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Abstract

Diffusion models have demonstrated state-of-the-art results in solving inverse prob-
lems in various domains including medical imaging. However, existing works
generally consider the cases where the forward operator is fully known. Therefore,
blind inverse problems with unknown forward operator parameters require modifi-
cations on existing methods. In this work, we present an extension of the recently
developed regularization by denoising diffusion process (RED-diff) algorithm to
blind inverse problems. Similarly to RED-diff, our method can reconstruct images
without model re-training or fine-tuning for arbitrary acquisition settings. Tested
in fieldmap-corrected MR image reconstruction, our blind RED-diff framework
can successfully approximate the unknown forward model parameters and produce
fieldmap-corrected reconstructions accurately.

1 Introduction

Diffusion models have shown superior performance for solving inverse problems as they are excellent
generative priors (1; 2). Pre-trained diffusion models are used as strong data priors in a plug and play
fashion at inference time. They are typically used in conjunction with data-consistency projection in
the reverse diffusion process (3; 4; 2) or via an approximation of the posterior score function (5; 6).
Recently, (7) have proposed a regularization by denoising (RED-diff) framework for solving generic
inverse problems and (8) extended it for MRI reconstruction problem. RED-diff uses variational
inference to approximate the posterior distribution which consequently corresponds to minimizing
a data-consistency loss and score matching regularization via denoisers at different diffusion steps.
The key strength of the diffusion based samplers for inverse problems is that they do not require
training or fine-tuning for each specific task. However, the applicability of these diffusion based
samplers are restricted to the cases where forward model is fully known. These algorithms require
full characterization of the forward model, therefore they cannot be directly applied to the blind
inverse problems which require estimation of the unknown forward model parameters.

In this paper, we extend the RED-diff framework to blind inverse problems. Using variational
inference, we represent the sampling as alternating stochastic optimization that estimates both the
image and forward model parameters. We evaluate the performance of blind RED-diff on MR image
reconstruction with unknown magnetic fieldmap inhomogeneity.
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Figure 1: Blind RED-diff diagram. Our proposed algorithm extends RED-diff framework to blind
inverse problems. Blind RED-diff combines data-consistency loss with score-matching regularization
from denoisers at different time-steps and forward model parameter prior.

2 Methods

We consider the blind inverse problem:

y = fγ(x0) + η (1)

where the forward model is parameterized by the unknown parameter γ ∈ RD that needs to be
estimated, x0 is the ground truth image, η ∼ N (0, σ2

ηI) is the measurement noise. Under this
setting, the conditional distribution can be characterized as p(y|x0,γ) ∼ N (fγ(x0), σ

2
ηI). We try to

minimize the KL-divergence using a variational approach

min
q

KL (q(x0,γ|y)||p(x0,γ|y)) (2)

where q is the joint variational distribution. When the image and forward model parameters are
independent, the KL-divergence in Eq. 2 can be expressed as

KL (q(x0,γ|y)||p(x0,γ|y)) (3)

= Eq(x0|y)

[
log

q(x0|y)
p(x0)

]
+ Eq(γ|y)

[
log

q(γ|y)
p(γ)

]
− Eq(x0,γ|y) [log p(y|x0,γ)] + log p(y) (4)

= KL (q(x0|y)||p(x0))︸ ︷︷ ︸
term (i)

+KL (q(γ|y)||p(γ))︸ ︷︷ ︸
term (ii)

−Eq(x0,γ|y) [log p(y|x0,γ)]︸ ︷︷ ︸
term (iii)

+ log p(y) (5)

where in line 4 we used the modeling assumption p(x0,γ) = p(x0)p(γ) and assumed that
q(x0,γ|y) = q(x0|y)q(γ|y) based on the mean-field theory. Note that q(x0|y) := N (µx, σ

2
xI) and

q(γ|y) := N (µγ , σ
2
γI) are the variational distributions. Consequently, the minimization in Eq. 2

consists of two KL-divergence terms, one for the image and another for the unknown forward model
parameter, and a data-consistency term.

The KL-divergence in term (i) has the same form in (7). Therefore we can follow the same derivations
as in Propositions 1 and 2 in (7) to represent it as a score matching loss which can be further simplified
as:

KL (q(x0|y)||p(x0)) ≈ Et,ϵ

[
ω(t)

1

σ2
t

||ϵθ(xt; t)− ϵ||22
]

(6)

= Et,ϵ [λt (sg (ϵθ(xt; t)− ϵ))]T µx (7)

where xt = αtµx + σtϵ with αt, σt, ϵ defined for the variance preserving stochastic differential

equation (VP-SDE) as in (9), w(t) is a time-dependent weighting mechanism, and λt :=
2Tσ2

ηαt

σt

dω(t)
dt .
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ϵθ(xt; t) is the diffusion model that estimates the score function ∇xt log p(xt) using denoising score
matching (10). Similarly to (7), the notation (sg) indicates that the score is not differentiated with
respect to µx during optimization.

The KL-divergence in term (ii) acts as a regularizer on γ. When p(γ) has a specific distribution, e.g.
Gaussian or Laplace, we can obtain a closed-form expression for this term. For the i.i.d. Laplace
prior assumption pi(γi) ∼ L(µ̃γi , σ̃γ), q(γi|y) := L(µγi , σγ), and following (11) the regularizer
can be expressed as

R(µγ , σγ) = KL (q(γ|y)||p(γ)) = σγ

σ̃γ
log

σ̃γ

σγ
−D +

||µγ − µ̃γ ||1
σ̃γ

+
σγ

σ̃γ
exp

(
−||µγ − µ̃γ ||1

σγ

)
.

(8)

The final term is simply the data consistency term, i.e., the reconstruction loss.

Eq(x0,γ|y) [log p(y|x0,γ)] = −
1

2σ2
η

Eq(x0,γ|y)
[
||y − fγ(x0)||22

]
(9)

Following (7), for simplicity we assume σγ = 0, then the optimization problem becomes

min
µx,µγ

1

2σ2
η

||y − fγ(µx)||2 + Et,ϵ

[
ω(t)

1

σ2
t

||ϵθ(xt; t)− ϵ||22
]
+R(µγ , 0) (10)

In essence, the solution to the blind inverse problem will find an image µx and the forward model
parameter µγ , while enforcing a high likelihood under the diffusion model prior and regularization
imposed by the prior for the forward model parameter. Similar to (7), we search for x̂ = µx and
γ̂ = µγ using first-order stochastic optimization in alternating fashion. Our method is described in
Algorithm 1.

Algorithm 1: RED-diff for Blind Inverse Problems
Input: y, fγ(·), {µ̃γ , σ̃γ , λγ}, {αt, σt, λt}
Initializate :µx0

,µγ

for t = T, . . . , 1 do
ϵ1 ∼ N (0, I)
xt = αtµx + σtϵ1
lossx = ||y − fµγ (µx)||22 + λt(sg [ϵθ(xt; t)− ϵ])Tµx

µx ← OptimizerStep(lossx)
lossγ = ||y − fµγ (µx)||22 + λγR(µγ , 0)
µγ ← OptimizerStep(lossγ)

end
Return: µx,µγ

3 Experiments

We test the blind RED-diff algorithm in the MRI inverse problem of fieldmap-corrected image
reconstruction, where we jointly reconstruct the image and estimate the off-resonance fieldmap.
MRI data was retrospectively simulated using ground truth images from the fastMRI dataset (12).
Ground truth sensitivity maps were calculated using ESPIRiT (13) on the fastMRI data. Ground truth
fieldmaps were obtained from a separate brain dataset acquired with the PhysiCal sequence (14). To
simulate the fieldmap corrupted multi-channel k-space data, a 16 shot variable density spiral was
used with an undersampling factor of R = 2. The temporal sampling rate was set to 4µs, and the
total readout time was 15.6 ms, similar to what is used on GE scanners.

The forward model relating the ground truth brain images x0 to multi-channel spiral k-space data y
is shown below:

y = fγ(x) + η = Aγx0 + η = FSTγx0 + η, (11)
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Figure 2: Results. Blind RED-diff is able to simultaneously resolve the off-resonance blurring
and remove undersampling artifacts by concurrently estimating image x0 and the forward model
parameter γ. Conversely, RED-diff does not remove blurring artifacts. Blurring is mainly located in
the regions of the ground truth field map ψ where off-resonance is stronger.

where the forward model Aγ is composed by three operators: the transform operator Tγ , the sensitiv-
ity map operator C and the Non-Uniform Fourier Transform (15) operator F. The transform operator
Tγ implements time-segmented off-resonance effects (16) caused by the field inhomogeneities map
ψ(γ). We parameterize the field map with γ. A more detailed model description can be found in
Appendix A.2.

Algorithm 1 was implemented by modifying the csgm-mri-langevin (https://github.com/utcsilab/csgm-
mri-langevin) and SMRD (https://github.com/batuozt/SMRD) libraries from Jalal et al. (2) and
Ozturkler et al. (17) respectively. Reconstructions were run on a 24 GB NVIDIA Titan RTX. For the
image x score function, we used the score function model from Jalal et al. (2). For the field map ψ,
we assumed a spatial polynomial model, where γ contains the polynomial coefficients. Empirically,
we observed that a Laplace distribution approximates p(γ). Further details can be found in Appendix
A.2.

Results are shown in Figure 2. The linear reconstruction shows both off-resonance and undersampling
artifacts. RED-diff is able to remove undersampling artifacts because of the diffusion prior. However,
RED-diff cannot resolve the off-resonance blurring due to the limitations of the model. Conversely,
our proposed blind RED-diff is able to remove both undersampling and off-resonance artifacts.

4 Discussion and Conclusion

In this work, we extended the RED-diff framework to blind inverse problems. Blind RED-diff
requires a pretarined diffusion model and the functional description of the forward model. We
evaluated the performance of our proposed method on fieldmap corrected MRI reconstruction where
the B0-inhomogeneity map is not known at inference time. Our preliminary results demonstrated that
the blind RED-diff framework can successfully approximate the unknown forward model parameters
and produce fieldmap corrected reconstructions.

In our experiments, we used a simple Laplacian prior for the forward model parameters γ which leads
to an ℓ1 regularized solution. A much stronger diffusion based prior can also be used for representing
the prior distribution. We are planning to extend our framework to include expressive diffusion priors
as in Chung et. al. (18) for forward model parameters to improve the results.

One limitation of our formulation is the conditional independence assumption in the variational
distributions for x and γ given the measurement y. Although this assumption can be sufficient for
cases like motion corrupted MRI and fieldmap corrected MRI reconstruction, it can be inaccurate
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for scenarios where there is a strong dependence between x and γ such as the water-fat separation
problem. These dependencies could be modeled with conditional diffusion models.

An important benefit of diffusion based samplers such as RED-diff is that they can be used to solve
different inverse problems without retraining or fine-tuning as the score model is agnostic to the MRI
forward model. We are planning to extend our framework to other inverse problems in MRI such as
water-fat separation and quantitative parameter mapping.
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A Appendix

A.1 MRI forward model

The multi-channel k-space y and the forward model Aγ can be expressed as C stacked components,
where C is the number of coil channels.

y =


y0

y1

...
yC−1

 , Aγ =


A0

A1

...
AC−1,

 (12)

where yc is the k-space data from coil channel c and, similarly, Ac is the forward model of coil
channel c. We obviated the dependency of Ac to γ for notation simplicity. Then, the time-segmented
forward model that relates k-space yc to the underlying brain image x is the following:

yc = Acx0 + η

= F̂ScT̂γx0 + η

=


F0

F1

. . .
FT−1



Sc

Sc

. . .
Sc



T0(γ)

T1(γ)
. . .

TT−1(γ)

x0 + η

(13)

Sc = diag(sc), (14)
Tt(γ) = diag (exp {−i2πτtvec(ψ(γ))}) (15)

,

where Ft estimates the k-space points acquired during time segment t, T is the total number of time
segments, τ is the vector with the mean time of each time segment, sc is the sensitivity map of coil
channel c, and vec(·) is the vectorized function.

A.2 Field map model

We parameterize ψ as a masked spatial polynomial function, where γ contains the polynomial
coefficients.

ψij(γ) =
∑

p+q≤P

γpqi
pjq ×mij , (16)
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Figure 3: Distribution of polynomial coefficients fit to B0 field maps on the in-house brain dataset.
We observe that a Laplace distribution approximates the prior for polynomial coefficients p(γ)
effectively.

where m represents a mask that selects the image support for numerical stability. In order to represent
the prior p(γ) on the polynomial coefficients, we fit P = 5th order polynomials on the B0 field maps.
The B0 field map dataset was obtained from a separate brain acquisition using the PhysiCal sequence
(14). The dataset contains a total of 2,420 2D slices from 11 subjects. Fig. 3 shows the distribution of
the coefficients and candidate distributions fit on this data. Distribution fitting results indicate that a
Laplace distribution with location parameter µ = 3.3 and scale parameter σ = 95.1 can approximate
this prior. Therefore, we assumed a Laplace distribution for the γ prior with these parameters which
resulted in the ℓ1 regularized update as shown in Eq. 8.
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