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ABSTRACT

Many modeling tasks from disparate domains can be framed the same way, com-
puting spherical signals from geometric inputs, for example, computing the radar
response or aerodynamics drag of different objects, or navigating through an envi-
ronment. This paper introduces G2Sphere, a general method for mapping object
geometries to spherical signals. G2Sphere operates entirely in Fourier space, en-
coding geometric structure into latent Fourier features using equivariant neural
networks and then outputting the Fourier coefficients of the output signal. Com-
bining these coefficients with spherical harmonics enables the simultaneous pre-
diction of all values of the continuous spherical signal at any resolution. We per-
form experiments on various challenging domains including radar response mod-
eling, aerodynamics drag prediction, and policy learning for manipulation and
navigation. We find that G2Sphere significantly outperforms competitive base-
lines in terms of accuracy and inference time. We also demonstrate that equivari-
ance and Fourier features lead to improved sample efficiency and generalization.

1 INTRODUCTION

Many different problems in 3D modeling require mapping detailed local geometric information to
global spherical functions. In this paper, we consider several examples, such as simulating the radar
response of an object, predicting the drag characteristics of a vehicle, or modeling an optimal control
policy for manipulation. Modeling these types of signals is challenging because it requires very fine
discretization of the domain in order to accurately capture high frequency information, such as sharp
specular reflections in radar. This can make traditional numerical solvers and simulators expensive
(Andersh et al., 2000). Deep learning methods represent an attractive, potentially more efficient
approach.

One method of using neural networks to model spherical output signals is to output a tensor of
regularly sampled values across the sphere using a spatial grid such as Healpix (Gorski et al., 2005)
(Fig. 1 a). However, a large number of samples is necessary to attain a high spatial resolution over
the sphere and even then, the model can easily overfit to the specific sample locations. Additionally,

Figure 1: Modelling Spherical Functions. (a) The explicit model outputs a fixed grid of predictions
to approximate the continuous function fx. (b) The implicit model learns fx by conditioning on both
input x and coordinate point u. (c) G2Sphere decomposes fx into a set of learned Fourier coefficients
cml and spherical harmonics Y m

l . This enables prediction of fx at any coordinate point u.
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these large input and output spaces can lead to other compounding issues such as training instability
and computational costs (Vijayanarasimhan et al., 2014). An alternate strategy is to use implicit
models which represent functions in a continuous manner and can be queried at any coordinate rather
than outputting values at predefined coordinates (Fig. 1b). Implicit models have the advantages of
being resolution independent, but they are relatively inefficient, requiring both a large amount of data
and time to train in order to achieve good performance(Florence et al., 2022). Additionally, implicit
models have been shown to be prone to overfitting to the training coordinates (Decugis et al., 2024)
and, of particular interest to this work, they lose the geometric relationship between the input and
output spaces.

In this work, we seek to address these challenges by introducing a new approach to mapping object
geometries to spherical functions, where we model the output signal in Fourier space as a linear
combination of spherical harmonic (SH) basis functions, enabling simultaneous prediction of the
continuous output function at any desired resolution (Fig. 1c). While previous works have modeled
mappings from geometric inputs to spherical functions using the spherical harmonics, they have
relied on pre-defined mappings to convert the geometry to a spherical input (Esteves et al., 2018;
Ha & Lyu, 2022). We propose G2Sphere, a novel approach to learn mappings between complex
geometric inputs and spherical systems. G2Sphere maintains the geometric structure between input
geometry and output signal by operating entirely in Fourier space and enforcing end-to-end SO(3)-
equivariance. G2Sphere leverages equivariant graph convolutions (Geiger et al., 2022; Liao et al.,
2023) to encode the geometry, spherical convolutions (Cohen et al., 2018) to render the spherical
signal, and pointwise MLP non-linearities to model high-frequency information in the output space.
This combination alleviates issues with existing equivariant GNN approaches which have been lim-
ited to lower frequency modeling, primarily due to computational constraints.

Our contributions are as follows:

• A novel SO(3)-equivariant architecture, G2Sphere, for mapping complex geometric in-
puts to high frequency, continuous spherical functions, utilizing Fourier decomposition.
G2Sphere uses learned spherical embeddings for geometric inputs which are more general
and flexible than prior works using engineered features.

• Empirical demonstration of the improved accuracy and efficiency of G2Sphere versus sev-
eral baselines, across a wide range of challenging domains, including radar response and
aerodynamic drag of 3D meshes, and policy learning for 2D and 3D navigation.

• Demonstration of zero shot super-resolution ability and generalization to novel meshes.
• In policy learning, an inference time of only 9ms compared to 156ms of diffusion policy,

enabling our policy to achieve a high-frequency controller capable of running at 125Hz.

2 RELATED WORKS

Fourier Transform in Machine Learning. The Fourier transform (FT) is an important tool across a
wide range of mathematical and engineering applications ranging from solving differential equations
(Cooley et al., 1969) to quantum mechanics and signal processing (Arfken et al., 2011). Fourier
transforms have also been heavily utilized in machine learning. In image processing and pattern
recognition the FT has been used to speed up convolutional neural networks (Mathieu et al., 2013),
to improve feature representation (Oyallon et al., 2018), and to increase the resolution of generative
adversarial networks (Karras et al., 2021). Lee-Thorp et al. (2021) use the FT in the more modern
transformer architecture to improve tokenization and improve performance. Li et al. (2020) combine
neural operators with the Fourier transform to create the Fourier Neural Operator (FNO) to solve a
number of challenging PDE systems and Bonev et al. (2023) extend this work to the Spherical FNO
which they use to model weather systems. G2Sphere and Spherical FNO have a number of notable
differences. First, G2Sphere operates entirely in Fourier space, whereas FNO moves back and forth
between real and Fourier spaces. Additionally, FNOs are typically used to model dynamical systems
which have similar continuous input and output spaces, while G2Sphere maps discrete geometric
inputs to continuous outputs.

Equivariant Neural Networks. Equivariant neural networks constrain their layers to respect trans-
formations under a symmetry group (Cohen & Welling, 2016; Geiger & Smidt, 2022; Weiler &
Cesa, 2019). Neural networks equivariant to the 3D rotation group SO(3) are used for classifying
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Figure 2: G2Sphere Architecture. Illustration of the G2Sphere (G2S) model. First, the geometric
input is converted from real space (red dotted-line) to Fourier space (blue dotted line) using an
SO(3)-equivariant encoder. We decode this spherical latent representation into a set of Fourier
coefficients clm representing the continuous spherical signal. Finally, these coefficients are combined
with a grid of pre-computed harmonic basis functions to map the function back to real space.

shapes (Esteves et al., 2018; Cohen et al., 2018), classifying protein structures (Weiler et al., 2018),
and predicting features of atomic systems (Thomas et al., 2018; Brandstetter et al., 2021; Liao &
Smidt, 2022). Similar to our method, all these approaches use steerable kernel bases and perform
equivariant operations, such as convolutions or tensor products, but almost all are limited to harmon-
ics of low degree (≤ 10). As such, G2Sphere is capable of capturing significantly more detail and
fine-grained structure due to our use of a much higher maximum frequency (≈ 40). Esteves et al.
(2018) and Cohen et al. (2018) model data over the sphere, but use a predefined mapping to convert
the input into a spherical signal. They also focus on learning functions with low-dimensional dis-
crete outputs, e.g. classification. Ha & Lyu (2022) also use a predefined mapping to convert brain
geometry to spherical signals and a spherical UNet with frequency up sampling to do segmentation.
Unlike these methods, G2Sphere uses a learned mapping to convert object geometries to spherical
signals enabling the broad applicability of G2Sphere enabling the use the same model for a wide
range of applications ranging from radar and aerodynamics to policy learning.

3 PROBLEM STATEMENT.

In this paper we consider the problem of mapping 3D geometric data, such as object meshes or
points clouds, to spherical signals representing physical systems, such as radar response or drag.
We consider spherical signals as continuous functions f : Sd → Rc where Sd is the 1-sphere or
2-sphere and c is the number of channels in the signal. Given some input geometry X ⊂ R3, the
objective is to learn a functional mapping F : X 7→ fX . Since full observations of fX are rare
in practice, we assume a dataset consisting of only partially observed outputs. That is, a dataset
D = {(Xi, ui, yi)}Ni=1 where samples consist of meshes or point clouds Xi, coordinates ui ∈ Sd,
and the value of the spherical signal yi = fXi(ui) ∈ Rc at ui. Since the output signals are only
partially observed, we consider generalization to new coordinates ui and new geometries Xi.

Equivariance. The value fX(u) may be considered as a property of the geometry X defined with
respect to viewing direction u ∈ S2. We assume that both the geometry X and direction u are
defined with respect to the same coordinate frame. Thus if the coordinate frame is rotated, both X
and u are rotated, and fX(u) = fRX(Ru) should be invariant. This property is equivalent to the
equivariance of the functional mapping F ; if X is rotated to RX , the spherical signal fX is rotated
to fRX = RfX , preserving the relationship between the input geometry and the output signal.
That is, F (RX) = RF (X). This property can be enforced in the model architecture to ensure the
learned model respects this property. Since the composition of equivariant functions is equivariant,
it is sufficient to ensure that each component of the architecture is equivariant.

4 G2SPHERE

A G2Sphere model is comprised of two key components: (1) an encoder which compresses the input
data into a compact latent representation and (2) a decoder which decomposes this latent representa-
tion into the spherical output utilizing spherical harmonics (Fig. 2). Encoder-decoder architectures
such as U-Net (Zhou et al., 2018) and Transformers (Vaswani et al., 2017) are attractive methods
for prediction tasks with high-dimensional inputs, such as 3D geometric data, due to latent space
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compression. The encoder-decoder design is a good fit for our problem since we map between two
different types of geometric data, e.g. mesh to spherical signals, and the encoder-decoder archetype
allows us to match the geometry of the input and output spaces to the architecture of the encoder
and decoder. By leveraging these learned and generalizable mappings from geometry to spherical
signals, G2Sphere can be applied to tasks that were previously unattainable or computationally pro-
hibitive under previous methods (Esteves et al., 2018; Cohen et al., 2018; Liao et al., 2023). We
detail the concrete implementations utilized in our experiments in Appendix D.

4.1 ENCODER

In a G2Sphere model, the first step is to encode the local and global information of the 3D input
into Fourier space, thereby ensuring Euclidean and permutation symmetries are correctly respected
within our model. This is accomplished by utilizing an equivariant neural network encoder, but the
exact architecture can vary depending on the type of input data. Broadly speaking, we define 3D
geometric data as information that describes the shape, position, and spatial properties of objects in
three-dimensional space. This can include various types of data including point clouds, voxel grids,
object meshes, and RGB-D images. When dealing witth dense inputs, such as point clouds or object
meshes, equivariant transformers such as Equiformer V2 (Liao et al., 2023) are used. However,
when dealing with voxel grids or RGB-D images, E(n)-equivariant Steerable CNNs (Weiler &
Cesa, 2019; Cesa et al., 2022) are a more natural choice. These types of models are constrained
to use low-frequency spherical features, i.e. lmax ≤ 10, due to the computational costs of higher-
frequency features scaling significantly when applied on a per node basis. In each case, the input
signal is initially spatially dispersed in R3 and at the end of the encoder, the signal is aggregated into
a single feature vector representing the multi-channel spherical signal in Fourier space.

In Figure 2, we illustrate a G2Sphere model with mesh inputs which uses Equiformer V2 Liao et al.
(2023), a SO(3)-equivariant transformer commonly used on 3D geometric data, as the encoder. The
mesh is embedded as a geometric graph with node and edge features. The node feature for node i
is the position xi ∈ R3 and the edge features are the spherical harmonic embedding of the relative
positions eij = Y l(xj − xi), where Y l: R3 → R2l+1 are the spherical harmonics and i, j are
vertices connected by an edge. Then a set of node-wise spherical features are learned over the graph
which are mean pooled to form a multi-channel spherical latent space.

4.2 DECODER

Once the input has been projected into Fourier space using the encoder, we use operations that
preserve the SO(3) symmetry of the latent representation. Specifically, we use SO(3)-equivariant
group convolutions to form a Spherical CNN (Cohen et al., 2018) decoder. The output of the final
layer of the decoder f̂ represents an N -channel signal over S2 in the Fourier domain. That is, f̂k =

(clkm)2l+1,L
m=0,l=0 are the coefficients of the spherical harmonics up to frequency L for 1 ≤ k ≤ K. To

convert the signal back to real space, we apply the inverse Fourier transform and evaluate these K
signals on the 2-sphere, at a position specified by spherical coordinates (θ, ϕ). That is,

f(θ, ϕ) =

(
L∑

l=0

2l+1∑
m=0

Y l
m(θ, ϕ)clkm

)K

k=1

,

where Y l
m are the spherical harmonics of degree l and order m. In practice, we pre-compute the

spherical harmonics basis functions at the desired grid resolution to allow for fast evaluation. See
Appendix B for additional details on our harmonics implementations.

One drawback to using harmonics to approximate functions in this manner is that if the maximum
frequency Lmax is low, then their resolution will also be low. The SH excel at capturing smooth,
low-frequency components, but struggle with sharp features or discontinuous behavior unless a large
number of harmonics are used, i.e. high L. As a result traditional equivariant decoder architectures,
which operate with a relatively small number of harmonics (L ≤ 10), struggle in domains where
higher output fidelity is required. G2Sphere uses two techniques to improve output fidelity: fre-
quency up-sampling where we gradually increase the frequency from the encoder’s frequency Lenc

to the output frequency Ldec and trainable spherical non-linearities (TSNL) (Bonev et al., 2023).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Domain Mesh Type Transformer Equiformer Spherical CNN G2S G2S+TSNL

Radar
Frusta 0.201± 2e-4 0.271± 3e-4 0.438± 1e-6 0.221± 1e-5 0.195± 9e-40.195± 9e-40.195± 9e-4

Asym 0.179± 5e-4 0.257± 6e-4 0.496± 1e-6 0.123± 2e-40.123± 2e-40.123± 2e-4 0.128± 4e-4

Drag Pods 0.064± 1e-2 0.0672± 4e-3 0.062± 2e-30.062± 2e-30.062± 2e-3 0.064± 6e-3

Table 1: Mesh to Spherical Functions. Mean square error of G2Sphere (G2S) and baselines on the
radar and drag domains. Performance is averaged across 3 random seeds with ± standard error.

Frequency Up-sampling. Inspired by Ha & Lyu (2022), while increasing Lmax in the decoder, we
gradually reduce the number of channels in our latent representation (See Appendix D). In order
to maintain equivariance during this operation, we need to account for the relationship between
the Fourier and real space. This is accomplished through the use of a regular non-linearity (as
in Cohen et al. (2018) or De Haan et al. (2021)), where we map the signal to real space using
the inverse Fourier transform (IFT), apply a point-wise non-linearity to the values of the spherical
signal, and then perform the Fourier transform (FT), with higher frequency resolution, to convert
back to the frequency domain. By combining a number of these non-linearities in our decoder,
we are able to achieve a much higher maximum frequency (up to Lmax = 40) than previous works
using equivaraint architectures with dense geometric inputs, e.g. object meshes (Batzner et al., 2022;
Kondor et al., 2018).

5 EXPERIMENTS

We systematically evaluate G2Sphere across three different domains: two supervised learning do-
mains, where we learn a mapping from object meshes to spherical radar and drag signals, and a
policy learning domain, where we learn a mapping between states and state-action values. These
evaluations benchmark the performance of G2Sphere on dense (e.g., radar response) and sparse (e.g.,
drag coefficient) spherical signals and with complex (object mesh) and simple (object keypoint) in-
put geometries. G2Sphere consistently outperforms the prior state-of-the-art in all domains. In
the following, we provide an overview of each domain, our evaluation methodology, and our key
findings.

5.1 RADAR AND DRAG MODELING FROM MESHES

Many modeling tasks take an object mesh as input and predict a physical property of that object. If
the property depends on a direction vector, that is, a spherical coordinate (θ, ϕ), then the output may
be represented as a continuous function defined on the 2-sphere. We evaluate the performance of
G2Sphere against baselines on two such tasks, predicting radar response and aerodynamic drag.

Radar Prediction. Due to the expense of collecting real-world radar data, we simulate radar re-
sponses for a variety of different meshes using a physical optics method to approximate the elec-
tromagnetic waves (Balanis, 2012). Specifically, we generate two mesh datasets, Asym and Frusta.
See Fig. 11 for examples. The Asym dataset is a collection of randomly scaled basic shapes (cubes,
cylinders, and spheres), with randomly generated protrusions to make the radar response asym-
metric. The Frusta dataset represents a collection of complex 3D shapes, where each mesh is a
combination of several basic components stacked together to form roll-symmetric objects. Due
to this symmetry, we evaluate each frusta mesh over 360 orientations on the non-symmetric axis,
θ ∈ [0, 2π] to generate the associated radar responses. The Asym meshes are evaluated over both
axes, θ ∈ [0, 2π], ϕ ∈ [0, π], where θ is discretized over 60 values and ϕ over 20.

Drag Prediction. We use a high-performance Computational Fluid Dynamics (CFD) simulator to
generate a Pods dataset of mesh and drag coefficient samples of pod-like geometrical shapes. There
are some differences relative to the radar dataset. First, as drag-coefficients are of most interest for
flying objects (e.g. aircraft) the drag coefficients are only simulated for a cone in the front of the
objects with θ, ϕ ∈ [−20, 20]. Secondly, a large contributing factor in the drag coefficients are the
set of flight conditions (altitude, speed, etc.) which we treat as global parameters and append to the
latent representation after encoding the mesh. The Pods dataset contains 10, 000 samples (mesh,
flight conditions, drag) each with a single drag coefficient for a specific angle (θ, ϕ), which defines
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(a) Ground Truth (b) Transformer (c) Equiformer (d) G2S

Figure 3: Radar Response. Spherical outputs generated by the ground truth first-principles simu-
lator, two baseline methods and G2Sphere. G2Sphere does a good job in reconstructing the over-
all projected shape characteristics and correctly capturing both types of radar scattering responses
whereas the Transformer model underfits and the Equiformer model overfits.

the orientation of the incoming flow relative to the centerline of the Pod shape. Additional details
on the radar and drag datasets can be found in Appendix F.

G2Sphere Architecture. We use Equiformer v2 (Liao et al., 2023) to encode the input mesh into
a set of latent representations for each vertex in the mesh. These latent vectors are then combined
into a single feature vector using a global average pooling layer. The decoder is a spherical CNN
with several layers of spherical convolutions followed by the spherical non-linearity introduced in
Sec. 4.2 to upsample the frequency from Lenc to Ldec. We use Lenc = 5 for both tasks but use
Ldec = 40 for the radar domain and Ldec = 5 for the drag domain. We examine two variants of
G2Sphere, one with the trainable spherical non-linearity (G2S+TSNL), and one without (G2S).

Baselines. We compare the performance of G2Sphere against three competitive baselines for pro-
cessing meshes, Transformer, Equiformer, Spherical CNN. The Transformer model is inspired by
other prominent mesh-based transformer architectures (Siddiqui et al., 2024; Lin et al., 2021; Feng
et al., 2018). It tokenizes the mesh into spatial and structural descriptors as in (Feng et al., 2018), and
uses a transformer encoder with an MLP decoder to generate the predicted response. The Equiformer
(Liao et al., 2023) model resembles the G2Sphere, but directly maps the latent representation to the
discrete set of spherical values. The Spherical CNN (Esteves et al., 2018) model uses a ray-based
method to map the input geometries onto the sphere, followed by a series of spherical convolutions.
This can be considered a G2Sphere model where the learned encoder mapping is replaced with a
predefined map. We use explicit models for the radar prediction task, where the baseline models
output the full radar response for a given mesh. For the drag prediction task, we use implicit mod-
els where the coordinates are passed as input to the baseline models and appended onto the latent
representation. This is necessary as, unlike in the radar domain, our drag dataset only has partially
observed outputs and therefor lacks the dense targets required by explicit models. See Appendix D
for additional information on model architectures and training details.

G2Sphere Performance. We report the performance of G2Sphere and the baselines on both radar
and drag tasks in Table 1. G2Sphere obtains the lowest mean squared error compared to any of
the baseline methods. Further, as the complexity of the task increases from the roll-symmetric
Frusta shapes to Asym shapes, the difference in performance between G2Sphere and the baselines
increases. This implies that G2Sphere is more adept at predicting dense output spaces than methods
which output discrete values. While exact error rates for radar prediction vary depending on the task
specifications, the Transformer baseline and G2Sphere fall within the most commonly cited 10 to
20% error range (Joseph T. Mayhan, 2024). Fig. 3 shows examples of the spherical radar signals
generated by each model using meshes from the Asym dataset. When comparing the predictions
generated by the equivariant models (Equiformer and G2Sphere), we can clearly see that G2Sphere
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(a) Ground Truth (b) G2S

Figure 4: Zero-Shot Super-Resolution. Radar response prediction on Asymmetric Shapes dataset
with an G2Sphere model trained on 60 × 20 dataset and evaluated on 180 × 20 radar response
samples.

captures significantly more detail and fine-grained structure which we attribute to the higher maxi-
mum frequency. Additionally, we can see that the Spherical CNN does very poorly, suggesting that
the ray-based mapping from geometry to sphere does not capture the geometric information required
for the radar prediction task. Similar to the radar task, we find the G2Sphere is able to achieve good
performance on the drag task despite being trained on a sparse set of coordinate values. We note
that all of our models achieve a error of around 6%, which falls within the single-digit percentage
errors benchmark for aerodynamics (Naffer-Chevassier et al., 2024). In the following, we explore
two interesting zero-shot capabilities of G2Sphere.

Zero-Shot Super-Resolution. G2Sphere outputs coefficients of Fourier basis functions and thus
gives a continuous spherical signal which can be evaluated at arbitrary resolution. Therefore,
G2Sphere can be trained on only low resolution radar data and evaluated at a higher resolution,
i.e. a zero-shot super-resolution task. Fig. 4 shows an example where we train G2Sphere on 61×21
(θ×ϕ) resolution radar data and transfer to 180×21 resolution. G2Sphere is the only model among
the benchmarks (Transformer, Equiformer) that can do zero-shot super-resolution.

Figure 5: Generalizing to Unseen Objects. Full drag prediction on test sample not included in the
Pods dataset. Unlike in our training dataset, we compute the entire drag prediction from −20 to 20
degrees (shown in radians here). Despite being trained on single coordinate points, G2Sphere is able
to reconstruct the general shape of the drag function, whereas the baseline implicit models overfit to
specific points.

Generalization to Unseen Object Geometries. Our drag dataset contains only a single drag coef-
ficient corresponding to a single (θ, ϕ) for each object. In this experiment, we evaluate G2Sphere’s
ability to generalize to objects held-out during training and predict the full drag response cone,
(θ, ϕ) ∈ [−20, 20]. Fig. 5 shows the generalization capability of G2Sphere when compared to the
baselines. When compared to these implicit baseline models, G2Sphere demonstrates a stronger
ability to generalize, effectively capturing the overall shape of the drag cone and producing more
accurate predictions. Although all the baseline models perform well on the training data, here we
see that they have overfit to specific (θ, ϕ) coordinates, resulting in poor generalization to unseen
regions beyond the training data.
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(a) PushT. (b) FlyToTarget. (c) FlyThroughGate.

Figure 6: Policy Learning Domains. The tasks from our policy learning benchmarks. The fixed-
goal variant of PushT is shown in (a). The target position to fly to is shown as a red ball in (b) and
the gate to fly through is shown in red in (c).

5.2 POLICY LEARNING

In order to demonstrate the flexibility of G2Sphere for high-frequency continuous spherical signal
learning, we apply G2Sphere on four policy learning tasks from two benchmarks (Florence et al.,
2022; Panerati et al., 2021). Although there are many potential policy learning algorithms to which
we could apply G2Sphere, in this work we explore the application of G2Sphere to behavioral cloning
(BC) (Pomerleau, 1988). BC casts the policy learning task as a supervised learning problem where
the agent learns to imitate a set of expert demonstrations. Following Florence et al. (2022), we
formulate BC as a conditional energy-based modeling (EBM) LeCun et al. (2006) problem. EMBs
define a policy through an energy function which assigns an energy value to each state-action pair.
We compare G2Sphere to two prominent EBM policy learning methods, Implicit Behavior Cloning
(IBC) (Florence et al., 2022) and Diffusion Policy (Chi et al., 2024), and demonstrate the G2Sphere
outperforms these baselines both in terms of final performance and sample efficiency.

Training Spherical Value Functions. We use techniques from the energy-based model literature
to train our G2Sphere EBM. Given a dataset of state-action samples {si, ai}, where si ∈ RN and
ai ∈ RM , we aim to learn an energy function E : RN+M → R. We train using contrastive learning
(Le-Khac et al., 2020) by generating a set of non-expert actions a′j and utilizing an InfoNCE-style
loss function (Oord et al., 2018) where the model must predict the true expert action ai from the
non-expert actions a′j .

The actions a are 2D or 3D velocity vectors normalized to be in the unit ball. In order to model
the energy function in Fourier space, we decompose a into an action magnitude ∥a∥ and an action
direction â = a/∥a∥ ∈ Sd. For 2D actions, the energy function is evaluated

Eθ(s, a) =
∑
l,m

(Fθ(si))
l
mB

l
m(a),

where Fθ is a G2Sphere model outputting Fourier coefficients clm and Bl
m are polar harmonics

(Appendix C), which give a basis of functions over the unit ball. For 3D actions, the magnitude is
treated as an implicit variable and Eθ(s, a) =

∑
l,m(Fθ(si, ∥a∥))lmY l

m(â).

G2Sphere Architecture. Following Chi et al. (2024), we use keypoint observations which reduce
the underlying geometries of objects in the scene to a set of keypoints that capture the spatial and
structural information in the environment. Although we could still use an equivariant GNN encoder,
given the small size and lack of variability of the input, an equivariant MLP is simpler. In the
PushT domain, we have 2D keypoints and actions and therefore use SO(2)-equivariant linear layers.
The PyBullet Drones domain is a 3D navigation task, and we use SO(3)-equivariant linear layers.
The action magnitude is append to the latent representation after the keypoints are encoded. The
decoder remains a spherical CNN but with a small modification for the 2D domains to perform
convolutions on the 1-sphere. All our models use the same L for both the encoder and decoder,
that is, Lenc = Ldec = 5. To separate the impact of equivariance and representing the output in
Fourier space, we consider a non-equivariant version of G2Sphere (NE-G2S) where we replace the
equivariant MLPs with normal MLPs but still output the Fourier coefficients.

PushT. Adapted from Florence et al. (2022); Chi et al. (2024), the PushT task (Fig. 6a) requires
pushing a T-shaped block (gray) to a fixed target (green) with a circular end-effector (blue). Object
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Domain Task IBC E-IBC Diffusion NE-G2S G2S

PushT
Fixed 0.85 (0.81) 0.98 (0.95) 0.95 (0.91) 0.97 (0.95) 1.0 (0.98)

Random 0.62 (0.54) 0.81 (0.76) 0.71 (0.69) 0.74 (0.70) 0.92 (0.89)

PyBullet Drones
FlyToTarget 0.94 (0.87) 0.98 (0.92) 0.96 (0.94) 1.00 (0.95) 1.00 (0.97)

FlyThroughGate 0.90 (0.83) 0.94 (0.87) 0.94 (0.92) 0.92 (0.90) 0.98 (0.95)

Table 2: Policy Performance. Comparison of G2Sphere (G2S) against baselines on the PushT and
PyBullet Drone domains. We compare max performance and, in parentheses, the average of last
10 checkpoints, each averaged across 50 different initialization conditions. G2Sphere significantly
outperforms both an equivariant IBC model and the Diffusion Policy.

geometries are represented by a series of keypoints denoting the pose of the agent, block, and goal.
We examine two variants: a fixed-goal variant where the target pose is always set to the pose in Fig.
6a and a randomized-goal variant where the target pose is randomly sampled within the workspace.
The metric for performance is target coverage area between the block and the goal pose. We compare
the performance of G2Sphere against two versions of IBC, standard (IBC) and equivariant (E-IBC),
and Diffusion Policy. The results are shown in Table 2. We find that G2Sphere outperforms all other
methods using the best checkpoints almost always achieves a perfect score in the fixed-variant.
Additionally, we can see that the addition of equivariance stabilizes training instability leading to
more consistent performance.

PyBullet Drones. We use the PyBullet Drones benchmark Panerati et al. (2021) to study the per-
formance of G2Sphere in a 3D positional control domain. Specifically, we examine two tasks of
varying difficulty, FlyToTarget (Fig. 6b) and FlyThroughGate (Fig. 6c). In the FlyToTarget task, the
drone must take off from a landed configuration and fly to the target position. In the FlyThrough-
Gate task, the drone is initialized in a flying configuration and must fly through a gate which is
randomly posed around the drone. The observation space is composed of 4 keypoints for the drone,
4 keypoints for the gate, and a single keypoint for the target position. The action space is a delta
motion from the current position which is passed to a PID controller. The agent operates at 30hz
and the PID controller at 240hz. The results are shown in Table 2. We see that similar to the PushT
results, G2Sphere outperforms all other methods and provides increased training stability.

(a) N=2, L=2 (b) N=4, L=4

Figure 7: Energy Landscape. We visu-
alize the energy landscapes generated with
the G2Sphere on the N-Paths domain with
N = 2 and N = 4, respectively.

Multimodality. Learning from human demonstra-
tions presents a significant challenge to behavior
cloning due to the challenge of modeling the multi-
modal distributions common in human actions (Flo-
rence et al., 2022; Shafiullah et al., 2022; Hansen-
Estruch et al., 2023; Chi et al., 2024). One advan-
tage of G2Sphere is the ability to control the maxi-
mum multimodality of the policy via the maximum
frequency. G2Sphere takes advantage of this by set-
ting the maximum angular frequency to at least the
amount of multimodality present in the task. We il-
lustrate this behavior using the simple N-Paths task
where the agent must navigate to the goal (green) us-
ing one of the N available paths. Fig. 7 shows that by
setting the maximum frequency to the multimodality
present in 2-Paths and 4-Paths, the energy landscape generated by G2Sphere is able to model each of
the multimodal trajectories. Additionally, Fig. 8 shows example trajectories generated by G2Sphere,
E-IBC, and Diffusion. We note that G2Sphere is the best at matching the multimodality present in
the task and is equally likely to take any of the N-paths, while diffusion shows bias towards certain
paths and IBC fails to commit to any of the paths.

Inference Speed. It is critical to have a fast inference speed for many closed-loop real-time control
tasks, such as robotic control. One of the known drawbacks to diffusion is that the denoising process
requires a number of steps to optimize the trajectory. This is somewhat mitigated in the Denoising
Diffusion Implicit Models (DDIM) approach(Chi et al., 2024), which has enabled relatively fast
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(a) N-Paths (b) IBC (c) G2Sphere (d) Diffusion

Figure 8: Multimodal Behavior. From the start state (blue) there are two paths (top row) and four
paths (bottom row) to the goal state (green). When using high enough angular frequency (L = 2,
L = 4), G2Sphere learns all paths and commits to a path at the start of each rollout. Diffusion Policy
exhibits a similar behavior but shows some bias towards certain paths whereas IBC fails to learn due
to an equal distribution of expert path data. Actions are generated by rolling out 100 steps for the
best preforming model.

Domain IBC E-IBC Diffusion NE-G2S G2S

PyBullet Drones 32 83 156 3 9

Table 3: Inference Speed (ms). Comparison of inference speeds (ms) on an Nvidia Titan. IBC uses
3 iterations of derivative-free optimization and Diffusion utilizes 10 inference iterations to predict 8
actions. The speed reported for Diffusion is the inference time for 10 iterations divided by 8 to give
the speed per action.

inference times of 100ms. However, this does limit diffusion policies from many high-frequency
control tasks, such as policies enabled with force-feedback. G2Sphere, on the other hand, has ex-
tremely fast inference time due to our use of grids of pre-computed harmonic function values, which
can accurately predict the energy distribution in a single forward pass. Table 3 demonstrates the
differences in inference speed for G2Sphere, IBC, and diffusion, with equivariant G2Sphere taking
only 9ms compared to 156ms for Diffusion Policy.

6 LIMITATIONS AND DISCUSSION

In this work, we present G2Sphere, a novel approach to learning mappings from complex geometric
inputs to continuous spherical signals. We evaluated G2Sphere across a wide range of challenging
domains including radar response prediction, drag modeling, and policy learning for navigation
and demonstrated improved performance on all tasks. Additionally, we demonstrated G2Sphere
is capable of zero-shot super-resolution, full-resolution generalization to unseen geometries, the
natural ability to model multimodality, and vastly improved inference times.

There are a number of limitations which future work could improve upon. First, in regards to the
radar and drag domains, the output fidelity of G2Sphere is heavily dependent on the maximum har-
monic frequency of the model. Unfortunately, current implementations of the spherical harmonics
in equivariant network architectures result in an cubic increase in computational requirements as the
harmonic frequency increases, thereby limiting the expressivity of our model. However, there do ex-
ist more efficient methods for calculating the spherical harmonics which would allow for increased
maximum frequencies in future work (Wang et al., 2018; Schaeffer, 2013). Similarly, in this work
we model the radial component of the spherical coordinates by either outputting a discrete set of
spheres for different radii or by including it as an implicit variable. An alternate method would be to
incorporate the radial component into the Fourier basis functions allowing for efficient computation
of the all spheres continuously within some defined radial bounds (Wang et al., 2009). Finally, in
this work we only explore 2D and 3D positional control policies and have omitted full 6DoF pose
control. The model can be extended to 6DoF by applying inverse FT over SO(3) instead of S2.
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7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have documented and made accessible all resources utilized by this
work. Our source code, datasets, and visualization methods are provided for transparency. We
have provided additional training and model architectural details for both G2Sphere and the various
baselines in Appendix D. The techniques utilized to generate our high-quality synthetic data used in
the experiments in Sec. 5.1 is detailed in Appendix F. Similarly, the details for the expert data used
for policy learning experiments can be found in Appendix G alongside additional environmental
details such as the sources for the environment implementations. Finally, the design decisions and
implementation details of our harmonics implementation tailored to equivariant neural networks are
disscussed in Appendix B.
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A GROUP THEORY

Equivariance. A function is equivariant if it respects the symmetries of its input and output spaces.
Specifically, a function F : X → Y is equivariant with respect to a symmetry group G, if it com-
mutes with all transformations g ∈ G,F (ρx(g)x) = ρy(g)F (x), where ρx and ρy are the repre-
sentations of the group G that define how the group element g ∈ G acts on x ∈ X and y ∈ Y
respectively. An equivariant function is a mathematical way of expressing that F is symmetric with
respect to G; if we evaluate F for various transformed versions of the same input, we should obtain
transformed versions of the same output.

SO(3)SO(3)SO(3)-Equivariant Neural Networks. For 3D physical systems, since the orientation of the coor-
dinate frame is arbitrary, many task functions f should be SO(3)-equivariant. For neural networks
to incorporate this sort of geometric reasoning, it is necessary to parameterize signals f : X → R,
where X = S2 or X = SO(3) in a way that is both computationally efficient and easy to apply
rotations to. Cohen et al. (2018) provide an effective solution using the truncated basis of spherical
harmonics Y l

m for signals defined over S2 and Wigner D-matrix coefficients Dl
mn for signals over

SO(3). Writing f : SO(3) → R in terms of theDl
mn and then truncating to a given frequency l ≤ L

gives the approximation f(g) ≈
∑L

l=0

∑2l+1
m=0

∑2l+1
n=0 c

l
mnD

l
mn(g). The SO(3) group convolution

can be efficiently computed in the Fourier domain in terms of the coefficients {clmn} by convolution
theorem. See Cohen et al. (2018) for additional details on the SO(3) group convolution.

Circular and Spherical Harmonics The Circular Harmonics (CH) describe functions on the 1-
sphere (i.e. the circle S1). They are solutions to Laplace’s equation over S1 defined ψl(θ) = eilθ,
where θ is the angular coordinate (Wang et al., 2009). In terms of group theory, the circular harmon-
ics define irreducible representations for the 2D rotation group SO(2). Therefore, they are useful for
constructing SO(2)-equivariant neural networks by representing circular signals as a combination
of fixed CH basis functions and learnable CH coefficients (Weiler & Cesa, 2019).

The Spherical Harmonics (SH) extend the CH to describe functions on the surface of the 2-sphere
S2. Similar to the CH, they are orthonormal solutions of Laplace’s equation on S2, defined:

Y l
m(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
P l
m(cos θ)eimϕ,

where θ is the polar angle, ϕ is the azimuth angle, l is the degree, m is the order and P l
m is the

associated Legendre function (Abramowitz & Stegun, 1948). The SH describe irreducible represen-
tations of the group SO(3) of 3D rotations. They are useful for creating SO(3)-equivariant features
for SO(3)-equivariant deep learning (Geiger & Smidt, 2022).
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B HARMONICS IMPLEMENTATIONS

In this section, we describe the details of our PyTorch harmonics packages which implements the
Polar and Spherical Harmonics used in this work. While there are a number of existing spherical
harmonics implementations (Bonev et al., 2023), they are tailored to the tasks that they solve, e.g.
PDEs, and therefore do not integrate well with the equivariant neural networks used in this work (e.g.
e3nn or escnn). Additionally, there are, to the best of our knowledge, no PyTorch implementations
of the Polar Harmonics (detailed in Appendix C). To address these shortcomings, we developed
our own differentiable implementations of the Polar and Spherical harmonics in PyTorch which
we utilize throughout this work. The design goals of this package were two fold: (1) allow for
the efficient integration of the harmonics with the output of e3nn or escnn and (2) enable the
calculation of the harmonics on both a pre-defined grid of coordinates and at specific coordinates.

There are two considerations to make when tailoring our package to fit together with e3nn and
escnn. First, these equivariant neural networks model the Fourier coefficients as the irreducible
representations of the symmetry group and, therefor, our implementation needs to use the same
representations. We note that this restriction makes a number of previous implementations such
as Bonev et al. (2023) a poor fit as they use different derivations of the harmonics with different
Fourier coefficient specifications. Secondly, because these equivariant models typically operate in
real space, we need the harmonics to be in real space as opposed to complex. For example, we use
the sin and cos form of the circular harmonics (Appendix C) to match the dimensionality of the
SO(2) irreducible representations.

The second goal of our package is enable efficient batch computation of the harmonics over many
values. We require the ability to both compute the harmonics at specific coordinates (commonly used
during training to match the partial views u in our dataset) and to pre-compute a grid of harmonics
values at pre-defined coordinates (typically used at inference time to decrease computation time). In
order to achieve this, when instantiating the harmonics, a grid of harmonics values are pre-computed
at the desired resolution and a number of intermediate variables are saved during this process. These
intermediate variables are specific to the type of harmonics but, in general, they are components of
the harmonics independent to the coordinates such as the normalization constants and Fourier mode
components. This pre-computation allows for the efficient evaluation of the harmonics and reduces
training times.

C POLAR FOURIER TRANSFORM

In this section we derive the Polar Harmonics Basis functions used in our 2D policy learning ex-
periments by performing Fourier analysis on the Polar coordinates. We would ideally like for these
functions to be decomposed into radial and angular components such that we can view this decom-
position as an extension of the normal Fourier transform. We can fulfill this requirement by requiring
the basis functions to take the separation-of-variables form:

f(ρ, ϕ) = P(ρ)Φ(ϕ). (1)

C.1 BASIS FUNCTIONS

The angular component of the basis function is simply:

Φl(ϕ) =
1√
2π
eimϕ, (2)

where l is an integer. However, this definition resides in the complex domain, and when using
equivariant neural networks, it is advantageous to be in the domain of real numbers. Therefore, we
will instead use the sine-cosine form:

Φl(ϕ) =
1√
2π

(
cos(lϕ) + sin(lϕ)

)
, (3)

where l ≥ 0. The associated transform in angular coordinates is simply the normal 1D Fourier
Transform.
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We will rely on Bessel functions to match the functions of arbitrary spatial frequency required by
the radial component of the Polar basis function. Using the Bessel function as a basis gives rise to
the l-th order Fourier-Bessel series:

Plm(ρ) =
1√
Nlm

Jl(klmρ), (4)

where Nlm is a normalization constant and klm is the kth zero of J1.

C.2 POLAR FOURIER TRANSFORM

By combining these radial and angular components we can form the complete basis function for the
polar Fourier transform:

Ψlm(ρ, ϕ) = Plm(ρ)Ψl(ψ), (5)
where Plm is defined by Eq. 4 and Ψl by Eq. 2. As Ψlm forms an orthonormal basis on the region
ρ < a, we refer to it as the Polar Harmonics. A function defined over polar coordinates, f(ρ, ϕ),
can be expanded using the polar Fourier transform with the Polar basis function, Ψnm, and Polar
coefficients, Plm:

f(ρ, ϕ) =

∫ inf

0

∫ inf

0

PlmΨlm(ρ, ψ)mdm, (6)

where

Plm =

∫ inf

0

∫ 2π

0

f(ρ, ϕ)Ψ∗
lm(ρ, ϕ)ρdρdϕ. (7)

While this infinite transform is of theoretical interest, in practice we instead use the transform defined
on a finite region, e.g. the unit-circle. That is, a function f(ρ, ϕ), where ρ ≤ a can be defined as:

f(ρ, ϕ) =

inf∑
m=1

∫ inf

l=0

PlmΨlm(ρ, ψ), (8)

where

Plm =

∫ a

0

∫ 2π

0

f(ρ, ϕ)Ψ∗
lm(ρ, ϕ)ρdρdϕ. (9)

D TRAINING DETAILS

In this section we provide additional details about the model architectures and training process for
the experiments in Sec. 5. All models were trained until convergence measured by loss in the
supervised learning domains and policy performance in the policy learning domains. All of our
experiments are run on Nvidia Xeon-g6-volta GPUs on a high-performance cluster.

D.1 MESH-TO-SPHERE

Transformer. The Transformer architecture is composed of a mesh face embedding layer, trans-
former encoder, and an MLP decoder. The mesh face embedding layer takes individual mesh faces
as an input and uses geometric features like vertex position and normal direction to calculate an
embedded representation of the face. The application of this layer to the mesh generates a sequence
of embedded faces; a learned classification embedding is prepended to this sequence. A standard
transformer encoder as introduced in Vaswani et al. (2017) is then applied to the embedded sequence
to transfer global information about the mesh faces to the classification embedding; after this op-
eration, the MLP decoder is used to convert the classification embedding into the radar response.
We train using the Adam optimizer (Kingma, 2014) with the best learning rate and its decay were
chosen to be 5e−4 and 1e−5 respectively. We use a batch size of 4.

G2Sphere. For the mesh-to-sphere domain, the G2Sphere model uses Equiformer v2 to encode
the object mesh into Fourier space. We use the equiformer architecture from Liao et al. (2023)
with 4 layers where each layer a feature dimension of 128, a lmax of 5, and 4 attention heads. We
then use a global mean pooling head to compress the node features returned by Equiformer into a
single latent representation of size 128. The decoder is a 5 layer Spherical CNN Cohen et al. (2018)
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with the feature dimensions [128, 64, 32, 16,K], where K is the number of output channels in the
spherical signal, and lmax dimensions [5, 10, 15, 20, 40]. We use the ReLU activation in our SO(3)-
activation layers in the Spherical CNN. We train using the Adam optimizer (Kingma, 2014) with the
best learning rate and its decay were chosen to be 1−4 and 0.95 respectively. We use a batch size of
4.

Equiformer. The Equiformer baseline has the same encoder architecture as G2Sphere but a slightly
different decoder architecture. The Spherical CNN decoder in Equiformer, has 6 layers where the
feature dimensions are [128, 64, 32, 16,K], where K is the number of output channels in the spher-
ical signal, and lmax dimensions [5, 5, 5, 5, 5]. We use the ReLU activation in our SO(3)-activation
layers in the Spherical CNN. At the end of the Spherical CNN, a final spherical convolution converts
the latent representation into the explicit grid of output values. We use the ReLU activation in our
SO(3)-activation layers in the Spherical CNN. We train using the Adam optimizer (Kingma, 2014)
with the best learning rate and its decay were chosen to be 1−4 and 0.95 respectively. We use a batch
size of 4.

D.2 POLICY LEARNING

G2Sphere. In the 2D and 3D policy learning domains, our observations are a set of 2D/3D keypoints
which describe the objects in the scene. Therefore, we use much simpler models than in the mesh-
to-sphere domain. Specifically, we use SO(2) and SO(3)-equivariant MLPs as both our encdoers
and decoders. In the PushT domain, we use a 4-layer SO(2)-equivaraint MLP for our encoder with
a 512-dimensional latent representation and a 4-layer, 512-feature dimension, SO(2)-equivariant
spherical CNN with as the decoder. This SO(2) spherical CNN is essentially a series of spherical
convolutions on the 1-sphere as opposed to the 2-sphere. Both encoder and decoder use a Lmax of 3.
Similarly in the PyBullet Drones domain, we use a 4-layer SO(3)-equivaraint MLP for our encoder
with a 256-dimensional latent representation and a 4-layer, 256-feature dimension, spherical CNN
decoder. Both encoder and decoder use a Lmax of 5. Both models use a dropout Srivastava et al.
(2014) of 0.1 while training. We train using the Adam optimizer (Kingma, 2014) with the best
learning rate and its decay were chosen to be 1−4 and 0.95 respectively. We use a batch size of 256
and train our contrastive loss using 256 negative samples.

IBC. We use two IBC models in our policy learning experiments: a non-equivariant version which
uses standard MLPs and a equivariant version which uses SO(2) or SO(3)-equivariant MLPs. The
non-equivaraint IBC is comprised of a 4 layer MLP encoder and a 4 layer MLP decoder both with
1024 feature dimensions. The implicit actions are appended onto the latent representation after it
has been encoded. The equivariant version of IBC, has the same structure as the non-equivariant
model but uses a feature dimension of 512 and a Lmax of 3 and 5 (for the 2D and 3D domains
respectively). We train using the Adam optimizer (Kingma, 2014) with the best learning rate and its
decay were chosen to be 1−4 and 0.95 respectively. We use a batch size of 256. The contrastive loss
is generated using 256 negative samples following Florence et al. (2022). We use a dropout Srivas-
tava et al. (2014) of 0.1 while training. At inference time, we perform 3 iterations of Derivative-Free
Optimization (Florence et al., 2022) using 4096 samples to select the best action.

Diffusion. We use the implementations from Chi et al. (2024) for our Diffusion models, specifically,
we use the transformer-based architectures. The transformer has 8 layers with 4 heads where each
token is embedded as a 256 feature vector. We use the Square Cosine Schedule proposed in iDDPM
(Nichol & Dhariwal, 2021) which is cited as the best performing noise scheduler in Chi et al. (2024).
We train using the Adam optimizer (Kingma, 2014) with the best learning rate and its decay were
chosen to be 1−4 and 0.95 respectively. We use a batch size of 256. We use 100 denoising diffusion
iterations for both training and inference. At inference time the model predicts the next 16 actions
of which 8 are executed.

E MAXIMUM FREQUENCY ABLATIONS

A unique capability of G2Sphere is its ability to leverage the maximum harmonic frequency L to
control bias of the model. A higher L captures more fine details and higher-frequency components of
the underlying function which can lead to a more complex and accurate approximation. Therefore
when trying to predict the high-frequency radar response function, we find that the higher the L
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Asym Ldec = 5 Ldec = 10 Ldec = 25 Ldec = 40

G2S 0.383 0.218 0.148 0.123

Table 4: LdecLdecLdec Ablation. Mean square error of G2Sphere using increasing maximum output har-
monic frequencies. As the output frequency of the decoder increases the performance of the
G2Sphere model improves. Performance is averaged across 3 training seeds.

(a) Ground Truth (b) Ldec = 5 (c) Ldec = 10 (d) Ldec = 25 (e) Ldec = 40

Figure 9: Effect of LdecLdecLdec on Fidelity. As the maximum frequency of the decoder increases so does
the accuracy of the G2Sphere prediction. At Ldec = 5 we see that most of the features of the signal
are lost and we are only capable of modelling the general high/low signals. However, as we increase
to Ldec > 5 we can see the features getting sharper as the output frequency increases.

the more accurate our predictions become (Table 4, Fig. 9). However, we note that this is only
possible due to the large scale radar datasets which have responses over the entire sphere for each
mesh. In contrast, in domains where we lack these dense outputs, such as the drag and policy
learning domains, we find a lower L can combat overfitting by providing a smoother, lower-detailed
approximation of the underlying function (Fig. 10).

F DATASET GENERATION

F.1 FIRST-PRINCIPLE RF MODEL

Due to the scarcity of available real-world and simulated radar data for training radar models, we
simulate our own benchmark dataset. To generate ground truth data, we use the physical optics
approximation method (Balanis, 2012), which provides a linear approximation of the more general
and highly non-linear scattering formulation for electromagnetic waves. A simple operator that
describes physical optics response across the illuminated section of an object for perfectly reflecting
material as,

F (x, k) =
ik

2π

∫
R3

e−i2k⟨x,y⟩dy,

Figure 10: Effect ofLdecLdecLdec on Generalization. As the maximum frequency of the decoder increases,
G2Sphere starts to overfit to the sparse data samples in the Drag domain. As a result, the G2Sphere
model with a lower output frequency generalizes better to new data.
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(a) Asym Mesh (b) Frusta Mesh (c) Pods Mesh

Figure 11: Object Meshes. Example object meshes used in the mesh-to-sphere experiments. The
Asym and Frusta meshes are used in the radar prediction domain and the pods meshes are used in
the aerodynamics prediction domain.

Figure 12: Radar Simulator. (a) Cross section of random 3D object mesh. (b) The range profile
for 20◦ viewing angle. (c) The corresponding static radar pattern.

where the incident wave number is k = 2π/λ, λ is the wavelength, and the observation unit vector
is,

x = (sin θ cosϕ, sin θ sinϕ, cos θ),

for θ ∈ [0, π] and ϕ ∈ [0, 2π]. We note that the approximation is valid only in high frequency
regions such that k << 2π/D, where D is the length of the longest side of the object.

As we are particularly interested in far-field sensing, the physical optics approximation is useful
as a fairly accurate and flexible simulation tool for training data generation. The simulation input
is a parameterized mesh object (an example cross section shown in Fig. 12(a)). The simulation
calculates the the physical optics response for given observation line-of-sight and frequency and the
total radar response of the object is equal to the sum of the individual triangle responses that are
visible to the radar. Simulations for this work required generating the response across a linear set of
frequencies to emulate a Linear Frequency Modulated (LFM) waveform, where the center frequency
is 3e9Hz and bandwidth is 4e8Hz using circular polarized waves with orientation RL.

The Radar Cross Sec. (RCS) for each triangle is calculated using legacy software (Burt & Moore,
1991). The simulation produces a radar observation, r ∈ RNr (Fig. 12(b)) for a given viewing
angle. The observation is the normalized magnitude of the range-profile as described in Sec. III
of Chance et al. (2022). All the normalized range profiles are then stacked across varying radar
viewing angles to generate what is referenced as a radar static pattern (Fig. 12(c)). Note that fixing
the radar line-of-sight and rotating the object would generate the same radar static response.

We utilize two different mesh datasets for our experiments. The first is the Frusta dataset. Each
object in this dataset is defined by a series of stacked frusta objects, in which adjacent frusta share
the same radius to ensure a continuous object. To generate a diverse set of objects, we vary both
the number of frusta components and the radial parameters for each frusta. To introduce additional
object and radar response diversity, we also vary the ends of the frusta object to either be flat planes,
half spheres, or one of each.
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Figure 13: Aerodynamics Simulator. Ground truth drag coefficients generated by the numerical
CDF simulator.

While the Frusta dataset provides objects with complex forms, it is also rotational symmetric along
the roll axis. To address this issue, we also generate the Asym. This dataset consists of three different
base shapes; cubes, cylinders, and spheres. Each object is randomly scaled across it’s independent
dimensions; to ensure diversity, no random scaling is repeated within object class. After the scaling,
the mesh is duplicated and subdivided to decrease the relative size of mesh faces. A group of
adjacent faces is selected at random from the overall set of mesh faces on the subdivided copy; these
faces are then extruded by a random amount in the average normal direction of the selection. This
extruded protrusion is then added to the original mesh using the union operation, resulting in an
object without any rotational symmetries.

Using these methods, we generate a dataset of X objects for the Frusta dataset, and 30,000 objects
for the Asym dataset, evenly distributed across the underlying classes. Each dataset is divided 90/10
between train/validation and test sets. Since the meshes resulting from the Frusta generation method
are large relative to the capacity of neural network models (maximum size of 4500 faces), frusta
meshes are decimated to 50% of their face count using quadratic decimation for training and testing.

F.2 AERODYNAMIC SIMULATION AND DATA

The aerodynamic dataset consists of ”pod-like” shapes defined parametrically by varying shape pa-
rameters such as: length, diameter, bluntness, and cross-section asymmetry using Latin Hypercube
Sampling. Flight conditions including altitude, Mach number and Reynolds number were also se-
lected using Latin Hypercube Sampling, where altitude ranges from 0 to 50 kilofeet, Mach number
ranges from 0.05 to 0.5, and Reynolds number ranges from 106 to 5 × 108. For each shape per-
mutation a high-quality computational grid is algorithmically generated. The minimum cell size is
defined to provide over 100 cells across the length of each shape, and 50-100 volume cells to resolve
the boundary layer down to the viscous sublayer, i.e. y+ = 1, where y+1 is the wall coordinate
commonly used in defining the law of the wall. Generation of drag force data is based on a Compu-
tational Fluid Dynamics (CFD) simulator for which we solve the Reynolds-Averaged Navier-Stokes
(RANS) mass, momentum and energy equations through the NASA FUN3D simulation framework.
Turbulence is modeled using the Spalart-Allmaras model with a freestream turbulence intensity of
3 percent. The van Albada flux limiter with the low-diffusion flux splitting “LDFSS” flux construc-
tion method. Simulations are run until a relative residual tolerance of 10−5 is met for the mass,
momentum, energy, and turbulence governing equations.

The Pods dataset contains 10, 000 samples of (mesh, flight conditions, drag) tuples, each with a
single drag coefficient for a specific angle θ, ϕ ∈ [−20, 20], which defines the orientation of the
incoming flow relative to the centerline of the Pod shape.
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G POLICY LEARNING ENVIRONMENTS

PushT. We generate 100 expert demonstrations for both the fixed and randomized PushT tasks. All
demonstrations were generated by a single human operator familiar with the task. Each episode
terminates either after the task is completed or the maximum number of steps (500) is reached.
We use the PushT implementation found in Chi et al. (2024) which can be found here: https:
//github.com/real-stanford/diffusion_policy.

PyBullet Drones. We generate 50 expert demonstrations for both the FlyToTarget and FlyThrough-
Gate tasks. All demonstrations were generated by an expert policy which has access to the un-
derlying simulation state. We add a small amount of uniformly sampled noise, ϵ ∼ U(0, 1), to
each action from the expert policy. Each episode terminates either after the task is completed
or the maximum number of steps (300) is reached. We use the PyBullet Drones implementation
found in Panerati et al. (2021) which can be found here: https://utiasdsl.github.io/
gym-pybullet-drones/.

H EXAMPLE RADAR RESPONSE OUTPUTS

In Fig. 14 we highlight representative examples generated by the ground truth simulator, trans-
former, equiformer, and G2Sphere on the Frusta dataset. We note that although G2Sphere still
produces the best predictions, the difference between G2Sphere and the transformer baseline is
much less pronounced on this dataset. This aligns with the result in Table 1 which shows that the
performance of the transformer baseline and G2Sphere to be similar.
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(a) Ground Truth (b) Transformer (c) Equiformer (d) G2Sphere

Figure 14: Frusta Radar Predictions. Radar response predictions on the Frusta dataset. Due to the
roll symmetry in the Frusta dataset we plot the spherical outputs as static patterns. G2Sphere is best
able to capture both the overall structure of the response and also the speculars (bright horizontal
lines).
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