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Abstract

Time-series foundation models show strong results on static benchmarks, but their
potential in live industrial reporting is only beginning to be explored. In drilling,
continuous multivariate sensor streams must be transformed into Daily Drilling
Reports (DDRs), where each entry aligns with activity boundaries. Automating this
process offers an opportunity to deliver reports that are both timely and consistent,
reducing the burden of manual compilation.

We present LiveDrill, a streaming pipeline for multimodal segment-grounded
data-to-text generation. LiveDrill integrates two modules: a Live Segmentation
Module that detects activity transitions in real time, and a Multimodal Text
Generation Module that conditions report entries on both sensor signals and the
detected segments. This design ensures that generated text is explicitly tied to
operational intervals, providing structured updates directly from live data.

Evaluation on large-scale field data demonstrates that LiveDrill can reliably capture
stable operations and generate coherent DDR entries. Segment-level metrics reveal
the sensitivity of boundary detection, highlighting areas where further improvement
can yield even stronger results.

Overall, LiveDrill demonstrates the feasibility of segment-grounded, multimodal
reporting in industrial settings. It opens the door for adapting TSFMs beyond static
benchmarks toward practical, boundary-sensitive applications where live sensor
data must be translated into actionable narratives.

1 Introduction

Industrial operations generate long, multivariate sensor streams that must be condensed into short,
actionable reports. In drilling, these take the form of Daily Drilling Reports (DDRs), which record
operational activities and are critical for coordination, planning, and safety (see Appendix 3 for an
example).

Today, DDRs are compiled manually after each 24-hour shift, leading to delays and inconsistencies.
Automating this process requires live generation grounded in multimodal signals that define
operations. DDR entries are tied to activities such as drilling, tripping, or circulating, each marked by
distinct sensor patterns. Without aligning text to these segments, reports lose operational meaning.

We introduce LiveDrill, a streaming pipeline that couples time-series segmentation with multimodal
text generation. A Live Segmentation Module detects activity boundaries directly from sensor streams
in real time, while a Multimodal Text Generation Module produces DDR entries conditioned jointly
on sensor dynamics and the detected segment. This design ensures that generated text remains timely
and explicitly tied to drilling activities.

Under review at the NeurIPS 2025 Workshop on Recent Advances in Time Series Foundation Models (BERT?S).
Do not distribute.
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Time-series foundation models (TSFMs) show strong performance on static benchmarks [Ansari
et al., 2024, Goswami et al., 2024, Woo et al., 2024], but live industrial reporting introduces unique
demands: detecting activity boundaries, aligning multimodal signals with language, and generating
text at low latency. Prior work in drilling automation has explored anomaly detection [Benzine
et al., 2024b], DDR codification [Benzine et al., 2024c], and sensor—text alignment for retrieval
and zero-shot description [Buiting et al., 2025]. TSFMs have also demonstrated cross-domain
generalization [Khaouja et al., 2025, Benzine et al., 2024a]. LiveDrill builds on these directions,
providing a multimodal benchmark for segment-grounded live data-to-text generation, highlighting
both opportunities and limitations of TSFMs in noisy, boundary-sensitive industrial settings.

2 Method

LiveDrill is a streaming pipeline with two modules: a Live Segmentation Module that detects activity
changes and a Multimodal Text Generation Module that generates text for the detected region. Figure 1

shows the workflow.
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Figure 1: LiveDrill pipeline. The Live Segmentation Module monitors the stream and detects activity
changes. Each change triggers the Multimodal Text Generation Module, which encodes the region of
interest and generates a segment-grounded DDR entry.
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2.1 Live Segmentation Module (LSM)

The LSM, illustrated in Figure 1.a, is a live time series segmentation model that performs multi-class
point-wise classification on the incoming sensor stream. Its goal is to assign an activity label to every
time step and to detect transitions between activities as they happen. The LSM is implemented as a
time series foundation model (Moment and Moirai Large) adapted for segmentation task [Khaouja
et al., 2025].

2.2 Multimodal Text Generation Module (MTGM)

When the LSM raises a change event, MTGM, illustrated in Figure 1.b, generates a DDR entry for
the new segment. MTGM has four components.

Region-of-Interest (ROI) Selector. The ROI selector takes the segmentation masks produced by
the LSM and identifies the activity segment that requires a new DDR entry. It generates a binary mask
aligned with the sensor stream: time steps inside the detected segment are marked with 1, and all
others with 0. This mask serves two purposes: it explicitly delimits the segment of interest, and it is
passed to the TSE as an additional input channel. By grounding subsequent encoding in the segment
identified by the LSM, the ROI selector ensures that text generation is tied to meaningful intervals.

Time-Series Encoder (TSE). The TSE converts the input into a sequence of embeddings optimized
for text generation. Its input is the raw sensor channels concatenated with the binary ROI mask.
Formally, let Xtsg € RT*(C+1) denote the encoder input, where C' is the number of sensor channels
and the extra channel corresponds to the binary ROI mask. This design provides the encoder both
with the sensor dynamics and an explicit signal about which region to prioritize. Moment and Moirai
Large models were chosen here from experience in previous study [Khaouja et al., 2025, Buiting
et al., 2025].

TSE-to-LLM Connector. A linear projection maps the TSE embedding dimension to H, in the
LLM token-embedding space .
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LLM Decoder. The LLM receives H and generates the DDR entry autoregressively. We chose
Phi3-mini-4K-instruct here.

2.3 Model Training Procedures

LSM Training. We initialize the LSM from a pretrained TSFM and fine-tune on annotated se-
quences { (X, y(i))}f;l. The loss is point-level cross-entropy on activity labels.

MTGM Training. During training, the LLM is frozen. The TSE and the connector are trainable.
Given a detected segment, the TSE outputs Zro;, which the connector projects into the LLM
embedding space. Conditioned by the projected features, the LLM predicts the DDR text:

M
Lyt = — ZIOgPO(wt \ W<ty ZROI);

t=1
where wy is the ¢-th token and M is the entry length.

3 Evaluation

3.1 Dataset

We evaluate on a large-scale industrial dataset comprising daily drilling data from over 100 active
drilling rigs, collected over a period of 3 years. This dataset, which includes 1810 distinct drilling
phases (split into 1353 for training, 101 for validation, and 356 for testing), contains a total of over
35,987 days of continuous multivariate streams from surface sensors, sampled at 1 Hz.

For training and validation of the Live Segmentation Module (LSM), a subset of this data has
been annotated with activity labels derived from manually written Daily Drilling Reports (DDRs),
resulting in over 68,017 distinct activity segments. Each segment in these DDRs contains an activity
description, which serves as the reference text for the Multimodal Text Generation Module (MTGM)

3.2 Evaluation Tasks

We assess streaming segmentation quality across drilling activities, the quality of DDR generation for
segment-grounded entries, and the overall system performance in live settings.

3.3 Metrics

For segmentation, we report both segment-based F'l17,;; (Khaouja et al. [2025]) and point-wise
F'1,,,. The segment-based F'1;,;; evaluates detection quality by matching predicted and ground-truth
segments based on their intersection-over-union, while F'1,,, measures classification accuracy at
the point level, independent of segment boundaries. For DDR generation, an automated LLM judge
(Llama-3.3-70B-instruct 4 bit ) scores operational accuracy, depth consistency, and language quality.
The overall system score is computed as the harmonic mean of the segmentation and generation
scores.

3.4 LSM performance

Segmentation Model Overall CM CMT CORE CSG DRILL DRLOUT REAM STKP TRIP
Fliov  Flpw Flrou Flpw  Fliy Flypw  Flioy Flpw  Fliy Flypw  Fly Flpw  Flu Flyw  Flioy Flyw  Fly Flp,  Flioo Flp

Moment-large 0467 0.827 0094 0823 0395 0740 0533 0935 0365 0844 0526 0942 0423 0736 0446 0743 0000 0923 0567 0818
Moirai-large 0.484 0809 0233 0765 0394 0739 0.182 0986 0.298 0.746 0538 0.950 0415 0.710 048 0.739 0.000 0.907 0.565 0.790

Table 1: Fl7,y and F'1,,, (overall + per class) for segmentation results of Moment and Moirai
models.

The results in Table 1 show a clear gap between point-wise accuracy (F'1,,, around 0.81) and
segment-level performance (F'1;,y around 0.47). The segment metric is highly sensitive to small
interruptions: even short misalignments split otherwise correct segments and lower scores. Manual
inspection also revealed short interrupting segments in the ground truth, suggesting that part of the
gap comes from annotation noise rather than model errors.

Overall, point-wise accuracy confirms that most time steps are correctly labeled, especially for
stable activities like DRILL, DRLOUT and TRIP. More variable or rare classes such as STKP,
and CM remain harder to capture. Between the two models, Moirai-large provides slightly better
segment-level alignment, while both show similar point-wise accuracy. These results indicate that
LiveDrill’s LSM achieves reliable classification, but progress will require smoothing predictions and
improving rare-class detection to close the gap between point-wise and segment-level scores.

3
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LsM TSE: Moment-large | TSE: Moirai-large

TSEModel ~ AvgLLM[0-]] CM CMT CORE CSG DRILL DRLOUT REAM STKP TRIP

Seg Fli,y AvgLLM Combined | Seg Flj,y AvgLLM Combined
0359 0137 0333 0291 0353 059 0456 0.499 0114 0.200
0340 0212 0344 0309 0354 0563 0368 0454 0210 0.157 Moment-large 0.467 0.359 0.405 0.467 0.340 0.394
Moirai-large 0.484 0.359 0.412 0.484 0.340 0.399

(a) LLM judge evaluation scores (normalized to [0-1])

for Moment and Moirai models (b) Combined evaluation of segmentation and text

generation. The "Combined" column is the harmonic
mean.

Table 2: Side-by-side results for MTGM evaluation and full-system performance.

3.5 MTGM performance

Table 2a shows moderate overall performance (0.34-0.36), with clear variability across activities.
Frequent and stable operations such as DRILL, DRLOUT, and REAM reach higher scores (>0.45),
while rare or complex ones like STKP, CM, and TRIP remain difficult.

Moment-large performs better in continuous drilling phases, whereas Moirai-large shows relative
strength in short or transition-heavy activities. These results highlight the need for better handling of
rare events and more robust domain grounding in text generation.

3.6 Full system performance

The results in Table 2b indicate that overall system performance remains moderate when combining
segmentation and generation. The harmonic mean shows how deficiencies in either module signifi-
cantly reduce the joint score: the best configuration reaches 0.412 when using Moirai for segmentation
and Moment for generation, slightly outperforming Moment-only (0.405) and Moirai-only (0.399)
setups. This suggests that segmentation quality from Moirai provides a small but consistent advantage,
while Moment remains stronger in Time Series encoding for text generation.

LiveDirill produces coherent updates in stable phases such as DRILL, but struggles in transition-heavy
or rare operations. Qualitative results of LiveDrill are shown in Figure 2 and Appendix B and C.
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(b) MTGM output for the highlighted segment, il-
(a) LSM predictions over a sample sensor stream, lustrating segment-grounded DDR text generation.
showing detected activity segments. The shaded region is the ROI mask.

Figure 2: Qualitative examples of LiveDrill outputs (LSM=Moirai and MTGM=Moment).

4 Conclusion

This work introduced LiveDrill, a streaming system for segment-triggered data-to-text generation in
industrial time series. By combining a Live Segmentation Module with a Multimodal Text Generation
Module, the system shifts DDR creation from delayed, end-of-day summaries to continuous, real-time
reporting.

Our evaluation on large-scale drilling data shows that LiveDrill can reliably classify stable operations
and generate coherent entries, providing engineers with timely and structured information. At the
same time, the results highlight current limitations: segmentation errors propagate into generation,
transition-heavy activities remain difficult to model, and absolute generation scores leave room for
improvement.

These findings demonstrate both the feasibility and the challenges of live industrial reporting. Future
work should focus on smoothing segmentation boundaries, improving handling of rare and complex
operations, and enhancing domain grounding in text generation. Beyond drilling, the approach of
segment-grounded live reporting may extend to other industrial domains where continuous sensor
data must be converted into actionable narratives.
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A Appendix - Data

A.1 Features

The eight key features used in the input data capture drilling information:

Bit Depth: The measured depth of the drill bit within the hole.
Hole Depth: The total depth of the drilled hole.

Hook Load: The weight supported by the hook that holds the drilling assembly that go in
the hole.

Block Position: The vertical position of the above-ground block that holds the hook and
drilling assembly that go in the hole.

Standpipe Pressure: The fluid pressure inside the drilling pipe.

Rotary Speed: The rotational speed of the drilling assembly in the hole.

Flow Rate: The rate at which drilling fluid is pumped into the well.

Torque: The rotational force applied to the drilling assembly during drilling operations.

A.2 Time Series Pre-Processing

Sensor signals are resampled to 1 Hz.

Gaps shorter than five seconds are linearly interpolated; longer gaps are left as nulls.
Noise is reduced using domain thresholds followed by Z-score filtering on sliding windows.
Features are normalized with expert-defined physical limits for cross-well consistency.

To match TSFM pretraining input size, time series are finally sub-sampled to 512 points.
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B Qualitative Results - LSM

This section provides qualitative examples of predicted activity segmentation compared to ground
truth annotations for two models: Moirai-Large (the best-performing LSM) and Moment-Large.
These examples illustrate how the models handle activity transitions and maintain segment-level
alignment in real drilling scenarios.

B.1 Moirai-Large

Figure 3 presents qualitative results for Moirai-Large. The top rows in each subfigure correspond
to ground truth annotations, which include the class OTHER to mask surface activities. The bottom
rows show predictions made by the LSM. Moirai-Large effectively identifies activity boundaries and
demonstrates strong alignment with the ground truth across complex transitions.
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Figure 3: Qualitative examples comparing ground truth and Moirai-Large predictions. Ground truth
annotations (top) include OTHER to mask surface activities, while predictions (bottom) illustrate the
LSM’s ability to capture activity transitions and segment boundaries.

B.2 Moment-Large

Similarly, Figure 4 shows qualitative results for Moment-Large. As with Moirai-Large, ground truth
annotations appear on the top rows, and model predictions are on the bottom. Although Moment-

Large captures major transitions, it tends to produce less precise segment boundaries compared to
Moirai-Large.
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Figure 4: Qualitative examples comparing ground truth and Moment-Large predictions.



215 C  Qualitative Results - MTGM

216 Best model, Moment-Large, is used as MTGM in the below results.

REF: cont drilling 8.5"
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Figure 5: MTGM-generated DDR entry for a DRILL activity segment.
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Figure 6: Another MTGM-generated DDR entry for a DRILL activity segment.
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Figure 7: MTGM output for a TRIP activity segment.
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Figure 8: Another example of MTGM-generated DDR for a TRIP activity segment.
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Figure 9: MTGM output for a CSG activity segment.
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Figure 10: MTGM-generated DDR entry for a REAM activity segment.



27 D Appendix - Example DDR

218 Table 3 provides a detailed example of a Daily Drilling Report (DDR), illustrating time-stamped
219 activities, anomalies, and sensor values.

Table 3: Example Daily Drilling Report (DDR)
Start | End Code | Operation
00:00 | 01:45 | TRIP | RIH with BHA to 2140 m, tagged bottom, spaced out, pumped to stabilize
01:45 | 02:30 | CIRC | Circulated bottoms up, SPP 2400 psi, clean returns
02:30 | 05:30 | DRILL | Drilled 12-1/4" hole 2140-2185 m, WOB 20 klbs, torque up to 12 kft-1b
05:30 | 06:30 | REAM | Reamed 2140-2185 m, reduced drag, torque normalized
06:30 | 07:15 | CIRC | Conditioned hole, minor gas at shaker, flow rate +10%
07:15 | 09:45 | DRILL | Drilled to 2220 m, partial losses 50 gpm observed
09:45 | 12:15 | STKP | Pipe stuck at 2215 m, no rotation; worked string, spotted LCM, freed
12:15 | 13:30 | CIRC | Conditioned hole for casing, stable returns, flow check good
13:30 | 16:30 | CSG | Ran 9-5/8" casing to 2220 m, tight at 2210 m, worked through
16:30 | 24:00 | CMT | Cemented casing; 40 bbl returns lost; WOC for remainder of day

10



