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ABSTRACT

State Space Models (SSMs) have emerged as efficient alternatives to Trans-
formers for sequential modeling, but their inability to leverage modality-specific
features limits their performance in multi-modal pretraining. Here, we pro-
pose Mixture-of-Mamba, a novel SSM architecture that introduces modality-
aware sparsity through modality-specific parameterization of the Mamba block.
Building on Mixture-of-Transformers (W. Liang et al.), we extend the benefits
of modality-aware sparsity to SSMs while preserving their computational effi-
ciency. We evaluate Mixture-of-Mamba across three multi-modal pretraining set-
tings: Transfusion (interleaved text and continuous image tokens with diffusion
loss), Chameleon (interleaved text and discrete image tokens), and an extended
three-modality framework incorporating speech. Mixture-of-Mamba consistently
reaches the same loss values at earlier training steps with significantly reduced
computational costs. In the Transfusion setting, Mixture-of-Mamba achieves
equivalent image loss using only 34.76% of the training FLOPs at the 1.4B scale.
In the Chameleon setting, Mixture-of-Mamba reaches similar image loss with just
42.50% of the FLOPs at the 1.4B scale, and similar text loss with just 65.40% of
the FLOPs. In the three-modality setting, MoM matches speech loss at 24.80% of
the FLOPs at the 1.4B scale. Our ablation study highlights the synergistic effects
of decoupling projection components, where joint decoupling yields greater gains
than individual modifications. These results establish modality-aware sparsity as
a versatile and effective design principle, extending its impact from Transformers
to SSMs, setting new benchmarks in multi-modal pretraining.

1 INTRODUCTION

State Space Models (SSMs) (Gu et al., 2021; Gu & Dao, 2023) have emerged as efficient alterna-
tives to Transformers for sequential modeling, offering linear scaling in sequence length and strong
performance in single-modality tasks. Mamba, a recent SSM variant, has demonstrated exceptional
efficiency and scalability across diverse tasks by leveraging advanced gating mechanisms and selec-
tive state-space scanning (Gu & Dao, 2023). Despite these advantages, SSMs, including Mamba,
remain inherently dense, applying the same set of parameters across all input tokens, regardless of
modality. This uniform parameterization limits their ability to capture modality-specific features,
leading to suboptimal performance in multi-modal pretraining.

Recent efforts have extended SSMs to multi-modal tasks. Works like VLMamba (Qiao et al., 2024)
and Cobra (Zhao et al., 2024) augment Mamba for vision-language modeling by adding LLaVA-
style projection modules that map image features into the token space of Mamba. In the vision
domain, Vision Mamba (Zhu et al., 2024) and VMamba (Liu et al., 2024c) incorporate bidirectional
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scanning schemes and selective 2D scanning paths for image patch modeling. Similarly, Mamba
has been explored for diffusion-based image and video generation, as seen in DiffuSSM (Yan et al.,
2024) and Zigma (Hu et al., 2024), which employ unique state-space scanning patterns. While
these approaches demonstrate the adaptability of Mamba, they are orthogonal to our focus, which
introduces modality-aware sparsity directly into the Mamba block itself.

A promising approach to address such limitations is model sparsity, exemplified by Mixture-of-
Experts (MoE) (Jacobs et al., 1991; Eigen et al., 2013; Shazeer et al., 2017; Lepikhin et al., 2020;
Fedus et al., 2022; Jiang et al., 2024; Sukhbaatar et al., 2024). MoE reduces computational load
by activating only a subset of model components for each input token, allowing experts to special-
ize in specific aspects of the data. Despite its potential, MoE-based architectures face challenges
such as imbalanced expert utilization, bi-level optimization instability, and inefficient load balanc-
ing (Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al., 2022; Shen & Yang, 2021; Xu et al.,
2024). These issues motivate the need for alternative sparse architectures that are computationally
efficient and easier to optimize.

In multi-modal contexts, prior work (Bao et al., 2022b; Wang et al., 2022; Shen et al., 2023b; Lin
et al., 2024) has introduced modality-aware sparsity in Transformer-based MoE architectures. These
approaches activate specific experts or parameters based on modality, enabling models to specialize
in handling diverse data types. Other methods fine-tune modality-specific modules atop dense LLM
backbones (Wang et al., 2023; He et al., 2024; Shen et al., 2023a; 2024b). Such methods show
that simple rule-based modality routing often outperforms learned routing, likely due to improved
training stability and reduced optimization challenges.

The closest work to our approach is MoE-Mamba (Pióro et al., 2024) and the related Blackmamba
architecture (Anthony et al., 2024), which interleave Mamba blocks with MoE-augmented MLP lay-
ers. While effective, these hybrid designs apply sparsity only to the MLP layers, leaving the dense
Mamba blocks unmodified. In contrast, we present Mixture-of-Mamba, a novel architecture that
directly introduces modality-aware sparsity into the Mamba block itself. Inspired by Mixture-of-
Transformers (Liang et al., 2024), our approach dynamically selects modality-specific weights in
every input processing component of Mamba, enabling stable and efficient multi-modal pretraining.
Furthermore, prior work (Liang et al., 2024) shows that MoE techniques can complement sparse ar-
chitectures like Mixture-of-Transformers, suggesting that Mixture-of-Mamba and MoE-based MLP
sparsification can be combined to achieve further gains.

To rigorously evaluate Mixture-of-Mamba, we conduct experiments across three multi-modal pre-
training settings:

• Transfusion: Interleaved text and continuous image tokens with distinct autoregressive
and diffusion-based objectives. Mixture-of-Mamba achieves equivalent image loss using
only 34.76% of the training FLOPs at the 1.4B scale.

• Chameleon: Interleaved text and discrete image tokens. Mixture-of-Mamba reaches sim-
ilar image loss with just 42.50% of the FLOPs and similar text loss with only 65.40% of
the FLOPs at the 1.4B scale.

• Three-Modality: Extension of the Chameleon setting to include speech. Mixture-of-
Mamba matches speech loss using only 24.80% of the FLOPs at the 1.4B scale, while
maintaining strong performance across image and text modalities.

Additionally, we perform an ablation study to analyze the contribution of modality-specific parame-
terization. Our findings reveal a synergistic effect: jointly decoupling all components yields greater
gains than individual modifications, underscoring the importance of modality-aware sparsity as a
holistic design principle.

In summary, Mixture-of-Mamba establishes a versatile and efficient architecture for SSMs by ex-
tending modality-aware sparsity into the Mamba block. This approach delivers robust perfor-
mance gains and substantial computational savings across diverse multi-modal settings, setting new
benchmarks in scalable multi-modal pretraining. Code is released in https://github.com/Weixin-
Liang/Mixture-of-Mamba.

2

https://github.com/Weixin-Liang/Mixture-of-Mamba
https://github.com/Weixin-Liang/Mixture-of-Mamba


Published as a workshop paper at SCOPE - ICLR 2025

(a) 1.4B Image Training
Loss

(b) 1.4B Image Loss
Matching

0 250000
Training Steps

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Tr
ai

ni
ng

 L
os

s

Mamba Dense
Mixture-of-Mamba (ours)
Flex-Attention Transformer

(c) 1.4B Text Training
Loss

0 250000
Training Step for Dense

0

50000

100000

150000

200000

250000

S
te

ps
 to

 M
at

ch
 D

en
se Mixture-of-Mamba (ours) (s = 0.983)

Flex-Attention Transformer (s = 0.953)

(d) 1.4B Text Loss Match-
ing

0 250000
Training Steps

0.21

0.22

0.23

0.24

Tr
ai

ni
ng

 L
os

s

Mamba Dense
Mixture-of-Mamba (ours)
Flex-Attention Transformer

(e) 760M Image Training
Loss

0 250000
Training Step for Dense

0

50000

100000

150000

200000

250000

S
te

ps
 to

 M
at

ch
 D

en
se Flex-Attention Transformer (s = 0.905)

Mixture-of-Mamba (ours) (s = 0.378)

(f) 760M Image Loss
Matching

0 250000
Training Steps

2.2

2.4

2.6

2.8

Tr
ai

ni
ng

 L
os

s

Mamba Dense
Mixture-of-Mamba (ours)
Flex-Attention Transformer

(g) 760M Text Training
Loss

0 250000
Training Step for Dense

0

50000

100000

150000

200000

250000

S
te

ps
 to

 M
at

ch
 D

en
se Mixture-of-Mamba (ours) (s = 0.968)

Flex-Attention Transformer (s = 0.918)

(h) 760M Text Loss
Matching

0 250000
Training Steps

0.22

0.23

0.24

0.25

Tr
ai

ni
ng

 L
os

s

Mamba Dense
Mixture-of-Mamba (ours)
Flex-Attention Transformer

(i) 163M Image Training
Loss

0 250000
Training Step for Dense

0

50000

100000

150000

200000

250000

S
te

ps
 to

 M
at

ch
 D

en
se Flex-Attention Transformer (s = 0.977)

Mixture-of-Mamba (ours) (s = 0.492)

(j) 163M Image Loss
Matching

0 250000
Training Steps

2.6

2.8

3.0

3.2

Tr
ai

ni
ng

 L
os

s

Mamba Dense
Mixture-of-Mamba (ours)
Flex-Attention Transformer

(k) 163M Text Training
Loss

0 250000
Training Step for Dense

0

50000

100000

150000

200000

250000

S
te

ps
 to

 M
at

ch
 D

en
se Mixture-of-Mamba (ours) (s = 0.988)

Flex-Attention Transformer (s = 0.784)

(l) 163M Text Loss
Matching

Figure 1: Multi-modal pretraining in the Transfusion setting on interleaved text and image
data across model scales. Training loss and loss matching are reported for image and text modalities
at three model sizes: 1.4B, 760M, and 163M. (a, e, i) Image training loss shows significant improve-
ments for Mixture-of-Mamba (orange), which consistently achieves lower loss compared to Mamba
Dense (cyan) and Flex-Attention Transformer (dark gray) across all scales. (b, f, j) Image loss
matching compares the training dynamics and shows that Mixture-of-Mamba and Flex-Attention
Transformer reach the same loss values at earlier training steps compared to Mamba Dense. (c,
g, k) Text training loss shows competitive results, with Mixture-of-Mamba performing better than
Mamba Dense and on par with the Flex-Attention Transformer. (d, h, l) Text loss matching illus-
trates that Mixture-of-Mamba and Flex-Attention Transformer exhibit more efficient training dy-
namics than Mamba Dense, requiring fewer steps to achieve comparable loss values, though the
primary improvements are observed in the image modality. Overall, in the Transfusion setting,
Mixture-of-Mamba demonstrates substantial gains in image loss and training efficiency while main-
taining strong performance on text.

2 MIXTURE-OF-MAMBA FOR EFFICIENT MULTI-MODAL LLM
PRETRAINING

2.1 MODALITY-AWARE SPARSITY IN MAMBA

The key novelty of Mixture-of-Mamba lies in integrating modality-aware sparsity directly into the
Mamba block. By dynamically selecting modality-specific parameters for each input token based on
its modality, our approach enables Mamba to efficiently process interleaved multi-modal sequences
(e.g., text and image tokens) while preserving computational efficiency.

For interleaved multi-modal tokens {x1, x2, . . . , xT } from multiple modalities, such as text and
image, modality-specific parameterization dynamically selects the appropriate parameters for each
token during processing. This general approach can apply to a wide range of transformations, such
as linear, convolutional, and activation-based transformations. In Mamba, which primarily relies on
linear transformations, the approach takes the following form:

f = Wx becomes f =

Wimagex if x is an image token
Wtextx if x is a text token
Wspeechx if x is a speech token
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Here, Wimage,Wtext, and Wspeech are the modality-specific parameter matrices dynamically selected
based on the modality of each token. While Mamba focuses on linear projections, the general
technique of modality-aware sparsity can extend to other types of parameterized layers.

2.1.1 THE MIXTURE-OF-MAMBA BLOCK

The Mixture-of-Mamba block (Algorithm 2) builds on Mamba by dynamically applying modality-
specific parameterization to key projections during input processing. This technique allows the block
to handle interleaved multi-modal tokens more efficiently by leveraging modality-aware sparsity.

Each Mixture-of-Mamba block consists of input projection Win proj, intermediate projections Wx proj
and Wdt proj, and output projection Wout proj, all parameterized by the token’s modality using the
general parameterization function M(X,W, b;M). The general form of the parameterization is
given by:

M(X,W, b;M) =
⋃

m∈M

{XmWm + bm}

where Xm denotes the subset of tokens belonging to modality m, and Wm and bm are the modality-
specific parameters for that subset. This dynamic selection is applied at every stage of processing.

In Mixture-of-Mamba, projections explicitly processing input features belonging to a single modal-
ity—such as Win proj, Wx proj, and Wout proj—are decoupled using modality-specific parameters.
However, components like Conv1D and state transitions A remain shared, as they operate across ag-
gregated multi-modal features or RNN-like states, where the notion of modality is less well-defined.
This design ensures computational efficiency while retaining modality-specific specialization.

Algorithm 1 Mixture-of-Mamba block

input Fin, A,Win proj ,Wx proj ,Wdt proj ,Wout proj , b,M
output Fout

1: x, z ←M(Fin,Win proj ;M) ▷ Block starts
2: u← SiLU(Conv1D(x)) ▷ [b,ℓ,d]
3: δ,B,C ←M(u,Wx proj ;M) ▷ [b,ℓ,(r,n,n)]
4: ∆← log(1 + exp((M(δ,Wdt proj , b;M))))

5: A← ∆ ∗A ▷ [b,ℓ,d,n]
6: B ← ∆ ∗ (u×B) ▷ [b,ℓ,d,n]
7: h = 0 ▷ [b,d,n]
8: for i = 0...N − 1 do
9: h = h ∗Ai +Bi ▷ [b,d,n]

10: yi = h · Ci ▷ [b,d]
11: end for
12: o← (y + u) ∗ SiLU(z)
13: Fout ←M(o,Wout proj ;M) ▷ Block ends
14:
15: functionM(X,W, b = None;M)
16: for each modality m ∈M do
17: Im ← {i : mi = m}
18: Xm ← {xi : i ∈ Im}
19: Ym ← XmWm + bm
20: end for
21: return Y ← ∪m∈MYm

22: end function
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3 RESULTS

3.1 RESULTS IN MULTI-OBJECTIVE TRAINING (TRANSFUSION)

We evaluate Mixture-of-Mamba (MoM) against Mamba Dense and Flex-Attention Transformer in
the Transfusion setting, where pretraining is performed on interleaved text and image data across
three model scales: 163M, 760M, and 1.4B. See our training configuration in Appendix Table 5.
For clarity, performance gain is quantified as:

Performance Gain (%) =
LossDense − LossMixture

LossDense
× 100,

where LossDense and LossMixture are the final losses of Mamba Dense and Mixture-of-Mamba, re-
spectively. Relative training FLOPs reflect the computational cost required for MoM to match the
training dynamics (similar loss) of Mamba Dense. The detailed results are summarized in Table 4
and Figure 1, with further visualizations provided in Appendix Figures 3, 4, and 5.

Image Modality. Mixture-of-Mamba (MoM) consistently demonstrates superior performance in
image modality training loss across all model scales. At the 1.4B scale, MoM achieves a training
loss of 0.2138, outperforming Mamba Dense by 2.20% while requiring only 34.76% of the training
FLOPs. Similar trends are observed at smaller scales: at the 760M scale, MoM achieves a train-
ing loss of 0.2172, a 2.37% improvement over Mamba Dense, while reducing training FLOPs to
37.76%.

The validation loss curves on the CC12M dataset ((Table 4, Appendix Figure 4) further illustrate
these trends. Mixture-of-Mamba consistently achieves lower image validation loss compared to
Mamba Dense and Flex-Attention Transformer, with the improvements becoming more pronounced
as model size increases. Additionally, loss matching curves demonstrate that MoM reaches equiva-
lent loss values at earlier training steps, highlighting its improved training efficiency.

Text Modality. In the text modality, Mixture-of-Mamba consistently outperforms Mamba Dense
across both training and validation metrics. At the 1.4B scale, MoM achieves lower validation losses
on both the C4 (2.2695) and Wikipedia (1.7164) datasets compared to Mamba Dense, despite their
similar training losses. This indicates better generalization to unseen text data. Importantly, MoM
also performs comparably to or better than Flex-Attention Transformer, particularly on validation
losses, as shown in Appendix Figure 3. Similar trends are observed at smaller scales (760M and
163M), where MoM reduces validation losses while maintaining high training efficiency.

Loss matching results in Appendix Figure 3 (b, f, j) confirm that Mixture-of-Mamba aligns closely
with or surpasses Mamba Dense, reaching comparable loss values earlier during training. These im-
provements highlight MoM’s strong performance in text tasks while maintaining its computational
efficiency.

Overall Performance and Efficiency. Across both image and text modalities, Mixture-of-Mamba
consistently outperforms Mamba Dense in terms of loss reduction while requiring significantly
fewer training FLOPs to achieve similar learning dynamics. At the 1.4B scale, MoM improves
the overall training loss by 0.84% while requiring only 83.10% of the training FLOPs. At smaller
scales, such as 760M and 163M, MoM reduces the overall training loss by up to 0.94%, while re-
quiring just 82.94% and 86.11% of the FLOPs, respectively (Table 4, Appendix Figure 5). These
results, summarized in Table 4 and Figure 1, and further supported by Appendix Figures 3, 4, and 5,
underscoring MoM’s effectiveness, scalability, and efficiency in the Transfusion setting.

4 CONCLUSION

In this work, we introduced Mixture-of-Mamba, a novel extension of state-space models (SSMs)
that incorporates modality-aware sparsity through modality-specific parameterization. By enabling
modality-specific specialization while preserving the computational efficiency of SSMs, Mixture-
of-Mamba consistently outperforms dense baselines across three multi-modal settings: Transfusion
(interleaved text and continuous image tokens), Chameleon (interleaved text and discrete image
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tokens), and an extended Chameleon+Speech framework. Our results demonstrate substantial im-
provements in loss reduction, with training efficiency gains reaching more than double the com-
putational efficiency compared to dense SSMs. Ablation studies further reveal a synergistic ef-
fect from jointly decoupling key projection components, highlighting the effectiveness of modality-
aware sparsity. These findings establish Mixture-of-Mamba as a scalable and efficient architecture
for multi-modal pretraining, paving the way for future exploration in dynamic sparsity and broader
multi-modal applications.
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A EXTENDED METHOD

A.1 MULTI-OBJECTIVE TRAINING WITH DIFFUSION

Following Transfusion Zhou et al. (2024), Mixture-of-Mamba is trained on interleaved multi-modal
sequences of discrete text tokens and continuous image tokens using a combined objective that in-
corporates both language modeling and diffusion-based image generation. Each image is encoded
as a sequence of latent patches using a Variational Autoencoder (VAE), where each patch is repre-
sented as a continuous vector. The patches are sequenced left-to-right, top-to-bottom, and inserted
into the discrete text sequence.

The diffusion process follows the Denoising Diffusion Probabilistic Models (DDPM) Ho et al.
(2020), where Gaussian noise is progressively added to the latent image patches during the forward
process. Given a clean latent patch x0, a noised version xt at timestep t is created as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (1)

where ᾱt is determined by a cosine noise schedule Nichol & Dhariwal (2021), approximated as√
ᾱt ≈ cos( t

T ·
π
2 ) with adjustments. During training, noise is added to the latent patches at a

randomly selected timestep t, and the model is optimized to predict the noise ϵ.

The overall training objective combines the autoregressive language modeling loss LLM, applied to
the discrete text tokens, with the diffusion loss LDDPM, applied to the latent image patches:

L = LLM + λ · LDDPM, (2)

where λ balances the contributions of the two losses.

Importantly, the conditioning for image generation is naturally embedded within the interleaved
sequence. When denoising image patches, the preceding tokens—including both text describing
the image and prior images—serve as context for conditional generation. This unified approach
enables Mixture-of-Mamba to leverage the modality-aware sparsity to efficiently model both local
intra-image dependencies and long-range inter-modal relationships across the sequence.

A.2 TRAINING WITH UNIFORM REPRESENTATIONS

As an alternative to the multi-objective training paradigm, we explore a unified representation strat-
egy in which both text and image modalities are represented as discrete tokens. Following the
Chameleon framework Chameleon Team (2024), we treat the image data as sequences of discrete
tokens obtained through a pre-trained VQ-VAE model Gafni et al. (2022). Specifically, each image
is encoded into a fixed number of tokens (e.g., 1,024) by quantizing its latent features into a learned
codebook. These tokens are then arranged sequentially, similar to the processing of text tokens,
resulting in a uniform discrete representation across both modalities.

During training, both text and image tokens are processed using the same autoregressive objective,
where the model learns to predict the next token in the sequence given all previous tokens. Formally,
the training objective is:

Luniform = Ex1:T
[− logP (xt | x1:t−1)] , (3)

where x1:T represents the interleaved sequence of text and image tokens. This objective allows the
model to treat text and image data equivalently, unifying the training process across modalities while
relying solely on an autoregressive loss. The use of discrete tokens for images simplifies the training
procedure by removing the need for separate loss formulations, as in the diffusion-based approach.
It also aligns with the inherent sequence-to-sequence nature of Mixture-of-Mamba, where the same
modality-aware sparsity design can be applied seamlessly across the discrete text and image tokens.

Motivation and Robustness Testing. We include this alternative strategy to evaluate the ro-
bustness of our Mixture-of-Mamba architecture under different choices of training objectives and
data representations. By experimenting with uniform discrete representations, we demonstrate that
Mixture-of-Mamba consistently outperforms Mamba Dense models across various settings, includ-
ing both continuous (multi-objective) and discrete (uniform) representations. This highlights the
versatility of Mixture-of-Mamba and its ability to deliver performance gains regardless of the un-
derlying choice of modality representations or training objectives.
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Figure 2: Multi-modal pretraining on interleaved text and image data. Training loss on the
image modality is shown for models with 1.4B parameters: Mamba Dense (cyan), Flex-Attention
Transformer (dark gray), and Mixture-of-Mamba (orange). The Mixture-of-Mamba achieves signif-
icantly lower training loss and requires 2.5x fewer training steps (indicated by the green arrow) to
reach the same loss level as the other baselines.

Model
Scale Metric Category Metric Name Mamba

Loss (↓)
Mixture-of-

Mamba Loss (↓)
Performance
Gain (%) (↑)

Relative Training FLOPs
to Match Mamba (%) (↓)

443M

Image Metrics
Training Loss 5.3558 5.1703 3.46% 33.40%

Obelisc Val. Loss 4.5258 4.3546 3.78% 35.10%
SSTK Val. Loss 5.9179 5.7471 2.89% 35.30%

Text Metrics
Training Loss 2.4637 2.3864 3.14% 62.00%

Obelisc Val. Loss 3.0544 2.9820 2.37% 66.70%
SSTK Val. Loss 2.7569 2.6250 4.78% 54.70%

Overall Avg Training Loss 3.6584 3.5364 3.33% 47.90%

880M

Image Metrics
Training Loss 5.2260 5.1201 2.03% 48.40%

Obelisc Val. Loss 4.4127 4.3105 2.32% 49.30%
SSTK Val. Loss 5.7987 5.6986 1.73% 50.50%

Text Metrics
Training Loss 2.3073 2.2438 2.75% 65.60%

Obelisc Val. Loss 2.8886 2.8313 1.99% 72.80%
SSTK Val. Loss 2.5483 2.4548 3.67% 67.90%

Overall Avg Training Loss 3.5130 3.4320 2.31% 58.30%

1.5B

Image Metrics
Training Loss 5.1892 5.0591 2.51% 42.50%

Obelisc Val. Loss 4.3692 4.2510 2.71% 44.50%
SSTK Val. Loss 5.7546 5.6335 2.10% 44.60%

Text Metrics
Training Loss 2.2284 2.1614 3.01% 65.40%

Obelisc Val. Loss 2.8020 2.7393 2.24% 71.60%
SSTK Val. Loss 2.4614 2.3455 4.71% 62.10%

Overall Avg Training Loss 3.4602 3.3670 2.69% 54.70%

Table 1: Training and validation metrics across model scales in the Chameleon setting. In
this setting, both image and text modalities are represented as discrete tokens. Mixture-of-Mamba
achieves substantial performance improvements over Mamba Dense, with the image modality
showing the largest gains. The text modality also exhibits significant improvements, in contrast
to the Transfusion setting where text gains were more modest. The current table shows results for
three model scales: 443M, 880M, and 1.5B, due to space constraints. See Appendix Table 7 for the
full results across all five model scales: 37M, 94M, 443M, 880M, and 1.5B. These results further
highlight the effectiveness and efficiency of Mixture-of-Mamba, which consistently achieves strong
performance with reduced relative training FLOPs.

B EXTENDED RESULTS

B.1 RESULTS IN TRAINING WITH UNIFORM REPRESENTATIONS (CHAMELEON)

We evaluate Mixture-of-Mamba (MoM) in the Chameleon setting, where both image and text
modalities are represented as discrete tokens. See our training configuration in Appendix Table 6.
Results are summarized in Table 1, with full results across all five scales (37M, 94M, 443M, 880M,
and 1.5B) provided in Appendix Table 7. Training dynamics and validation loss trends are visualized
in Appendix Figures 6, 7, and 8.
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Model
Scale Metric Category Metric Name Mamba Loss (↓) Mixture-of-

Mamba Loss (↓)
Performance
Gain (%) (↑)

Relative Training FLOPs
to Match Mamba (%) (↓)

37M Speech Metrics
Training Loss 1.8159 1.6909 6.88% 10.30%

LL60K Val. Loss 1.6756 1.5217 9.18% 13.60%
PPL30K Val. Loss 1.8147 1.6845 7.17% 13.60%

Overall Metrics Avg Training Loss 4.2299 4.0759 3.64% 45.00%

94M Speech Metrics
Training Loss 1.6911 1.5662 7.38% 11.90%

LL60K Val. Loss 1.5235 1.3747 9.76% 14.80%
PPL30K Val. Loss 1.6951 1.6152 4.71% 12.60%

Overall Metrics Avg Training Loss 3.7756 3.6371 3.67% 43.10%

443M Speech Metrics
Training Loss 1.5414 1.4313 7.14% 19.20%

LL60K Val. Loss 1.3466 1.2113 10.05% 24.70%
PPL30K Val. Loss 1.5634 1.4790 5.40% 22.00%

Overall Metrics Avg Training Loss 3.3317 3.2096 3.66% 44.00%

880M Speech Metrics
Training Loss 1.4902 1.4054 5.69% 22.40%

LL60K Val. Loss 1.2939 1.1757 9.13% 30.10%
PPL30K Val. Loss 1.5400 1.4619 5.07% 24.30%

Overall Metrics Avg Training Loss 3.2289 3.1571 2.22% 54.30%

1.5B Speech Metrics
Training Loss 1.4790 1.3940 5.75% 24.80%

LL60K Val. Loss 1.2592 1.1552 8.26% 32.10%
PPL30K Val. Loss 1.5200 1.4387 5.35% 27.60%

Overall Metrics Avg Training Loss 3.1507 3.0545 3.05% 56.20%

Table 2: Training and validation metrics across model scales with three modalities: image, text,
and speech. This setting extends the Chameleon framework by incorporating speech alongside
image and text, with all modalities represented as discrete tokens. Mixture-of-Mamba achieves
consistent improvements over Mamba Dense across all scales (37M, 94M, 443M, 880M, and 1.5B),
particularly in the speech modality, where performance gains reach up to 9.18%. These gains are
achieved with substantial reductions in training FLOPs, ranging from 10.30% to 56.20% relative to
Mamba Dense. The results demonstrate that Mixture-of-Mamba generalizes effectively to a multi-
modal setting with three modalities while delivering significant computational efficiency.

Image Modality. Mixture-of-Mamba (MoM) consistently demonstrates better performance in im-
age modality training loss across all model scales, achieving substantial efficiency gains over
Mamba Dense. At the 443M scale, MoM achieves a training loss of 5.1703, a 3.46% improve-
ment over Mamba Dense, while requiring only 33.40% of the training FLOPs. Similar trends are
observed at other scales: at the largest 1.5B scale, MoM achieves a training loss of 5.0591, a 2.51%
improvement, with only 42.50% of the training FLOPs. At the smallest 37M scale, MoM reduces
training loss to 5.9561, outperforming Mamba Dense by 2.85% while requiring just 25.90% of the
FLOPs (Appendix Table 7). These results highlight MoM’s ability to achieve improved performance
and convergence efficiency consistently in the image modality across all model scales.

Text Modality. Mixture-of-Mamba (MoM) demonstrates consistent improvements in text modal-
ity training loss across all model scales. At the largest 1.5B scale, MoM reduces training loss to
2.1614, a 3.01% improvement over Mamba Dense, while requiring only 65.40% of the training
FLOPs. Validation loss on Obelisc and a proprietary version of the Shutterstock datasets (SSTK)
exhibits similar trends, with MoM achieving notable improvements in loss values while maintaining
significant efficiency gains (Appendix Figures 7 and 8). These results further highlight MoM’s abil-
ity to deliver strong text performance with improved convergence efficiency. These results highlight
Mixture-of-Mamba’s robust and efficient improvements in the Chameleon setting across both image
and text modalities, with substantial computational savings.

B.2 RESULTS IN TRAINING WITH THREE MODALITIES (CHAMELEON+SPEECH)

To evaluate the robustness and scalability of Mixture-of-Mamba (MoM), we extend the Chameleon
framework to include a third modality: speech, alongside image and text, with all modalities rep-
resented as discrete tokens. Speech data is tokenized using an in-house tokenizer, a variant of Di-
noSR (Liu et al., 2024a), which extracts semantic tokens with a vocabulary size of 500, where each
token corresponds to 40ms of audio content. Results are summarized in Table 2, with additional
training dynamics and evaluation loss trends visualized in Appendix Figures 10, 11, 12, and 13.
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Speech Modality. Mixture-of-Mamba (MoM) achieves substantial improvements in speech
modality training loss across all model scales. At the 443M scale, MoM improves speech training
loss by 7.14% compared to Mamba Dense. To match the training loss achieved by Mamba Dense,
MoM requires only 19.20% of the training FLOPs, demonstrating significant efficiency gains. Sim-
ilar trends hold at the largest 1.5B scale, where MoM achieves a 5.75% improvement in speech
training loss and matches Mamba Dense’s loss with just 24.80% of the training FLOPs.

Overall training loss is consistently reduced across scales. At the 1.5B scale, MoM lowers the
overall training loss by 3.05%. When targeting the same loss as Mamba Dense, MoM achieves
this with a 56.20% reduction in relative training FLOPs, highlighting its improved computational
efficiency.

Performance in the image and text modalities similarly shows consistent improvements in training
and validation losses relative to Mamba Dense. Full results and trends are presented in Appendix
Figures 12 and 13, where MoM’s robust performance across all three modalities is further validated.

C RELATED WORK

C.1 STATE-SPACE MODELS AND MULTI-MODAL EXTENSIONS

State-space models (SSMs) (Gu et al., 2021; Gu & Dao, 2023) have recently gained traction as
computationally efficient alternatives to Transformers for sequential modeling. Mamba (Gu & Dao,
2023), in particular, demonstrates strong performance on single-modality tasks by leveraging linear
time complexity and advanced gating mechanisms. Extending Mamba to multi-modal tasks remains
an active research area.

In vision-language modeling, VLMamba (Qiao et al., 2024) and Cobra (Zhao et al., 2024) augment
Mamba by incorporating LLaVA-style projection modules, enabling image features to be mapped
into the token space of the Mamba model for sequence modeling. In the vision domain, Vision
Mamba (Zhu et al., 2024) introduces bidirectional scanning by chaining forward and backward
SSM blocks, while VMamba (Liu et al., 2024c) further enhances image patch processing with a 2D
Selective Scan (SS2D) module that traverses patches across multiple scanning paths.

For diffusion-based models, works such as DiffuSSM (Yan et al., 2024) and Zigma (Hu et al., 2024)
replace attention mechanisms with SSMs for image and video generation. Zigma introduces a zigzag
scanning scheme to improve efficiency for sequential diffusion tasks, while other approaches (Mo &
Tian, 2024; Fei et al., 2024) explore bi-directional SSM architectures. While these works highlight
the flexibility of Mamba in generative tasks, they focus primarily on architectural modifications for
specific domains rather than general multi-modal pretraining.

The most related work to ours is MoE-Mamba (Pióro et al., 2024) and Blackmamba (Anthony et al.,
2024), which interleave Mamba blocks with MoE-augmented MLPs to introduce sparsity. However,
these hybrid designs apply sparsity only to the MLP layers, leaving the dense Mamba block unmod-
ified. In contrast, our proposed Mixture-of-Mamba integrates modality-aware sparsity directly into
the Mamba block by decoupling its projection components, enabling specialized computations for
different modalities. This general design complements existing methods and offers new opportuni-
ties for computationally efficient multi-modal pretraining.

C.2 SPARSE ARCHITECTURES FOR MULTI-MODAL PRETRAINING

Model sparsity, particularly Mixture-of-Experts (MoE), has been extensively explored in Trans-
formers to reduce computational cost (Jacobs et al., 1991; Eigen et al., 2013; Shazeer et al., 2017;
Lepikhin et al., 2020; Fedus et al., 2022; Jiang et al., 2024). MoE selectively activates subsets of
parameters for each input token, allowing the model to specialize in different aspects of the data.
However, challenges such as expert imbalance, bi-level optimization, and load balancing remain
prevalent (Shazeer et al., 2017; Lepikhin et al., 2020; Tu et al., 2022).

In multi-modal tasks, modality-aware sparsity has emerged as an effective strategy. Works such as
VLMo (Shen et al., 2023b), MoMA (Lin et al., 2024), and related approaches (Wang et al., 2022;
Shen et al., 2022; Bao et al., 2022a; Long et al., 2023; Shen et al., 2025) assign modality-specific
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experts to handle the unique statistical properties of text, images, and other data types. This improves
specialization while avoiding the complexities of learned routing mechanisms (Liang et al., 2022).

Transformer-based architectures have further extended sparsity into attention mechanisms (Shen
et al., 2024d;c; Yuan et al., 2021b;a; Shen et al., 2021; Liu et al., 2024b; Shen et al., 2024a).
CogVLM (Wang et al., 2023) applies sparse techniques on top of a pre-trained Vicuna-7B model
but remains limited to generating text outputs. Concurrently, Playground v3 (PGv3) (Liu et al.,
2024b) integrates DiT-style image transformers with a frozen LLaMA-3 backbone to achieve state-
of-the-art performance in text-to-image generation.

Our work differs fundamentally in two key aspects. First, Mixture-of-Mamba introduces modality-
aware sparsity into the Mamba block itself, generalizing sparse architectures beyond Transformers
to SSMs. Unlike prior works that sparsify only the MLP or attention components, we decouple
projection components of the Mamba block, enabling efficient and specialized computations across
modalities. Second, Mixture-of-Mamba is trained from scratch for multi-modal generation tasks,
unlike approaches like CogVLM and PGv3 that fine-tune pre-trained backbones.

Furthermore, our design is complementary to existing MoE techniques. Prior work (Liang et al.,
2024) has demonstrated that MoE-based sparsification can be combined with sparse architectures
like Mixture-of-Transformers to achieve additional gains. Similarly, Mixture-of-Mamba can serve
as a versatile and computationally efficient solution, offering new pathways for scalable multi-modal
pretraining.
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D EXTENDED METHOD

D.1 MULTI-OBJECTIVE TRAINING WITH DIFFUSION

Following Transfusion Zhou et al. (2024), Mixture-of-Mamba is trained on interleaved multi-modal
sequences of discrete text tokens and continuous image tokens using a combined objective that in-
corporates both language modeling and diffusion-based image generation. Each image is encoded
as a sequence of latent patches using a Variational Autoencoder (VAE), where each patch is repre-
sented as a continuous vector. The patches are sequenced left-to-right, top-to-bottom, and inserted
into the discrete text sequence.

The diffusion process follows the Denoising Diffusion Probabilistic Models (DDPM) Ho et al.
(2020), where Gaussian noise is progressively added to the latent image patches during the forward
process. Given a clean latent patch x0, a noised version xt at timestep t is created as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (4)

where ᾱt is determined by a cosine noise schedule Nichol & Dhariwal (2021), approximated as√
ᾱt ≈ cos( t

T ·
π
2 ) with adjustments. During training, noise is added to the latent patches at a

randomly selected timestep t, and the model is optimized to predict the noise ϵ.

The overall training objective combines the autoregressive language modeling loss LLM, applied to
the discrete text tokens, with the diffusion loss LDDPM, applied to the latent image patches:

L = LLM + λ · LDDPM, (5)

where λ balances the contributions of the two losses.

Importantly, the conditioning for image generation is naturally embedded within the interleaved
sequence. When denoising image patches, the preceding tokens—including both text describing
the image and prior images—serve as context for conditional generation. This unified approach
enables Mixture-of-Mamba to leverage the modality-aware sparsity to efficiently model both local
intra-image dependencies and long-range inter-modal relationships across the sequence.

D.2 TRAINING WITH UNIFORM REPRESENTATIONS

As an alternative to the multi-objective training paradigm, we explore a unified representation strat-
egy in which both text and image modalities are represented as discrete tokens. Following the
Chameleon framework Chameleon Team (2024), we treat the image data as sequences of discrete
tokens obtained through a pre-trained VQ-VAE model Gafni et al. (2022). Specifically, each image
is encoded into a fixed number of tokens (e.g., 1,024) by quantizing its latent features into a learned
codebook. These tokens are then arranged sequentially, similar to the processing of text tokens,
resulting in a uniform discrete representation across both modalities.

During training, both text and image tokens are processed using the same autoregressive objective,
where the model learns to predict the next token in the sequence given all previous tokens. Formally,
the training objective is:

Luniform = Ex1:T
[− logP (xt | x1:t−1)] , (6)

where x1:T represents the interleaved sequence of text and image tokens. This objective allows the
model to treat text and image data equivalently, unifying the training process across modalities while
relying solely on an autoregressive loss. The use of discrete tokens for images simplifies the training
procedure by removing the need for separate loss formulations, as in the diffusion-based approach.
It also aligns with the inherent sequence-to-sequence nature of Mixture-of-Mamba, where the same
modality-aware sparsity design can be applied seamlessly across the discrete text and image tokens.

Motivation and Robustness Testing. We include this alternative strategy to evaluate the ro-
bustness of our Mixture-of-Mamba architecture under different choices of training objectives and
data representations. By experimenting with uniform discrete representations, we demonstrate that
Mixture-of-Mamba consistently outperforms Mamba Dense models across various settings, includ-
ing both continuous (multi-objective) and discrete (uniform) representations. This highlights the
versatility of Mixture-of-Mamba and its ability to deliver performance gains regardless of the un-
derlying choice of modality representations or training objectives.
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E ABLATION STUDY ON DECOUPLING COMPONENTS

To better understand the design choices underpinning Mixture-of-Mamba, we conduct an ablation
study on the Chameleon + Speech setting at the 443M scale. We evaluate the impact of decoupling
four key components—Win-proj (➊), Wx-proj (➋), Wdt-proj (➌), and Wout-proj (➍)—individually and in
various combinations. This analysis enables us to test both individual and combined contributions
to the model’s overall performance.

The results show that decoupling components individually yields varying degrees of improvement,
with performance gains ranging from 0.63% (Wout-proj) to 1.22% (Win-proj). Interestingly, some
components (Wx-proj and Wdt-proj) exhibit minimal or even slightly negative impact when decou-
pled alone. However, decoupling multiple components in combination leads to significantly larger
gains. For example, decoupling Win-proj and Wout-proj (➊+➍) achieves a 2.20% improvement, while
decoupling three components (➊+➋+➍) further increases the gain to 3.11%.

Most importantly, decoupling all four components simultaneously (➊+➋+➌+➍, Mixture-of-
Mamba) achieves the largest improvement, with a performance gain of 3.80% over the Mamba
baseline. This result highlights a key observation: the gain from decoupling all components to-
gether exceeds the sum of individual gains, demonstrating a synergistic effect. The combination
of all decoupled projections enables better parameter allocation across modalities, leading to more
efficient and effective learning. In summary, the ablation study confirms that the design of Mixture-
of-Mamba is both effective and interdependent. Decoupling all key components simultaneously is
important to achieving the observed substantial performance gains.

Algorithm 2 Mixture-of-Mamba block

input Fin, A,Win proj ,Wx proj ,Wdt proj ,Wout proj , b,M
output Fout

1: x, z ←M(Fin,Win proj ;M) ▷ Block starts
2: u← SiLU(Conv1D(x)) ▷ [b,ℓ,d]
3: δ,B,C ←M(u,Wx proj ;M) ▷ [b,ℓ,(r,n,n)]
4: ∆← log(1 + exp((M(δ,Wdt proj , b;M))))

5: A← ∆ ∗A ▷ [b,ℓ,d,n]
6: B ← ∆ ∗ (u×B) ▷ [b,ℓ,d,n]
7: h = 0 ▷ [b,d,n]
8: for i = 0...N − 1 do
9: h = h ∗Ai +Bi ▷ [b,d,n]

10: yi = h · Ci ▷ [b,d]
11: end for
12: o← (y + u) ∗ SiLU(z)
13: Fout ←M(o,Wout proj ;M) ▷ Block ends
14:
15: functionM(X,W, b = None;M)
16: for each modality m ∈M do
17: Im ← {i : mi = m}
18: Xm ← {xi : i ∈ Im}
19: Ym ← XmWm + bm
20: end for
21: return Y ← ∪m∈MYm

22: end function
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Ablation Study Avg Training
Loss (↓)

Performance
Gain (%) (↑)

443M Mamba (without ➊➋➌➍) 3.3317 0% (baseline)
➊ (decouple Win proj) 3.2916 1.22%
➋ (decouple Wx proj) 3.3580 -0.79%
➌ (decouple Wdt proj) 3.3525 -0.62%
➍ (decouple Wout proj) 3.3109 0.63%
➊+➋ (decouple Win proj ,Wx proj) 3.2780 1.64%
➊+➌ (decouple Win proj ,Wdt proj) 3.2687 1.93%
➊+➍ (decouple Win proj ,Wout proj) 3.2599 2.20%
➋+➌ (decouple Wx proj ,Wdt proj) 3.3214 0.31%
➋+➍ (decouple Wx proj ,Wout proj) 3.2829 1.49%
➌+➍ (decouple Wdt proj ,Wout proj) 3.2509 2.48%
➊+➋+➌ (not decoupling Wout proj) 3.2593 2.22%
➊+➋+➍ (not decoupling Wdt proj) 3.2312 3.11%
➊+➌+➍ (not decoupling Wx proj) 3.2342 3.01%
➋+➌+➍ (not decoupling Win proj) 3.2773 1.66%
➊+➋+➌+➍ (Mixture-of-Mamba) 3.2096 3.80%

Table 3: Ablation study on the Chameleon + Speech setting. This study evaluates the impact
of decoupling individual components (1, 2, 3, 4) and their combinations on model performance.
The results demonstrate that decoupling all components (1+2+3+4, Mixture-of-Mamba) achieves
the best performance with a 3.80% gain over the Mamba baseline. Notably, the performance gain
achieved by decoupling all components together exceeds the sum of gains from decoupling each
component individually, highlighting the synergistic effect of combined decoupling. Green shading
indicates positive performance gains, with the darkest green highlighting the best configuration.

Model
Scale

Metric
Category Metric Name Mamba

Loss (↓)

Flex-Attention
Transformer

Loss (↓)

Mixture-of-
Mamba
Loss (↓)

Performance
Gain over

Mamba (%) (↑)

Relative Training
FLOPs to Match
Mamba (%) (↓)

163M

Image Metrics Training Loss 0.2262 0.2250 0.2199 2.80% 49.21%
CC12M Val. Loss 0.2295 0.2293 0.2255 1.74% 50.61%

Text Metrics
Avg Training Loss 2.4702 2.4424 2.4690 0.05% 98.80%

C4 Val. Loss 2.6917 2.6862 2.6912 0.02% 99.88%
Wikipedia Val. Loss 2.1884 2.1715 2.1870 0.06% 99.81%

Overall Train Avg Loss 3.6014 3.5674 3.5685 0.91% 86.11%

760M

Image Metrics Training Loss 0.2225 0.2213 0.2172 2.37% 37.76%
CC12M Val. Loss 0.2272 0.2253 0.2201 3.13% 35.27%

Text Metrics
Avg Training Loss 2.1394 2.1253 2.1353 0.19% 96.82%

C4 Val. Loss 2.3593 2.3559 2.3555 0.16% 99.01%
Wikipedia Val. Loss 1.8191 1.8143 1.8149 0.23% 99.11%

Overall Train Avg Loss 3.2519 3.2318 3.2214 0.94% 82.94%

1.4B

Image Metrics Training Loss 0.2186 0.2221 0.2138 2.20% 34.76%
CC12M Val. Loss 0.2264 0.2247 0.2190 3.29% 36.15%

Text Metrics
Avg Training Loss 2.0761 2.0673 2.0737 0.12% 98.27%

C4 Val. Loss 2.2726 2.2728 2.2695 0.13% 99.34%
Wikipedia Val. Loss 1.7205 1.7218 1.7164 0.24% 99.30%

Overall Train Avg Loss 3.1693 3.1777 3.1429 0.84% 83.10%

Table 4: Training and validation metrics across model scales in the Transfusion setting. Loss
values are reported for image and text modalities at three model sizes: 163M, 760M, and 1.4B.
Mixture-of-Mamba consistently achieves competitive or superior performance in image metrics and
maintains strong text performance compared to Mamba Dense and Flex-Attention Transformer. The
table also reports relative training FLOPs required for Mixture-of-Mamba and Flex-Attention Trans-
former to match Mamba’s training dynamics, highlighting improved training efficiency. Best loss
values in each row are highlighted.
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Model Size Hidden Dim. Layers Heads Seq. Length Batch Size/GPU GPUs Tokens/Batch Steps
163M 768 16 12 4,096 4 56 1,048,576 250,000
760M 1,536 24 24 4,096 4 56 1,048,576 250,000
1.4B 2,048 24 16 4,096 2 128 1,048,576 250,000

Table 5: Architectural specifications and training configurations of models across different
parameter scales (Transfusion setting).

Model Size Hidden Dim. Layers Heads Seq. Length Batch Size/GPU GPUs Tokens/Batch Steps
37M 256 4 8 4,096 2 64 524,288 160,000
94M 512 8 8 4,096 2 64 524,288 160,000
443M 1,024 24 16 4,096 2 64 524,288 160,000
880M 1,536 24 24 4,096 2 64 524,288 120,000
1.5B 2,048 24 16 4,096 1 128 524,288 120,000

Table 6: Architectural specifications and training configurations of models across different
parameter scales (Chameleon setting and Chameleon+Speech setting).

Model
Scale Metric Category Metric Name Mamba

Loss (↓)
Mixture-of-

Mamba Loss (↓)
Performance
Gain (%) (↑)

Relative Training FLOPs
to Match Mamba (%) (↓)

37M

Image Metrics
Training Loss 6.1308 5.9561 2.85% 25.90%

Obelisc Val. Loss 5.2866 5.1124 3.29% 26.60%
SSTK Val. Loss 6.6694 6.5023 2.51% 27.50%

Text Metrics
Training Loss 3.6262 3.5175 3.00% 60.90%

Obelisc Val. Loss 4.1244 4.0469 1.88% 64.80%
SSTK Val. Loss 4.0417 3.9533 2.19% 57.50%

Overall Avg Training Loss 4.6607 4.5247 2.92% 50.70%

94M

Image Metrics
Training Loss 5.7609 5.6057 2.69% 35.70%

Obelisc Val. Loss 4.9231 4.7683 3.14% 35.30%
SSTK Val. Loss 6.3130 6.1652 2.34% 37.00%

Text Metrics
Training Loss 3.0294 2.9414 2.90% 58.40%

Obelisc Val. Loss 3.6016 3.5270 2.07% 62.60%
SSTK Val. Loss 3.4109 3.2901 3.54% 61.40%

Overall Avg Training Loss 4.1577 4.0419 2.78% 49.80%

443M

Image Metrics
Training Loss 5.3558 5.1703 3.46% 33.40%

Obelisc Val. Loss 4.5258 4.3546 3.78% 35.10%
SSTK Val. Loss 5.9179 5.7471 2.89% 35.30%

Text Metrics
Training Loss 2.4637 2.3864 3.14% 62.00%

Obelisc Val. Loss 3.0544 2.9820 2.37% 66.70%
SSTK Val. Loss 2.7569 2.6250 4.78% 54.70%

Overall Avg Training Loss 3.6584 3.5364 3.33% 47.90%

880M

Image Metrics
Training Loss 5.2260 5.1201 2.03% 48.40%

Obelisc Val. Loss 4.4127 4.3105 2.32% 49.30%
SSTK Val. Loss 5.7987 5.6986 1.73% 50.50%

Text Metrics
Training Loss 2.3073 2.2438 2.75% 65.60%

Obelisc Val. Loss 2.8886 2.8313 1.99% 72.80%
SSTK Val. Loss 2.5483 2.4548 3.67% 67.90%

Overall Avg Training Loss 3.5130 3.4320 2.31% 58.30%

1.5B

Image Metrics
Training Loss 5.1892 5.0591 2.51% 42.50%

Obelisc Val. Loss 4.3692 4.2510 2.71% 44.50%
SSTK Val. Loss 5.7546 5.6335 2.10% 44.60%

Text Metrics
Training Loss 2.2284 2.1614 3.01% 65.40%

Obelisc Val. Loss 2.8020 2.7393 2.24% 71.60%
SSTK Val. Loss 2.4614 2.3455 4.71% 62.10%

Overall Avg Training Loss 3.4602 3.3670 2.69% 54.70%

Table 7: Training and validation metrics across model scales in the Chameleon setting. In
this setting, both image and text modalities are represented as discrete tokens. Mixture-of-Mamba
achieves substantial performance improvements over Mamba Dense, with the image modality
showing the largest gains across all five model scales: 37M, 94M, 443M, 880M, and 1.5B. No-
tably, the text modality also exhibits significant improvements, in contrast to the Transfusion setting
where text gains were more modest. These results further highlight the effectiveness and efficiency
of Mixture-of-Mamba, which consistently achieves strong performance with reduced relative train-
ing FLOPs.
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Figure 3: Validation loss and loss matching for text modality across model scales (C4 and Wikipedia
datasets) during multi-modal pretraining in the Transfusion setting. Results are shown for Mixture-
of-Mamba, Mamba Dense, and Flex-Attention Transformer at three model scales: 163M, 760M, and
1.4B. (a, e, i) Validation loss on the C4 dataset shows that Mixture-of-Mamba achieves compara-
ble performance at 163M and performs marginally better than Mamba Dense and Flex-Attention
Transformer at the 760M and 1.4B scales. (b, f, j) Loss matching for C4 demonstrates that Mixture-
of-Mamba reaches similar or slightly lower loss values at earlier training steps compared to Mamba
Dense. (c, g, k) Validation loss on the Wikipedia dataset follows a similar trend, with Mixture-
of-Mamba showing marginal improvements at the 760M and 1.4B scales. (d, h, l) Loss matching
for Wikipedia illustrates efficient training dynamics, with Mixture-of-Mamba aligning closely with
Flex-Attention Transformer while reaching comparable or slightly lower loss values than Mamba
Dense. Overall, Mixture-of-Mamba demonstrates moderate improvements over both baselines at
the larger scales (760M and 1.4B).
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Figure 4: Image validation loss and loss matching on the CC12M dataset across three model scales:
163M, 760M, and 1.4B during multi-modal pretraining in the Transfusion setting. (a, c, e) Vali-
dation loss curves show that Mixture-of-Mamba achieves substantially lower image validation loss
compared to Mamba Dense and Flex-Attention Transformer across all scales, with the improvement
becoming more pronounced as model size increases. (b, d, f) Loss matching curves demonstrate that
Mixture-of-Mamba reaches the same loss values at earlier training steps compared to Mamba Dense,
highlighting improved training efficiency. Overall, Mixture-of-Mamba achieves large improvements
in image validation loss on the CC12M dataset, showcasing its effectiveness in the image modality.

21



Published as a workshop paper at SCOPE - ICLR 2025

0 250000
Training Steps

3.6

3.8

4.0

4.2

4.4

Tr
ai

ni
ng

 L
os

s

Mamba Dense
Mixture-of-Mamba (ours)
Flex-Attention Transformer

(a) 163M Avg Training
Loss

0 250000
Training Step for Dense

0

50000

100000

150000

200000

250000

S
te

ps
 to

 M
at

ch
 D

en
se Mixture-of-Mamba (ours) (s = 0.861)

Flex-Attention Transformer (s = 0.822)

(b) Avg Loss Matching

0 250000
Training Steps

3.2

3.4

3.6

3.8

4.0

Tr
ai

ni
ng

 L
os

s

Mamba Dense
Mixture-of-Mamba (ours)
Flex-Attention Transformer

(c) 760M Avg Training
Loss

0 250000
Training Step for Dense

0

50000

100000

150000

200000

250000

S
te

ps
 to

 M
at

ch
 D

en
se Flex-Attention Transformer (s = 0.916)

Mixture-of-Mamba (ours) (s = 0.829)

(d) Avg Loss Matching

0 250000
Training Steps

3.2

3.4

3.6

3.8

4.0

Tr
ai

ni
ng

 L
os

s

Mamba Dense
Mixture-of-Mamba (ours)
Flex-Attention Transformer

(e) 1.4B Avg Training
Loss

0 250000
Training Step for Dense

0

50000

100000

150000

200000

250000

S
te

ps
 to

 M
at

ch
 D

en
se Flex-Attention Transformer (s = 0.932)

Mixture-of-Mamba (ours) (s = 0.831)

(f) Avg Loss Matching

Figure 5: Overall training loss and loss matching during multi-modal pretraining in the Transfusion
setting. Results are shown for Mixture-of-Mamba, Mamba Dense, and Flex-Attention Transformer
at three model scales: 163M, 760M, and 1.4B. (a, c, e) Training loss averaged across the image
and text modalities demonstrates that Mixture-of-Mamba achieves substantial improvements over
Mamba Dense, with a notable reduction in training loss across all scales. (b, d, f) Loss matching
results show that Mixture-of-Mamba and Flex-Attention Transformer reach the same loss values at
earlier training steps compared to Mamba Dense, highlighting improved training efficiency. Note:
The image loss in the Transfusion setting corresponds to the diffusion loss, which is of smaller
magnitude compared to the cross-entropy loss in the text modality. Overall, Mixture-of-Mamba
demonstrates significant gains in training loss and efficiency across multi-modal pretraining.
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Figure 6: Modality-specific pre-training loss and step matching plots across model scales
(Chameleon setting). Training loss and loss matching are reported for image and text modali-
ties across five model scales: 37M, 94M, 443M, 880M, and 1.5B. (a, e, i, m, q) Image training
loss shows significant improvements for Mixture-of-Mamba (orange), which consistently achieves
lower loss compared to Mamba Dense (cyan) across all scales. (b, f, j, n, r) Image loss matching
compares the training dynamics and shows that Mixture-of-Mamba reaches the same loss values
at earlier training steps compared to Mamba Dense, highlighting its improved efficiency. (c, g, k,
o, s) Text training loss demonstrates competitive performance, with Mixture-of-Mamba achieving
slightly lower loss values compared to Mamba Dense. (d, h, l, p, t) Text loss matching illustrates
that Mixture-of-Mamba reaches the same loss values at earlier training steps compared to Mamba
Dense, reflecting its efficient training dynamics. Overall, in the Chameleon setting, Mixture-of-
Mamba achieves consistent improvements in the image modality, with substantial computational
savings, while also demonstrating meaningful gains in the text modality.
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Figure 7: Training and evaluation losses for image and text modalities across model scales in the
Chameleon setting on the Obelisc dataset. Results are shown for Mixture-of-Mamba and Mamba
Dense across five model scales: 37M, 94M, 443M, 880M, and 1.5B. (a, e, i, m, q) Image evaluation
loss demonstrates consistent improvements for Mixture-of-Mamba (orange), achieving lower loss
compared to Mamba Dense (cyan) across all scales. (b, f, j, n, r) Image loss matching shows that
Mixture-of-Mamba reaches the same loss values at earlier training steps compared to Mamba Dense,
reflecting its improved training efficiency. (c, g, k, o, s) Text evaluation loss indicates competitive
results for Mixture-of-Mamba, achieving lower losses relative to Mamba Dense. (d, h, l, p, t) Text
loss matching highlights that Mixture-of-Mamba reaches the same loss values at earlier training
steps, further demonstrating its efficiency in the text modality. Overall, Mixture-of-Mamba achieves
strong and consistent improvements in both image and text modalities across all model scales in the
Chameleon setting evaluated on the Obelisc dataset.
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Figure 8: Training and evaluation losses for image and text modalities across model scales in
the Chameleon setting on the Shutterstock dataset. Results are shown for Mixture-of-Mamba and
Mamba Dense across five model scales: 37M, 94M, 443M, 880M, and 1.5B. (a, e, i, m, q) Image
evaluation loss demonstrates consistent improvements for Mixture-of-Mamba (orange), achieving
lower loss compared to Mamba Dense (cyan) across all scales. (b, f, j, n, r) Image loss matching
shows that Mixture-of-Mamba reaches the same loss values at earlier training steps compared to
Mamba Dense, reflecting its improved training efficiency. (c, g, k, o, s) Text evaluation loss indicates
competitive results for Mixture-of-Mamba, achieving lower losses relative to Mamba Dense. (d, h,
l, p, t) Text loss matching highlights that Mixture-of-Mamba reaches the same loss values at earlier
training steps, further demonstrating its efficiency in the text modality. Overall, Mixture-of-Mamba
achieves strong and consistent improvements in both image and text modalities across all model
scales in the Chameleon setting evaluated on the Shutterstock dataset.
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Figure 9: Average training loss and step matching plots across model scales in the Chameleon
setting. Results are shown for Mixture-of-Mamba and Mamba Dense across five model scales: 37M,
94M, 443M, 880M, and 1.5B. (a, c, e, g, i) Average training loss (across image and text modalities)
demonstrates consistent reductions for Mixture-of-Mamba (orange), achieving lower loss values
compared to Mamba Dense (cyan) at all model scales. (b, d, f, h, j) Average loss matching plots
highlight that Mixture-of-Mamba reaches the same loss values at earlier training steps compared
to Mamba Dense, reflecting improved training efficiency. Overall, Mixture-of-Mamba consistently
reduces average training loss and achieves more efficient convergence across all model scales in the
Chameleon setting.
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Figure 10: Training and evaluation losses for image, text, and speech modalities (37M and
94M scales) in the Chameleon+Speech setting. Results are reported for Mixture-of-Mamba and
Mamba Dense. (a, e, i) Image training loss demonstrates that Mixture-of-Mamba (orange) achieves
consistently lower loss compared to Mamba Dense (cyan). (b, f, j) Image loss matching highlights
Mixture-of-Mamba’s ability to reach the same loss values at earlier training steps, showing improved
training efficiency. (c, g, k) Text training loss shows competitive results for Mixture-of-Mamba,
improving over Mamba Dense. (d, h, l) Text loss matching confirms Mixture-of-Mamba’s ability
to reach the same loss values at earlier training steps, showing improved training efficiency. (e,
m) Speech training loss highlights significant improvements in speech modality performance. (f,
n) Speech loss matching shows efficient learning dynamics for Mixture-of-Mamba. (g, o) Speech
evaluation loss on LL60K confirms notable performance gains, and (h, p) Speech evaluation loss on
PPL30K further highlights the efficiency of Mixture-of-Mamba.
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Figure 11: Training and evaluation losses for image, text, and speech modalities (443M, 880M,
and 1.5B scales) in the Chameleon+Speech setting. Results are reported for Mixture-of-Mamba
and Mamba Dense. (a, i, q) Image training loss demonstrates that Mixture-of-Mamba (orange)
consistently outperforms Mamba Dense (cyan) across larger scales. (b, j, r) Image loss match-
ing highlights improved training efficiency for Mixture-of-Mamba, reaching the same loss values
at earlier training steps. (c, k, s) Text training loss shows Mixture-of-Mamba achieving better per-
formance. (d, l, t) Text loss matching further demonstrates efficient learning dynamics. (e, m, u)
Speech training loss confirms substantial gains for Mixture-of-Mamba in the speech modality, con-
sistent across model scales. (f, n, v) Speech loss matching illustrates the improved efficiency of
Mixture-of-Mamba across scales. (g, o, w) Speech evaluation loss on LL60K highlights consistent
improvements, while (h, p, x) Speech evaluation loss on PPL30K demonstrates notable gains and
efficient performance across scales.
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Figure 12: Training and validation losses for image and text modalities across model scales in
the Chameleon+Speech setting evaluated on the Obelisc dataset. Results are shown for Mixture-
of-Mamba and Mamba Dense across five model scales: 37M, 94M, 443M, 880M, and 1.5B. (a, e,
i, m, q) Image evaluation loss demonstrates consistent gains for Mixture-of-Mamba (orange) over
Mamba Dense (cyan), even with the inclusion of the speech modality. (b, f, j, n, r) Image loss
matching shows that Mixture-of-Mamba reaches the same loss values at earlier training steps com-
pared to Mamba Dense, highlighting improved efficiency. (c, g, k, o, s) Text evaluation loss indicates
consistent reductions for Mixture-of-Mamba relative to Mamba Dense across all scales. (d, h, l, p, t)
Text loss matching illustrates that Mixture-of-Mamba reaches the same loss values at earlier training
steps compared to Mamba Dense, maintaining its efficiency in the text modality. Overall, Mixture-
of-Mamba achieves consistent improvements in both image and text modalities while maintaining
its efficiency, even with the addition of the speech modality. These results confirm the robustness
of Mixture-of-Mamba in multi-modal settings.
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Figure 13: Training and validation losses for image and text modalities across model scales in
the Chameleon+Speech setting evaluated on the Shutterstock dataset. Results are shown for
Mixture-of-Mamba and Mamba Dense across five model scales: 37M, 94M, 443M, 880M, and
1.5B. (a, e, i, m, q) Image evaluation loss demonstrates consistent gains for Mixture-of-Mamba (or-
ange) over Mamba Dense (cyan), even with the inclusion of the speech modality. (b, f, j, n, r) Image
loss matching shows that Mixture-of-Mamba reaches the same loss values at earlier training steps
compared to Mamba Dense, highlighting improved efficiency. (c, g, k, o, s) Text evaluation loss
indicates consistent reductions for Mixture-of-Mamba relative to Mamba Dense across all scales.
(d, h, l, p, t) Text loss matching illustrates that Mixture-of-Mamba reaches the same loss values
at earlier training steps compared to Mamba Dense, maintaining its efficiency in the text modality.
Overall, Mixture-of-Mamba achieves consistent improvements in both image and text modalities
while maintaining its efficiency, even with the addition of the speech modality. These results con-
firm the robustness of Mixture-of-Mamba in multi-modal settings.
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