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Abstract

Kernel k-means has been widely studied in machine learning. However, existing
kernel k-means methods often ignore the fairness issue, which may cause dis-
crimination. To address this issue, in this paper, we propose a novel Fair Kernel
K-Means (FKKM) framework. In this framework, we first propose a new fairness
regularization term that can lead to a fair partition of data. The carefully designed
fairness regularization term has a similar form to the kernel k-means which can be
seamlessly integrated into the kernel k-means framework. Then, we extend this
method to the multiple kernel setting, leading to a Fair Multiple Kernel K-Means
(FMKKM) method. We also provide some theoretical analysis of the generalization
error bound, and based on this bound we give a strategy to set the hyper-parameter,
which makes the proposed methods easy to use. At last, we conduct extensive ex-
periments on both the single kernel and multiple kernel settings to compare the pro-
posed methods with state-of-the-art methods to demonstrate their effectiveness. Our
code is available at https://github.com/rongwenli/NeurIPS24-FMKKM.

1 Introduction

Clustering is a fundamental unsupervised machine learning task. In clustering, kernel methods,
such as Kernel K-Means (KKM), can effectively separate nonlinear data into different clusters.
Therefore, KKM has been widely studied in both the single kernel setting and multiple kernel setting
[39, 50, 14, 15].

Notice that, in real-world applications, clustering is often used in some scenarios involving humans
such as social networks [36] and crime analysis [32]. In these scenarios, since the humans are
involved, we should guarantee the fairness of the clustering result, so that the clustering result will
not cause discrimination to some specific groups. In the clustering task, we often consider the group
fairness, where we have some pre-given groups that may suffer from the potential discrimination,
called protected groups. Group fairness aims to partition data into some clusters and guarantee that
no clusters contain a disproportionately small or large number of data in some specific protected
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groups [6]. Although the above-mentioned kernel k-means and multiple kernel k-means methods
show promising performance in the clustering task, none of them considers the fairness issue, and
thus they may obtain some clustering results which cause discrimination to some groups.

To tackle this problem, in this paper, we propose a novel fair kernel k-means method and extend it
from the single kernel setting to the multiple kernel setting. We follow a widely-used definition of
fairness defined in [6], which is shown as Definition 1. By analyzing this definition, we carefully
design a new fairness regularization term and prove that minimizing this term can lead to the optimal
fairness defined in [6]. Besides, we observe that our fairness regularization term has a similar form of
the loss function of KKM, and thus can be naturally and seamlessly plugged into the KKM framework,
yielding an extremely simple and elegant Fair Kernel K-Means (FKKM) framework. This framework
is so concise that we do not even need to modify the loss of KKM but just adjust the input kernel
to our proposed fair kernel. This framework can also be easily extended to the Multiple Kernel
K-Means (MKKM) task, leading to Fair Multiple Kernel K-Means (FMKKM). We also provide some
theoretical analysis of its generalization error bound. Furthermore, based on the generalization error
bound, we provide a strategy to set the hyper-parameter in our framework, which makes the method
easy to use. Extensive experiments on single kernel clustering and multiple kernel clustering tasks
show the effectiveness of our framework w.r.t. both the clustering accuracy and fairness.

The main contributions of our paper are summarized as follows:

• We propose a novel fairness regularization term and prove that minimizing this term can
reach the optimal fairness defined in [6].

• Our proposed regularization term has a similar form to the KKM, and thus can be seamlessly
integrated into the KKM and MKKM framework. To the best of our knowledge, this is the
first work for fair kernel k-means and fair multiple kernel k-means.

• We provide a strategy to set the hyper-parameter based on the theoretical analysis, which
makes the methods easy to use.

• Extensive experiments in both single and multiple kernel clustering show the effectiveness
and superiority of our proposed methods compared with the state-of-the-art methods.

2 Related Work and Preliminaries

In this paper, we use a bold uppercase letter (e.g. M) and a bold lowercase letter (e.g. v) to denote a
matrix and a vector, respectively. Given a matrix M, we use Mij to denote its (i, j)-th element.

2.1 Kernel K-means and Multiple Kernel K-means

Given a data matrix X = [x1, . . . ,xn] ∈ Rd×n with n instances and d features, let Φ (·) : Rd 7→ H
represents a kernel mapping that maps X into a Reproducing Kernel Hilbert Space (RKHS) H. The
objective function of the kernel k-means with the sum-of-squares loss can be written as [39, 24]:

min
M,Y∈Ind

∥Φ(X)−MYT ∥2F , (1)

where Φ(X) = [Φ(x1), . . . ,Φ(xn)] and M = [m1, . . . ,mc] represents c clustering centroids in the
RKHS H. Y ∈ {0, 1}n×c is an indicator matrix, which is denoted as Ind, and Yij = 1 if xi is
assigned to the j-th cluster, and otherwise Yij = 0. Setting the derivative of Eq.(1) w.r.t. M to zero,
we can obtain the closed-form solution of M. Taking it back to Eq.(1), it can be rewritten as [42]:

min
Y∈Ind

Tr (K)− Tr

((
YTY

)− 1
2
YTKY

(
YTY

)− 1
2

)
, (2)

where K = Φ(X)TΦ(X) ∈ Rn×n is a kernel matrix with Kij = Φ(xi)
TΦ(xj). For the convenience

of optimization, we denote H = Y
(
YTY

)− 1
2 . Since directly solving Eq.(2) is an NP-hard problem

[16], previous works [26, 41, 21] substituted the constraints Y ∈ Ind with HTH = I, leading to:

min
HTH=I

Tr
(
K
(
I−HTH

))
. (3)

The optimal H is formed by the c eigenvectors of K corresponding to the c largest eigenvalues.
After obtaining H, existing methods [54, 44, 35, 17] learn the final clustering results through some
post-processing techniques such as k-means or spectral rotation on H.
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Multiple kernel k-means aims to fuse multiple base kernels to a consensus one for kernel k-means.
Previous works assume that the ideal consensus kernel matrix is a combination of base kernel matrices
i.e., K∗ =

∑m
p=1 γ

2
pK

(p), where K∗ is the consensus kernel matrix, and K(p)s are base kernels
[27, 28, 19]. γp is the weight of the p-th base kernel. Replacing K in Eq.(3) with the consensus
kernel K∗, we can obtain the objective function of MKKM:

min
H,γ

Tr
(
K∗
(
I−HTH

))
, s.t. HTH = I, γT1 = 1, γp ≥ 0, K∗ =

m∑
p=1

γ2
pK

(p). (4)

It can be solved by alternatively optimizing H and γ.

2.2 Fair Clustering

Fair clustering considers the fairness in the clustering, which is an important problem in unsupervised
machine learning. It was first introduced by Chierichetti et al., who proposed a fair decomposition
method to avoid all members of a protected group being clustered into the same cluster [9]. However,
this method can only handle two protected groups. To tackle this problem, Bera et al. further proposed
a concept of fairness applicable to multiple protected groups in [6], which is defined as:

Definition 1 (Fairness) [6] Given a data matrix X ∈ Rd×n with n instances and d features, it is par-
titioned into c disjoint clusters C = {π1, · · · , πc}. Given t disjoint protected groups G1,G2, · · · ,Gt,
let ηi =

|Gi|
n and ηi(k) =

|πk∩Gi|
|πk| denote the proportion of group Gi in the whole data and cluster πk,

respectively. The fairnesss of a cluster πk is defined as:

fairness (πk) = min

(
ηi

ηi(k)
,
ηi(k)

ηi

)
, ∀i ∈ {1, · · · t} (5)

The fairness of the whole clustering result C is defined as:

fairness(C) = min
k∈{1,···c}

fairness(πk) (6)

Remark 1 fairness(C) ∈ [0, 1], and the larger fairness(C) is, the fairer the clustering result is.
A fair clustering result requires that the proportion of Gi in each cluster, which is denoted as ηi(k),
should be close to the proportion of Gi in the whole data, which is denoted as ηi. When all ηi(k) = ηi,
the fairness will achieve its maximum value 1, which means it is perfectly fair.

Based on Definition 1, many fair clustering methods have been proposed [4, 7, 1, 37]. For example,
Ziko et al. proposed a variational fair clustering framework by integrating fairness term with a
clustering objective [57]; Kleindessner et al. embedded fairness as a linear constraint into spectral
clustering obtaining fair spectral clustering [18]; Ghadiri et al. introduced a fair k-means method that
ensures all protected groups have equal cluster costs [12]; Li et al. proposed a deep fair clustering
method [20]. Wang et al. embedded this fairness into deep clustering by learning a differentiated and
fair clustering allocation function [40]; Chhabra et al. provided a robust deep fair clustering method
by considering the fairness attack [8].

3 Methodology

3.1 Fairness Regularization Term

We first introduce our fairness regularization term. To control the fairness, according to Definition 1,
we need to compute |πk ∩ Gi| and |πk| in ηi(k). To this end, we introduce two indicator matrices
G ∈ {0, 1}n×t and Y ∈ {0, 1}n×c. G is a protected group indicator matrix, where Gij = 1 if the
i-th instance belongs to the j-th protected group, and Gij = 0 otherwise. Y is a cluster indicator
matrix, where Yij = 1 if the i-th instance belongs to the j-th cluster, and Yij = 0 otherwise. It is
easy to verify that

GTY =


|π1 ∩ G1| |π2 ∩ G1| . . . |πc ∩ G1|
|π1 ∩ G2| |π2 ∩ G2| . . . |πc ∩ G2|

...
...

. . .
...

|π1 ∩ Gt| |π2 ∩ Gt| . . . |πc ∩ Gt|

 , and YTY =


|π1| 0 . . . 0
0 |π2| . . . 0
...

...
. . .

...
0 0 . . . |πc|

 (7)
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Notice that G is a constant matrix because the protected groups are often pre-given, while Y is
a variable that needs to learn for clustering. Based on Eq.(7), we define a fair regularization term
Tr
(
YTGGTY

(
YTY

)−1
)

and provide the following Theorem, which shows that minimizing this
regularization term leads to the maximum of the fairness defined in Definition 1.

Theorem 1 Given G and Y defined as mentioned before, we can obtain the maximum of fairness by
optimizing the following objective function:

min
Y∈Ind

Tr

(
YTGGTY

(
YTY

)−1
)
. (8)

Proof 1 We first have:

Tr

(
YTGGTY

(
YTY

)−1
)

= Tr

((
YTY

)− 1
2
YTGGTY

(
YTY

)− 1
2

)
=

∥∥∥∥GTY
(
YTY

)− 1
2

∥∥∥∥2
F

.

According to Eq,(7), we have

GTY
(
YTY

)− 1
2
=



|π1∩G1|√
|π1|

|π2∩G1|√
|π2|

. . . |πc∩G1|√
|πc|

|π1∩G2|√
|π1|

|π2∩G2|√
|π2|

. . . |πc∩G2|√
|πc|

...
...

. . .
...

|π1∩Gt|√
|π1|

|π2∩Gt|√
|π2|

. . . |πc∩Gt|√
|πc|

.

 (9)

Therefore, minimizing Eq.(8) is equivalent to minimizing the following formula:∥∥∥∥GTY
(
YTY

)− 1
2

∥∥∥∥2
F

=

t∑
i=1

c∑
k=1

|πk ∩ Gi|2

|πk|
. (10)

According to Cauchy-Schwarz Inequality, we have:(
c∑

k=1

|πk ∩ Gi|2

|πk|

)(
c∑

k=1

|πk|

)
≥

(
c∑

k=1

|πk ∩ Gi|

)2

= |Gi|2 ⇒
c∑

k=1

|πk ∩ Gi|2

|πk|
≥ |Gi|2

n
. (11)

Summing Eq.(11) w.r.t. i, we have
t∑

i=1

c∑
k=1

|πk ∩ Gi|2

|πk|
≥

t∑
i=1

|Gi|2

n
. (12)

The equation in Eq.(12) holds if and only if |π1∩Gi|
|π1| = |π2∩Gi|

|π2| = · · · = |πc∩Gi|
|πc| for any i. It is

easy to verify that |π1∩Gi|
|π1| = · · · = |πc∩Gi|

|πc| =
∑

k |πk∩Gi|∑
k |πk| . Notice that πk is a disjoint partition

of all data, and thus we have (π1 ∩ Gi) ∪ · · · ∪ (πc ∩ Gi) = Gi and (πp ∩ Gi) ∩ (πq ∩ Gi) = ∅
for any p, q. Therefore, we have

∑
k |πk ∩ Gi| = |Gi|. Similarly, we have

∑
k |πk| = n. Taking

them back to the condition of the equation holding, we have that the equation holds if and only if
|π1∩Gi|
|π1| = |π2∩Gi|

|π2| = · · · = |πc∩Gi|
|πc| = |Gi|

n .

Notice that |πk∩Gi|
|πk| = ηi(k) and |Gi|

n = ηi. Therefore, when we minimize Eq.(8), we have ηi(k) = ηi.
According to Definition 1, it will lead to maximum fairness. This concludes the proof.

According to Theorem 1, we provide a simple yet effective fair regularization term Eq.(8), and can
easily plug it into the KKM and MKKM framework.

3.2 Fair Kernel K-means

Notice that the fairness regularization term Tr
(
YTGGTY

(
YTY

)−1
)

has a similar form to KKM
(i.e., Eq.(2)). Therefore, we can seamlessly integrate this term into the KKM framework, leading to a
fair kernel k-means (FKKM):

min
Y∈Ind

Tr (K)− Tr

((
YTY

)− 1
2
YTKY

(
YTY

)− 1
2

)
+ λTr

(
YTGGTY

(
YTY

)−1
)

⇐⇒ max
Y∈Ind

Tr

(
YT

(
K− λGGT

)
Y
(
YTY

)−1
)
, (13)
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where λ is a hyper-parameter to balance the trade-off between the clustering performance and the
fairness. Larger λ will lead to a fairer clustering result. Of course, λ should not be too large, or it will
dominate the loss function and the kernel k-means may not work. Comparing Eq.(13) with Eq.(2),
we observe that if λ is small enough to make K − λGGT positive semi-definite (p.s.d.), we can
regard K− λGGT as a new kernel matrix and Eq.(13) becomes a standard kernel k-means. In this
case, we call K− λGGT a fair kernel.

However, in practice, to make K−λGGT be a valid kernel matrix, which means to make K−λGGT

p.s.d., we should set a very small λ, which cannot guarantee the fairness. To address this issue, we
find that we can add a large enough constant term αTr(I) to Eq.(13), to obtain a valid fair kernel
matrix. In more detail, we have:

Tr

(
YT

(
K−λGGT

)
Y
(
YTY

)−1
)
+αTr(I) = Tr

(
YT

(
K+αI−λGGT

)
Y
(
YTY

)−1
)
. (14)

It shows that optimizing Eq.(14) is always exactly equivalent to optimizing Eq.(13), no matter how
we set α. With a large enough α, we can easily set an appropriate λ to make K̃ = K+ αI− λGGT

be p.s.d., and thus be a valid kernel matrix. We will discuss how to set λ and α later.

In this way, we obtain an extremely simple yet elegant FKKM method. In this method, we do not
even need to modify the loss of standard KKM. All we need is to modify the kernel by replacing K
to a fair kernel K̃ = K+ αI− λGGT . It means that we realize the fairness on the data level rather
than the model level.

3.3 Fair Multiple Kernel K-means

Eq.(14) can be naturally extended to a multiple kernel setting. Given a base kernel K(p), we first
construct its fair kernel K̃(p) = K(p) + αI − λGGT . Then similar to Eq.(4), we define the fair
consensus kernel K̃∗ =

∑m
p=1 γ

2
pK̃

(p) and take it into Eq.(2) to obtain FMKKM:

min
Y,γ

Tr

(
K̃∗
(
I−Y

(
YTY

)−1

YT

))
s.t. Y ∈ Ind, γT1 = 1, γp ≥ 0, K̃∗ =

m∑
p=1

γ2
pK̃

(p). (15)

Notice that since our fairness regularization term Tr
(
YTGGTY

(
YTY

)−1
)

requires that Y should
be a discrete indicator matrix, our FKKM (i.e., Eq.(14)) and FMKKM (i.e., Eq.(15)) directly solve
the discrete Y instead of the conventional two-step methods which learn an orthogonal embedding H
first and then obtain the discrete clustering result. As we know, in the two-step methods, the kernel
k-means and the discretization post-processing are separated and when doing the discretization it
cannot guarantee the clustering accuracy or fairness. Different from the two-step methods, we can
directly learn the final clustering result Y by fully considering the clustering accuracy and fairness.

3.4 Optimization

3.4.1 Optimization of FKKM

When minimizing Eq.(14), we only need to solve one variable Y. Notice that there is only one 1
in each row of Y. Therefore, we can solve Y row by row. When solving the i-th row, we replace
the i-th row with [1, 0, · · · , 0], [0, 1, 0, · · · , 0], ..., [0, · · · , 0, 1] respectively, and compute the values
of the corresponding objective function to find the one which leads to the maximum. Then we set
the i-th row as this row vector. Wang et al. propose an efficient method to compute these objective
functions by reducing the computation redundancy [43].

3.4.2 Optimization of FMKKM

In Eq.(15), there are two groups of variables, i.e., Y and γ. We solve them by a block coordinate
descent method, which optimizes one variable when fixing the other.

When fixing γ to solve Y, we have the following subproblem w.r.t Y:

max
Y∈Ind

Tr

(
YT K̃∗Y

(
YTY

)−1
)
, (16)

where K̃∗ =
∑m

p=1 γ
2
pK̃

(p). It is the same as the optimization of FKKM.
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When fixing Y to solve γ, we have following subproblem w.r.t γ:

min
γ

m∑
p=1

γ2
php, s.t.

m∑
p=1

γp = 1, γp ≥ 0, (17)

where hp = Tr
(
K̃(p)

(
I−Y

(
YTY

)−1
YT
))

. According to Cauchy-Schwarz Inequality, the
closed-form solution of γp is:

γp =
h−1
p∑m

j=1 h
−1
j

. (18)

Appendix A shows the pseudo-codes of FKKM and FMKKM, respectively. When updating each
row of Y, the objective function of FKKM decreases and has a lower bound. Therefore, FKKM can
always converge. Similarly, the convergence of FMKKM can also be guaranteed. Now, we analyze
the time complexity. According to [43], optimizing the i-th row of Y has a time complexity of O (nc).
FKKM has a time complexity of O

(
n2c
)
. Calculating γ has a time complexity of O (n). Therefore,

FMKKM also has a time complexity of O
(
n2c
)
. According to [43], although the time complexity is

square in the number of instances, it can be computed very efficiently in practice. Therefore, the time
complexity of our method is comparable with the mainstream KKM and MKKM methods.

4 Theoretical Analysis

The generalization error bound of the k-means evaluates the expectation of distance between an
unseen data and the clustering center it belongs to [30, 22, 21]. Since FKKM is a special case of
FMKKM when m = 1, in this section, we derive the generalization error bound of our FMKKM.
Before the derivation, we need the following two mild assumptions:

Assumption 1 Each K̃(p) = K(p) + αI− λGGT is a valid kernel matrix, i.e., K̃(p) is symmetric
and p.s.d.

Remark 2 This assumption is easy to satisfy. If K̃(p) is not p.s.d., we can enlarge α to make the
assumption hold.

Assumption 2 All K(p) are upper bounded. We denote b as the maximum of elements in all K(p).

According to assumption 1, since all K̃(p) are valid kernel matrices, K̃∗ is also a valid kernel matrix.
We define the corresponding kernel function of K̃∗ as K̃∗(·, ·), and its kernel mapping function is
Φγ(xi) = [γ1Φ1(xi)

T , . . . , γmΦm(xi)
T ]T : Rd 7→ H, where Φ1(xi), . . . ,Φm(xi) are the induced

kernel mapping function of K̃(1), . . . , K̃(m), respectively. Let M = [m1, . . . ,mc] denote the learned
centroids matrix in the RKHS H, where mi is the center of the i-th cluster in H. FMKKM aims
to minimize the error: E

[
miny∈{e1,...,ec} ∥Φγ(x)−My∥2H

]
, where [e1, . . . , ec] are the standard

orthonormal basis of Rc space, i.e., ei is an all-zero vectors except that the i-th element is 1.

Then, we define a function class as our hypothesis space:

F =

{
f : x 7→ min

y∈{e1,...,ec}
∥Φγ (x)−My∥2H

∣∣∣∣ γT1 = 1, γp ≥ 0,mk ∈ H
}
. (19)

Similar to [21], we have the following Theorem to provide the generalization error bound:

Theorem 2 Under Assumptions 1 and 2, given training data X = [x1, . . . ,xn], function class F
defined in Eq.(19), and any δ ≥ 0, with probability at least 1− δ, the following inequality holds for
all f ∈ F:

E[f(x)] ≤ 1

n

n∑
i=1

f (xi) +
2
√
2π√
n

[
(1 + c2) (b+ α)− (1 +

c2

t
)λ+ c

√
2 (b+ α− λ)

(
b+ α− λ

t

)]

+

(
4 (b+ α)− 2

(
1 +

1

t

)
λ

)√
log(1/δ)

2n
, (20)

where t and c are the number of protected groups and clusters, respectively.
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Proof 2 See Appendix B.

The first term in Eq.(20) is the empirical error. Notice that, we have
∑n

i=1 f (xi) =

Tr
(
K̃∗
(
I−Y

(
YTY

)−1
YT
))

, which means our loss function is to minimize exactly this empir-

ical error. However, in the two-step methods, which apply HTH = I where H = Y
(
YTY

)− 1
2 to

replace Y ∈ Ind, they only optimize a continual approximation of the empirical error.

Besides, the second and third terms represent the gap between the generalization and empirical errors.
Intuitively, the gap is the smaller the better. To decrease the gap, we wish α to be as small as possible.
However, Assumption 1 prevents α being too small because K̃(p) should be p.s.d., or Theorem 2 will
not hold anymore. Now we can derive the lower bound of α according to Assumption 1. Suppose
σmin as the smallest eigenvalue of K(1), . . . ,K(p). Then, the smallest eigenvalue of K(p) + αI
should be no smaller than σmin + α. Notice that we have the following Lemma:

Lemma 1 Given two real symmetric matrices A and B with the same size, where the smallest
eigenvalue of A is σA and the largest eigenvalue of B is σB . If σA ≥ σB , then A−B is p.s.d.

Proof 3 See Appendix C.

Denoting σmax as the largest eigenvalue of GGT , it is easy to verify that σmax = |Gmax|, where
Gmax is the protected group with the largest number of instances. According to Lemma 1, we
have that if σmin + α − λ ∗ |Gmax| ≥ 0, K̃(p) will be p.s.d. Therefore, α has a lower bound
λ ∗ |Gmax| − σmin. In practice, σmin is often very small and close to 0. To avoid the time consuming
to compute the eigenvalues of the kernels, we can approximately set α = λ ∗ |Gmax|.
Take α = λ ∗ |Gmax| back into the generalization error bound Eq.(20). We consider the gap between
the generalization and empirical errors, i.e., the second and third terms:

2
√
2π√
n

[
(1 + c2) (b+ α)− (1 +

c2

t
)λ+ c

√
2 (b+ α− λ)

(
b+ α− λ

t

)]
+

(
4 (b+ α)− 2

(
1 +

1

t

)
λ

)√
log(1/δ)

2n

≥2
√
2π√
n

[
(1 + c2)b+

(
|Gmax| − 1 +

c2(|Gmax|t− 1)

t

)
λ+ c

√
2(b+ (|Gmax| − 1)λ)

(
b+

|Gmax|t− 1

t
λ

)]

+ (4b+ 4(|Gmax| − 1)λ)

√
log(1/δ)

2n
(21)

Notice that |Gmax| − 1 ≥ 0 and |Gmax|t − 1 ≥ 0, and thus we have that the gap decreases with
λ decreases. It means that smaller λ leads to a lower gap. Therefore, λ is a trade-off between the
clustering performance and fairness. Increasing λ may enlarge the error bound, but obtain a fairer
result. Based on this theoretical analysis, we provide a strategy to set λ by observing a fairness metric,
which can be computed without the ground truth. In more detail, we gradually enlarge λ from 0, set
α = λ ∗ |Gmax|, and observe the fairness metric. If it gets stable good fairness, we stop enlarging λ
and set λ as the current value. This strategy does not need the ground truth, which is appropriate for
unsupervised learning, and can obtain an as small as possible λ to achieve a good fairness result.

5 Experiments

5.1 Data Sets and Experimental Setup

We conduct experiments on benchmark data sets which are widely used in fair clustering, including
D&S [2], HAR [3], Jaffe [29], MNIST-USPS [20], Credit Card [52] and K1b [53]. D&S is a human
daily and sports activities data set including 8 participants. HAR is a human action recognition data
set including 30 participants. In both D&S and HAR data sets, the data of each participant form
a protected group. Jaffe is a face image data set. Following [20], the face images with the same
expressions are put into a protected group. MNIST-USPS is an image data set containing images of
handwritten digits from the subsets of MNIST and USPS data sets. Following [20], we randomly
sample 2000 images from MNIST to form one protected group and randomly sample 1800 images
from USPS to form the other protected group. Credit card is a data set that describes the customers’
default payments and the data of males and females form two protected groups respectively. K1b is a
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text data set. Following [48], we randomly assign each text to a protected group with a Bernoulli
distribution whose p = 0.5 to form two protected groups. The statistical information of these data
sets is shown in Appendix D.

Table 1: Comparison results on the single kernel setting.
The best and second best results are denoted in bold and
underlined, respectively.

Data sets K-means KKM SC FairSC VFC FFC FKKM-f FKKM

D&S

ACC 0.555 0.552 0.558 0.433 0.539 0.521 0.648 0.636
NMI 0.650 0.602 0.652 0.575 0.617 0.583 0.724 0.683
Bal 0 0 0 0 0.186 0.100 0 0.559

MNCE 0.156 0.531 0.023 0 0.923 0.712 0.477 0.991

HAR

ACC 0.524 0.620 0.680 0.742 0.600 0.602 0.689 0.771
NMI 0.596 0.609 0.618 0.703 0.654 0.490 0.625 0.710
Bal 0 0 0 0 0.200 0.007 0 0.250

MNCE 0.933 0.930 0.914 0 0.983 0.953 0.920 0.989

MNIST-USPS

ACC 0.363 0.396 0.406 0.458 0.360 0.437 0.403 0.432
NMI 0.423 0.421 0.435 0.429 0.306 0.412 0.426 0.380
Bal 0 0 0 0 0.142 0.217 0 0.847

MNCE 0 0.003 0 0 0.544 0.684 0 0.997

Jaffe

ACC 0.927 0.948 0.901 0.957 0.981 0.901 0.954 1
NMI 0.914 0.922 0.889 0.943 0.969 0.918 0.930 1
Bal 0 0 0 0 0.400 0.250 0 0.500

MNCE 0.808 0.900 0.765 0.827 0.983 0.924 0.897 0.989

Credit Card

ACC 0.362 0.381 0.311 0.351 0.381 0.364 0.400 0.404
NMI 0.139 0.140 0.126 0.123 0.142 0.139 0.145 0.148
Bal 0.510 0.550 0.567 0.603 0.586 0.550 0.536 0.624

MNCE 0.953 0.961 0.967 0.973 0.970 0.969 0.956 0.985

K1b

ACC 0.742 0.669 0.667 0.853 0.778 0.663 0.826 0.809
NMI 0.589 0.537 0.536 0.666 0.553 0.503 0.628 0.591
Bal 0.666 0.775 0.763 0.667 0.794 0.773 0.703 0.800

MNCE 0.971 0.989 0.987 0.971 0.990 0.989 0.978 0.991

(a) FMKKM-f

(b) FMKKM

Figure 1: Fairness visual-
ization results of FMKKM-f
and FMKKM on D&S.

In the single kernel setting, we compare our FKKM with K-means [13], Kernel K-means (KKM) [10],
Spectral Clustering (SC) [33], and three state-of-the-art fair clustering methods, including SpFC [18],
VFC [58], and FFC [34]. For the kernel methods (i.e., our FKKM and KKM), we use a Gaussian
kernel with a bandwidth parameter fixing to

√
0.5 ∗ D, where D is the average distance between

samples. In the multiple kernel setting, we compare our FMKKM with 9 state-of-the-art MKKM
methods, including ONKC [25], MKCSS [55], DPMKKM [42], LFLKA [51], EMKC [38], OSLR
[47], ASLR [46], CSAMKC [56], FAMKKM [41]. Detailed information of these compared methods
is shown in Appendix E. Besides, for an ablation study, we also compare with the degeneration
version of our method, which is without the fairness regularization term, denoted as FKKM-f (for
single kernel version) and FMKKM-f (for multiple kernel version).

In the multiple kernel setting, following [11], we construct 12 kernels, including seven Gaus-
sian kernels K (xi,xj) = exp

(
−∥xi − xj∥22/2ϵ2

)
with ϵ =

√
s ∗ D, where s varies in

the range of { 1
8 ,

1
4 ,

1
2 , 1, 2, 4, 8} and D is the average distance between samples; four polyno-

mial kernels K (xi,xj) =
(
a+ xT

i xj

)b
with a = {0, 1} and b = {2, 4}; and a cosine ker-

nel K (xi,xj) =
(
xT
i xj

)
/ (∥xi∥ · ∥xj∥). Finally, all kernels have been normalized through

K (xi,xj) /
√
K (xi,xi)K (xj ,xj) and then rescaled to [0, 1]. We use Accuracy (ACC) and Nor-

malized Mutual Information (NMI) to evaluate the clustering performance. Besides, we also use
balance (Bal) [20] and Minimal Normalized Conditional Entropy (MNCE) [49] to evaluate fairness.
Specifically, Bal is defined as

Bal (C) = min
k

(
Nmin

k

Nmax
k

)
∈ [0, 1], (22)

where Nmin
k and Nmax

k represent the number of instances in the smallest and the largest (in size)
protected groups in cluster πk, respectively. MNCE is defined as

MNCE =
mink

(
−
∑

i
|Gi∩πk|

|πk|
log |Gi∩πk|

|πk|

)
−
∑

i
|Gi|
n

log |Gi|
n

∈ [0, 1]. (23)

All metrics are the larger the better. Based on previous analysis of hyper-parameter setting, we
search λ as λ = 1, 2, . . . , by observing the corresponding MNCE. When the MNCE gets stable,
i.e., the change of MNCE is smaller than 0.005, we stop the searching and use the current λ. For
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Table 2: Comparison results on the multiple kernel setting. The best and second best results are
denoted in bold and underlined, respectively.

Data sets ONKC MKCSS DPMKKM LFLKA EMKC OSLR ASLR CSAMKC FAMKKM FMKKM-f FMKKM

D&S

ACC 0.505 0.543 0.614 0.646 0.491 0.590 0.508 0.598 0.601 0.645 0.616
NMI 0.644 0.665 0.697 0.717 0.602 0.677 0.591 0.668 0.678 0.718 0.661
Bal 0 0 0 0 0 0 0 0 0 0 0.471

MNCE 0.333 0 0.333 0.622 0.501 0.649 0 0.598 0.476 0.585 0.985

HAR

ACC 0.526 0.646 0.692 0.695 0.732 0.717 0.574 0.668 0.705 0.697 0.791
NMI 0.557 0.670 0.622 0.622 0.656 0.650 0.549 0.558 0.642 0.655 0.752
Bal 0 0 0 0 0 0 0 0 0 0 0.263

MNCE 0.933 0.920 0.905 0.914 0.939 0.917 0.520 0.928 0.923 0.888 0.990

MNIST-USPS

ACC 0.397 0.457 0.391 0.412 0.415 0.406 0.436 0.398 0.445 0.412 0.495
NMI 0.400 0.442 0.359 0.407 0.406 0.406 0.449 0.382 0.402 0.416 0.454
Bal 0 0 0 0 0 0 0 0.024 0 0 0.808

MNCE 0 0 0 0 0 0 0 0.161 0 0 0.993

Jaffe

ACC 0.840 0.956 0.939 0.911 0.967 0.934 0.921 0.948 0.985 0.939 0.995
NMI 0.848 0.958 0.924 0.887 0.964 0.903 0.936 0.925 0.971 0.914 0.991
Bal 0 0.200 0 0 0 0 0 0 0.250 0 0.500

MNCE 0.542 0.880 0 0.826 0.964 0.923 0.686 0.917 0.970 0.895 0.989

Credit Card

ACC 0.402 0.333 0.363 0.360 0.337 0.370 0.321 0.327 0.355 0.378 0.375
NMI 0.141 0.139 0.126 0.135 0.119 0.138 0.103 0.091 0.123 0.148 0.147
Bal 0.547 0.558 0.523 0.590 0.557 0.599 0.587 0.497 0.571 0.559 0.641

MNCE 0.960 0.964 0.950 0.975 0.963 0.977 0.973 0.938 0.969 0.964 0.989

K1b

ACC 0.692 0.688 0.723 0.687 0.601 0.623 0.850 0.749 0.745 0.826 0.828
NMI 0.435 0.535 0.286 0.545 0.436 0.523 0.652 0.554 0.581 0.632 0.601
Bal 0.428 0.794 0.545 0.818 0.881 0.834 0.714 0.892 0.849 0.757 0.935

MNCE 0.881 0.991 0.937 0.993 0.997 0.994 0.980 0.998 0.995 0.986 1

other comparison methods, we follow their recommended parameter configurations and search
methodologies. All experiments are conducted on the 12th Gen Interl(R) Core(TM) i7-12700 with 32
GB RAM. All experiments are repeated 10 times and the average results are reported.

5.2 Experimental Results

Table 1 shows the comparison results in the single kernel setting, where the best and second best
results are denoted in bold and underlined, respectively. It can be seen that FKKM exhibits better
fairness compared to K-means, KKM, SC, our ablation version (i.e., FKKM-f), and even the fair
clustering methods, indicating the effectiveness of our fairness regularization term. When comparing
w.r.t. clustering performance (i.e., ACC and NMI), FKKM still often achieves the best or the
second-best results.

Table 2 presents the comparison results in the multiple kernel setting. FMKKM easily achieves the
best fairness, due to the effectiveness of our fairness regularization term. Moreover, FMKKM often
achieves better or at least comparable ACC and NMI. Notice that our method just simply modifies the
original MKKM and can achieve competitive clustering performance, demonstrating that our method
is simple yet effective.

Figure 1 shows the visualization results. It shows the number of instances of each protected group Gj

in each cluster πi in the D&S data set obtained by FMKKM-f and FMKKM, respectively. As shown
in Figure 1(a), in FMKKM-f, without the fairness regularization term, the numbers of data of each
protected group in each cluster have a great difference, which means the result is unfair. Figure 1
(b) shows that the distribution of protected group in each cluster is more balanced, which means the
result obtained by FMKKM is much fairer than FMKKM-f. It demonstrates the effectiveness of our
fair regularization term.

5.3 Efficiency Results

The convergence curves of our methods are shown in Appendix F. The results show that our methods
often converge very fast. We also conduct experiments to compare the running time of our methods
with other compared methods. Our method is faster than or at least comparable with other methods
on many data sets. The detailed results are shown in Appendix F.

5.4 Parameter Study

Figure 2 shows the effects of λ of FKKM and FMKKM on MNIST-USPS and Credit Cards data sets.
The other results are similar. The red points denote the λ selected by our strategy. We can see that
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Figure 2: NMI and MNCE of our methods on MNIST-USPS and Credit Card data sets w.r.t. different
values of λ. The red points represent the lambda that our algorithm automatically searches for.

with the increase of λ, the fairness grows and the clustering performance may decrease, which is
consistent with our previous discussion. We can often achieve a good trade-off between fairness and
performance at the red point, which shows the effectiveness of our hyper-parameter setting strategy.

6 Conclusion

In this paper, we focused on the fairness issue in KKM and MKKM. We carefully designed a novel
fairness regularization term, which can be seamlessly plugged into the KKM and MKKM framework.
Equipped with this fairness regularization term, we proposed a novel FKKM and FMKKM method.
We also provided a hyper-parameter setting strategy based on the theoretical analysis to make the
methods easy to use. Extensive experiments demonstrated the effectiveness and superiority of our
proposed FKKM and FMKKM methods.

Although the proposed methods achieve promising performance on fairness, they still have some
limitations. For example, in our methods, the protected groups must be pre-given or decided by
humans. An interesting question is how to automatically decide the protected groups without human
intervention. In the future, we will focus on this problem.
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A Pseudo-codes of FKKM and FMKKM

Algorithms 1 and 2 show the pseudo-codes of our FKKM and FMKKM, respectively.

Algorithm 1 Fair Kernel K-means

Input: Kernel matrix K, protected groups G1, · · · ,Gt, fairness hyper-parameter λ.
1: Construct protected group indicator matrix G and calculate α as α = |Gmax| ∗ λ.
2: Construct the fair kernel by K̃ = K+ αI− λGGT .
3: Initialize Y by running standard kernel k-means on K.
4: repeat
5: Update Y row by row by maximize Tr

(
YT K̃Y

(
YTY

)−1
)

.
6: until Converges

Output: The final partition matrix Y.

Algorithm 2 Fair Multiple Kernel K-means

Input: Kernel matrices {K(p)}mp=1, protected groups G1, · · · ,Gt, fairness hyper-parameter λ.
1: Construct protected group indicator matrix G and calculate α as α = |Gmax| ∗ λ.
2: Construct the corresponding fair kernel by K̃(p) = K(p) + αI − λGGT for each base kernel

matrix K(p).
3: Initialize γ = 1

m and Y by running standard kernel k-means on
∑m

p=1 γ
2
pK

(p).
4: repeat
5: Update Y row by row by solving Eq.(16).
6: Update γ by Eq.(18)
7: until Converges

Output: The final partition matrix Y.

B Proof of Theorem 2

Denote R̂ (M,γ) = 1
n

∑n
i=1 miny∈{e1,...,ec} ∥Φγ (xi)−My∥2H. Our goal is to bound:

sup
f∈F

(
E[f(x)]− 1

n

n∑
i=1

f (xi)

)
. (24)

According to Assumption 2, we have the largest value of elements in K(p) is b. Now, we consider
K̃(p) = K(p) + αI − λGGT . Since the diagonal elements of GGT are 1, given any xi, we have
that ΦT

γ (xi) Φγ (xi) =
∑m

p=1 γ
2
pΦ

T
p (xi) Φp (xi) ≤ b + α − λ. Given two different instances xi

and xj , if they belong to the same protected group, we have that the (i, j)-th element in GGT is
1, and thus ΦT

γ (xi) Φγ (xj) =
∑m

p=1 γ
2
pΦ

T
p (xi) Φp (xj) ≤ b− λ. If xi and xj belong to different

protected groups, we have that the (i, j)-th element in GGT is 0, and thus ΦT
γ (xi) Φγ (xj) =∑m

p=1 γ
2
pΦ

T
p (xi) Φp (xj) ≤ b.

Then, notice that

min
y∈{e1,...,ec}

∥Φγ (xi)−My∥2H = min
{
∥Φγ (xi)−m1∥2H , · · · , ∥Φγ (xi)−mc∥2H

}
, (25)

where mk denotes the k-th cluster centroid. Next, we denote ai = |πk ∩ Gi| to represent the number
of instances in all protected groups in cluster πk. We have:
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∥Φγ (xi)−mk∥2H =

∥∥∥∥∥∥Φγ(xi)−
1

|πk|
∑
j∈πk

Φγ (xj)

∥∥∥∥∥∥
2

H

≤ 2

ΦT
γ (xi)Φγ(xi) +

1

|πk|2
∑

xp∈πk

∑
xq∈πk

Φγ(xp)
TΦγ(xq)


≤ 2

(b+ α− λ) +
(|πk|) (b+ α− λ) +

(∑t
i=1 a

2
i − |πk|

)
(b− λ) +

(
|πk|2 −

∑t
i=1 a

2
i

)
b

|πk|2


= 2

(
(b+ α− λ) +

|πk|α− λ
∑t

i=1 a
2
i + b|πk|2

|πk|2

)

≤ 2

(
b+ α− λ+ b− λ

t
+

α

|πk|

)
≤ 4 (b+ α)− 2

(
1 +

1

t

)
λ (26)

The second to last inequality holds due to the Cauchy-Schwarz inequality
∑t

i=1 a
2
i ≥ (

∑t
i=1 ai)

2

t

and
∑t

i=1 ai = |πk|. Therefore, we have:

0 ≤ f (xi) ≤ 4 (b+ α)− 2

(
1 +

1

t

)
λ. (27)

According to the Theorem 3.1 in [30], by utilizing McDiarmid’s inequality, we have that for any
δ ≥ 0, with probability at least 1− δ, for all f ∈ F , the following inequality holds:

E[f(x)]− 1

n

n∑
i=1

f (xi) ≤ 2Rn(F) +

(
4 (b+ α)− 2

(
1 +

1

t

)
λ

)√
log(1/δ)

2n
, (28)

where:

Rn(F) =
1

n
E

[
sup
f∈F

n∑
i=1

σif (xi)

]
, (29)

represents the Rademacher complexity of F [45]. σ1, . . . , σn are Rademacher random variables
uniformly distributed on {−1, 1}.

Next, we introduce the Gaussian complexity to provide an upper bound for Rn(F) [5]:

Gn(F) =
1

n
E

[
sup
f∈F

n∑
i=1

βif (xi)

]
, (30)

where β1, . . . , βn are Gaussian random variables with zero mean and unit standard deviation. To
bound the Rademacher complexity, we need the following two lemmas:

Lemma 2 [23] Rn(F) ≤
√

π
2Gn(F).

Lemma 3 [23] Let Gf =
∑n

i=1 βiG (xi, f) and Hf =
∑n

i=1 βiH (xi, f) be two zero-mean sepa-
rable Gaussian processes. If for all f1, f2 ∈ F ,

E
[
(Gf1 −Gf2)

2
]
≤ E

[
(Hf1 −Hf2)

2
]
, (31)

then we have:

E

[
sup
f∈F

Gf

]
≤ E

[
sup
f∈F

Hf

]
. (32)
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In our setting, we define:

G (xi, f) = GM,γ ≜
n∑

i=1

βi

(
min

y∈{e1,...,ek}
∥Φγ (xi)−My∥2H

)
. (33)

Next, we aim to find Hf (i.e., HM,γ) such that:

Eβ

[(
GM1,γ1

−GM2,γ2

)2] ≤ Eβ

[(
HM1,γ1

−HM2,γ2

)2]
. (34)

Specifically, for any f1, f2 ∈ F , we have:(
min
y

∥Φγ1
(xi)−M1y∥2H −min

y
∥Φγ2

(xi)−M2y∥2H

)2

≤
(
max

y

{
∥Φγ1

(xi)−M1y∥2H − ∥Φγ2
(xi)−M2y∥2H

})2

=

((
∥Φγ1

(xi)∥2H − ∥Φγ2
(xi)∥2H

)
+max

y

{
2
(
ΦT

γ2
(xi)M2 − ΦT

γ1
(xi)M1

)
y + yT

(
MT

1 M1 −MT
2 M2

)
y
})2

≤
((

∥Φγ1
(xi)∥2H − ∥Φγ2

(xi)∥2H
)
+max

y
2
(
ΦT

γ2
(xi)M2 − ΦT

γ1
(xi)M1

)
y +max

y
yT
(
MT

1 M1 −MT
2 M2

)
y

)2

=

((
∥Φγ1

(xi)∥2H − ∥Φγ2
(xi)∥2H

)
+max

y
2

c∑
r=1

yr
(
ΦT

γ2
(xi)M2 − ΦT

γ1
(xi)M1

)
er

+ max
y

c∑
r,s=1

yryse
T
r

(
MT

1 M1 −MT
2 M2

)
es

)2

≤4
(
∥Φγ1

(xi)∥2H − ∥Φγ2
(xi)∥2H

)2
+ 2

(
max

y
2

c∑
r=1

yr
(
ΦT

γ2
(xi)M2 − ΦT

γ1
(xi)M1

)
er

)2

+ 4

(
max

y

c∑
r,s=1

yryse
T
r

(
MT

1 M1 −MT
2 M2

)
es

)2

≤4
(
∥Φγ1

(xi)∥2H − ∥Φγ2
(xi)∥2H

)2
+ 8

c∑
r=1

((
ΦT

γ2
(xi)M2 − ΦT

γ1
(xi)M1

)
er

)2
+ 4

c∑
r,s=1

(
eT
r

(
MT

1 M1 −MT
2 M2

)
es

)2
. (35)

The final two inequalities hold due to (a + b + c)2 ≤ 4a2 + 2b2 + 4c2,
∑c

r=1 yr = 1, and∑c
r,s=1 yrys = 1. Therefore, combining Eq.(33) and Eq.(35), we have:

Eβ

[
(GM1,γ1

−GM2,γ2
)2
]

=Eβ

[(
n∑

i=1

βi

[
min
y

∥Φγ1
(xi)−M1y∥2H −min

y
∥Φγ2

(xi)−M2y∥2H

])2]

=

n∑
i=1

(
min
y

∥Φγ1
(xi)−M1y∥2H −min

y
∥Φγ2

(xi)−M2y∥2H

)2

≤
n∑

i=1

[
4
(
∥Φγ1

(xi)∥2H − ∥Φγ2
(xi)∥2H

)2
+ 8

c∑
r=1

((
ΦT

γ2
(xi)M2 − ΦT

γ1
(xi)M1

)
er

)2
+4

c∑
r,s=1

(
eT
r

(
MT

1 M1 −MT
2 M2

)
es

)2]
=Eβ

[
(HM1,γ1

−HM2,γ2
)2
]
. (36)

Then, we obtain HM,γ as follows:

HM,γ = 2

n∑
i=1

βi

∥∥ΦT
γ (xi)

∥∥2
H + 2

√
2

n∑
i=1

c∑
r=1

βirΦ
T
γ (xi)Mer + 2

n∑
i=1

c∑
r,s=1

βirse
T
r M

TMes.

(37)
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To bound the expectation of HM,γ , we introduce the following Lemma from [31]:

Lemma 4 [31] Suppose that

1) (er : 1 ≤ r ≤ c) is an orthonormal basis of Rc ;

2) M is the class of linear operators M : Rc → H with ∥Mer∥H ≤ ω

3) (xi : 1 ≤ i ≤ n) is a sequence in H ,∥xi∥H ≤ µ ;

4) (βir : 1 ≤ i ≤ n, 1 ≤ r ≤ c) and (βirs : 1 ≤ i ≤ n, 1 ≤ r, s ≤ r) are orthogaussian (independent
and N(0, 1) ) sequences.

Then the following three inequalities hold:

Eβ sup
M∈M

n∑
i=1

c∑
r=1

βir ⟨xi,Mer⟩ ≤ ωµc
√
n, (38)

Eβ sup
M∈M

n∑
i=1

c∑
r=1

βir ∥Mer∥2H ≤ ω2c
√
n, (39)

Eβ sup
M∈M

n∑
i=1

c∑
r,s=1

βirs ⟨Mer,Mes⟩ ≤ ω2c2
√
n, (40)

where ⟨·, ·⟩ denotes the inner production.

In our method, given an instance xi, we have that ∥Φγ (xi)∥H = ΦT
γ (xi) Φγ (xi) ≤ b + α − λ.

Moreover, we also have ∥Mer∥H ≤
√

b+ α− λ
t according to Eq.(26). As a result, according to

Lemma 4, the expectation of HM,γ can be be bounded as follows,

Eβ

[
sup
f∈F

HM,γ

]

=Eβ

[
sup
f∈F

2

n∑
i=1

βi

∥∥ΦT
γ (xi)

∥∥2
H + 2

√
2

n∑
i=1

c∑
r=1

βirΦ
T
γ (xi)Mer + 2

n∑
i=1

c∑
r,s=1

βirse
T
r M

TMes

]

≤2Eβ

[
sup
f∈F

n∑
i=1

βi

∥∥ΦT
γ (xi)

∥∥2
H

]
+ 2

√
2Eβ

[
sup
f∈F

n∑
i=1

c∑
r=1

βirΦ
T
γ (xi)Mer

]
+ 2Eβ

[
sup
f∈F

βirse
T
r M

TMes

]

≤2 (b+ α− λ)
√
n+ 2c

√
2 (b+ α− λ)

(
b+ α− λ

t

)
n+ 2c2

(
b+ α− λ

t

)√
n

=2
√
n

[
(1 + c2) (b+ α)− (1 +

c2

t
)λ+ c

√
2 (b+ α− λ)

(
b+ α− λ

t

)]
(41)

Last, we can bound ℜn(F) with Lemma 2, Lemma 3, Eq.(29), Eq.(30), and Eq.(41):

ℜn(F) ≤ 1

n

√
π/2 Eβ

[
sup
f∈F

GM,γ

]
≤ 1

n

√
π/2 Eβ

[
sup
f∈F

HM,γ

]

≤
√
2π√
n

[
(1 + c2) (b+ α)− (1 +

c2

t
)λ+ c

√
2 (b+ α− λ)

(
b+ α− λ

t

)]
.

(42)
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Substituting Eq.(42) into Eq.(28), we finally obtain for any δ ≥ 0, with probability at least 1− δ, for
all f ∈ F , the following holds:

E[f(x)] ≤ 1

n

n∑
i=1

f (xi) +
2
√
2π√
n

[
(1 + c2) (b+ α)− (1 +

c2

t
)λ+ c

√
2 (b+ α− λ)

(
b+ α− λ

t

)]

+

(
4 (b+ α)− 2

(
1 +

1

t

)
λ

)√
log(1/δ)

2n
. (43)

This concludes the proof.

C Proof of Lemma 1

Since σA is the smallest eigenvalue of A, and σB is the largest eigenvalue of B, we have:

A− σAI ⪰ 0, (44)
σBI−B ⪰ 0. (45)

Summing up Eq.(44) and Eq.(45), we have:

A−B− (σA − σB) I ⪰ 0. (46)

Considering the smallest eigenvalue of A−B, denoting as σA−B , and its corresponding eigenvector
vA−B , we have (A−B)vA−B = σA−BvA−B . Multiplying the left-hand side of Eq.(46) with
vT
A−B and vA−B , we have

vT
A−B (A−B− (σA − σB) I)vA−B

=vT
A−B (σA−B − (σA − σB))vA−B

=(σA−B − (σA − σB)) ∥vA−B∥22. (47)

Notice that (A−B− (σA − σB) I) is positive semi-definite according to Eq.(46), which means
vT
A−B (A−B− (σA − σB) I)vA−B ≥ 0. Therefore, σA−B − (σA − σB) ≥ 0, and thus σA−B ≥

σA − σB ≥ 0. This means that A−B is positive semi-definite, which concludes the proof.

D Statistical Information of Data Sets

We conduct experiments on benchmark data sets which are widely used in fair clustering, including
D&S [2], HAR [3], Jaffe [29], MNIST-USPS [20], Credit Card [52] and K1b [53]. D&S is a human
daily and sports activities data set including 8 participants. HAR is a human action recognition data
set including 30 participants. In both D&S and HAR data sets, the data of each participant form
a protected group. Jaffe is a face image data set. Following [20], the face images with the same
expressions are put into a protected group. MNIST-USPS is an image data set containing images of
handwritten digits from the subsets of MNIST and USPS data sets. Following [20], we randomly
sample 2000 images from MNIST to form one protected group and randomly sample 1800 images
from USPS to form the other protected group. Credit card is a data set that describes the customers’
default payments and the data of males and females form two protected groups respectively. K1b is a
text data set. Following [48], we randomly assign each text to a protected group with a Bernoulli
distribution whose p = 0.5 to form two protected groups. Details of the data sets are shown in Table
3.

E Introduction of Compared Methods

To show the effectiveness of our method on clustering performance and fairness, we compare our
method with some state-of-the-art fair clustering and multiple kernel k-means methods, including:

• SpFC [18], which integrates fairness constraints into the Laplacian matrix of a graph.

• VFC [58], which is a universal variational fair clustering framework.
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Table 3: Description of the data sets.
Data sets # of Instances # of Features # of Cluster Protected Groups

D&S 9120 5625 19 Person Identity (8)
HAR 10299 561 6 Person Identity (30)

MNIST-USPS 3800 256 10 Source of images (2)
Jaffe 213 676 10 Expression (7)

Credit Card 5000 22 5 Gender (2)
K1b 2340 21839 6 Synthetic Binary (2)

• FFC [34], which is a three-stage fair clustering method based on k-means method.
• ONKC [25], which is an optimal neighborhood kernel clustering algorithm to enhance the

representability of the optimal kernel.
• MKCSS [55], which is a simple yet effective neighbor-kernel-based MKC algorithm to

consider the intrinsic neighborhood structure among base kernels.
• DPMKKM [42], which is a novel discrete multiple kernel k-means by directly solving the

clustering indicator matrix.
• LFLKA [51], whihc is a simple late fusion multiple kernel clustering with local kernel

alignment maximisation approach.
• EMKC [38], which is effective multiple kernnel k-means by introducing spectral perturba-

tion theory to laplacian matrix.
• OSLR [47], which is a one stage multiple kernel k-means by refining shifted laplacian

matrix.
• ASLR [46], which is a effective multiple kernel k-means by reconstructing the laplacian

matrix.
• CSAMKC [56], which is a fast multiple kernel k-means by adopting a novel sampling

strategy to improve the performance of MKC.
• FAMKKM [41], which is fast and innovative multiple kernel k-means by incorporating two

approximated partition matrices instead of the original individual partition matric for each
base kernel.

F Efficiency Results

Figures 3 and 4 show the convergence curves of FKKM and FMKKM, respectively. We can see that
our methods converge very fast and they often converge within 5 iterations.

Figures 5 and 6 show the running time of all methods on single kernel setting and multiple kernel
setting, respectively. For better comparison, we report the logarithm of the time (in seconds). From
Figures 5 and 6, we can see that our FKKM and FMKKM are faster than or at least comparable with
many state-of-the-art methods, which well demonstrates the efficiency of our methods.
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Figure 3: Convergence curves of all data sets on single kernel setting.
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Figure 4: Convergence curves of all data sets on multiple kernel setting.
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Figure 5: Running time of all methods on the single kernel setting.
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Figure 6: Running time of all methods on the multiple kernel setting.
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the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide the proofs of all theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the detailed experimental settings and the codes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide the codes.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the detailed experimental setting.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have computed the standard deviation but due to the space limit, we do not
report this in the manuscript. We can provide it if requested.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the detailed experimental setting.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not find any societal impact of this work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All used assets are cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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