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ABSTRACT

Abnormal Event Detection (AED) plays a crucial role in real-world applications,
including security surveillance, autonomous driving, and industrial monitoring.
Recent advances in large pre-trained models have opened new opportunities for
training-free AED by leveraging rich prior knowledge and reasoning capabilities
learned during pre-training. However, current studies typically rely on dense frame-
level inference to ensure abnormal event coverage, incurring high computational
costs and latency. This raises a fundamental question: Is this dense reasoning truly
necessary when deploying large pre-trained models in AED? To answer this, we
propose ReCoAED, a new framework inspired by the human nervous system’s
reflex arc-conscious reasoning stream, enabling adaptive frame processing to reduce
redundant computation. It consists of two core streams: i) Reflex reacting stream: a
lightweight CLIP compares frame features with prototype prompts to form decision
vectors, which queries a dynamic memory of prior cases, enabling the system to
rapidly determine whether to respond immediately with the memory or escalate the
frame for deeper reasoning. ii) Conscious reasoning stream: a medium-scale (7B)
vision-language model analyzes novel frames, generating its event descriptions and
anomalous scores to continuously update the dynamic memory. Periodically, an
LLM reviews accumulated descriptions to identify new abnormal events, refine
prototypes, and correct errors to realize self-evolution. Our extensive experiments
show that ReCoAED reaches state-of-the-art training-free performance in UCF-
Crime/XD-Violence datasets while reasoning on only 28.55%/16.04% of frames
used by the previous methods, showing that sparse reasoning is enough for effective
large-model-based AED.

1 INTRODUCTION

Abnormal Event Detection (AED) aims to automatically identify anomalous events in video streams
that exhibit deviation from normal patterns. It has attracted substantial attention due to its wide-range
applications, including security surveillance [Liu et al.| (2018); [Sultani et al.| (2018)), autonomous
driving Yao et al.|(2020), and industrial monitoring |Pang et al.| (2021), etc. Due to limited data and
computational resources in the edge devices (e.g., camera, vehicle), it’s crucial to develop efficient
and generalizable AED systems to enable in-time responses to diverse abnormal events.

While conventional AED models exhibit high efficiency in limited conditions, they suffer from poor
generalization and remain fragile in dynamic real-world deployments [Zhu et al.| (2022); [Liu et al.
(2023)); Zanella et al.| (2024); |Wu et al.| (2024). To overcome this, recent worksZanella et al.| (2024);
Yang et al.|(2024); [Kim et al.| (2023)); Tang et al.|(2024); Du et al.[(2024)) explore the integration of
Large Visual Language Model (LVLM) and Large Language Model (LLM), leveraging their broad
prior knowledge from the large-scale pre-training. This emerging paradigm involves using i) LVLMs
to produce rich textual descriptions of video frames and ii) LLMs to infer anomalous events from
these descriptions Zanella et al.| (2024). By decoupling abnormal event detection from low-level
visual cues, this system achieves significantly improved generalization.

Despite these advantages, large-model AED systems face two critical deployment challenges: i) High
computational cost of inference Samsi et al.|(2023)); Zhou et al.|(2024), and ii) Dense frame-level
analysis to ensure abnormal event coverage. These challenges inevitably compound the overall
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Figure 1: (a) The nervous system uses low-cost reflex arcs to process familiar signals, reserving
cortical resources for unfamiliar ones through the thalamus—cortex loop. Bidirectional feedback
enables top-down modulation of reflexes and bottom-up filtering of redundant information. (b)
ReCoAED follows this architecture: the reflex component combines historic knowledge to filter
trivial frames and spot novel ones. Novel frames then trigger conscious reasoning using a VLM
for deeper analysis. An LLM closes the feedback loop by periodically refining both memory and
prompts, incrementally improving the system.

computational burden. This raises a fundamental question: When leveraging powerful foundation
models, is frequent inference across densely sampled frames truly necessary? While prior studies
have validated the benefits of dense coverage in traditional AED pipelines [Zanella et al.| (2024);

Yang et al.| (2024); [Wu et al| (2024), its utility in large-model systems remains underexplored and
potentially suboptimal.

To address this challenge, we draw inspiration from how the human nervous system reduces the brain’s
burden through hierarchical processing (2009), allocating cognitive resources adaptively.
As shown in Figure [T{a), it employs two complementary processing streams: i) Reflex arc that
rapidly filters and responds to familiar, redundant signals and ii) Conscious thinking where the
thalamus performs primary analysis [Dehghani & Wimmer| and cortical regions engage in
further reasoning only on novel/complex signalsNani et al.[(2019). These streams interact through
a bidirectional feedback loopZaghal (2020): the conscious reasoning influences the reflex arc’s
responses by manipulating memory and knowledge, while the reflex arc filters out trivial signals,
thereby reducing the cognitive load on conscious thinking. This paradigm suggests that dense/uniform
reasoning of the large pretrained models is not always necessary, inspiring us to develop a more
efficient information routing framework for AED.

i

To this end, we propose ReCoAED, a novel framework that constructs the loop of efficient “Reflex’
reacting with deeper “Conscious” reasoning in Figure[T{b). The reflex reacting leverages a lightweight
CLIP Radford et al.| (2021)) model to fuse visual features with prompts derived from textual event
prototypes, producing a decision vector to query a dynamic memory of representative frames’ records.
If a frame falls within the coverage of the memory, it is considered trivial, and its anomalous score
is retrieved directly, emulating low-latency, reflexive reacting. Frames that fail this check will be
regarded as novel frames and activate the conscious reasoning stream, where a medium-scale (7B)
VLM generates textual event descriptions and anomalous scores for these frames under the guidance
of the textual event prototypes. These outputs are assembled as a new record and fed back to the
reflex reacting stream’s memory, refining the system’s internal representations. To complete the
feedback loop, the conscious reasoning also includes an LLM-based reasoner that periodically revisits
generated descriptions to identify novel abnormal event types, revise earlier decisions, and adapt the
prototype prompts, thus realizing a top-down self-evolution coupled with bottom-up filtering.

Therefore, our contributions are summarized as follows:

(1) To our best knowledge, we are the first to propose a biological-inspired AED framework
that simulates the reflex arc-conscious reasoning of the human nervous system, significantly
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reducing the computational burden of deploying VLM/LLM, improving processing speed
while maintaining detection performance.

(2) In this framework, we establish a new closed-loop architecture coupling bottom-up filtering
with top-down refinement: a lightweight reflex stream rapidly reacts to trivial frames via
memory querying, while a VLM-LLM conscious reasoning stream analyzes only novel
frames and progressively refines memory and prompts, enabling a self-evolving AED
system.

(3) Through our extensive experiments, we demonstrate that dense-frame inference is unnec-
essary for large-model-based AED. Our ReCoAED achieves state-of-the-art, training-free
performance on the UCF-Crime and XD-Violence datasets, while using only 28.55% and
16.04% of the frames compared to previous large-model-based approaches.

2 RELATED WORKS
2.1 ABNORMAL EVENT DETECTION

Abnormal Event Detection (AED) methods are commonly grouped into one-class, unsupervised, and
weakly supervised settings, based on the availability of anomalies and labels during training. One-
class AED assumes access to only normal videos and models normal patterns via direct statistical
modeling |[Benezeth et al.| (2009); (Cheng et al.| (2015); |[Hirschorn & Avidan| (2023) or implicitly
through proxy tasks [Hirschorn & Avidan|(2023); Liu et al.| (2018); Xu et al.|(2019); |Shi et al.| (2015);
Singh & Pankajakshan| (2018)); [Liu et al.| (2022); |[Park et al.| (2020); [Li et al.| (2020); Tao et al.
(2024); [Fang et al.| (2020), including future frame prediction [Liu et al.| (2018); Xu et al.| (2019),
reconstruction |Shi et al.[(2015)); Park et al.| (2020), and contrastive learning Li et al.| (2020); [Tao et al.
(2024)). Unsupervised AED, on the other hand, assumes a mixture of normal and abnormal videos
without labels Thakare et al.|(2023bza); Tur et al.|(2023)), often relying on the assumption that normal
events dominate and applying similar modeling of normal data in one-class methods. Methods,
e.g.GCLZaheer et al,| (2022)), further enhance the normal/abnormal distinction with cooperative
training that uses pseudo-labels from autoencoder reconstruction errors to guide discriminators.
Despite their scalability, these methods are prone to high false positives, as rare but normal events
are often misclassified as anomalies Zhou et al.|(2023); Lv et al.|(2023), especially in open-world
settings with diverse scenes. Weakly supervised AED utilizes video-level anomaly labels, typically
via Multiple Instance Learning (MIL) |Sultani et al.|(2018)). Many approaches enhance MIL with
feature discrimination [Tian et al.| (2021); |Chen et al.| (2023)) or self-training |[Zhong et al.| (2019);
L1 et al.| (2022); Shi et al.| (2023)), yet they remain limited by their dependence on training-time
abnormal event types, which often differ from those encountered at test time. In summary, traditional
methods rely heavily on distributional assumptions or supervision, making them brittle when faced
with semantically diverse or unseen anomalies.

2.2 LVLM/LLM IN ABNORMAL EVENT DETECTION

To address these limitations, recent works integrate large-scale pre-trained LVLMs and LLMs into
the AED [Zanella et al.| (2024)); [Yang et al.| (2024); Kim et al.| (2023)); Tang et al.| (2024); Du et al.
(2024). These models possess broad prior knowledge and the reasoning capability acquired from
large-scale pretraining and demonstrate strong performance. LAVAD Zanella et al.[(2024) developed
a training-free AED that predicts anomalies directly without training data. The method first utilizes
the VLM to generate textual descriptions for video frames. Then, LLMs are prompted to analyze and
give anomalous scores based on these descriptions. The AnomalyRuler|Yang et al.|(2024)) further
involves few-shot training videos to induce rules for the LLM to deduce anomalies during testing.
With its strong capabilities, recent works have also developed new tasks in AED using LVLM/LLM,
such as abnormal event Q&A in HAWK |Tang et al.| (2024) and cause analysis in CUVA Du et al.
(2024). However, these new paradigms also introduce challenges in high inference cost and efficiency
gaps that our proposed method seeks to address.

3 METHODOLOGY

3.1 PROBLEM SETUP

In this paper, we study the challenging task of training-free Abnormal Event Detection (AED). Given
a test video, the objective of AED is to assign an anomalous score s € [0, 1] to each frame, indicating



Under review as a conference paper at ICLR 2026

@® Normal

@ Abnormal

Update Prompt

1 Anomaly
Analyzer

[ ]
SRI;:::;a;z?npt Describe what happen...
(b) Conscious Reasonmg Determine anomaly level..)

Figure 2: ReCoAED consists of Reflex reacting and Conscious reasoning stream. The Reflex
reacting stream employs a lightweight CLIP model to construct decision vectors X; by matching
frame I’s visual features with textual event prototypes in the knowledge prompt P. It then queries a
dynamic core-set based memory M to decide if deep analysis is needed. If not, the anomalous score
is retrieved directly via the reflex function through I’s neighbors in M. Otherwise, the Conscious
reasoning stream is activated to process I with a VLM, generating event descriptions and anomalous
scores under the guidance of P, updating M with new records and contributing to the description
set B. Periodically, an LLM-based reasoner samples from B to revise prior decisions and refine P,
which in turn guides both streams for top-down refinement.

the probability of abnormal behavior. Unlike conventional approaches that rely on learning from the
training set, training-free AED Zanella et al.| (2024) requires detecting abnormal events in test videos
without any access to training data. Formally, let a test video be represented as a sequence of T’
frames V = {I1, I», ..., IT }. To perform inference, recent methods leverage a large vision-language
model (VLM) @y and a large language model (LLM) @11y to compute the anomalous scores p
according to the following standard pipeline:

Cr=®yrnm),s=Prm(Cr), I €V, (D

where @y 15 generates the caption C} to describe the events in the frame I, and ® ;s reasons on
C7 to determine whether these events are anomalous. This approach of invoking large models on
dense video frame sequences incurs high computational costs, limiting VLM/LLM-based methods in
the real-world AED application. In this paper, we will show that this hard labor of large pretrained
models is unnecessary by introducing the ReCoAED framework, which simulates how the human
nervous system allocates cognitive resources adaptively.

3.2 INITIALIZATION

The overall framework of the ReCoAED is illustrated in Figure [2] It adopts an architecture that
comprises two complementary streams: the reflex reacting stream and the conscious reasoning stream.
The information transition between the two streams is completed through the knowledge prompt P, a
list of L protocol event descriptions formulated as person does something in some place (L is the total
number of descriptions in P). Although it is updated through conscious reasoning, an initialization
is required. The initial P is set to contain 3 brief descriptions for both the normal/abnormal events
in daily lives. The number of descriptions is updated into L in the first round of LLM reasoning in
Section[3.4] Due to the length limit, we put the full initiation of P in the Appendix

3.3 REFLEX REACTING

The reflex reacting draws inspiration from the human’s reflex arc to filter out frames that can be
addressed with the previous records with function F'y;s.,, thereby enabling direct abnormal event
detection using the function Fi.. f;., while uploading frames that require deep processing.
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To build the foundation for F't;jser and Frefier, We simulate how human reflexes are shaped by
both innate perception and summarized knowledge, constructing a decision space by combining
input frame features with the knowledge prompt P (derived from initialization and LLM reasoning)
in the aligned vision-language feature space of a light-weight CLIP model. Specifically, for the
frame I in the test frame sequence V, we use the visual encoder £;(-) of CLIP to extract its
visual representation £;(I). Meanwhile, we also formulate P as a set of normal/abnormal event
prototype descriptions:{p; } ;. After processing through CLIP’s text encoder 7 (-), we obtain the
corresponding text representations: {E7(p;)}L ;. The decision vector X; € R” is then produced
through the cosine similarity between (1) and {E7(p;) } X ;-

Xp= [y (&), Er(pr)), v (E1(T), Ex(p2)) s sy (Er(I), Ex (L))", (2)

where (-, -) represents this cosine similarity and ~ is CLIP model’s log scale factor. The decision
vector helps reduce task-irrelevant information. Since pre-trained visual encoders often lack task-
specific priors and extract unrelated elements, computing similarities with event prototypes allows us
to localize the fame within the task space defined by P, effectively denoise distractions.

After obtaining the decision vector X, we can describe the two core functions as follows:

Filter Function F';;.: The function Fly;is., identifies whether the input frame I requires deep
analysis by determining if it falls within the coverage of a dynamic memory M storing the represen-
tative prediction records. Each record is formulated as a dictionary-like data frame to describe an
input-detection pair:

r = {"visual” : £1(I), "decision vector” : X1, ”s” : s}, 3)

where s is the recorded anomalous score of the frame I processed from the raw output from the
conscious reasoning in Section 3.4}

To fulfill the frame filtering, the memory M should be able to (1) effectively cover the main
distribution of the frame stream with only a limited amount of frame records to reduce the request for
large model inference; (2) establish a metric to determine whether the input frame fits in its coverage.
To construct such M, we adapt the idea from the greedy sampling from the core set algorithm |Guo
et al.| (2022);|Yang et al.[(2023a)); |[Roth et al.|(2022). For each new frame I with its X7, if M is empty,
we add its corresponding record to M directly. Otherwise, we use F'r;jzer to decide the next move:

Ffilter(Ia M) = H{minTeM D(X,r["decision vector”])>e}» (4)

Ffiter calculate X;’s shortest distance to existing decision vectors in the memory M with metric
D(-,-) (e.g. Euclidean distance). If the distance exceeds a predefined threshold €, Fiy;s., flags 1 and
the frame is considered as a novel sample. It is sent to the large pretrained models in the conscious
reasoning for further analysis. The resulting anomalous score s from the conscious reasoning is
averaged with K -nearest neighbors to mitigate the noise in the large model’s predictions. Finally, the
score s, the decision vector X7, and the visual feature of the frame I are assembled as a new record
r, added into memory M. If X falls within the coverage of the memory M, F'y;;, flags 0. The
corresponding frame I is directly processed by the reflex function Fi.¢fiez.

Through F't;iser, €ach record in M defines a hypersphere of radius € around its decision vector,
covering a local region. This ensures that all previously seen frames are either selected into M or
covered by at least one hypersphere. Thus, M achieves compact coverage of known data while
enabling novelty detection based on coverage failure.

Reflex Function F)..f.,: The reflex function Fi.. ., computes the anomalous score of a video
frame I based on its decision vector X and the memory M. Since Fly;jsc, has determined that the
frame fits in the coverage of M, its anomalous score is inferred from its neighbors in M. In practice,
we find it effective to consider neighbors within the decision hypersphere of the radius a - € around
the decision vector X;. Also, we observe that large models are sensitive to signals of abnormal
events, leading to potential false positives. To improve robustness, we make the final decision more
conservative: a frame is labeled as anomalous only if all neighbors within the a - € radius range are
also labeled as anomalous. Accordingly, the final anomalous score is defined as the minimum score
among neighbors of the frame in the memory M:

Frefiez(I, M) = min (r;[”s”]), (5)

’l‘jEN(I)
N(I)={r; € M| || X1 — r;["decision vector”]

2<a-6}7 (6)
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where N (I) denotes the neighbor records of I that falls within the decision hypersphere, and r;[”s”]
is the recorded anomalous score in 7;. The score from F.. e, is then finalized as the output with
a window smoothing, where the score is averaged together with scores of the C' temporal nearest
frames to improve the prediction consistency.

3.4 CoNscIOUS REASONING

The conscious reasoning stream leverages large models to process novel frames identified by the
reflex reacting, mimicking complex human cognitive processes. It consists of two modules: (1) a
VLM anomaly analyzer to describe the events and determine the anomalous score of the novel frames;
(2) an LLM Reasoner that summarizes from the previous cases to refine the knowledge prompt P.

VLM Anomaly Analyzer: In this module, leveraging the knowledge prompt P and structured
instructions, we integrate event description and abnormal event detection into one medium-scale(7B)
VLM &y, 15/ to analyze the frame step-by-step. Given a video frame I and the knowledge prompt P,
we construct the instruction prompt Py 1,5/ to guide the VLM anomaly analyzer to: (1) first describe
events in the frame, (2) then compare them with prototypes in P and then (3) assign an anomalous
score chosen from the option list: OPTIONS. The OPTIONS contains 9 distinct anomalous scores
(real numbers from O to 1). Each score in OPTIONS is compiled with its explanation based on the
match/mismatch degree between the event and the normal/abnormal prototypes, thereby reducing the
arbitrary decisions of VLM ®y 1 5s. Finally, Py 1 as specifies output format as (des, s) where des is
the detailed description of the events in the frame and s is the anomalous score to formulate a new
record for memory M. Therefore, the prompt for the VLM @y 1 5s is the concatenation of Py f s
and P: Py o P. The details of Py 1,5 and OPTIONS can be found in the Appendix Q The output
in this stream is as follows:

(des,s) = @yry (L, Pypa o P) @)
LLM Reasoner: At a fixed interval of N videos, the LLM analyzes accumulated (des, s) pairs
stored in a temporal description set B to emulate human-like conscious summarization, enabling
refinement of P and thereby enhancing both ®y, 15, s abnormal event detection and the construction
of decision vectors in the reflex reacting stream. Specifically, we randomly sample a subset B CB
of b pairs, and design a prompt Pr,,5s asking the LLM to clarify the previous P to describe the newly
discovered normal/abnormal events better, so that 7P can better represent the global data. The details
of the Prra can be found in the Appendix [D} Therefore, the new knowledge prompt P can be
updated with the concatenation of Py s, P and B

PF@LLAI(PLLM OPOB). ®)

Notably, we update the Algorithm 1: ReCoAED Framework
memory M to fit the Input: Test Video set V , image/text encoder £ (-)/Er(-), large
change, where we recalcu- pretrained models ®v 1,57, s, initial prompt P.
late the decision vector of Output: Anomalous scores s for each frame.
every r € M with recorded 1: Initialize M = 0, B=0,n = 0;
visual features and {p; }%, 2: for each video V' in .V do
formulated from updated P 3. for each frame / in V do
using Eq. Also, we 4: Formulate P as {p; }2_, and calculate X; with Eq.
re-evaluate the anomalous 5 if Fritter(I, M) == 1 then
scores with F.. s, for the 6: (des,s) = vy (I, Pyra o P);
historic frames with the new 7: r < {visual : £;(I), decision vector : X, s : s};
memory M to correct pre- 8: Add r to M; add (des, s) to B;
vious mistakes, improving 9: else
the overall accuracy. After 10: 8 < Frefiea(I, M);
the feedback, B is emptied 11 end if
for the next round to ensure 12:  end for
the LLM always summa- 13: nen+l
rizes from the new events. 14:if n mod N == 0 then ,

15: Sample b records from B to form the subset 5 ;
In summary, the frame- 16: Update P < ®1pa(ProyoPo B/);
work forms a top-down self- 17: Update X for Vr € M with new P by Eq.
improvement cqupled with 18: Re-evaluate s for the previous frame using Fi.q ;-
bottom-up ﬁlter{ng, demon- 19: B« 0
strated as Algorithm 1. 20 end if

21: end for
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4 EXPERIMENTS _ , ]
We evaluate our framework on UCF-Crime |Sultani et al.| (2018)) and XD-Violence |Wu et al.| (2020),

focusing on Training-free AED accuracy and the number of frames processed by large pretrained
models. Unlike prior methods relying on dense frame inference, our approach achieves higher
performance with only a sparse subset of the frame used by the previous methods, demonstrating
strong efficiency and effectiveness.

4.1 EXPERIMENTAL SETUPS
Dataset and Test Settings: We
evaluate our framework on the
UCF-Crime |Sultani et al.|(2018)

Table 1: Comparison against one-class, unsupervised, and training-
free methods on UCF-Crime dataset

| Method j Supervised mod | AUC(%) | Frames for VLM or LLM
and XD-Violence [Wu et al. ~BODSWang & Cherian|[(2019} one-class 63.26 .
: : GODS |Wang & Cherian|(2019) one-class 70.46
(2020) datasets, WhICh consist of GCL|Zaheer et al. |[(2022) unsupervised 74.20
real-world surveillance footage  DYANNET[Zaheer et al|(2022} | unsupervised | 79.26
3 : - 3 ZS CLIPZanella et al.|(2024) Training-free 53.16 -
Wlth leCrSG events.' UCF C.rlme Baseline(Qwen2.5-VL-7B) Training-free 79.22 69,344
includes 1,900 untrimmed videoS  LAVAD[Zanella et al.|(2024} Training-free 80.28 69,344
Covering 13 abnormal events. ReCoAED Training-free 82.28 19,797

Table 2: Comparison against one-class, unsupervised, and training-

The training set has 800 normal
free methods on XD-Violence dataset

and 810 abnormal videos, while
the test set contains 140 normal
and 150 abnormal videos with
frame-level annotations. XD-
Violence contains 4,754 multi-
modal videos from movies and
YouTube, spanning 6 types of vi-
olent events, with 3,954 training
and 800 test videos. We follow LAVAD |[Zanella et al.| (2024))’s experimental setup, testing on the test
sets without using training data or annotations. We follow the experimental setup of LAVAD [Zanella
et al.| (2024), evaluating our framework on the test sets of both datasets without seeing or training with
training videos or annotations. Notably, we randomly shuffle the test sets, which originally contain
consecutive samples of the same event type. This shuffling increases task difficulty by preventing the
model from exploiting event continuity, providing a more rigorous assessment of our framework’s
ability to generalize to unseen scenes and events, and better simulating real-world conditions.

Method

HASAN et al. |Hasan et al.|(2016]
LU etal.|[Lu et al.|[(2013)
BODS|Wang & Cherian|(2019)
GODS|Wang & Cherian|(2019)
RAREANOM Thakare et al.|[(2023a}
ZS CLIPZanella et al.|(2024)
Baseline(QwenZ2.5-VL-7B)

LAVAD |Zanella et al. (2024}
ReCoAED

Supervised mod Frames for VLM or LLM
one-class
one-class
one-class
one-class

Unsupervised

Training-free

AUC(%)
50.32
53.56
57.32
61.56
68.33
3821
83.59
85.36
86.38

AP(%)

17.83
55.21
62.01
65.66

145,649
145,649
23,362

Training-free
Training-free
Training-free

Performance Metrics: Following standard practice, we report the frame-level ROC AUC on UCF-
Crime and XD-Violence datasets, which is regarded as a fair metric for class-imbalanced tasks like
abnormal event detection Sultani et al.|(2018)); [Liu et al.| (2018)). Also, we evaluate the frame-level
average precision (AP), i.e., the area under the precision-recall curve, on XD-Violence following the
setting in the work |Wu et al.|(2020)); Zhou et al.| (2023)

Implementation Details: The basic video inputs are represented as frame sequences uniformly
sampled from each video every 16 frames following LAVAD [Zanella et al.| (2024); [Wu et al.|(2024).
The CLIP model in the reflex reacting is set as pretrained CLIP-ViT-B/16 |Radford et al.|(2021). The
parameter € in the memory M is set as 2.0 for UCF-Crime and 4.0 for XD-Violence to ensure the
total compressed rate of the inputs falls in the reasonable range of 15% — 30%. The neighbor number
K, the window size C, and the radius coefficient a in F}.. e, are set uniformly for both datasets
as 16,4, and 2. In conscious reasoning, we implement the VLM as the Qwen2.5-VL-7B Bai et al.
(2025) model that is widely used by today’s open-source community. At last, we set LLM as the
Deepseek-V3 |Liu et al.|(2024) model. The interval parameter N is set as 10. The length L for P
that is summarized by the LLM is set to be 20, with a half-to-half split for normal and abnormal
events. The parameter b for the size of the subset B’ is set as 90. In practice, we sample b/2 (des, s)
pairs with score s > 0.5 and b/2 pairs with s < 0.5 to ensure normal/abnormal balance in B'.In
the initialization round, when the total length of P is set as 3, we shrink € as 1.2 uniformly at the
beginning to ensure sufficient sampling for the LLM to analyze. After the first round of the LLM
reasoning, € is set to be the predefined value in each dataset. To further validate the effectiveness of
our approach, we implement a Baseline also using Qwen2.5-VL-7B, which predicts only through the
VLM anomaly analyzer ®y 7, 5; with Py 1 5r, without the reflex reacting or the LLM-based refinement.

4.2 EXPERIMENTAL ANALYSIS AND VISUALIZATION

Performance Analysis: The experimental results are presented in Table[T]and Table 2] In the tables,
one-class methods are trained using only the normal videos from the training set, while unsupervised
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Figure 3: Visualization of the predictions made by the reflex reacting and the conscious reasoning.

Table 3: Efficiency comparison against previous frameworks and sam- Table 4: Runtime of Re-

pling strategies on UCF-Crime CoAED on UCF-Crime
Methods AUC(%) Frames for VLMs/LLMs ~ FPSqmpiea  FPSoveran Component Runtime(s)
LAVAD 80.28 69,344 0.49 7.86 Reflex reacting 657.6
Baseline(uniform) 79.22 69,344 2.78 4457 VLM Analyzer | 10,451.61
+ MGSampler 77.49 34,372 5.72 91.71 LLM Reasoner 923.93
+ Segment-Sampler | 75.90 22,725 8.49 136.13 Total 12,033.14
ReCoAED (Ours) 82.28 19,797 5.76 92.40

methods use the entire training set without access to any annotations. Training-free methods do not
utilize any training data and perform inference directly on the test set. Notably, the “ZS CLIP” refers
to a zero-shot CLIP-based approach that computes anomalous scores by contrasting prompts for
normal/abnormal events, following the same prompt design used in LAVADZanella et al.|(2024).

As shown in Table|l| and Table [2] our method significantly outperforms traditional one-class and
unsupervised abnormal event detection approaches. Most importantly, our framework achieves
notable improvements in both accuracy and efficiency compared to previous training-free methods
based on large pretrained models. Specifically, compared with the state-of-the-art training-free method
LAVAD [Zanella et al.| (2024)), our framework achieves a 2.00% AUC improvement on UCF-Crime, a
3.65% AP gain, and a 1.02% AUC gain on XD-Violence. In addition to the superior performance,
our method significantly reduces the computational burden on large pretrained models. Our approach
processes only 28.55% and 16.04% of the frames used by LAVAD in UCF-Crime and XD-Violence
with large pre-trained models. Also, compared to the baseline using Qwen2.5-VL-7B, our method
achieves a 3.06% AUC improvement on UCF-Crime and gains of 10.45% in AP together with 2.79%
in AUC on XD-Violence, while also achieving computational savings on the large pre-trained models.
These results confirm that our framework delivers both superior detection performance and a low
computational burden for large pre-trained models.

Efficiency Analysis: To assess further efficiency, we evaluate the processing speed of ReCoAED
against LAVAD and two traditional sampling schemes on UCF-Crime: MGSamplerZhi et al.
(2021))(motion-based keyframe) and Segment Sampler Yang et al.| (2023b))(fixed-position frames) with
a window smoothingLv et al.|(2023) (Table EI) on two Nvidia A100 GPUs. We report FPSgmpied,
which is computed from the number of frames from the basic uniform sampling (69344 frames)
divided by the total runtime, and FPSyeran calculated using the total number of original video frames
(1111808 frames) divided by the total runtime. As is shown in Table 3] on the one hand, ReCoAED
achieves a significantly higher processing speed than the previous method, LAVAD. On the other hand,
although previous sampling schemes boost the baseline throughput, they cause notable performance
drops. In contrast, using a similar number of frames compared with previous sampling methods,
ReCoAED attains a 107% speedup over the baseline and improves the performance. Table [4| shows
that the periodically invoked LLM (called through API) contributes only 7.68% of total inference
time. The main gains come from the Reflex reacting, which filters 71.45% of frames before the VLM
Anomaly Analyzer and scores them far faster than the VLM, substantially reducing the total runtime.

Visualization: We further validate the roles of both streams through prediction visualizations. As
demonstrated in Figure [3] the reflex reacting (light purple regions) dominates the output scores,
especially for routine/repetitive events in normal videos, effectively reducing reliance on the large
model. For novel events like the explosion in UCF-Explosion033_x264 case, the reflex reacting
identifies unfamiliar patterns and activates the conscious reasoning for accurate description and
detection. Once the abnormal event is recorded, similar events in future frames are handled directly
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Table 5: The effectiveness of the conscious rea- Table 6: The effectiveness of the reflex reacting’s

soning’s components components
Feedback P toreflex  Feedback P to @y OPTIONS | AUC(%) Freplez  Use minimum among neighbors ~ Window smooth | AUC(%)
X X X 70.80 X X X 79.24
X v v 74.62 X X v 80.36
v X X 77.83 v X X 79.97
v v X 79.92 v v X 80.93
v v v 82.28 v v v 82.28

by the reflex reacting, minimizing repeated inference. This illustrates the coordination between
streams: the reflex reacting offers responses for the most trivial inputs, while the conscious reasoning
only handles novel cases, greatly reducing the computational burden of large models.

5 ABLATION STUDY

5.1 EFFECTIVENESS OF COMPONENTS

We evaluate the effectiveness of both streams in our framework through ablations. Specifically, we
isolate the reflex reacting and the conscious reasoning, keeping one fixed while testing the other.

Table 5 presents results for the conscious reasoning stream. We examine whether the dynamically
updated prompt P can improve overall performance, and assess the role of both the knowledge
prompt and the anomaly-level option list OPTIONS in enhancing VLM &1, 5, s detection. When
P is blocked from both the reflex reacting and ®v 1,7, performance drops significantly below the
baseline. This is because F't;1z, cannot construct decision vectors aligned with the current task space,
leading to poor distance estimation in F}.. ., and ineffective frame selection. Additionally, when
the @y 1,5 lacks updated knowledge, it also reduces detection accuracy. As shown in rows 2 and 3
of Table [5] enabling knowledge prompt P transmission to the VLM anomaly analyzer and reflex
reacting improves performance by 7.03% and 3.82%, respectively. Rows 4 and 5 further evaluate
the impact of OPTIONS. In Row 4, we set the VLM to produce a raw anomalous score in [0, 1] as in
LAVAD when OPTIONS is absent. In row 5, by incorporating OPTIONS, the framework yields a
1.35% gain, highlighting the benefit of providing interpretable anomaly cues.

We further examine the reflex reacting stream, focusing on Fi.. iz, as the efficiency of Fgyjer is
validated in Section [1;2} Table @ compares 3 testings: (1) Without F.cfc., the model uses the
prediction of the nearest neighbor in memory M as output, resulting in a 3.04% performance drop;
(2) Rows 3 and 4 compare aggregation strategies in Fy..fe,: using the average vs. the minimum
prediction score. The latter yields a 0.96% improvement, better reducing false positives; (3) Applying
a temporal smoothing window improves temporal consistency, boosting accuracy by 1.35% and
1.12% with/without F.c f1c., suggesting greater effectiveness when combined with Fi¢fiez.

5.2 SENSITIVITY TO HYPER-PARAMETERS

The a-£-AUC Curve in UCF-Crime The K-AUC Curve in UCF-Crime

We further analyze the sensitivity of our framework “
to hyperparameters. Here we take the radius a - € of \

the decision hypersphere, and the number of neigh- . - ]
bors K as examples. As illustrated in Figure[d a . “
small radius makes the model fragile to noisy entries, W7 IS
while a large one risks including irrelevant frames.

Similarly, a small K fails to suppress noise, whereas

a large K may bury the original score. Overall, per- Figure 4: The ablation on parameter K and
formance remains stable (within 1.8% and 0.23%), the radius of the decision hypersphere
demonstrating strong robustness. More ablations on hyperparameters are included in the Appendix.

6 CONCLUSION AND LIMITATION

To summarize, in this paper, we demonstrate through our biological-inspired dual stream Re-
CoAED framework and extensive experiments that the previous high-frequency reasoning with
large pre-trained models in AED is unnecessary. ReCoAED reduces the computational burden of the
VLM/LLM models by using a reflex reacting to filter and respond to trivial inputs, and leaves the
large model to deal with novel inputs to refine the entire system. The experiments and visualization
demonstrate that ReCoAED achieves state-of-the-art performance, with the reflex-reacting handling
the majority of the inputs, thereby significantly reducing the computational burden of the large models.
However, our work still has the limitation that the current framework is built on a limited set of
models. In future work, we plan to extend our study to a broader range of VLM/VLM choices to
further investigate the generalization ability of our framework.
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A LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
LLM was not involved in the ideation, research methodology, or experimental design. All research
concepts, ideas, and analyses were developed and conducted by the authors. The contributions of the
LLM were solely focused on improving the linguistic quality of the paper, with no involvement in the
scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text polished by
the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and does not
contribute to plagiarism or scientific misconduct.

B INITIALIZATION AND FORMATION OF THE KNOWLEDGE PROMPT P

For the proposed framework, ReCoAED, the knowledge prompt P plays a pivotal role in enabling
effective knowledge transfer. Apart from our description of P in Section 3.2 of the main text, here
we provide more information about its initialization and formation.

Although P is primarily updated in this work via the LLM reasoner in the conscious reasoning by
summarizing past cases, it is first initialized to provide the framework with essential prior knowledge.
In this paper, we adopt the following unified prompt formulation to initialize P for both the UCF-
Crime and XD-Violence datasets as in the Figure[5](a). The initial prompt list is evenly divided into
the normal group and the abnormal group to maintain the information balance.

Three simple and general descriptions of the normal events: 1. People normally walk, stand, or sit
while doing daily things. 2. Cars drive on the road normally. 3. Normal scene without any event
taking place.

Three simple general descriptions of the abnormal events: 1. People are committing criminal activities.
2. People have strange postures that reflect possible crimes. 3. Accidents/disasters happen in the
background.

These initial event prototypes provide a general description of both normal and abnormal events
without delving into specific behaviors/actions, details that are instead summarized and extracted
by the framework. We can easily formulate such descriptions without requiring intricate knowledge
of the particular scenes or events involved. While maintaining their generality and simplicity,
these prototypes also initialize the structure of the framework’s task space, offering a fundamental
semantic partitioning between normal behaviors and abnormal events such as criminal activities and
accidents. This, in turn, serves to guide subsequent large-scale models in the process of analyzing
and summarizing the prototypes.

These prototypes are then rewritten as the knowledge prompt P, a list of prompts formulated as "An
image contains: event prototype, as shown in[5](b), to enable the construction of the decision space in
the reflex reacting. The knowledge prototypes in the prompt list above are concatenated in the form
of the template in Figure[5](c), as a code book for the VLM anomaly analyzer to refer to and make
their descriptions and judgments of whether the image contains abnormal events. Finally, we require
the LLM reasoner to output L prototypes from the previous cases, following the same form as the
initial descriptions. Also, to maintain the normal/abnormal balance in the prompts, we ask the LLM
to output up to L/2 normal prototypes and L/2 abnormal prototypes to make sure the new abnormal
knowledge is recorded in the sample-unbalanced abnormal event detection task.

C FORMULATION OF THE PROMPT Py 1

In this section, we discuss the formation of the prompt Py 1. As described in Section 3.4, the
prompt fulfills the following functions: (1) describe events in the frame; (2) compare them with
prototypes in the knowledge prompt P; (3) assign an anomalous score chosen from the option list:
OPTIONS; (4) regulate the output format for future analysis. In order to instruct the VLM anomaly
analyzer to achieve these functions, we design the Py 1,/ as in Figure[6]

As is shown in the Figure [6] (a), the overall formation of the prompt Py 1/ instructs the VLM
anomaly analyzer to describe all the events in the image in detail, compare them against the event
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1. People are committing violent criminal activities.
2. People have strange postures that reflect possible crimes.
3. Accidents/disasters happen in the background.

Figure 5: Initialization of the knowledge prompt P.

(b) OPTIONS

/'—1.0: Severe violation of rules: strongly inconsistent with any normal prototypes
I and highly aligned with one or more anomaly prototypes;
! 0.85: Violation of normal rules: clearly inconsistent with any normal prototypes

(@)

Py 1y:Given the image from the surveillance camera, describe
events in detail, compare and analyze the events in the image
with the normal/abnormal prototypes listed in the given LISTs,
then determine and output the total degree of violation. choosing
from the given OPTIONS:{ }

Then, output the violation of the given image determined by the
event with the worst violation. The LISTs are in the following
text:{ }. Your output must be in the following format:{ }

while aligned with one or more anomaly prototypes;

0.75: Moderate violation of rules: the alignment with normal prototypes is not

h certain while showing clear alignment with one or more anomaly prototypes.
0.6: Minor violation of rules: the alignment with normal prototypes is ambiguous

| but exhibits some alignment with one or more certain abnormal prototypes, and

| the event is harmful.

1 0.5: not aligned with both normal and anomaly prototypes, but the event or the

| person does not harm anyone and is not a crime;

1 0.35: Slightly aligned with normal rules: somewhat close to a certain normal
| prototype, while it is away from all anomaly prototypes;

I 0.25: Moderately aligned with normal rules: fairly consistent with one of the
I normal prototypes while maintaining some distance from all anomaly prototypes; |
1 0.15: Aligned with normal rules: close to one of the normal prototypes and shows |
I no alignment with any abnormal prototypes; !
To.0: Fully aligned with normal rules: Completely consistent with one of the !
kl normal prototypes and entirely inconsistent with all abnormal prototypes;

(©)

Event description:***.

Degree of violation of each event:***.
Summary:***.

Total degree of violation: X

Prototypes for normal events:
.,
2.

Prototypes for abnormal events:
1

2

Figure 6: The design of the Py 1 5s prompt for the VLM anomaly analyzer.

prototypes in the given knowledge prompt P( in the code book form) and determine their anomalous
score, which are chosen from the option list OPTION in the Figure 6] (b).

As demonstrated, OPTION constrains the scores the model can choose from and requires it to
make decisions based on explicit interpretations of these scores, thereby reducing the possibility
of subjective or hasty judgments. Each score explanation is derived from the degree of alignment
between the observed event and the predefined prototypes of normal or abnormal events. The scores
are determined based on the following principle: if an event shows alignment with one or more
abnormal prototypes, it should be assigned a score higher than 0.5, with the exact score reflecting
the strength of this alignment. Conversely, if the event does not match any abnormal prototype, it
is assigned a low anomalous score, which is determined based on how well it aligns with normal
prototypes; the stronger the alignment with normal behavior, the lower the anomalous score.

Further, Py 15 asks the model to determine the degree of the event of the worst abnormal situation,
as the image may contain normal events that can hinder the model’s decision. At last, the VLM
anomaly analyzer is required to output the information in the given format in the Figure[6] (c) to allow
the extraction of the event descriptions and anomalous scores for the LLM and the reflex reacting.
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P
P; 1. Given the previous prototypes and new event descriptions Prototypes for Normal events:
and anomaly determination results made under the initial prototypes,
clarify, specify the previous prototype list to make it better in 2.
identifying and describing the given abnormal and normal events
clearly. Increase the number of prototypes to clarify the new Prototypes for Abnormal events:
observations(up to L/2 prototypes for normal events and L/2 1.
prototypes for abnormal events). 2.

The previous prototypes are: { «
The given new descriptions are { ¥
Then summarize the new prototypes as the rule book in the Sample a batch
following format: { }.

Prototypes for Normal events:
1.

2. .. extract

Prototypes for Abnormal events:
1.
2.

Figure 7: The design of the Pr 1 5; prompt for the LLM reasoner.

Notably, in the main text, we only demonstrate the Summary and Total degree of violation part of
the VLM output for visualization in Figure 3 due to the length limit.

D FORMULATION OF THE PROMPT Py

In this section, we further introduce the prompt Pr s used in the conscious reasoning. The
primary function of this prompt is to instruct the model to leverage the accumulated historical
anomaly descriptions/detection cases to revise and expand the previous knowledge prompt P, finally
generating an updated version. The detailed information about the prompt Pr,r,5s is shown in Figure

i

As is demonstrated, Pr,r, s gathers the previous cases sampled from the description set 3 and instructs
the LLM to clarify and specify the previous prompts to fit the new cases. This process requires the
model to analyze previously used event prototypes that may have led to inaccurate discrimination,
and to concretize vague event descriptions by incorporating new event information. In doing so, the
updated knowledge prompt can better support the lower-layer model in sample filtering and abnormal
event discrimination. The outputs are new prototypes which are organized in the same form as the
code book form of P. These prototypes are extracted from the output and are treated as the new
knowledge prompt, fed back to the reflex reacting and the VLM anomaly analyzer.

E ABLATIONS ON MORE HYPERPARAMETERS

In this section, we present additional ablation studies to further validate our framework’s effectiveness.
Specifically, the ablations focus on three key parameters: €, which determines the volume of the
memory M, the interval parameter /V, which determines the frequency of LLM reasoning, and the
parameter L, which controls the number of event prototypes maintained in the knowledge prompt P.

We first investigate e, which determines the volume of the memory M. As shown in Table (/]
the choice of ¢ is crucial. When ¢ is too large, new frames are rarely added to the memory M,
which reduces the total number of recorded frames. This leads to an inaccurate representation of
the distribution of seen frames, making it difficult to filter input frames effectively and ultimately
degrading performance. In contrast, a small € leads to excessive storage of trivial frames, increasing
noise sensitivity, and triggering unnecessary large-model inference.

16



Under review as a conference paper at ICLR 2026

N-AUC Curve in UCF-Crime L-AUC Curve in UCF-Crime

€ 1.6 1.8 2.0 2.2 24 2.6
AUC(%) 77.09  80.01 8228 8145 7759 7197
frames for ®ypa | 30,309 24,337 19,797 18,246 13,338 10,725

AUC(%)
AUC(%)

Table 7: Ablation on the parameter € in Fy;izer TR b
Figure 8: The ablation on the parameter /N and
the parameter L.

The parameter N is a critical component of our framework, as it determines how frequently the
LLM is invoked and, consequently, how often the memory M and detection results are refined. As
shown in Figure 8] we report the results under different values of N. It is evident that overly frequent
summarization does not improve model performance; in fact, it leads to a noticeable degradation.
This can be attributed to the limited scope of prototype summarization when the LLM is invoked too
frequently, which weakens the generalization ability of the event prototypes. Frequent updates to the
decision space also introduce instability, further degrading performance.

Conversely, setting N too large also results in significant performance drops. In such cases, as shown
in Figure[§] the large volume of videos causes an accumulation of event descriptions, making novel
and informative anomalies relatively sparse. As a result, the model struggles to extract meaningful
new knowledge. Moreover, a long summarization interval delays the update of outdated

In addition, we evaluate the impact of the prototype count parameter L on the performance of our
framework. The results are presented in Figure[8] As shown, when L is too small, the upper bound of
knowledge that the framework can retain is limited, making it insufficient to capture the complexity
of the dataset, especially for datasets like UCF-Crime and XD-Violence, which exhibit highly diverse
and complex distributions. This leads to a drop in detection accuracy.

On the other hand, when L is set too large, the knowledge prompt P becomes overly overpopulated
with trivial information, which hinders the clear separation between different types of events within
the decision space. Moreover, the excessive information may introduce unnecessary interference for
the VLM anomaly analyzer when distinguishing between normal and abnormal events, ultimately
resulting in degraded performance.

F VISUALIZATION OF RECOAED’S SELF-EVOLUTION VIA THE KNOWLEDGE
PROMPT P

In this section, we demonstrate the self-evolution capability of our framework, ReCoAED, through
the visualization of knowledge prompt P’s self-refinement. As discussed earlier, P is a crucial
component of our framework, serving as the bridge between the reflex and conscious reasonings.
They provide essential guidance to the VLM anomaly analyzer and play a key role in shaping the
decision space of the reflex reacting. More specific and task-aligned knowledge prompt leads to
better overall performance of the framework in abnormal event detection.

Figure [0 and Figure [I0]illustrate the final knowledge prompt obtained after testing. For the sake
of visual clarity, we formulate the knowledge prompt in the code book form. Remarkably, without
any human intervention or supervision during the process, our framework can automatically extract
and summarize the types of abnormal events present in the dataset through a combination of top-
down refinement and bottom-up filtering. As indicated by the arrows connecting the abnormal
event prototypes to the ground-truth abnormal event classes, most of the event prototypes in the
knowledge prompt P exhibit a clear semantic alignment with one or more ground-truth abnormal
event categories. This demonstrates that our framework can effectively identify key information
about abnormal events through its self-evolving process. As a result, it is capable of autonomously
adapting to different datasets, significantly enriching and grounding the initial knowledge prompt,
and providing meaningful guidance for the models in the lower layers.
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(a) Initial knowledge prompt (b) Final knowledge prompt 2 at the end of testing

Prototypes for Normal events:
1. People normally walk, stand, or sit while doing daily things.
2. Cars drive on the road normally ReCoAED ehicles drive erly on roads following ndal ic pattern:

3. Normal scene without any event taking place.

3. Individuals interact casually at bars, counters, or social settings in a relaxed manner.
e e AT G — 4. Cars park properly in designated spots without obstructing traffic.
1. People are committing violent criminal activities. 5. People browse products in stores without unusual movements or suspicious behavior.
2. People have strange postures that reflect possible crimes. 6. Security personnel monitor areas without in ions or aggressive actions.
3. happen in the 7. Groups gather peacefully in public spaces like markets or streets.

8. Individuals enter or exit buildings through doors in a routine and authorized manner.
9. Motorcycles or bicycles ride predictably along streets without reckless maneuvers.
UCF Anomaly class 10. Medical staff transport patients calmly and professionally within healthcare facilities.

g?;ﬁ:gntkpmmwpes for Abnormal Events:

1. People handle items suspiciously in stores, suggesting potential theft or concealment.
2. Individuals maintain aggressive postures indoors or outdoors, indicating distress or violence.
3. Groups cluster unusually around sensitive areas like cash registers with unclear intent.
Ablse: T 4. Individual_s force_ entry througr_'l gates or doc_Jrs withou( au_(horization or proper Proced_ure.
Vandalisrr:/{/ - People wield objects resembling weapons in public or private spaces, posing immediate threats.
Burglary 1 6. Crowds form unexpectedly near restricted areas with hostile or suspicious intentions.
: 7. People conceal objects while moving through secured areas, indicating illicit activity.

10. RoadAccid /8 Vehicles move erratically across traffic lanes, creating collision risks or violating rules.

11. Arson 9. Mc ists weave dangerously through traffic, disregarding safety norms.
. 12. Explosion :>—10. Smoke or flames fill spaces, |nd|cat|ng emergencies like fires or hazardous situations.

/

i
0
'
0
0
I
'
'
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'
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Figure 9: Visualization of the knowledge prompt P at the end of the testing on the UCF-Crime.

(a) Initial knowledge prompt (b) Final knowledge prompt  at the end of testing

Prototypes for Normal events:

1. People normally walk, stand, or sit while doing daily things.

2. Cars drive on the road normally

3. Normal scene without any event taking place. ReCoAED

2. Vehicles drive following traffic rules without erratic movements on roads.

— 3. Individuals sit or stand calmly without aggressive postures in public or private settings.

Prototypes for Abnormal events: 4. Crowds gather peacefully for events or leisure activities without conflict in urban areas.

1. People are committing violent criminal activities. 5. People engage in routine activities like shopping or dining normally in commercial areas.
2. People have strange postures that reflect possible crimes. 6. Pedestrians cross roads at designated areas following traffic signals properly.
3 liEprziniio 7. Workers perform duties without signs of distress or danger in workplaces.
XD-Violence 8. People participate in organized sports or fitness activities following standard rules in appropriate venues.

9. Individuals interact calmly during social gatherings in indoor or outdoor settings.
10. Emergency personnel respond to incidents professionally without agitation in public spaces.
Prototypes for Abnormal events:
. People engage in physical fights or violent confrontations in public or private spaces.
. Individuals hold weapons or dangerous objects in threatening postures in any location.
3. Persons display extreme distress signals like screaming or abnormal body positions in any environment.
4. Individuals restrain or physically control others against their will in any location.
5. Crowds protest violently or clash with authorities in urban settings.
6. Crowds gather chaotically with visible agitation or destruction after events.
7
8
9.
1

CFehing —2 P
. Shooting \
i

. Abuse

. Riot %
. Car Accidm\
¢ ;

. Vehicles or vessels collide or operate dangerously outside normal parameters.
. Enwronmental hazards like heavy smoke or fire impair visibility or safety in any setting.

perform or tf ing actions in i areas like cockpits or secure facilities.
0. Property damage occurs due to vandalism or accidents in public or private spaces.

Figure 10: Visualization of the knowledge prompt P at the end of the testing on the XD-Violence.

It is important to note that the initial prompts did not contain any dataset-specific information or
annotations regarding the types of abnormal events. This highlights the framework’s strong capacity
for self-evolution and knowledge discovery.
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