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Abstract. Alzheimer’s Disease (AD) is a significant neurodegenerative
disorder. Detecting AD early is essential for effective management and
improving the quality of life for both patients and their families. Recent
advancements in medical imaging technology have introduced neuroimaging-
based methods for early AD diagnosis. However, the challenges in early
AD detection suggest that using a single modality dataset in deep learn-
ing (DL) studies, particularly neuroimaging, might not yield precise pre-
dictions of AD progression compared to integrating data from multiple
imaging modalities. Utilizing information from multi-modal data fusion
can enhance the detection of subtle changes and biomarkers, leading to
more reliable and accurate diagnosis. In our study, we develop an auto-
mated multimodal system that integrates MRI and PET images at an in-
termediate fusion level, facilitating the early diagnosis of Alzheimer’s dis-
ease. This fusion approach does not require extensive preprocessing steps
typically associated with image fusion method. Our proposed method-
ology outperforms previous studies in differentiating between individu-
als with Alzheimer’s disease and cognitively normal (CN) individuals,
achieving an AUC score of 97.67% and an accuracy (ACC) of 95.24%.

Keywords: Alzheimer’s Disease · Neuroimaging Features · 3D Image
Classification.

1 Introduction

Alzheimer’s Disease (AD) is a severe neurodegenerative disease. Early identifi-
cation of AD is crucial for effective management and for enhancing the quality
of life for both patients and their families. Unfortunately, the majority of ex-
isting diagnostic techniques rely on subjective assessments of behavioral and
cognitive symptoms, leading to potential unreliability and misdiagnosis. In re-
cent years, advances in medical imaging technology have led to the emergence
of neuroimaging- based methods for the early diagnosis of AD. However, these
methods often rely on the analysis of a single modality, which may not capture
the full complexity of the disease. Multimodal data fusion has been proposed as
a promising approach to address this limitation by combining information from
different modalities.

In a clinical setting, AD is typically diagnosed by systematically examining
various aspects of patients’ multiple modalities [18]. These aspects commonly
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derive from the diverse information sources of patients, encompassing neuroim-
age data, gene sequence data, profile data, and clinical mental state scale data.
In contrast to the classification of AD based solely on single-modal neuroimages,
enhanced performance can be attained through the utilization of multi-modal
classification, involving the integration of diverse information sources. Investi-
gating the synergies among various multi-modal neuroimages significantly con-
tributes to the identification of pathological processes in neurological disorders.
This technique has found applications in image classification [20, 23] and im-
age registration [8]. The motivation for engaging in multi-modal fusion stems
from two primary advantages: firstly, the potential for more robust predictions
through the observation of the same phenomenon across multiple modalities [4],
and secondly, the extraction of complementary information from diverse modal-
ities to enhance the precision of classification results [3].

The multimodal framework consists of essential components that are primar-
ily structured in three key levels. The initial level, known as the integration level,
involves the definition of various modalities of data intended for fusion. Thus, at
this stage, the determination is made regarding what specifically should be fused.
The subsequent level is the fusion methodology, encompassing the approach em-
ployed to combine the identified data, guided by the chosen fusion strategy. In
the literature, fusion strategies are classified into three groups: Early fusion, also
known as feature-level fusion, is the process of merging multimodal data by con-
catenating its features in a vector, which is subsequently input into a machine
learning model. An intermediate fusion that integrates feature representations
gained from one modality at intermediate layers of a neural network with feature
representations learned from other modalities is referred to as joint fusion. Late
fusion involves decision-level fusion, in which a distinct model is trained for each
modality, and the predictions of all models are subsequently integrated to create
a final decision.The final level in the framework is the Knowledge level, where
we have the final results of the diagnosis.

Numerous studies have delved into the fusion of diverse modalities for AD
diagnosis. Notably, Dwivedi et al. [7], Dong et al. [6], Xu [21], Ning [15], Hao
[10], and Zhang [22] have introduced methodologies primarily focused on neu-
roimaging features, particularly utilizing MRI and PET modalities. Similarly,
Khvostikov et al. [12], Kang [11], and Aderghal et al. [1] have directed their
attention to the fusion of neuroimaging data, specifically from sMRI and DTI
scans. In addition to these, Zuo et al. [24] integrated sMRI, PET, and fMRI
data, while Choi and Jin [5] used flurodeoxyglucose and florbetapir PET. Peng
et al. [16] combined sMRI, PET, and genetic data, and Lee et al. [14] integrated
cognitive performance, demographic information, CSF, and MRI imaging data.

In reviewing these studies, it becomes evident that the most frequently fused
modalities are MRI and PET, indicating their prominent role in multimodal in-
vestigations within this research domain. Various approaches for fusing MRI and
PET volumes have been explored in the literature. For example, Song et al. [17]
introduced a framework for AD diagnosis using a feature fusion approach to ex-
tract semantic information from 3D MRI and PET volumes. They also proposed
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an image fusion method that outperformed their initial approach by reducing
the number of model parameters through the use of a single composite image,
albeit requiring multistep preprocessing. Kong et al. [13] similarly employed an
image fusion technique, while Venugopalan et al. [19] utilized 3D CNNs to ex-
tract features from MRI and PET data, demonstrating improved performance
over traditional fusion methods despite being limited by dataset sizes.

In our study, we develop an automated multimodal system that integrates
MRI and PET images at an intermediate fusion level, facilitating the early di-
agnosis of AD. This fusion method requires minimal preprocessing compared to
traditional image fusion techniques. Our approach surpasses previous studies in
distinguishing between individuals with AD and CN individuals.

2 Methodology

To preserve the modality-specific information for both modalities, we introduce
a heuristic intermediate feature fusion framework that can capture the comple-
mentary information from PET and MRI modalities independently. The compo-
nents of our proposed feature fusion framework are illustrated in figure 1. The
first level in our framework is to define the modalities to be integrated. Next,
we apply preprocessing steps from the fast-proposed pipeline, to both MRI and
PET scans separately to prepare the data for the feature extraction step. In
the feature extraction step, a 3D pretrained deep learning model is used as a
feature extractor for each modality. Subsequently, we employ an intermediate
feature fusion approach by leveraging the feature maps extracted from the pre-
vious step and processing them for input to the classification network. Finally,
a small and simple 3D CNN network is used as a classification network for the
effective classification of AD stages.

Fig. 1. The proposed Intermediate Feature Fusion Framework.

2.1 Dataset

Our study concentrates on the ADNI dataset (adni.loni.usc.edu), which is widely
used for this problem. We specifically implemented our experiments using the
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structural MRI and 18-fluorodeoxyglucose (FDG)-PET modalities, which are
commonly employed non-invasive methods for capturing characteristics of brain
tissue. We collected 3D data from subjects who underwent scans using both of
these modalities.

Firstly, we filtered the subjects to only include those with data available
in both PET and MRI during the same visit and scan period. In total, 253
subjects participated in this experiment, contributing to a dataset of 822 scans.
We aimed to mitigate the risk of data leakage by considering only the first scans
or baseline scans for each subject. This decision ensured an equal number of
scans and subjects. However, addressing the challenge of a small dataset size
due to the constraint of scans from the same time period, each subject could
have 3 to 4 visits in different years or a 6-month gap within the same year.
To maintain our principle of avoiding data leakage, we carefully split the data,
ensuring that a subject’s scans do not appear in different sets but rather all in
one place.

The summary of subjects and scans in the dataset is provided in Table 1. All
subjects in the dataset belong to either the AD, MCI, or CN groups.

Table 1. Summary of participant statistics in the ADNI dataset (MRI and PET).

Class Subjects Scans
AD 43 117
MCI 111 433
CN 99 272
Total Number of scans = 822

2.2 Data Preprocessing

Both MRI and FDG-PET images in ADNI have undergone various processing
stages. Each modality was preprocessed separately. Specifically, the MRI im-
ages underwent a series of processing steps, including skull stripping, intensity
normalization, uniform resampling to achieve isotropic resolution, 3D cropping
to extract only the brain from the black background, resizing, and finally, the
application of histogram equalization to enhance the contrast. The preprocess-
ing pipeline that was proposed in [9] was applied here except for the histogram
equalization step, which is applied to the scans to enhance the quality and dis-
criminatory power of the images.

Regarding the PET scans preprocessing, the initial FDG-PET scans undergo
the following processing steps to ensure consistency in PET data across various
systems. Firstly, we converted all the PET files to Neuroimaging Informatics
Technology Initiative (NIFTI) format files as all the processed PET images data
are in DICOM format. A dicom2nifti python package is used to apply the con-
version. Beyond the brain tissue region, PET modality image like MRI exhibits
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multiple background areas characterized by pixel values of zeros. We effectively
reduce these non-essential background regions to decrease the volume of input
data via 3D cropping as in the MRI pipeline. Furthermore, we resized the vol-
umes to be 128×128×128 in size. Finally, histogram equalization is applied to
the PET scans. Figure 2 shows the details of the PET preprocessing pipeline
and the output of the pipeline.

In this paper, handling multimodal data poses a significant challenge due to
the limitation of a small sample size. To address this concern, an essential compo-
nent of our proposed methodology is the augmentation step. We employ various
3D transformations on both MRI and PET data, including random rotation and
flipping.

Fig. 2. PET Image Processing Method.

2.3 Networks Architecture

The effectiveness of the 3D CNN models and transfer learning approach in di-
agnosing AD, led us to choose them as the optimal starting point for designing
our multi-modal framework.

Our proposed multi-modal model architecture is shown in figure 3. The 3D
DenseNet201 based transfer learning model is used as a deep feature extractor for
the processed images of both modalities separately. After extracting the feature
maps from each modality, a concatenation layer is added to the model to fuse
those intermediate features and make them ready for the single final network.
The last layers in our network form a small and simple 3D CNN. The layers
details of the final classification network are also illustrated in figure 3.

3 Experiments Setup and Results

In this part of our study, our experiments are organized as follows: initially, two
3D DenseNet201 models are utilized as feature extractors for both MRI and
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Fig. 3. The Proposed Multi-modal Model Architecture.

PET images. Subsequently, we load the weights of each modality independently
and incorporate them into the fusion phase. Finally, a straightforward 3D CNN
network is applied to the fused features for AD diagnosis. We conduct four
classification tasks: AD vs CN, AD vs MCI, and MCI vs CN.

One of the challenges highlighted in the literature is the variability in hy-
perparameter choices across different studies and experiments. In response to
this issue, we employed an open-source hyperparameter optimization framework,
Optuna [2]. Optuna is compatible with any machine learning or deep learning
framework, offering versatility. Using Optuna’s intuitive syntax, we defined the
hyperparameter search space and objective function within our existing code-
base.

We employed Optuna’s automated hyperparameter optimization algorithms,
which efficiently explored and evaluated different configurations, enabling us to
discover optimal settings for our models. Specifically, we specified the search
space for hyperparameters: batch size, learning rate, and input shape by defin-
ing their types as categorical, float, and categorical, with possible ranges of [5,
8, 16, 32], [0.000001, 0.0001], and [64, 96, 128] respectively. The framework con-
ducts multiple trials, each representing a unique set of hyperparameter values
sampled from the defined search space, and evaluates the objective function
for each trial to obtain the corresponding performance metric. Following the
optimization process, optuna returns the best set of hyperparameters that led
to optimal performance according to the defined objective function. The opti-
mal configuration obtained was [batch size: 16, input size: 128, learning rate:
3.4885205571560794e-05], achieved at trial 9. All experiments were carried out
utilizing the TensorFlow deep learning framework in Python. In the training
phase of the feature extractors, we employed a total of 200 epochs with a batch
size set at 16, aligning with the recommendations derived from the Optuna
optimization process. Nevertheless, when training the final CNN network, we
encountered hardware constraints, compelling us to decrease the batch size to
5. Adam optimizer is employed with a learning rate that is recommended from
optuna algorithm and a ReduceLROnPlateau strategy is utilized here to reduce
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the learning rate when the validation loss has stopped improving. According to
the final classification network, all the setups have been the same.

In our study, we addressed the challenge of imbalanced classes by imple-
menting oversampling and class weighting strategies during the training of our
fusion model. To overcome class imbalance, we applied oversampling to the mi-
nority classes using the resample function. This step ensures that each class is
represented adequately in the training dataset, preventing the model from being
biased towards the majority class. It randomly selects samples with replacements
from the provided class indices, effectively duplicating some samples to achieve
the desired oversampling. This is done until the size of the minority class matches
the size of the majority class, making the class distribution more balanced in the
training data. To further mitigate the impact of class imbalance, we computed
class weights using the "compute class weight" function from sci-kit-learn. It is
utilized to give different weights to different classes during the training of the
model. In the experiments, the BinaryFocalCrossentropy loss function is em-
ployed, combining the characteristics of both binary cross-entropy (BCE) and
focal loss. Binary Cross-Entropy (BCE) serves as the standard loss function for
binary classification problems. On the other hand, focal loss is introduced to ad-
dress class imbalance in binary classification tasks. It achieves this by modulat-
ing the cross-entropy loss and down-weighting the contribution of well-classified
examples where the predicted probability is high. This adjustment allows the
model to prioritize hard-to-classify examples.

We tested the performance of our fusion model through three binary classifi-
cation tasks to recognize the three AD stages as listed in table 2. The table shows
that the best results were obtained for the AD vs CN task, with an AUC score
of 97.67%. Table 3 shows the performance of the proposed intermediate feature
fusion method compared with the uni-modal methods for the best-performed
task (AD vs CN).

Table 2. Proposed Feature Fusion Results for 3 classification tasks.

Task ACC BA AUC F1-score
AD vs CN 95.24 95.71 97.67 93.33
MCI vs CN 80 77.81 86.08 72.86
AD vs MCI 75.0 74.23 80.54 73.4

Table 3. The uni-modal and Proposed Feature Fusion Results for AD vs CN task.

Metric MRI PET Fusion method
ACC 68.75 87.5 95.24
AUC 72.5 94.29 97.67
BA 68.67 87.71 95.71
F1-score 67.15 87.67 93.33
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4 Discussion and Conclusion

In this study, our goal was to utilize the power of neuroimaging multimodal
data instead of using the unimodal data alone. Table 4 shows the comparison
between our proposed algorithm with other studies in the literature through
three classification tasks. Our proposed method outperforms the other studies
with a superior performance for the AD vs CN task with an ACC= 95.24%.

As introduced in table 4 there are many studies, some of them follow dif-
ferent approaches for fusing between MRI and PET volumes. Song et al. [17]
introduced a framework for AD diagnosis with the feature fusion approach to
obtain semantic information from the 3D volumes of MRI and PET. The im-
age fusion approach helps in reducing the number of model parameters as a
single composite image is used in the network. On the other hand, it requires
multistep preprocessing to achieve this fusion. Kong et al. [13] presented also
an image fusion method where PET and MRI images are fused and fed into the
network. In addition, Venugopalan et al. [19] method suggest that the deep mod-
els for integration also show improved performance over traditional feature-level
and decision-level integrations. However, their study suffers from having limited
dataset sizes.

Regarding data subjects used in this paper, instead of utilizing only the
baseline scans, we obtained three to four scans for each subject in different years
to overcome the small data sizes as much as possible. In addition, we took into
consideration the problem of data leakage that could happen through having
multiple scans for each subject, so, we split the data very carefully to ensure
that the scans of each subject will not appear in different sets. By utilizing
the oversampling and class weighting in our experiments, we got a superior
performance of the model and we can see this effect clearly through investigating
the metrics especially the f1-scores for each class in different tasks.

Utilizing the 3D augmentation functions was a great addition to our experi-
ments and to the model’s performance. Therefore the ordering of those steps in
our experiments is as follows, we first applied oversampling to all the training
data in each classification task separately by sampling the minor class to have
the same number of samples from the major class. Then, the preprocessing is
applied to the over-sampled data and finally, the transformation is applied to
only the training data.

As a limitation in this study is the challenge of applying the multi-class
classification task as dealing with 3D data from MRI and PET scans is very
difficult and requires to have high computational resources.

In conclusion, our study presented a comprehensive framework for aiding
in the early diagnosis of Alzheimer’s disease through a focus on neuroimag-
ing features. We specifically chose to focus on fusing neuroimaging features by
combining 3D MRI scans with 18-FDG PET scans through the introduction of
an intermediate feature fusion method. Our proposed fusion framework demon-
strated superior results compared to related studies in the literature.
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Table 4. Comparative performance of our classifiers and competitors.

AD vs CN MCI vs CN AD vs MCI
Study ACC (%) ACC(%) ACC(%)
Kong et al. (2022) [13] 93.21 86.52 85.63
song et al. (2021) [17](feature fusion) 93.22 82.37 81.00
song et al. (2021) [17](image fusion) 94.11 88.48 84.83
Venugopalan et al. (2021)[19] 86 - -
Proposed feature fusion method 95.24 80 75
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References

1. Aderghal, K., Khvostikov, A., Krylov, A., Benois-Pineau, J., Karim, A.,
Catheline, G.: Classification of alzheimer disease on imaging modalities
with deep cnns using cross-modal transfer learning. pp. 345–350 (06 2018).
https://doi.org/10.1109/CBMS.2018.00067

2. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-
generation hyperparameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (2019)

3. Bailey, D., Pichler, B., Gückel, B., Barthel, H., Beer, A., Bremerich, J., Czernin, J.,
Drzezga, A., Franzius, C., Goh, V., et al.: Combined pet/mri: multi-modality multi-
parametric imaging is here: summary report of the 4th international workshop on
pet/mr imaging; february 23–27, 2015, tübingen, germany. Molecular imaging and
biology 17, 595–608 (2015)

4. Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: A survey
and taxonomy. IEEE transactions on pattern analysis and machine intelligence
41(2), 423–443 (2018)

5. Choi, H., Jin, K.H.: Predicting cognitive decline with deep learning of
brain metabolism and amyloid imaging. CoRR abs/1704.06033 (2017),
http://arxiv.org/abs/1704.06033

6. Dong, A., Zhang, G., Liu, J., Wei, Z.: Latent feature representation learning for
alzheimer’s disease classification. Computers in Biology and Medicine 150, 106116
(2022). https://doi.org/10.1016/j.compbiomed.2022.106116

7. Dwivedi, S., Goel, T., Tanveer, M., Murugan, R., Sharma, R.: Multi-modal fusion
based deep learning network for effective diagnosis of alzheimers disease. IEEE
MultiMedia (2022)

8. Fan, J., Cao, X., Wang, Q., Yap, P.T., Shen, D.: Adversarial learning for mono-or
multi-modal registration. Medical image analysis 58, 101545 (2019)

9. Gamal, A., Elattar, M., Selim, S.: Automatic early diagnosis of
alzheimer’s disease using 3d deep ensemble approach. IEEE Access
10, 115974–115987 (2022). https://doi.org/10.1109/access.2022.3218621,
http://dx.doi.org/10.1109/ACCESS.2022.3218621

10. Hao, X., Bao, Y., Guo, Y., Ming, Y., Zhang, D., Risacher, S., Saykin, A., Yao,
X., Shen, L.: Multi-modal neuroimaging feature selection with consistent metric



10 F. Author et al.

constraint for diagnosis of alzheimer’s disease. Medical Image Analysis 60, 101625
(12 2019). https://doi.org/10.1016/j.media.2019.101625

11. Kang, L., Jiang, J., Jianjun, H., Zhang, T.: Identifying early mild cognitive impair-
ment by multi-modality mri-based deep learning. Frontiers in Aging Neuroscience
12, 206 (09 2020). https://doi.org/10.3389/fnagi.2020.00206

12. Khvostikov, A.V., Aderghal, K., Benois-Pineau, J., Krylov, A.S.,
Catheline, G.: 3d cnn-based classification using smri and md-dti im-
ages for alzheimer disease studies. ArXiv abs/1801.05968 (2018),
https://api.semanticscholar.org/CorpusID:12103502

13. Kong, Z., Zhang, M., Zhu, W., Yi, Y., Wang, T., Zhang, B.: Multi-modal data
alzheimer’s disease detection based on 3d convolution. Biomedical Signal Process-
ing and Control 75, 103565 (2022)

14. Lee, G., Kang, B., Nho, K., Sohn, K.A., Kim, D.: Mildint: Deep learning-based
multimodal longitudinal data integration framework. Frontiers in Genetics 10 (06
2019). https://doi.org/10.3389/fgene.2019.00617

15. Ning, Z., Xiao, Q., Feng, Q., Chen, W., Zhang, Y.: Relation-induced multi-modal
shared representation learning for alzheimer’s disease diagnosis. IEEE transactions
on medical imaging PP (03 2021). https://doi.org/10.1109/TMI.2021.3063150

16. Peng, J., Zhu, X., An, Y., Shen, D.: Structured sparsity regularized multiple kernel
learning for alzheimer’s disease diagnosis. Pattern Recognition 88, 370–382 (03
2019). https://doi.org/10.1016/j.patcog.2018.11.027

17. Song, J., Zheng, J., Li, P., Lu, X., Zhu, G., Shen, P.: An effective multimodal
image fusion method using mri and pet for alzheimer’s disease diagnosis. Frontiers
in Digital Health 3, 637386 (2021)

18. Tu, Y., Lin, S., Qiao, J., Zhuang, Y., Zhang, P.: Alzheimer’s disease diagnosis via
multimodal feature fusion. Computers in Biology and Medicine 148, 105901 (2022)

19. Venugopalan, J., Tong, L., Hassanzadeh, H.R., Wang, M.D.: Multimodal deep
learning models for early detection of alzheimer’s disease stage. Scientific reports
11(1), 1–13 (2021)

20. Wang, J., Wang, Q., Wang, S., Shen, D.: Sparse multi-view task-centralized learn-
ing for asd diagnosis. In: Machine Learning in Medical Imaging: 8th International
Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Quebec City,
QC, Canada, September 10, 2017, Proceedings 8. pp. 159–167. Springer (2017)

21. Xu, H., Zhong, S., Zhang, Y.: Multi-level fusion network for mild cognitive im-
pairment identification using multi-modal neuroimages. Physics in medicine and
biology 68 (04 2023). https://doi.org/10.1088/1361-6560/accac8

22. Zhang, Y., Wang, S., Xia, K., Jiang, Y., Qian, P.: Alzheimer’s dis-
ease multiclass diagnosis via multimodal neuroimaging embedding fea-
ture selection and fusion. Information Fusion 66, 170–183 (02 2021).
https://doi.org/10.1016/j.inffus.2020.09.002

23. Zhou, T., Thung, K.H., Zhu, X., Shen, D.: Effective feature learning and fusion of
multimodality data using stage-wise deep neural network for dementia diagnosis.
Human brain mapping 40(3), 1001–1016 (2019)

24. Zuo, Q., Lei, B., Shen, Y., Liu, Y., Feng, Z., Wang, S.Q.: Multimodal Representa-
tions Learning and Adversarial Hypergraph Fusion for Early Alzheimer’s Disease
Prediction, pp. 479–490 (10 2021). https://doi.org/10.1007/978-3-030-88010-1_40


