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Abstract

Time-series foundation models show strong results on static benchmarks, but their1

potential in live industrial reporting is only beginning to be explored. In drilling,2

continuous multivariate sensor streams must be transformed into Daily Drilling3

Reports (DDRs), where each entry aligns with activity boundaries. Automating this4

process offers an opportunity to deliver reports that are both timely and consistent,5

reducing the burden of manual compilation.6

We present LiveDrill, a streaming pipeline for multimodal segment-grounded7

data-to-text generation. LiveDrill integrates two modules: a Live Segmentation8

Module that detects activity transitions in real time, and a Multimodal Text9

Generation Module that conditions report entries on both sensor signals and the10

detected segments. This design ensures that generated text is explicitly tied to11

operational intervals, providing structured updates directly from live data.12

Evaluation on large-scale field data demonstrates that LiveDrill can reliably capture13

stable operations and generate coherent DDR entries. Segment-level metrics reveal14

the sensitivity of boundary detection, highlighting areas where further improvement15

can yield even stronger results.16

Overall, LiveDrill demonstrates the feasibility of segment-grounded, multimodal17

reporting in industrial settings. It opens the door for adapting TSFMs beyond static18

benchmarks toward practical, boundary-sensitive applications where live sensor19

data must be translated into actionable narratives.20

1 Introduction21

Industrial operations generate long, multivariate sensor streams that must be condensed into short,22

actionable reports. In drilling, these take the form of Daily Drilling Reports (DDRs), which record23

operational activities and are critical for coordination, planning, and safety (see Appendix 3 for an24

example).25

Today, DDRs are compiled manually after each 24-hour shift, leading to delays and inconsistencies.26

Automating this process requires live generation grounded in multimodal signals that define27

operations. DDR entries are tied to activities such as drilling, tripping, or circulating, each marked by28

distinct sensor patterns. Without aligning text to these segments, reports lose operational meaning.29

30

We introduce LiveDrill, a streaming pipeline that couples time-series segmentation with multimodal31

text generation. A Live Segmentation Module detects activity boundaries directly from sensor streams32

in real time, while a Multimodal Text Generation Module produces DDR entries conditioned jointly33

on sensor dynamics and the detected segment. This design ensures that generated text remains timely34

and explicitly tied to drilling activities.35
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Time-series foundation models (TSFMs) show strong performance on static benchmarks [Ansari37

et al., 2024, Goswami et al., 2024, Woo et al., 2024], but live industrial reporting introduces unique38

demands: detecting activity boundaries, aligning multimodal signals with language, and generating39

text at low latency. Prior work in drilling automation has explored anomaly detection [Benzine40

et al., 2024b], DDR codification [Benzine et al., 2024c], and sensor–text alignment for retrieval41

and zero-shot description [Buiting et al., 2025]. TSFMs have also demonstrated cross-domain42

generalization [Khaouja et al., 2025, Benzine et al., 2024a]. LiveDrill builds on these directions,43

providing a multimodal benchmark for segment-grounded live data-to-text generation, highlighting44

both opportunities and limitations of TSFMs in noisy, boundary-sensitive industrial settings.45

2 Method46

LiveDrill is a streaming pipeline with two modules: a Live Segmentation Module that detects activity47

changes and a Multimodal Text Generation Module that generates text for the detected region. Figure 148

shows the workflow.49

Figure 1: LiveDrill pipeline. The Live Segmentation Module monitors the stream and detects activity
changes. Each change triggers the Multimodal Text Generation Module, which encodes the region of
interest and generates a segment-grounded DDR entry.

2.1 Live Segmentation Module (LSM)50

The LSM, illustrated in Figure 1.a, is a live time series segmentation model that performs multi-class51

point-wise classification on the incoming sensor stream. Its goal is to assign an activity label to every52

time step and to detect transitions between activities as they happen. The LSM is implemented as a53

time series foundation model (Moment and Moirai Large) adapted for segmentation task [Khaouja54

et al., 2025].55

2.2 Multimodal Text Generation Module (MTGM)56

When the LSM raises a change event, MTGM, illustrated in Figure 1.b, generates a DDR entry for57

the new segment. MTGM has four components.58

Region-of-Interest (ROI) Selector. The ROI selector takes the segmentation masks produced by59

the LSM and identifies the activity segment that requires a new DDR entry. It generates a binary mask60

aligned with the sensor stream: time steps inside the detected segment are marked with 1, and all61

others with 0. This mask serves two purposes: it explicitly delimits the segment of interest, and it is62

passed to the TSE as an additional input channel. By grounding subsequent encoding in the segment63

identified by the LSM, the ROI selector ensures that text generation is tied to meaningful intervals.64

Time-Series Encoder (TSE). The TSE converts the input into a sequence of embeddings optimized65

for text generation. Its input is the raw sensor channels concatenated with the binary ROI mask.66

Formally, let XTSE ∈ RT×(C+1) denote the encoder input, where C is the number of sensor channels67

and the extra channel corresponds to the binary ROI mask. This design provides the encoder both68

with the sensor dynamics and an explicit signal about which region to prioritize. Moment and Moirai69

Large models were chosen here from experience in previous study [Khaouja et al., 2025, Buiting70

et al., 2025].71

TSE-to-LLM Connector. A linear projection maps the TSE embedding dimension to H, in the72

LLM token-embedding space .73
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LLM Decoder. The LLM receives H and generates the DDR entry autoregressively. We chose74

Phi3-mini-4K-instruct here.75

2.3 Model Training Procedures76

LSM Training. We initialize the LSM from a pretrained TSFM and fine-tune on annotated se-77

quences {(X(i),y(i))}Ni=1. The loss is point-level cross-entropy on activity labels.78

MTGM Training. During training, the LLM is frozen. The TSE and the connector are trainable.79

Given a detected segment, the TSE outputs ZROI, which the connector projects into the LLM80

embedding space. Conditioned by the projected features, the LLM predicts the DDR text:81

LNT = −
M∑
t=1

log pθ(wt | w<t,ZROI),

where wt is the t-th token and M is the entry length.82

3 Evaluation83

3.1 Dataset84

We evaluate on a large-scale industrial dataset comprising daily drilling data from over 100 active85

drilling rigs, collected over a period of 3 years. This dataset, which includes 1810 distinct drilling86

phases (split into 1353 for training, 101 for validation, and 356 for testing), contains a total of over87

35,987 days of continuous multivariate streams from surface sensors, sampled at 1 Hz.88

For training and validation of the Live Segmentation Module (LSM), a subset of this data has89

been annotated with activity labels derived from manually written Daily Drilling Reports (DDRs),90

resulting in over 68,017 distinct activity segments. Each segment in these DDRs contains an activity91

description, which serves as the reference text for the Multimodal Text Generation Module (MTGM)92

3.2 Evaluation Tasks93

We assess streaming segmentation quality across drilling activities, the quality of DDR generation for94

segment-grounded entries, and the overall system performance in live settings.95

3.3 Metrics96

For segmentation, we report both segment-based F1IoU (Khaouja et al. [2025]) and point-wise97

F1pw. The segment-based F1IoU evaluates detection quality by matching predicted and ground-truth98

segments based on their intersection-over-union, while F1pw measures classification accuracy at99

the point level, independent of segment boundaries. For DDR generation, an automated LLM judge100

(Llama-3.3-70B-instruct 4 bit ) scores operational accuracy, depth consistency, and language quality.101

The overall system score is computed as the harmonic mean of the segmentation and generation102

scores.103

3.4 LSM performance104

Segmentation Model Overall CM CMT CORE CSG DRILL DRLOUT REAM STKP TRIP

F1IoU F1pw F1IoU F1pw F1IoU F1pw F1IoU F1pw F1IoU F1pw F1IoU F1pw F1IoU F1pw F1IoU F1pw F1IoU F1pw F1IoU F1pw

Moment-large 0.467 0.827 0.094 0.823 0.395 0.740 0.533 0.935 0.365 0.844 0.526 0.942 0.423 0.736 0.446 0.743 0.000 0.923 0.567 0.818
Moirai-large 0.484 0.809 0.233 0.765 0.394 0.739 0.182 0.986 0.298 0.746 0.538 0.950 0.415 0.710 0.489 0.739 0.000 0.907 0.565 0.790

Table 1: F1IoU and F1pw (overall + per class) for segmentation results of Moment and Moirai
models.

The results in Table 1 show a clear gap between point-wise accuracy (F1pw around 0.81) and105

segment-level performance (F1IoU around 0.47). The segment metric is highly sensitive to small106

interruptions: even short misalignments split otherwise correct segments and lower scores. Manual107

inspection also revealed short interrupting segments in the ground truth, suggesting that part of the108

gap comes from annotation noise rather than model errors.109

Overall, point-wise accuracy confirms that most time steps are correctly labeled, especially for110

stable activities like DRILL, DRLOUT and TRIP. More variable or rare classes such as STKP,111

and CM remain harder to capture. Between the two models, Moirai-large provides slightly better112

segment-level alignment, while both show similar point-wise accuracy. These results indicate that113

LiveDrill’s LSM achieves reliable classification, but progress will require smoothing predictions and114

improving rare-class detection to close the gap between point-wise and segment-level scores.115
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TSE Model Avg LLM [0-1] CM CMT CORE CSG DRILL DRLOUT REAM STKP TRIP

Moment-large 0.359 0.137 0.333 0.291 0.353 0.590 0.456 0.499 0.114 0.200
Moirai-large 0.340 0.212 0.344 0.309 0.354 0.563 0.368 0.454 0.210 0.157

(a) LLM judge evaluation scores (normalized to [0–1])
for Moment and Moirai models.

LSM TSE: Moment-large TSE: Moirai-large

Seg F1IoU Avg LLM Combined Seg F1IoU Avg LLM Combined

Moment-large 0.467 0.359 0.405 0.467 0.340 0.394
Moirai-large 0.484 0.359 0.412 0.484 0.340 0.399

(b) Combined evaluation of segmentation and text
generation. The "Combined" column is the harmonic
mean.

Table 2: Side-by-side results for MTGM evaluation and full-system performance.

3.5 MTGM performance116

Table 2a shows moderate overall performance (0.34–0.36), with clear variability across activities.117

Frequent and stable operations such as DRILL, DRLOUT, and REAM reach higher scores (>0.45),118

while rare or complex ones like STKP, CM, and TRIP remain difficult.119

Moment-large performs better in continuous drilling phases, whereas Moirai-large shows relative120

strength in short or transition-heavy activities. These results highlight the need for better handling of121

rare events and more robust domain grounding in text generation.122

3.6 Full system performance123

The results in Table 2b indicate that overall system performance remains moderate when combining124

segmentation and generation. The harmonic mean shows how deficiencies in either module signifi-125

cantly reduce the joint score: the best configuration reaches 0.412 when using Moirai for segmentation126

and Moment for generation, slightly outperforming Moment-only (0.405) and Moirai-only (0.399)127

setups. This suggests that segmentation quality from Moirai provides a small but consistent advantage,128

while Moment remains stronger in Time Series encoding for text generation.129

LiveDrill produces coherent updates in stable phases such as DRILL, but struggles in transition-heavy130

or rare operations. Qualitative results of LiveDrill are shown in Figure 2 and Appendix B and C.131

(a) LSM predictions over a sample sensor stream,
showing detected activity segments.

(b) MTGM output for the highlighted segment, il-
lustrating segment-grounded DDR text generation.
The shaded region is the ROI mask.

Figure 2: Qualitative examples of LiveDrill outputs (LSM=Moirai and MTGM=Moment).

4 Conclusion132

This work introduced LiveDrill, a streaming system for segment-triggered data-to-text generation in133

industrial time series. By combining a Live Segmentation Module with a Multimodal Text Generation134

Module, the system shifts DDR creation from delayed, end-of-day summaries to continuous, real-time135

reporting.136

Our evaluation on large-scale drilling data shows that LiveDrill can reliably classify stable operations137

and generate coherent entries, providing engineers with timely and structured information. At the138

same time, the results highlight current limitations: segmentation errors propagate into generation,139

transition-heavy activities remain difficult to model, and absolute generation scores leave room for140

improvement.141

These findings demonstrate both the feasibility and the challenges of live industrial reporting. Future142

work should focus on smoothing segmentation boundaries, improving handling of rare and complex143

operations, and enhancing domain grounding in text generation. Beyond drilling, the approach of144

segment-grounded live reporting may extend to other industrial domains where continuous sensor145

data must be converted into actionable narratives.146
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A Appendix - Data181

A.1 Features182

The eight key features used in the input data capture drilling information:183

• Bit Depth: The measured depth of the drill bit within the hole.184

• Hole Depth: The total depth of the drilled hole.185

• Hook Load: The weight supported by the hook that holds the drilling assembly that go in186

the hole.187

• Block Position: The vertical position of the above-ground block that holds the hook and188

drilling assembly that go in the hole.189

• Standpipe Pressure: The fluid pressure inside the drilling pipe.190

• Rotary Speed: The rotational speed of the drilling assembly in the hole.191

• Flow Rate: The rate at which drilling fluid is pumped into the well.192

• Torque: The rotational force applied to the drilling assembly during drilling operations.193

A.2 Time Series Pre-Processing194

• Sensor signals are resampled to 1 Hz.195

• Gaps shorter than five seconds are linearly interpolated; longer gaps are left as nulls.196

• Noise is reduced using domain thresholds followed by Z-score filtering on sliding windows.197

• Features are normalized with expert-defined physical limits for cross-well consistency.198

• To match TSFM pretraining input size, time series are finally sub-sampled to 512 points.199
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B Qualitative Results - LSM200

This section provides qualitative examples of predicted activity segmentation compared to ground201

truth annotations for two models: Moirai-Large (the best-performing LSM) and Moment-Large.202

These examples illustrate how the models handle activity transitions and maintain segment-level203

alignment in real drilling scenarios.204

B.1 Moirai-Large205

Figure 3 presents qualitative results for Moirai-Large. The top rows in each subfigure correspond206

to ground truth annotations, which include the class OTHER to mask surface activities. The bottom207

rows show predictions made by the LSM. Moirai-Large effectively identifies activity boundaries and208

demonstrates strong alignment with the ground truth across complex transitions.209

Moirai – Ground Truth 1

Moirai – LSM Predictions 1

Moirai – Ground Truth 2

Moirai – LSM Predictions 2

Figure 3: Qualitative examples comparing ground truth and Moirai-Large predictions. Ground truth
annotations (top) include OTHER to mask surface activities, while predictions (bottom) illustrate the
LSM’s ability to capture activity transitions and segment boundaries.

B.2 Moment-Large210

Similarly, Figure 4 shows qualitative results for Moment-Large. As with Moirai-Large, ground truth211

annotations appear on the top rows, and model predictions are on the bottom. Although Moment-212

Large captures major transitions, it tends to produce less precise segment boundaries compared to213

Moirai-Large.214

Moment – Ground Truth 1

Moment – LSM Predictions 1

Moment – Ground Truth 2

Moment – LSM Predictions 2

Figure 4: Qualitative examples comparing ground truth and Moment-Large predictions.
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C Qualitative Results - MTGM215

Best model, Moment-Large, is used as MTGM in the below results.216

Figure 5: MTGM-generated DDR entry for a DRILL activity segment.

Figure 6: Another MTGM-generated DDR entry for a DRILL activity segment.

Figure 7: MTGM output for a TRIP activity segment.
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Figure 8: Another example of MTGM-generated DDR for a TRIP activity segment.

Figure 9: MTGM output for a CSG activity segment.

Figure 10: MTGM-generated DDR entry for a REAM activity segment.
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D Appendix - Example DDR217

Table 3 provides a detailed example of a Daily Drilling Report (DDR), illustrating time-stamped218

activities, anomalies, and sensor values.219

Table 3: Example Daily Drilling Report (DDR)
Start End Code Operation
00:00 01:45 TRIP RIH with BHA to 2140 m, tagged bottom, spaced out, pumped to stabilize
01:45 02:30 CIRC Circulated bottoms up, SPP 2400 psi, clean returns
02:30 05:30 DRILL Drilled 12-1/4" hole 2140–2185 m, WOB 20 klbs, torque up to 12 kft-lb
05:30 06:30 REAM Reamed 2140–2185 m, reduced drag, torque normalized
06:30 07:15 CIRC Conditioned hole, minor gas at shaker, flow rate +10%
07:15 09:45 DRILL Drilled to 2220 m, partial losses 50 gpm observed
09:45 12:15 STKP Pipe stuck at 2215 m, no rotation; worked string, spotted LCM, freed
12:15 13:30 CIRC Conditioned hole for casing, stable returns, flow check good
13:30 16:30 CSG Ran 9-5/8" casing to 2220 m, tight at 2210 m, worked through
16:30 24:00 CMT Cemented casing; 40 bbl returns lost; WOC for remainder of day
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