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ABSTRACT

We present IncVGGT, a training-free incremental variant of VGGT that makes
transformer-based 3D reconstruction feasible for long sequences in real-world ap-
plications. VGGT relies on dense global attention, which causes memory to grow
quadratically and requires excessive computation, making it impractical for long-
sequence scenarios. Even evolved streaming variants, such as StreamVGGT, still
suffer from rapidly growing cache and latency. IncVGGT addresses these chal-
lenges from two orthogonal directions: (1) register and fuse overlapping frames
into composite views, reducing duplicate tokens, and (2) history-side pruning re-
tains only the top-k most relevant/highest-scoring slots together with the most re-
cent one, bounding cache growth. This incremental and memory-efficient design
minimizes computation and memory occupation across arbitrarily long sequences.
Compared to StreamVGGT, IncVGGT sustains arbitrarily long sequences with
large efficiency gains (e.g., on 500-frame sequences, 58.5× fewer operators, 9×
lower memory, 25.7× less energy, and 4.9× faster inference) while maintaining
comparable accuracy. In addition, unlike existing baselines that directly run out
of memory beyond 300 (VGGT)–500 (StreamVGGT) frames, IncVGGT contin-
ues to operate smoothly even on 10k-frame inputs under an 80GB GPU, demon-
strating that our design scales to ultra-long sequences without hitting memory
limits. These results highlight IncVGGT’s potential for deployment in resource-
constrained edge devices for long-range 3D scenarios.

1 INTRODUCTION

3D reconstruction from videos for long-range 3D space is a long-standing challenge with broad
impact across vision and robotics (Zhuo et al., 2025). Applications span immersive VR/AR/XR
experiences (Hong et al., 2024; Zheng et al., 2024), real-time robotics and manipulation (Sünderhauf
et al., 2018), autonomous navigation (Geiger et al., 2012). In many of these settings, models must
run under strict memory and compute limits on edge or mobile hardware (Howard et al., 2017),
where repeatedly processing overlapping content in long or redundant streams quickly becomes
impractical.

Feed-forward transformer backbones have recently demonstrated strong 3D performance without
per-scene optimization (Wang et al., 2024b; Leroy et al., 2024). VGGT (Wang et al., 2025) is a
prominent example that predicts depth, pose, point maps, and tracks in a single pass. However, its
global self-attention scales quadratically with the total token length (Vaswani et al., 2017), and naive
streaming still accumulates an ever-growing cache. In practice, both behaviors become bottlenecks
on long sequences, limiting real-time use in VR/AR devices, robots, and vehicles.

Our key observation is: video streams exhibit substantial redundancy along two axes (Yoon & Choi,
2023). Input-side redundancy: Adjacent frames repeatedly cover the same regions, so incurring
the full token cost at every step leads to redundant computation(Habibian et al., 2021). History-
side redundancy: Once relevance is known, many cached keys/values contribute little to the next
step (Adnan et al., 2024). We instantiate these insights in IncVGGT, which retains the backbone’s
feed-forward nature while eliminating redundancy from two orthogonal directions. Input side: We
register and compose short windows into compact composite views using a simple span gate: when
viewpoints are coherent, frames are aligned and merged (Brown & Lowe, 2007). When they drift,
the window is bisected with one shared overlap frame to preserve stitchability. This eliminates
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pixel-level overlap before tokenization, reducing the token load that enters attention. History side:
We bound the key–value cache by relevance rather than sequence length: only the top-k historically
important slots together with the most recent one are retained for the next step. The result replaces
dense “all tokens vs. all history” interactions with a sparse “few tokens vs. few slots” computation,
delivering large savings in memory and operators while preserving geometric stability.

The design targets real deployments of 3D/4D perception: long recordings, stabilized capture, telep-
resence, and robotics all benefit from processing each region once and carrying forward only what
remains useful. The registration-and-composition step includes lightweight handling of warping
artifacts (voids and seams) so that tokenization remains stable (Li et al., 2015). The cache rule is
a minimal change to the attention layer (Saxena et al., 2024). No iterative optimization or heavy
post-processing is required, and both components run online. In this paper, we have the following
two main contributions:

• Input-side registration and composition. We align and merge short windows into com-
posite views, collapsing overlapping regions so that the transformer processes far fewer
tokens (Sec. 3.1).

• Global-local cache pruning. We retain only a fixed number of globally high-score slots
plus the most recent one, converting a growing cache into a constant-size set (Sec. 3.2).

2 BACKGROUND

Structure-from-Motion (SfM) and Multi-view Stereo (MVS). Classical 3D reconstruction ap-
proaches are rooted in geometry-based pipelines such as structure-from-motion (SfM) and multi-
view stereo (MVS) (Ozyeşil et al., 2017; Wang et al., 2024a). These methods detect and match
sparse image features, estimate camera poses through bundle adjustment, and recover dense geome-
try using photometric consistency. While highly accurate and theoretically well-grounded, they rely
on iterative optimization and careful initialization, which makes them computationally demanding
and often brittle in challenging scenarios (Zhang et al.). As a result, conventional SfM/MVS sys-
tems struggle to scale to long video sequences or real-time applications, often requiring hours of
optimization for a single sequence. This motivates learning-based feed-forward approaches that can
offer faster inference.

Learning-based 3D Reconstruction. Neural representations such as Neural Radiance Fields
(NeRF) (Mildenhall et al., 2020) introduced a new paradigm for scene reconstruction, but typi-
cally require per-scene optimization and heavy computation, limiting their use in large-scale or
long-sequence settings. To overcome these limitations, recent feed-forward methods directly pre-
dict geometry and pose from input images. For example, DUSt3R and MASt3R estimate point maps
or depth maps in a single pass, while extensions like CUT3R (Wang et al.) attempt to incorporate
memory mechanisms for longer sequences. These approaches improve efficiency and generaliza-
tion, but still struggle with scalability, as frames are largely processed independently without ex-
ploiting temporal redundancy. This gap has motivated transformer-based designs that process all
frames jointly.

Transformer-based 3D Vision. The success of transformers in 2D vision (Dosovitskiy et al., 2021)
has inspired their application to multi-view 3D reconstruction. A representative example is VGGT,
which employs a pure transformer backbone to jointly predict depth, camera pose, point maps,
and feature tracks within a single feed-forward framework. By treating all input views as tokens
in a global self-attention mechanism, VGGT achieves state-of-the-art accuracy across diverse 3D
benchmarks and demonstrates the potential of transformers as a foundation model for geometry
understanding with strong cross-dataset generalization.

However, this design comes with significant scalability costs. The quadratic complexity of attention
makes memory usage grow rapidly with the number of frames (Dao, 2023)—for instance, a 24GB
GPU can only process a few dozen images before running out of memory. In addition, the model
processes all frames jointly in one shot, which prevents incremental extension to longer sequences
and causes resource usage to grow superlinearly as input length increases. As a result, VGGT
achieves high accuracy on short sequences but cannot be directly applied to continuous or large-
scale real-world videos. Addressing this limitation requires redundancy-aware strategies for both
inputs and cached history.
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Figure 1: Overview of the IncVGGT pipeline. Input frames are aligned into a common reference
before tokenization. Self- and global attention then operate with a bounded cache, where low-score
keys/values are pruned. Outputs are predicted jointly by camera, point, and depth heads.

4D and Long-Sequence Reconstruction. Extending transformer-based 3D models to long or con-
tinuous sequences has recently gained significant attention. VGGT-Long (Deng et al., 2025) tackles
the scalability issue by dividing input videos into overlapping chunks and performing alignment
across chunks, enabling large-scale reconstructions such as kilometer-long trajectories. However,
this strategy is tailored for offline processing and requires additional post-hoc alignment. In contrast,
StreamVGGT adapts VGGT to online video by introducing causal attention and key–value caching,
allowing frames to be processed sequentially while reusing history rather than re-encoding all views
jointly. StreamVGGT preserves the feed-forward nature of VGGT, supports real-time streaming
inference, and currently represents the state of the art for long-sequence 4D reconstruction. Nev-
ertheless, caching every key and value across time inevitably causes memory usage to grow with
sequence length, so although StreamVGGT is effective in practice, its efficiency degrades over long
videos, underscoring the need for redundancy-aware designs that scale gracefully with sequence
length.

3 METHOD

We pursue scalability on high-overlap visual streams by removing redundancy at two complemen-
tary stages. First, an input-side registration and composition module collapses pixel-level overlap
within a short window, yielding a compact composite views whose token count we denote by T̃
(Zitová & Flusser, 2003). Second, a global-local cache pruning module retains only S historical
slots (high-scoring plus recency) for attention, so both compute and memory remain controlled as
sequences grow (Xiao et al., 2023; Kwon et al., 2023). Throughout we use L for the total number of
tokens in a dense global formulation; to avoid overloading notation, the span gate in Sec. 3.1 uses a
separate threshold λ. Fig. 1 gives an overview of the pipeline.

3.1 REGISTRATION-BASED REDUNDANCY REDUCTION

Adjacent frames in long video streams often contain heavy pixel-level overlap, so processing each
independently causes the transformer to tokenize the same regions multiple times. Our method
mitigates input redundancy before attention by registering and composing a window of K frames
into a single composite view in a reference domain (Huang et al.). Registration-and-composition
pipeline is illustrated in Fig. 2. We adopt a hierarchical composition strategy controlled by a span
gate: first attempt to align and merge all K frames; if the normalized coverage of the warped supports
remains within a threshold λ, we generate one composite view; otherwise, the window is recursively
bisected into two sub-windows until each satisfies the span criterion. To ensure frames remain
stitchable, adjacent sub-windows share one overlap frame. By collapsing overlapping pixels, the
transformer is ultimately fed with a token count that scales with the composed support area rather
than the raw number of frames. A statistical comparison of token growth under the baseline and our
method is presented in Fig. 3.

3
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Figure 2: Registration-and-composition pipeline (Sec. 3.1).
A short window of frames is aligned via feature matching
and homography, warped into a reference domain, and com-
posed through the span gate (split/merge) with lightweight
blending/cropping/inpainting to produce a compact com-
posite view.

Figure 3: Input token count vs.
input size (N denotes tokens of
one standard view). Results are
from tandt db truck with our
method.

Feature detection and registration. Given a short window of K frames {Ii}K−1
i=0 , we first align all

frames to a common reference before composition. Specifically, we select I0 as the reference, extract
local features (e.g., ORB (Rublee et al., 2011) or SIFT (Lowe, 2004)) on each frame, and establish
candidate correspondences via k-nearest neighbors (kNN) matching. To reduce mismatches, we
apply ratio tests and cross-checking, retaining only high-confidence correspondences, thus obtaining
homographies Hi→i−1 between adjacent frames (e.g. via DLT + RANSAC) (Agarwal et al., 2005).
From these correspondences, we estimate pairwise homographies Hi→i−1 that map frame i to frame
i− 1. To propagate alignment to the reference, cumulative warps are obtained by composition:

Hi→0 = H1→0 H2→1 · · · Hi→i−1, i = 1, . . . ,K − 1, (1)

with H0→0 = I . This procedure provides a lightweight yet effective alignment that tolerates outliers
and mild parallax, while keeping all frames within a consistent reference domain (see the left block
of Fig. 2). Although homographies cannot fully account for strong 3D parallax, this approximation
proves sufficient for the short temporal windows considered. Notably, it allows efficient streaming
implementation: once Hi→i−1 is estimated, subsequent frames can be incrementally aligned to the
reference without reprocessing earlier frames.

Band-limited warping. Direct projection of all warped frames onto a global canvas can cause the
canvas size to grow unbounded, producing excessive extrapolation and large unsupported regions at
the periphery. Such instability not only wastes tokens but also disrupts the subsequent span compu-
tation. To address this, we restrict composition to a narrow vertical band centered at the reference
support. Concretely, a global translation is applied so that all warped coordinates remain nonneg-
ative within this band-limited canvas. This design bounds the effective canvas size, suppresses
unsupported margins, and ensures that span evaluation in the next stage remains well-conditioned.

Normalized span and recursive bisection. To decide whether K frames can be composed in one
shot, we define a normalized span that measures the horizontal coverage of the union of warped
supports in units of a single-frame width. Let Si = Hi→0(Ωi) be the warped support of frame i
(restricted to the band-limited canvas) and let W0 be the width of Ω0. Using Bx(·) for the horizontal
projection (the minimal interval covering a set along the x-axis),

span
(
{Hi→0}

)
=

∣∣Bx

( ⋃K−1
i=0 Si

) ∣∣
W0

. (2)

If span ≤ λ, viewpoints are coherent and we proceed with single-shot composition. Otherwise we
split into two sub-windows of size ⌊K/2⌋ and ⌈K/2⌉ that share the middle frame (e.g., [0:⌊K/2⌋]
and [⌊K/2⌋:K]), and recurse independently. The overlap frame serves as an alignment anchor that
guarantees stitchability if higher-level fusion is needed; in practice, span decreases quickly with
window size under typical motions.

Blending and void mitigation. Once a (sub-)window passes the span gate, its warped frames are
fused by mask-aware distance-transform feathering (Allène et al., 2008). For each warp, we compute
a binary validity mask and assign per-pixel weights that increase smoothly toward the interior, so
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Figure 4: Top: Naive recomputation, where each new frame attends to all tokens (L × L). 1: In-
cremental inference, which updates only the queries from the new frame. 2.1: KV caching, which
reuses stored keys/values so new queries attend directly to the accumulated history. 2.2: IncVGGT,
which selects only the top-k maximum slots plus the most recent one, yielding a constant-size cache.

that the normalized accumulation

Î(x) =

∑
i Wi(x) Ĩi(x)∑
i Wi(x) + δ

, δ > 0,

suppresses seams without introducing halo artifacts. To mimic streaming input, later frames over-
write earlier ones, ensuring that newly arrived content fills small residual gaps.

Planar warps may still produce unsupported voids, especially at disocclusions or near band bound-
aries. We apply a lightweight clean-up that operates only in these regions: persistent unsupported
margins at the horizontal extremes are trimmed, and strict voids (all-zero pixels) are inpainted with
a small-radius fill to remove speckles while preserving valid texture (Telea, 2004; Quan et al., 2024).
Optionally cropping to the reference-frame height further regularizes the token grid and improves
batching efficiency. The output examples in Fig. 2 illustrate typical seam and void artifacts together
with their removal.

3.2 GLOBAL-LOCAL CACHE PRUNING

Simply storing all past keys and values, as done in vanilla streaming transformers (Dai et al., 2019),
leads to ever-growing cache size and rising cost, making long sequences infeasible. In VGGT,
each incoming frame triggers a full recomputation of global attention across all tokens, producing
a dense L × L matrix where L = F · p is the total token length for F frames with p tokens per
frame (Fig. 4, top). This quadratic cost requires both heavy computation and memory to maintain
the key–value states. Incremental inference mitigates this by processing only the queries from the
new frame rather than recomputing all past ones (Fig. 4, 1). KV caching further improves efficiency
by storing historical keys/values so that new queries can directly attend to them (Fig. 4, 2.1) (Zhao
et al.). However, the per-step cost O(B · H · p · Lhist · dh) still grows linearly with cache length.
Once the cache accumulates 7–800 frames, memory already exceeds 80 GB on an A100 and per-
frame inference time keeps rising with sequence length. This motivates a more selective strategy:
instead of retaining all slots, we keep only a compact set of globally high-score slots plus the most
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Table 1: Inference time (s) across different sequence lengths (OOM indicates out-of-memory).
Method 5 10 20 50 100 200 300 500 1k 10k
Ours (Inc) 0.57 1.04 2.09 4.17 8.20 16.28 25.50 38.12 82.00 797.31
StreamVGGT 0.50 1.06 2.15 7.23 20.09 68.22 136.72 185.11 OOM OOM
VGGT 0.51 0.63 1.09 2.37 5.78 17.34 36.32 OOM OOM OOM

recent one, while low-score slots—often arising from overlapping or repetitive views—are pruned
as redundant (Fig. 4, 2.2).

Global-local pruning rule. Real-world video streams for 3D reconstruction exhibit strong frame-
to-frame continuity and overlap. Slots with the highest scores at step t are likely to be reused at step
t+1. We exploit this property by propagating historical relevance and preselecting only the top-k
slots, together with the most recent one to capture sudden scene changes (Kim & Jung, 2025; Fu
et al., 2024). Formally, let

At = softmax

(
QtK

⊤
1:Lhist√
dh

)
(3)

be the attention over cached keys at time t. Reducing At across queries/heads yields a per-key
relevance vector s(t) ∈ RLhist . Before processing frame t+1, we preselect

St+1 = TopK
(
s(t), k

)
∪ {most recent},

and restrict attention to this (k+1)-sized set:

Ot+1 = softmax

(
Qt+1K

⊤
St+1√

dh

)
VSt+1

. (4)

This avoids scoring against the entire cache and yields constant-size history per step.

Complexity and memory. Restricting attention to St+1 bounds the per-step score computation to
O
(
B ·H ·(k+1) ·dh

)
and the KV footprint to O

(
(k+1) ·dh

)
per head, both independent of sequence

length. Over T steps, the cost is linear in T for fixed k, while retaining enough temporal context due
to inter-frame redundancy.

Combined effect. Let S denote the number of retained historical tokens (S = k+1) and T̃ the
composed token count from Sec. 3.1. The dense baseline over L tokens costs O(B ·H ·L2 · dh) per
layer. With registration reducing inputs to T̃ and the cache limited to S, the per-step cost becomes
O
(
B ·H ·T̃ ·S ·dh

)
and stored key–value memory is bounded by O(S ·dh) per head. Together, input-

side registration and history-side pruning convert quadratic growth into much smaller T̃ ·S ≪ L2,
significantly reducing both operator count and memory footprint at the method level.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

All experiments are conducted on a single NVIDIA A100 GPU (80GB). The input image height is
fixed at 518 pixels while preserving the original aspect ratio, ensuring consistent resolution across
datasets. During inference, inputs are constructed as sliding windows of 10 consecutive frames,
with each prediction aligned to the first frame of the window. For history compression, we retain
the top-k = 5 cached frames, and for multi-view selection, the top-20 camera tokens, corresponding
to roughly five neighboring views. Unless otherwise specified, models are evaluated using official
StreamVGGT weights with our inference modifications. Efficiency is measured in terms of infer-
ence latency, GPU memory (allocated and reserved), GEMM GFLOPs, and hardware-level metrics
including average power and energy per output. Accuracy is assessed on multi-view reconstruction
and long-sequence depth estimation tasks.

4.2 EFFICIENCY EVALUATION

Latency. Latency is evaluated on Tanks-and-Temples (train and truck) for sequences up to 300
frames, and on KITTI for longer sequences (Knapitsch et al., 2017). Per-frame latency is computed
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Figure 5: Per-frame latency vs. sequence length
on tandtdbandKITTIdatasets.

Figure 6: Reserved and incremental memory
vs. sequence length. OOM indicates out-of-
memory.

as total inference time divided by sequence length; for sequences longer than 20 frames, both the
merging step and the forward pass are included. Figure 5 shows per-frame latency (ms/frame), while
Table 1 indicates total sequence time (s). Our method remains nearly constant once the sequence
exceeds 100 frames, whereas StreamVGGT rises sharply and VGGT also grows with length. For
example, from 10 to 300 frames, our method decreases slightly from about 104 ms to 85 ms per
frame, while StreamVGGT increases from 106 ms to 455 ms and VGGT from 63 ms to 117 ms.
This demonstrates that our incremental design successfully prevents latency per frame from scaling
with sequence length.

At the sequence level, Table 1 shows the same trend. At 100 frames, our method completes in 8.20
s, compared to 20.09 s for StreamVGGT (2.4× faster) and 5.78 s for VGGT. At 300 frames, the
difference is substantial: our method finishes in 25.54 s, whereas StreamVGGT requires 136.72 s
(5.4×), and VGGT 35.18 s. These results highlight that our incremental design delivers substantially
faster inference than StreamVGGT, while maintaining comparable accuracy to VGGT and even
surpassing it in some cases.

Memory Usage. Since our focus is on memory bottlenecks, we present reserved memory through-
out this section, as it directly reflects the peak footprint that determines CUDA out-of-memory
(OOM) failures. Here, OOM denotes the runtime termination when the GPU cannot allocate fur-
ther memory. We further define incremental memory as the additional reserved usage incurred per
forward step. As shown in Figure 6, both VGGT and StreamVGGT exhibit steep growth in re-
served memory with longer sequences. VGGT already exceeds 60 GiB at 300 frames and fails
thereafter, even without bundle adjustment. StreamVGGT behaves similarly, reaching more than
78 GiB and crashing at 1k frames. In contrast, our method maintains a nearly flat reserved memory
profile across all tested lengths, staying below 9 GiB even at 1k frames. This stability indicates that
our redundancy-aware state compression effectively breaks the quadratic growth trend that makes
existing approaches impractical for long sequences.

We further examine incremental memory, defined as the additional reserved usage incurred per for-
ward step. Again in Figure 6, both baselines show rapidly increasing increments, with VGGT and
StreamVGGT surpassing 5–20 GiB once the input length exceeds 100 frames. Our method, how-
ever, keeps the incremental cost tightly bounded around 2–3 GiB regardless of sequence length. This
bounded slope is critical: it ensures that even under long streaming inputs, memory growth remains
predictable and sustainable. Together, these findings demonstrate that our approach is not only ef-
ficient in terms of total footprint but also robust in scaling behavior, enabling reliable operation on
GPUs where existing models would immediately run out of memory. More broadly, the combination
of low reserved footprint and bounded incremental cost highlights that our method is well-suited for
edge cases and commodity GPUs, where both absolute capacity and memory headroom are highly
constrained.

Computation efficiency. To further analyze computational efficiency, we estimate the number
of attention operators, which contribute over 95% of the total FLOPs (Sreedhar et al., 2022). We
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Table 2: Theoretical attention operator counts (in k) computed on the KITTI dataset.
#Frames VGGT StreamVGGT Ours (Inc)
5 7.19k 6.38k 6.38k
50 286.52k 163.42k 11.05k
100 951.58k 548.13k 27.39k
200 3603.63k 1981.39k 70.26k
300 7956.14k 4299.78k 126.33k
500 OOM 11591.97k 198.88k

Table 3: Energy consumption (J) across different sequence lengths. The last column presents the
mean average power consumption (W).
Method 5 20 50 100 200 300 500 1k Avg Power (W)
Ours (Inc) 64.7 238.0 113.7 202.8 455.8 811.0 1183.2 2885.3 135.7
VGGT 62.2 105.8 513.4 1269.3 3926.9 8078.7 OOM OOM 178.3
StreamVGGT 125.6 309.2 1119.2 3360.9 11228.2 23516.1 30503.5 OOM 153.8

present theoretical values derived from matrix dimensions, focusing only on the attention compo-
nent. As shown in Table 2, our method reduces operator counts dramatically compared to VGGT
and StreamVGGT. For example, at 300 frames, VGGT requires about 7,956k attention operators
and StreamVGGT about 4,300k, whereas our method uses only 126k—over 60× fewer than VGGT
and 30× fewer than StreamVGGT. This significant reduction directly explains the improvements in
latency and energy, since far fewer redundant attention computations are executed while reconstruc-
tion quality is preserved.

Energy Efficiency. Beyond memory and latency, we further examine hardware-level efficiency in
terms of energy consumption (Cao et al., 2021). As summarized in Table3, our method consistently
requires substantially less energy than both VGGT and StreamVGGT across all sequence lengths.
While the average power draw is slightly lower than competing baselines (135.7 W vs. 153.8 W and
178.3 W), the key advantage comes from significantly shorter runtimes, which translate into much
lower energy-per-sequence. For instance, at 300 frames our method consumes only 811 J, compared
to 8079 J for VGGT and over 23,000 J for StreamVGGT. This one-order-of-magnitude gap widens
as the sequence length increases. Since all methods are evaluated on the same sequence lengths,
total energy is directly comparable; equivalently, dividing by frame count yields consistent J/frame
trends. These results indicate that our redundancy-aware design not only conserves memory but
also reduces wasted GPU cycles. As a result, this energy efficiency makes the approach especially
appealing for resource-constrained settings, such as commodity GPUs or edge devices, where both
memory and power budgets are limited. In practice, this means our model can sustain long-sequence
reconstruction tasks on hardware platforms where other methods would either exhaust memory or
exceed acceptable power envelopes, broadening the applicability of foundation models in 3D vision.

4.3 ACCURACY EVALUATION

We evaluate accuracy on video depth and multi-view reconstruction, as single-frame and camera
pose estimation are nearly identical to StreamVGGT due to shared pretrained weights. Our goal is
therefore to confirm that the efficiency gains described in Section 4.2 are achieved while maintaining
accuracy at a comparable level, without incurring significant degradation.

Video Depth. Table 4.3 shows video depth results on Sintel (Alnegheimish et al., 2022),
Bonn (Palazzolo et al., 2019), and KITTI. Across datasets, our accuracy remains very close to
StreamVGGT, with relative differences typically within 1–3%. For example, on Sintel the Abs
Rel differs by only about 4%, and on KITTI the gap is below 2%. On Bonn, both methods achieve
nearly identical δ<1.25 scores around 97%. These small gaps indicate that the efficiency gains of
our method are realized with only minimal loss in accuracy, while still outperforming other stream-
ing baselines such as Spann3R, CUT3R, and Point3R by a clear margin.

Multi-view Reconstruction. Table 5 shows results on 7Scenes (Shotton et al., 2013) and NRGBD
(Azinović et al., 2022). VGGT achieves the lowest errors overall, but it is a non-streaming baseline

8
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Table 4: Video depth evaluation on Sintel, Bonn, and KITTI datasets.
results for StreamVGGT and ours are obtained from our own evaluation, while others are derived

from StreamVGGT. δ<1.25 is reported as a percentage.

Method Type Sintel Bonn KITTI
Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑

VGGT Dense-view 0.298 68.1 0.057 96.8 0.061 97.0
Spann3R Streaming 0.622 42.6 0.144 81.3 0.198 73.7
CUT3R Streaming 0.421 47.9 0.078 93.7 0.118 88.1
Point3R Streaming 0.452 48.9 0.060 96.0 0.136 84.2
StreamVGGT Streaming 0.328 64.9 0.059 97.2 0.173 72.2
Ours (Inc) Streaming 0.341 63.1 0.064 97.0 0.176 71.9

Table 5: Multi-view reconstruction on 7Scenes and NRGBD. Include median accuracy (Acc), com-
pleteness (Comp), and normal consistency (NC1).

Method 7Scenes NRGBD
Accmed ↓ Compmed ↓ NC1med ↑ Accmed ↓ Compmed ↓ NC1med ↑

VGGT 0.0055 0.0067 0.948 0.0139 0.0147 0.993
StreamVGGT 0.0241 0.0203 0.915 0.0520 0.0340 0.988
Ours (Inc) 0.0266 0.0203 0.901 0.0516 0.0345 0.987

and cannot scale beyond short sequences. Among streaming models, the accuracy (Acc) metric
shows complementary strengths: on 7Scenes, StreamVGGT attains slightly lower Acc, while on
NRGBD our method achieves marginally better Acc. Other metrics remain largely comparable, and
in all cases the differences are within 0.3%, indicating that our approach matches the reconstruc-
tion quality of the best streaming baseline, while uniquely offering the efficiency and scalability
demonstrated in Section 4.2.

5 CONCLUSION

We presented IncVGGT, an incremental and memory-efficient visual geometry transformer for long-
range 3D reconstruction. Our design collapses redundant input views into compact composites
and prunes the history cache with a top-k-plus-recency rule. This ensures both operator count and
memory footprint remain bounded while preserving awareness of global and local spatial context.
Experimental results show that IncVGGT outperforms state-of-the-art methods by nearly an order of
magnitude. IncVGGT scales effectively to long sequences while preserving accuracy, avoiding the
memory and latency limitations of existing baselines. More broadly, IncVGGT demonstrates that
redundancy-aware design can make transformer-based reconstruction practical for VR/AR, robotics,
and edge devices, enabling reliable deployment in real-world long-sequence scenarios.

Reproducibility Statement. We provide all code necessary to reproduce our results at the following
anonymous link: https://anonymous.4open.science/r/IncVGGT2887asfsafasf/
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