate

GPT-3.5 − 38.4
GPT-3.5 GPT-3.5 58.3

LLaMA-2-70B − 20.4
LLaMA-2-70B GPT-3.5 43.3

Table 8: ADAPT improves performance on ALFWorld
(dev) when using different planner and executor LLMs.
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Figure 12: Average number of LLM calls for each ap-
proach including ADAPT and baselines discussed in
Sec. 4.2 with GPT-3.5 LLM across datasets.

such as LLaMA-2-70B-chat (Touvron et al., 2023) 1199

can be used as an executor with a more advanced 1200

LLMs such as GPT-3.5 to improve success rates 1201

by 22.9% points. Since the planner LLM is used 1202

sparingly, open-source executors can dramatically 1203

decrease the monetary or computational costs of us- 1204

ing ADAPT. We defer combining knowledge from 1205

stronger and weaker LMs within ADAPT to future 1206

work, as examined in the context of mathematical 1207

reasoning (Fu et al., 2023; Saha et al., 2023a). 1208

H Comparison of LLM Calls 1209

Fig. 12 shows that a comparable number of LLM 1210

calls are used across baselines as well as ADAPT 1211

to yield performance improvements discussed in 1212

Sec. 5 (Tables 1 and 2). This strengthens the argu- 1213

ment for effectiveness of ADAPT as the improve- 1214

ments do not simply stem from using substantially 1215

higher number of calls to the LLM. 1216

I Prompts 1217

We provide all the prompts used in our planner and 1218

executor modules for ALFWorld, WebShop, and 1219

TextCraft datasets in the following pages. 1220
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ALFWorld Hybrid Executor Prompt

Here is a demo of actions you can perform.

You are in the middle of a room. Looking quickly around you, you see a desk 1, microwave 1, a cabinet 3, a cabinet 9, a
drawer 2, a coffeemachine 1, a stoveburner 4, a drawer 5, a cabinet 11, a drawer 3, a stoveburner 1, a drawer 1, a
toaster 1, a fridge 1, a stoveburner 2, a cabinet 6, a cabinet 10, a countertop 1, a cabinet 13, a cabinet 7, a
garbagecan 1, a cabinet 2, a cabinet 8, a cabinet 12, a drawer 4, a cabinet 1, a sinkbasin 1, a cabinet 5, a
stoveburner 3, and a cabinet 4.

Your task is to: Put a tomato in cabinet 1.
> think: Input assumption: I am carrying a tomato. Now I need to verify this.
OK.
> inventory
You are carrying: a tomato 1.
> examine tomato 1
There's nothing special about tomato 1.
> think: Based on previous context assumption is true, now I can proceed.
> go to cabinet 1
The cabinet 1 is closed.
> open cabinet 1
You open the cabinet 1. The cabinet 1 is open. In it, you see a candle 1, and a spraybottle 2.
> put tomato 1 in/on cabinet 1
You put the tomato 1 in/on the cabinet 1.
> think: End state: Now I put tomato (1) in cabinet (1). Task completed!

Your task is to: Take a mug from cabinet 5
> think: Input assumption: None
OK.
> go to cabinet 5
The cabinet 5 is closed.
> open cabinet 5
You open the cabinet 5. The cabinet 5 is open. In it, you see a mug 3.
> take mug 3 from cabinet 5
You pick up the mug 3 from the cabinet 5.
> think: End state: Now I take a mug (3) from cabinet (5). Task completed!

Your task is to: Heat an egg.
> think: Input assumption: I am carrying an egg. Now I need to verify this.
OK.
> inventory
You are carrying: a egg 2.
> examine egg 2
There's nothing special about egg 2.
> think: Based on previous context assumption is true, now I can proceed.
OK.
> go to microwave 1
The microwave 1 is closed.
> heat egg 2 with microwave 1
You heat the egg 2 using the microwave 1.
> think: End state: Now I heat a egg (2). Task completed!

Your task is to: Cool a mug.
> think: Input assumption: I am carrying a mug. Now I need to verify this.
OK.
> inventory
You are carrying: a mug 3.
> examine mug 3
There's nothing special about mug 3.
> think: Based on previous context assumption is true, now I can proceed.
OK.
> go to fridge 1
The fridge 1 is closed.
> cool mug 3 with fridge 1
You cool the mug 3 using the fridge 1.
> think: End state: Now I cool a mug (3). Task completed!

Your task is to: Clean a lettuce.
> think: Input assumption: I am carrying a lettuce. Now I need to verify this.
OK.
> inventory
You are carrying: a lettuce 1.
> examine lettuce 1
There's nothing special about lettuce 1.
> think: Based on previous context assumption is true, now I can proceed.
OK.
> go to sinkbasin 1
On the sinkbasin 1, you see a apple 2, a ladle 2, a spoon 1, and a tomato 3.
> clean lettuce 1 with sinkbasin 1
You clean the lettuce 1 using the sinkbasin 1.
> think: End state: Now I clean a lettuce (1). Task completed!
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ALFWorld Hybrid Executor Prompt (cont.)

Your task is to: Use a desklamp to look at tomato 1.
> think: Input assumption: I am at the location that contains desklamp (1). Now I need to verify this.
OK.
> inventory
You are carrying: a tomato 1.
> look
You are facing desk 1. Next to it, you see nothing.
> examine desk 1
On desk 1, you see a spoon 1, a desklamp 1, and a pencil 2.
> think: Based on previous context assumption is true, now I can proceed.
OK.
> use desklamp 1
You turn on the desklamp 1.
> think: Now I use desklamp (1). Task completed!

Here are two example tasks.

You are in the middle of a room. Looking quickly around you, you see a cabinet 13, a cabinet 12, a cabinet 11, a cabinet 10,
a cabinet 9, a cabinet 8, a cabinet 7, a cabinet 6, a cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1,
a coffeemachine 1, a countertop 1, a diningtable 1, a drawer 1, a fridge 1, a garbagecan 1, a microwave 1, a shelf 3,
a shelf 2, a shelf 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a

toaster 1.
Your task is to: put a hot apple in fridge.
> think: To solve the task, I need to find and take an apple, then heat it with microwave, then put it in fridge.
OK.
> think: First I need to find an apple. An apple is more likely to appear in fridge (1), diningtable (1), coffeetable (1),

drawer (1), cabinet (1-13), garbagecan (1). I can check one by one, starting with fridge 1.
OK.
> go to fridge 1
The fridge 1 is closed.
> open fridge 1
You open the fridge 1. The fridge 1 is open. In it, you see a cup 1, and a egg 1.
> go to diningtable 1
On the diningtable 1, you see a apple 1, a bread 1, a fork 3, a fork 2, a fork 1, a mug 2, a peppershaker 3, a plate 2, a

pot 1, a soapbottle 3, a spatula 1, a spoon 3, a spoon 2, a spoon 1, a winebottle 3, and a winebottle 2.
> think: Now I find an apple (1). Next, I need to take it.
OK.
> take apple 1 from diningtable 1
You pick up the apple 1 from the diningtable 1.
> think: Now I take an apple (1). Next, I need to go to a microwave (1) and heat it.
OK.
> go to microwave 1
The microwave 1 is closed.
> heat apple 1 with microwave 1
You heat the apple 1 using the microwave 1.
> think: Now I heat an apple (1). Next, I need to put it in/on fridge 1.
OK.
> go to fridge 1
The fridge 1 is open. In it, you see a cup 1, and a egg 1.
> put apple 1 in/on fridge 1
You put the apple 1 in/on the fridge 1.

> think: Task completed!

You are in the middle of a room. Looking quickly around you, you see a bed 1, a desk 1, a drawer 3, a drawer 2, a drawer 1,
a garbagecan 1, a safe 1, a shelf 5, a shelf 4, a shelf 3, a shelf 2, a shelf 1, a sidetable 2, and a sidetable 1.

Your task is to: look at bowl under the desklamp.
> think: To solve the task, I need to find and take a bowl, then find and use a desklamp.
OK.
> think: First I need to find a bowl. A bowl is more likely to appear in drawer shelf (1-5), drawer (1-3). I can check one

by one, starting with drawer 1.
OK.
> go to shelf 1
On the shelf 1, you see nothing.
> go to shelf 2
On the shelf 2, you see a bowl 1.
> think: Now I find a bowl (1). Next, I need to take it.
OK.
> take bowl 1 from shelf 2
You pick up the bowl 1 from the shelf 2.
> think: Now I take a bowl (1). Next, I need to find a desklamp. A desklamp is more likely to appear in desk (1), sidetable

(1-2), and drawer (1-3). I can check one by one, starting with desk 1.
OK.
> go to desk 1
On the desk 1, you see a alarmclock 2, a book 1, a cellphone 1, a keychain 1, a laptop 2, a laptop 1, and a pen 3.
> go to sidetable 1
On the sidetable 1, you see a cd 1, a pen 1, and a pencil 1.
> go to sidetable 2
On the sidetable 2, you see a alarmclock 1, a desklamp 1, and a pen 2.
> think: Now I find a desklamp (1). Next, I need to use it.
OK.
> use desklamp 1
You turn on the desklamp 1.
> think: Task completed!
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ALFWorld Planner Prompt

Here are some examples.
You are in the middle of a room. Looking quickly around you, you see a desk 1, microwave 1, a cabinet 3, a cabinet 9, a

drawer 2, a coffeemachine 1, a stoveburner 4, a drawer 5, a cabinet 11, a drawer 3, a stoveburner 1, a drawer 1, a
toaster 1, a fridge 1, a stoveburner 2, a cabinet 6, a cabinet 10, a countertop 1, a cabinet 13, a cabinet 7, a
garbagecan 1, a cabinet 2, a cabinet 8, a cabinet 12, a drawer 4, a cabinet 1, a sinkbasin 1, a cabinet 5, a
stoveburner 3, and a cabinet 4.

Goal: Put a mug in/on desk.
Come up with an abstract plan to perform this task in a couple of steps.
# Think: To perform this task, I need to find and take mug and then put it on desk. First, I will focus on finding mug.
Step 1: Find and take mug
# Think: Now that I am carrying mug, I will focus on putting it in/on desk.
Step 2: Put mug in/on desk
Execution Order: (Step 1 AND Step 2)

Goal: Clean mug and put it in/on desk.
Come up with an abstract plan to perform this task in a couple of steps.
# Think: To perform this task, I need to find and take mug, clean it, and then put it on desk. First, I will focus on

finding mug.
Step 1: Find and take mug
# Think: Now that I am carrying mug, I will focus on cleaning it.
Step 2: Clean mug with sinkbasin
# Think: Now that I have cleaned mug, I will focus on putting it in/on desk.
Step 3: Put cleaned mug in/on desk
Execution Order: (Step 1 AND Step 2 AND Step 3)

Goal: Cool mug and put it in/on desk.
Come up with an abstract plan to perform this task in a couple of steps.
# Think: To perform this task, I need to find and take mug, cool it, and then put it on desk. First, I will focus on

finding mug.
Step 1: Find and take mug
# Think: Now that I am carrying mug, I will focus on cooling it.
Step 2: Cool mug with fridge
# Think: Now that I have cooled mug, I will focus on putting it in/on desk.
Step 3: Put cooled mug in/on desk
Execution Order: (Step 1 AND Step 2 AND Step 3)

Goal: Heat mug and put it in/on desk.
Come up with an abstract plan to perform this task in a couple of steps.
# Think: To perform this task, I need to find and take mug, heat it, and then put it on desk. First, I will focus on

finding mug.
Step 1: Find and take mug
# Think: Now that I am carrying mug, I will focus on heating it.
Step 2: Heat mug with microwave
# Think: Now that I have heated mug, I will focus on putting it in/on desk.
Step 3: Put heated mug in/on desk
Execution Order: (Step 1 AND Step 2 AND Step 3)

Goal: Look at mug under desklamp.
Come up with an abstract plan to perform this task in a couple of steps.
# Think: To perform this task, I need to find and take mug, and then go to the desklamp and use it. First, I will focus on

finding mug.
Step 1: Find and take mug
# Think: Now that I have found and taken mug, I will focus on using the desklamp.
Step 2: Use the desklamp
Execution Order: (Step 1 AND Step 2)

Goal: Find and take mug
Come up with an abstract plan to perform this task in a couple of steps.
# Think: To perform this task I need to find mug in the room. mug is likely to be in desk, cabinet, countertop, or drawer.

Now I will focus on finding mug in each of these locations one by one.
Step 1: Find and take mug from desk
# Think: If mug not found so far, I will next look in the cabinet.
Step 2: Find and take mug from cabinet
# Think: If mug not found so far, I will next look in the countertop.
Step 3: Find and take mug from countertop
# Think: If mug not found so far, I will next look in the drawer.
Step 4: Find and take mug from drawer
Execution Order: (Step 1 OR Step 2 OR Step 3 OR Step 4)

Here is the goal.
<room>
Goal: <task>.
Come up with an abstract plan to perform this task in a couple of steps. Constraints: The robot can hold/take/put only one

object at a time to a location.
Ensure each step can be understood independently and mentions the name of object.
When stating the execution order, ensure that 'AND'/'OR' statements are properly nested using brackets '()'.
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WebShop Executor Prompt: Buy

Instruction: Buy product [B078GWRC1J] that matches criteria: 3 ounce bottle of bright citrus deodorant for sensitive skin,
and price lower than 50.00 dollars

Action: think['I should be on the search page where I can see a list of products, I should verify that.']
Observation: OK.

Action: load
Observation:
[Back to Search]
Page 1 (Total results: 50)
[Next >]
[B078GWRC1J]
Bright Citrus Deodorant by Earth Mama | Safe for Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic Calendula 3-

Ounce
$10.99
[B08KBVJ4XN]
Barrel and Oak - Aluminum-Free Deodorant, Deodorant for Men, Essential Oil-Based Scent, 24-Hour Odor Protection, Cedar &

Patchouli Blend, Gentle on Sensitive Skin (Mountain Sage, 2.7 oz, 2-Pack)
$35.95
[B078GTKVXY]
Ginger Fresh Deodorant by Earth Mama | Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic

Calendula 3-Ounce
$10.99

Action: think['I can spot product [B078GWRC1J] and it is a clickable link since its enclosed in square brackets. I should
click on it.]

Observation: OK.

Action: click[B078GWRC1J]
Observation:
[Back to Search]
[< Prev]
scent [assorted scents][bright citrus][calming lavender][ginger fresh][simply non-scents]
size [travel set (4-pack)][3 ounce (pack of 1)][3-ounce (2-pack)]
Bright Citrus Deodorant by Earth Mama | Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic

Calendula 3-Ounce
Price: $10.99
Rating: N.A.
[Description]
[Features]
[Reviews]
[Buy Now]

Action: think[I'm already on the product page. I see multiple possible options enclosed in '[]' for scent and size for this
product. To match the input criteria, I should click on options '[bright citrus]' for scent and '[3 ounce (pack of 1)

]' for size one by one and then buy in the end.]
Observation: OK.

Action: click[bright citrus]
Observation: You have clicked bright citrus.

Action: click[3 ounce (pack of 1)]
Observation: You have clicked 3 ounce (pack of 1).

Action: think[My task is to buy the product, for it should to click 'buy now']
Observation: OK.

Action: click[Buy Now]
Observation: You have clicked buy now.

Action: think[I finished buying the product. Task completed!]

Here is another task in which you need to buy a product. When you finish buying the product with the most relevant choices,
use 'think[Task completed']. If you cannot find the matching options or proceed, think['Task failed']. Note that you
can only click on text enclosed in '[]' on the webpage. Everything else is only a description, not valid with the "

click" action.

Instruction: Buy product [{}] that matches the criteria: {}
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WebShop Executor Prompt: Match (cont.)

You are given a webpage of an item on an online shopping website and a criteria. Your task is to answer if the product on
the page exactly matches the criteria. Not the criteria could have multiple requirements that should be checked one
by one and all must satisfy for an exact match.

Here are a few examples:

Criteria: 3 ounce bottle of citrus deodorant for sensitive skin that is priced lower than $30 and natural.
Item Page:
[Back to Search]
[< Prev]
scent [assorted scents][bright citrus][calming lavender][ginger fresh][simply non-scents]
size [travel set (4-pack)][3 ounce (pack of 1)][3-ounce (2-pack)]
Bright Citrus Deodorant by Earth Mama | Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic

Calendula 3-Ounce
Price: $10.99
Rating: N.A.
[Description]
Features:
NEW from Earth Mama (formerly Earth Mama Angel Baby), formulated especially for pregnancy, breastfeeding and sensitive

skin
Contains organic grapefruit, tangerine and calendula
NO propylene glycol, artificial fragrance, parabens or aluminum
Dermatologist tested and clinically tested for irritation
Better than natural organic! NSF/ANSI 305 Certified by Oregon Tilth
[Reviews]
[Attributes]
[Buy Now]

Answer: The product is available in 3 ounce size, is citrus and suitable for sensitive skin. It is also organic or natural.
Its price is $10.99 which is less than $30.

Thus, the answer is True (exact match).

Criteria: 3 ounce bottle of citrus deodorant for sensitive skin that is priced lower than $30 and natural.
Item Page:
[Back to Search]
[< Prev]
size [3 ounce][3 ounce (pack of 1)]
unit count [2.0][3.0]
Barrel and Oak - Aluminum-Free Deodorant, Deodorant for Men, Essential Oil-Based Scent, 24-Hour Odor Protection, Cedar &

Patchouli Blend, Gentle on Sensitive Skin (Mountain Sage, 2.7 oz, 2-Pack)
Price: $15.95
Rating: N.A.
[Description]
Features:
About this item WHY ALUMINUM-FREE DEODORANT? Aluminum-free deodorants use more natural ingredients unlike antiperspirants,

which use chemicals to block sweat. Safely fight odor for 24 hours with Barrel & Oak's deodorantsour gentle formula
is easy on sensitive skin. START SMELLING LIKE THE MAN YOU WANT TO BE: Our mountain sage aluminum-free men's
deodorant is naturally fragranced with an outdoorsy scent of crisp conifer, sage, & citrus. Think sweet notes of
citrus with earthy tones of cedar & patchouli. PREMIUM INGREDIENTS FOR NATURAL FRAGRANCES: Our deodorants for men are
composed of natural, essential oil-based scents. These natural fragrance deodorants are more subtle than their

synthetic counterparts, but they're better for you & the planet. DESIGNED FOR THE MODERN MAN: Barrel & Oak has a full
spectrum of grooming & body care products that are designed with function, fragrance, & effective ingredients for

the health-conscious & practical modern man. Give your body what it deserves. EARTH-FRIENDLY, YOU-FRIENDLY, WALLET-
FRIENDLY: Our premium products for men are scented with natural fragrances & essential oils, free of parabens,
phthalates, & SLS, packaged in recyclable materials, cruelty-free, & vegan or vegetarian.

[Reviews]
[Attributes]
[Buy Now]

Answer: The product is not citrus in nature. It does not match the criteria. It's price is $15.95 which is less than $30.
Thus, the answer is False (not an exact match).

Now here is the criteria and item page for the another task. Try you best to determine exact match, otherwise, respond with
"False", i.e., no exact match. Generate an explanation before the answer to justify your decision.

Criteria: {}
Item Page:
{}
Answer:
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WebShop Executor Prompt: Shortlist (cont.)

You are given a search page on an online shopping site with a list of products along with name and price. Based on this
information, your task is return a list of product IDs (enclosed in []) of all products that exactly match all
requirements in the criteria. If the information provided is not enough to make a determination, return an empty list.

Here are a few examples.

Search Page:
[Back to Search]
Page 1 (Total results: 50)
[Next >]
[B078GWRC1J]
Bright Citrus Deodorant by Earth Mama | Safe for Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic Calendula 3-

Ounce
$10.99
[B08KBVJ4XN]
Barrel and Oak - Aluminum-Free Deodorant, Deodorant for Men, Essential Oil-Based Scent, 24-Hour Odor Protection, Cedar &

Patchouli Blend, Gentle on Sensitive Skin (Mountain Sage, 2.7 oz, 2-Pack)
$35.95
[B078GTKVXY]
Ginger Fresh Deodorant by Earth Mama | Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic

Calendula 3-Ounce
$10.99
[B08SMG4WB9]
Each & Every 2-Pack Natural Aluminum-Free Deodorant for Sensitive Skin with Essential Oils, Plant-Based Packaging (Citrus &

Vetiver, 2.5 Ounce (Pack of 2))
$25.0
[B08KVCCSD6]
Each & Every 3-Pack, Natural Aluminum-Free Deodorant for Sensitive Skin Made with Essential Oils, 2.5 Oz. (Lavender & Lemon,

Citrus & Vetiver, and Coconut & Lime)
$35.0

Criteria: less than 5 ounce citrus deodorant sensitive skin, price less than $30.
Answer: My requirements are 5 ounce, citrus deodrant, suitable for sensitive skin, and price less than $30. Looks like this

information is available on the search page, so I can proceed.
Products B078GWRC1J, B08SMG4WB9 look suitable as they are less than 5 ounce, citrus and have price 10.99 and $25 less than

$30. Thus, shortlisted IDs are shortlisted=['B078GWRC1J', 'B08SMG4WB9']

Criteria: less than 5 ounce citrus deodorant sensitive skin, cruelty free.
Answer: My requirements are 5 ounce, citrus deodrant, suitable for sensitive skin, and cruelty-free. Since there is no

information about cruelty free on the search page, I cannot proceed. Task failed!

Here is another task with a different search page and criteria. List all the product ids (enclosed in []) from the search
page that match ALL the requirements in the criteria. Name this list shortlisted. If you cannot make the
determination about even 1 sub-criteria, do not make a guess, output "task failed!". Generate an explanation before
the answer to justify your decision.

Search Page:
{}

Criteria: {}
Answer:
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WebShop Planner Prompt

Write an abstract plan to successfully complete the goal. In each step of the plan mention which module (including
arguments) that need to be called. Learn from and incorporate information from previous runs, e.g. do not repeat
previously successful or unsuccesful commands. Here are some examples:Information from previous run: -

Goal: Buy 3 ounce bottle of citrus deodorant for sensitive skin, that is natural and priced less than 50.00 dollars.
# Think: Based on the criteria and the search bar, I should query 3 ounce citrus deodorant sensitive skin. I have the

following constraints: natural and price lower than $30 which I can use to narrow down search results.
Step 1: Search[3 ounce citrus deodorant sensitive skin]
# Think: Now I will need to narrow down the search results for price lower than $30 and natural
Step 2: SimpleMatch[3 ounce citrus deodorant sensitive skin with price lower than $50 and natural]
# Think: Since it returns a list of up to 3 products, I will pick the first suitable product. For now, Ill denote its id as

prod_id for placeholder.
Step 3: Buy[prod_id, "3 ounce bottle of citrus deodorant for sensitive skin, that is natural and priced less than 30.00

dollars"]
#Think: My plan requrires all these steps to succeed sequentially, so I will use the "AND" operator.
Execution Order: (Step 1 AND Step 2 AND Step 3)

Information from previous run:
- Unable to get matching product using: SimpleMatch[3 ounce citrus deodorant sensitive skin with price lower than $30 and

natural]
- Search results page:
[Back to Search]
Page 1 (Total results: 50)
[Next >]
[B078GWRC1J]
Bright Citrus Deodorant by Earth Mama | Safe for Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic Calendula 3-

Ounce
$10.99
[B08KBVJ4XN]
Barrel and Oak - Aluminum-Free Deodorant, Deodorant for Men, Essential Oil-Based Scent, 24-Hour Odor Protection, Cedar &

Patchouli Blend, Gentle on Sensitive Skin (Mountain Sage, 2.7 oz, 2-Pack)
$35.95
[B078GTKVXY]
Ginger Fresh Deodorant by Earth Mama | Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic

Calendula 3-Ounce
$10.99
[B08SMG4WB9]
Each & Every 2-Pack Natural Aluminum-Free Deodorant for Sensitive Skin with Essential Oils, Plant-Based Packaging (Citrus &

Vetiver, 2.5 Ounce (Pack of 2))
$25.0
[B08KVCCSD6]
Each & Every 3-Pack, Natural Aluminum-Free Deodorant for Sensitive Skin Made with Essential Oils, 2.5 Oz. (Lavender & Lemon,

Citrus & Vetiver, and Coconut & Lime)
$35.0
[B087WKSR2G]

Goal: Narrow down search results for 3 ounce bottle of citrus deodorant for sensitive skin that is priced lower than $30
and natural. You cannot search again.

#Think: Based on the search results and previous information, SimpleMatch failed because my criteria was too complex. Price
constraint is easy to verify, I will narrow down based on that first then examine in detail for natural constraint

#Think: Based on price, I narrow down my search to B078GWRC1J, B08SMG4WB9 as they look suitable. These are on my shortlist
to examine the natural constraint in detail one by one.

Step 1: DetailMatch[B078GWRC1J, 3 ounce bottle of for sensitive skin, that is natural and priced less than 30.00 dollars]
Step 2: DetailMatch[B08SMG4WB9, 3 ounce bottle of citrus deodorantcitrus deodorant for sensitive skin, that is natural and

priced less than 30.00 dollars]
#Think: If none of the products exactly match my criteria, I will search again with a new query that includes the natural

criteria too. This ensures my plan is compelete.
Step 3: Search[3 ounce citrus deodrant natural and sensitive skin]
#Think: Since these steps are linked by an if condition, I only need one of them to succeed. I will connect them using the

"OR" operator.
Execution Order: (Step 1 OR Step 2 OR Step 3)

Here is a new goal. Write an abstract plan to successfully complete the goal. In each step of the plan mention which module
(including arguments) that need to be called. Learn from and incorporate information from previous runs, e.g. do not
repeat previously successful or unsuccesful commands. In the end, output the intended execution order.

Information from previous run: {}
Goal: {}
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TextCraft Executor Prompt

You are given few useful crafting recipes to craft items in Minecraft. Crafting commands are of the format "craft [target object]
using [input ingredients]". You can either "fetch" an object (ingredients) from the inventory or the environment or "craft"
(target) using any of the crafting commands. You can use ONLY these crafting commands provided, do not use your own crafting
commands. However, if the crafting command uses a generic ingredient like "planks", you can use special types of the same

ingredient e.g. "dark oak planks" in the command instead. For any other natural language or thoughts, use prefix 'think: '.

Here is a demo of how to fetch and craft objects.
Crafting commands:
craft 3 dark oak sign using 6 dark oak planks, 1 stick
craft 4 dark oak planks using 1 dark oak log
craft 1 stick using 1 planks
craft 4 stick using 2 bamboo
craft 4 oak planks using 1 oak log
craft 1 dark oak fence using 2 stick, 4 dark oak planks
craft 1 warped stairs using 6 warped planks
craft 3 oak sign using 6 oak planks, 1 stick
Goal: craft dark oak sign
> think: I should check if I can fetch dark oak sign directly from the environment or the inventory.
OK.
> inventory:
Inventory: [stick] (1) [dark oak planks] (8)
> get dark oak sign
Could not find dark oak sign
> think: I cannot get dark oak sign directly, I need to craft it. From the crafting commands, I can use: craft dark oak sign using

6 dark oak planks, 1 stick. Ingredients needed: 6 dark oak planks, 1 stick. Input assumption: I have all the neccessary
ingredients in my inventory. Let me verify this first.

OK.
> inventory
Inventory: [stick] (1) [dark oak planks] (8)
> think: I found my ingredients: 6 dark oak planks, 1 stick in my inventory. My assumption is true, I can proceed. I will use the

crafting command: craft dark oak sign using 6 dark oak planks
OK.
> craft 1 dark oak sign using 6 dark oak planks, 1 stick
Crafted 1 minecraft:dark_oak_sign
> inventory
Inventory: [dark oak sign] (1)
> think: I now have dark oak sign in my inventory. Task Completed!
OK.

Goal: fetch 2 dark oak logs.
> think: I should check my inventory first, to see if I already have dark oak sign. Otherwise, I will directly try to get it from

the environment.
OK.
> inventory
Inventory: [stick] (1)
> get 2 dark oak logs.
Got 2 dark oak logs
> inventory
Inventory: [dark oak log] (2) [stick] (1)
> think: I have 2 dark oak logs in my inventory. Task Completed!
OK.

TextCraft Executor Prompt (cont.)

Here is an example of a complex goal.
Goal: craft 2 oak planks
> think: I should check if I can fetch dark oak sign directly from the environment or the inventory.
OK.
> inventory:
Inventory: [stick] (1)
> get 2 oak planks
Could not find 2 oak planks
> think: I cannot get oak planks directly, I need to craft it. From the crafting commands, I can use: craft 4 oak planks using 1

oak log. Ingredients needed: 1 dark oak log. Input assumption: I have the ingredients needed in my inventory. Let me verify
this first.

OK.
> inventory
Inventory: [stick] (1)
> think: My assumption is false. I need to get the ingredients: 1 oak log first.
OK.
> get 1 oak log
Got 1 oak log
> craft 4 oak planks using 1 oak log
Crafted 4 minecraft:oak_planks
> inventory
Inventory: [stick] (1) [oak_planks] (4)
> think: I now have 2 oak planks in my inventory. Task Completed!
OK.
Now here is a different goal. You can use these crafting commands to accomplish the goal. When you the desired item in your

inventory, think: Task Completed! If you have tried your best but cannot proceed, think: task failed!
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TextCraft Planner Prompt

Your task is to come up with a short plan to help me accomplish my goal in a couple of steps using at most ONE of the
provided crafting commands. You can take the help of crafting commands below to create new objects.

Craft command can be understood as follows: craft [target] using [ingredients], where target is item/object generated by
the craft command as output and ingredient are the inputs. You are given an agent that can "craft" or "fetch" objects.

Here is are some examples.

Crafting commands:
craft 3 dark oak sign using 6 dark oak planks, 1 stick
craft 4 dark oak planks using 1 dark oak log
craft 1 stick using 1 planks
craft 4 stick using 2 bamboo
craft 4 oak planks using 1 oak log
craft 1 dark oak fence using 2 stick, 4 dark oak planks
craft 1 warped stairs using 6 warped planks
craft 3 oak sign using 6 oak planks, 1 stick

Goal: craft dark oak sign.

# Think: My target is a dark oak sign. From the list of crafting commands, only 1 command generates my target: craft 3 dark
oak sign using 6 oak planks, 1 stick. I will use this command to devise a plan. My ingredients are: 6 dark oak

planks, 1 stick. I should first get all the ingredients and then use the crafting command.
Step 1: fetch 6 dark oak planks
Step 2: fetch 1 stick
# Think: Now that I have collected the input ingredients, I can craft the dark oak sign using given command.
Step 3: craft dark oak sign using 6 dark oak planks, 1 stick
# Think: To succeed, I need to perform all these steps, one after the other. So I need to use the "AND" operator.
Execution Order: (Step 1 AND Step 2 AND Step 3)

Goal: fetch 6 dark oak planks.

# Think: My target is 6 dark oak planks. From the list of crafting commands, only 1 command generates my target: craft 4
dark oak planks using 1 dark oak log. My ingredients are: 1 dark oak log. To successfully accomplish the goal, I
should first get all the ingredients and then use the crafting command.

Step 1: fetch 1 dark oak log
# Think: Now that I have collected the input ingredients, I can craft dark oak planks using given command. I know that I

cannot use a partial recipe.
Step 2: craft 4 dark oak planks using 1 dark oak log
# Think: This gives me 4 dark oak planks which is less than my desired 6 dark oak planks. I know that I cannot use a

partial recipe. So my goal is not satisfied, I need to craft more dark oak planks by repeating Step 2 one more time.
Step 3: craft 4 dark oak planks using 1 dark oak log
# Think: To succeed, I need to perform all these steps, one after the other. So I need to use the "AND" operator.
Execution Order: (Step 1 AND Step 2 AND Step 3)

Here is a different goal with different craft commands. Your task is to come up with a short plan to help me accomplish my
goal in a couple of steps using at most ONE of the provided crafting commands. You can take the help of crafting
commands below to create new objects. Keep in mind that:

- It is okay to generate more target objects than your goal.
- Be very careful with the count of objects, SAME object counts mentioned in the input crafting command.
- You cannot use a partial crafting command recipe, i.e. if the recipe generates 2 objects you CANNOT alter it to produce

just 1.
- Also, you can use ONLY 1 crafting command in your plan.
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