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Abstract
Learning human objectives from preference feed-
back has significantly advanced reinforcement
learning (RL) in domains where objectives are
hard to formalize. However, traditional methods
based on pairwise trajectory comparisons face no-
table challenges, including the difficulty in com-
paring trajectories with subtle differences and the
limitation of conveying only ordinal information,
limiting direct inference of preference strength. In
this paper, we introduce a novel distinguishabil-
ity query, enabling humans to express preference
strength by comparing two pairs of trajectories.
Labelers first indicate which of two pairs is easier
to distinguish, then provide preference feedback
only on the easier pair. Our proposed query type
directly captures preference strength and is ex-
pected to reduce the cognitive load on the labeler.
We further connect this query to cardinal utility
and difference relations and develop an efficient
query selection scheme to achieve a better trade-
off between query informativeness and easiness.
Experimental results demonstrate the potential
of our method for faster, data-efficient learning
and improved user-friendliness in RLHF bench-
marks, particularly in classical control settings
where preference strength is critical for expected
utility maximization.

1. Introduction
Learning human objectives from preference feedback has
enabled reinforcement learning (RL) to tackle domains with
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Figure 1. An illustration of the distinguishability query. PCQ
refers to the usual Pairwise Comparison Query for a pair of seg-
ments (σ0, σ1), and its feedback is yPCQ, indicating the preferred
segment. Our proposed distinguishability query, DQ, consists of
two candidate PCQs. Its feedback yDQ = (d, yPCQ) includes the
choice of the more distinguishable PCQ, d, and its corresponding
label, yPCQ.

hard-to-formalize objectives, from fine-tuning language
models (OpenAI, 2022; Ouyang et al., 2022) to training
robots for complex tasks (Christiano et al., 2017). The
standard method asks human evaluators to compare pairs
of trajectories, using these comparisons to learn a reward
function that guides RL agent training. While this method
is widely used and has shown impressive performance in
simulated environments (Christiano et al., 2017; Lee et al.,
2021b; Liang et al., 2022; Park et al., 2022; Hu et al., 2024;
Verma & Metcalf, 2024; Dong et al., 2024), it faces two key
limitations: First, humans often struggle to compare trajec-
tories, particularly when the differences are subtle, leading
to inefficient queries and poor user experience. Second, pair-
wise comparisons provide only ordinal information, leaving
preference strength to be learned implicitly. This limita-
tion is particularly problematic for reinforcement learning,
which fundamentally requires cardinal utilities for expected
utility maximization – the core principle guiding the agent’s
decisions under uncertainty.

In this paper, we propose a novel query type called the distin-
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guishability query (illustrated in Figure 1), which addresses
these two critical limitations. In a distinguishability query,
the human first indicates which of two trajectory compar-
isons is easier to distinguish and then provides preference
feedback on only the selected pair as usual in preference-
based RLHF methods. While traditional preference choice
for a single pair of segments only conveys ordinal informa-
tion, the additional choice of which comparison to evaluate
allows us to infer preference strength, assuming that hu-
mans prefer to provide feedback on the more distinguishable
pair. This approach enables labelers to focus on easier com-
parisons and directly facilitates the learning of preference
strength. Our proposed method, named DistQ, integrates
distinguishability queries with an effective query selection
scheme and a specialized learning objective.

Concretely, our contributions are as follows:

1. We propose a new type of query, the distinguishability
query, in the field of RLHF (see Section 4.1);

2. We establish connections between distinguishability
queries and cardinal utility and distance relations stud-
ied in related disciplines (see Section 2);

3. We design a query selection scheme for distinguisha-
bility queries that aims to achieve a better trade-off
between query informativeness and ease of answering
(see Section 4.2);

4. We propose a specific learning objective to improve
reward learning by coupling cardinal and ordinal infor-
mation (see Section 4.3);

5. We empirically demonstrate, on classic control tasks
with a synthetic oracle, that our method can achieve
competitive performance in a more user-friendly man-
ner compared to standard pairwise comparison meth-
ods (see Section 5).

2. Related Work
Our work overlaps with three key areas: decision theory,
RLHF approaches using pairwise comparisons, and ap-
proaches that aim to reduce the burden on the human labeler.
We briefly review each of these areas below.

Preference Strength Observed choices, which form the
foundation of RLHF (Jeon et al., 2020), convey only or-
dinal preferences, expressing information about rank but
not about distance. With cardinal utilities, not only the
order of utility values but also their differences are meaning-
ful – capturing preference strength, which is not expressed
in purely ordinal utilities. Reinforcement learning funda-
mentally requires such cardinal utilities for expected utility

maximization (Von Neumann & Morgenstern, 1947). Car-
dinal utilities have been extensively studied in economics,
psychology, and decision theory (Suppes & Winet, 1955;
Krantz et al., 2006; Jansen et al., 2018). Prior work has
shown that preferences elicited in RLHF, when noisy and
under certain assumptions, can be used to infer cardinal
utilities (Chan et al., 2021; Xu et al., 2020). This aligns with
the empirical success of RLHF methods based on pairwise
comparisons (Lee et al., 2021b; Liang et al., 2022; Park
et al., 2022; Hu et al., 2024; Dong et al., 2024). However,
these assumptions about utility-dependent noise are strong
and may not hold in practice. Moreover, since each com-
parison is typically observed only once, models must rely
on generalization across similar comparisons to infer pref-
erence strength. This motivates us to explore more direct
ways to elicit cardinal utilities.

Distance Relations Cardinal utilities can be represented
either as a real-valued function (unique up to positive affine
transformations) or as a relation on pairs of outcomes. The
latter formalism aligns closely with our proposed query
type, where human labelers distinguish between two pairs
of outcomes. Formally, human labeler preferences can be
modeled using two relations R and D (Suppes & Winet,
1955; Jansen et al., 2018), where R represents a preference
relation and D a difference relation. If a pair of pairs sat-
isfies

(
(a, b), (c, d)

)
∈ D, then exchanging b with a is at

least as desirable as exchanging d with c – meaning a is
more strongly preferred over b than c is over d. Several
works establish axioms that determine a utility function
from such a relation, unique up to positive affine transfor-
mations (Alt, 1936; Suppes & Winet, 1955; Köbberling,
2006). Notable among these axioms are completeness and
transitivity. When completeness is not satisfied, the relation
only determines a set of compatible utility functions (Pivato,
2013).

Eliciting Preference Strength Eliciting distinguishability
for cardinal utility in RLHF remains underexplored. While
Jansen et al. (2022) explore methods like time elicitation
and label elicitation (the latter demanding absolute ratings,
posing challenges (Yannakakis & Martı́nez, 2015) and bur-
dening labelers), these are suited for finite outcome spaces
with dense observations. DistQ instead employs relative dis-
tinguishability queries and integrates neural network utility
learning with probabilistic modeling and informativeness-
based query selection for generalization across vast trajec-
tory spaces with learnable structure. Other methods infer
cardinal strength from human response times (RTs), assum-
ing RTs reflect preference strength through explicit cognitive
modeling using the Drift Diffusion Model (DDM) (Ratcliff,
1978; Ratcliff & McKoon, 2008) or by leveraging RTs as
predictive features. Shvartsman et al. (2024) use Gaus-
sian Processes with either DDM approximations or RTs
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as stacking features, while Li et al. (2024) use EZ-DDMs
(Wagenmakers et al., 2007) in linear bandits (assuming lin-
ear utility). DistQ’s explicit, second-order query operates
differently: it asks humans to identify which of the two
potential choices is easier, leveraging their meta-cognitive
assessment of relative difficulty to allow an answer and
provide strength signal while avoiding fully resolving the
harder underlying comparison. This query type aims for
greater robustness by avoiding direct reliance on absolute
RTs and strong accompanying assumptions (e.g., DDM, lin-
ear utility) – problematic in complex RLHF settings – and
its distinguishability signal readily extends standard loss
functions.

Reducing Burden of Human Labelers A major limi-
tation of pairwise comparisons is their burden on human
labelers when the compared behaviors are similar or when
neither option is clearly preferable. Prior work has ad-
dressed this through multiple strategies: (1) pre-training,
either in an unsupervised manner (Lee et al., 2021b) or us-
ing demonstrations (Ibarz et al., 2018; Palan et al., 2019;
Bıyık et al., 2022), (2) allowing labelers to abstain from
answering queries (Lee et al., 2021a), and (3) query selec-
tion strategies that aim to select queries that are easier for
the human labeler to answer (Bıyık et al., 2019). The first
two strategies are complementary to our approach. Re-
garding the third, which our approach falls into, Bıyık et al.
(2019) propose to use information gain to select queries that
are informative and easy to answer, implicitly prioritizing
queries the human will be able to answer and thus lead to the
largest gain of information. While such an approach could
be extended to distinguishability queries, we instead opted
for a query selection scheme based on ensemble disagree-
ment and prediction entropy for computational efficiency.
In addition to this selection scheme, our distinguishability
queries allow the labeler to actively choose easier queries
themselves.

3. Preliminaries
Reinforcement Learning We consider a reinforcement
learning (RL) setting characterized by a Markov Decision
Process (MDP). The MDP is defined by ⟨S,A,P, r, γ⟩,
where S and A denote state and action spaces, while
P(s′|s, a), r(s, a), and γ ∈ (0, 1] represent the transition
function, the reward function, and the discount factor. At
each timestep t, the agent receives state st ∈ S , takes action
at ∈ A, receives reward r(st, at), and transitions to st+1 ∼
P(st+1|st, at). The returnRt =

∑∞
k=0 γ

kr(st+k, at+k) is
defined as the discounted cumulative sum of rewards from
timestep t, which is to be optimized.

Reinforcement Learning from Human Feedback RLHF
is a framework that aims to learn optimal agent behavior

from human feedback (Christiano et al., 2017; Kaufmann
et al., 2023). In this paper, we focus on inferring an unknown
reward function r(s, a) used to train policy π(a|s) (Lee
et al., 2021b;a). The agent learns an approximate reward
function r̂ψ(s, a) from human preferences, implemented as
an ensemble of N neural networks parameterized by ψ =
(ψ1, . . . , ψN ). The policy πϕ and reward r̂ψ are updated by
alternating:

• Step 1 (agent learning): The agent interacts with the
environment using πϕ to collect trajectories and up-
dates the policy via RL, maximizing expected return
under the current r̂ψ .

• Step 2 (reward learning): Preference queries are gener-
ated from collected trajectories and used to update the
reward model r̂ψ based on human feedback.

While any RL algorithm could be used in Step 1, we use the
Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018)
in our experiments, following PEBBLE (Lee et al., 2021a).

Pairwise Comparison Queries in RLHF In RLHF, hu-
man feedback is typically collected through pairwise com-
parison queries (PCQ) (Christiano et al., 2017; Lee et al.,
2021b). Given trajectory segments σ0 and σ1, represented
by a sequence of states and actions, a PCQ can be denoted as
(σ0, σ1). The oracle (e.g., human labeler) gives preference
through feedback yPCQ ∈ {(1, 0), (0, 1)}, where (1, 0) indi-
cates segment σ0 is preferred over σ1 and (0, 1) indicates
the opposite. These query-feedback triples (σ0, σ1, yPCQ)
are stored in dataset DPCQ.

Preferences are linked to the reward function by means of
a Bradley-Terry model (Bradley & Terry, 1952), which as-
sumes latent utilities pj govern pairwise preferences through

P[σ1 ≻ σ0] =
exp(p1)

exp(p0) + exp(p1)
.

In the context of RLHF, where the utility of a trajectory
segment is defined as its return, the predicted probability of
segment σ1 being preferred over σ0 is

Pψ[σ1 ≻ σ0] =
exp

∑
t γ

tr̂ψ(s
1
t , a

1
t )∑

j∈{0,1} exp
∑
t γ

tr̂ψ(s
j
t , a

j
t )

, (1)

where r̂ψ(s
j
t , a

j
t ) for j ∈ {0, 1} is the average output of the

N reward networks r̂ψi
for i ∈ {1, . . . , N}.

Given dataset DPCQ and corresponding predictions from
Equation (1), reward learning is formulated as a classifica-
tion problem (Christiano et al., 2017). The reward model
r̂ψ can be learned by minimizing the cross-entropy loss

LRew
PCQ = −EDPCQ

[ ∑
j∈{0,1}

yjPCQ logPψ
[
σj ≻ σ1−j]] , (2)
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Figure 2. DistQ’s query selection scheme for distinguishability queries. The process consists of multiple filtering steps: First, from a set
of randomly generated segment pairs Qp, we select a subset Qpv with higher informativeness I. Then, we filter a subset Qpve based on
easiness E from Qpv . Both I and E are calculated from the current reward model r̂ψ . Finally, we construct Qd by pairing the PCQs in
Qpve, matching the top i-th easiest PCQ to the bottom (i+ nE)-th one. We obtain QDQ with the labelers’ feedback on Qd, which can
then be utilized by our training objective for r̂ψ , integrating information from distinguishability and preference feedback.

where yPCQ = (y0PCQ, y
1
PCQ) is the feedback and EDPCQ is the

(empirical) expectation for (σ0, σ1, yPCQ) ∼ DPCQ.

4. Method
We present DistQ, a novel RLHF approach that addresses
limitations of traditional pairwise comparisons through dis-
tinguishability queries. Our method aims to pose queries
that are both informative for distance-aware reward learning
and easier for human labelers to answer, enhancing both user
experience and query efficiency. The approach consists of
three key components: (1) the distinguishability query struc-
ture that enables humans to express preference strength by
comparing pairs of trajectory comparisons, (2) an efficient
query selection method considering both informativeness
and easiness, and (3) a specialized learning objective that
leverages the richer feedback from distinguishability queries
to improve reward learning.

The remainder of this section details these components. In
Section 4.1, we introduce the structure and theoretical foun-
dations of distinguishability queries. Section 4.2 presents
our efficient query selection scheme designed specifically
for these queries. Finally, Section 4.3 develops a special-
ized training objective that integrates both distinguishability
and preference feedback. Together, these components form
a cohesive system with the aim of creating user-friendly,
informative queries while enriching the reward learning
process, as illustrated in Figure 2.

4.1. Distinguishability Query

Intuitively, in order to avoid posing unanswerable PCQs and
to learn about preference strength, we propose providing the
labeler with two such queries together as one distinguishabil-
ity query. We let the labeler select the more distinguishable
one that is easier to answer and then provide preference
feedback for the chosen pairwise query. This approach ef-
fectively combines a query about ordinal preferences with
one about preference strength, while simultaneously reduc-

ing the burden on the human labeler.

Recall that in Section 3, the pairwise comparison query is
denoted as PCQ = (σ0, σ1) and the corresponding pref-
erence feedback as yPCQ ∈ {(1, 0), (0, 1)}. We represent
the distinguishability query as DQ = (PCQ0,PCQ1) =(
(σ0

0 , σ
1
0), (σ

0
1 , σ

1
1)
)
. The feedback to a distinguishability

query yDQ = (d, yPCQ) consists of two components: the dis-
tinguishability preference feedback d ∈ {(1, 0), (0, 1)}
indicating which pairwise comparison query is more dis-
tinguishable, and the pairwise preference feedback yPCQ
to the selected more distinguishable pairwise comparison
query. Such a query and corresponding feedback is rep-
resented by (DQ, yDQ) and stored in a dataset DDQ. See
Figure 1 for an illustration.

We define the distinguishability measureM for a pairwise
comparison query (σ0, σ1) as

M(σ0, σ1) =
∣∣∣∑

t

γtr(s1t , a
1
t )−

∑
t

γtr(s0t , a
0
t )
∣∣∣ . (3)

Larger values indicate stronger distinguishability. Note that
M is symmetric. Given a learned reward model r̂ψ, distin-
guishabilityM(σ0, σ1) can be approximated by

M̂ψ(σ
0, σ1)=

∣∣∣∑
t

γtr̂ψ(s
1
t , a

1
t )−

∑
t

γtr̂ψ(s
0
t , a

0
t )
∣∣∣ . (4)

4.2. Selecting Informative and Easy-to-Answer
Distinguishability Queries

Given this newly proposed type of query, we design a
method (see Figure 2) to select distinguishability queries
that are informative and also easy to answer for the labeler.
Overall, we begin with selecting desirable pairwise compari-
son queries and pair the selected ones into distinguishability
queries.

Broadly speaking, we aim to select queries on which feed-
back from the labeler could reduce our current predictive
uncertainty while also ensuring that the labeler can easily
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provide feedback. This aligns with the concepts of epis-
temic and aleatoric uncertainty (Hüllermeier & Waegeman,
2021): While the latter refers to inherent uncertainty due to
randomness in the data-generating process (in our case the
labeler’s responses), the former is caused by the learner’s
limited knowledge of this process. Thus, while aleatoric
uncertainty is irreducible, epistemic uncertainty can, in prin-
ciple, be reduced through additional (training) information
and therefore is a natural target for active learning and query
construction (Nguyen et al., 2022). Since we assume the
labeler gives stochastic feedback according to a Bradley-
Terry model, aleatoric uncertainty is high when the utility
difference is small and low when the utility difference is
large.

Our selection scheme, therefore, favors queries that are infor-
mative and hence epistemically uncertain, and meanwhile
easy to answer by the labeler. Following previous work
(Christiano et al., 2017; Lee et al., 2021b), we measure the
informativeness using the variance of the prediction of the
reward networks Pψi

’s. A larger variance means larger dis-
agreement between the reward networks and, thus, higher
epistemic uncertainty. For query easiness, we measure it us-
ing the average entropy of the Bernoulli distributions Pψi ’s.
Indeed, a large entropy implies that the return difference of
two segments is small, which means that they are hard to
distinguish. Next, we will explain our method step by step
in detail.

Informativeness Based on Variance As Figure 2 shows,
given a trajectory buffer B, we first randomly sample seg-
ments from trajectories and pair them to obtain a set Qp of
candidate PCQs. With the current reward model r̂ψ , we can
compute the predicted pairwise preference probability in
Equation (1) for each PCQ (σ0, σ1) ∈ Qp.

We define the informativeness I(σ0, σ1) of a PCQ (σ0, σ1)
as the variance of reward model prediction, which is

I(σ0, σ1) = V(σ0, σ1) =

√√√√ 1

N

N∑
i=1

(P 1
ψi
− P 1

ψ)
2 , (5)

where P 1
ψi

= Pψi
[σ1 ≻ σ0] is the prediction solely from

neural network r̂ψi
and P 1

ψ = Pψ[σ1 ≻ σ0] is the aver-
age prediction from the ensemble reward model. Queries
with higher variance indicate higher epistemic uncertainty
of the current reward model, thus providing more informa-
tion for reward learning. In this step, PCQs with top nI
informativeness are finally selected from set Qp for later
steps.

Easiness Based on Entropy Let Qpv be the set of the nI
informative queries obtained in the last step. We then define
the easiness E(σ0, σ1) of a PCQ (σ0, σ1) as the negative

entropy of reward model prediction, which is

E(σ0, σ1) = −H(r̂ψ) =
1∑
j=0

P jψ logP jψ , (6)

where P jψ = Pψ[σj ≻ σ1−j ] for j ∈ {0, 1} represents the
average prediction from the ensemble reward model.

It is worthwhile to mention that although higher entropy
values may also correspond to more uncertain predictions,
and the entropy criterion has been used for pairwise com-
parison query selection (Lee et al., 2021b), relying only on
the highest entropy can result in queries that are nearest to
the decision boundary and thus really hard for the labeler
to answer. By selecting queries with lower entropy among
those selected with the largest variance, we aim to select
the queries that are as easy to answer despite the epistemic
uncertainty involved.

Forming Distinguishability Queries After sorting the nI
queries inQpv in decreasing order with respect to their easi-
ness E(σ0, σ1), the top nE and bottom nE easiest queries
are selected to form the set Qpve. Then the top i-th easiest
query is paired with the bottom (i+ nE)-th easiest one to
compose a distinguishability query. We apply this simple
method so that easy queries are paired with less easy queries
while still considering only the most informative queries
overall.

4.3. Training with Distinguishability Queries

To learn from distinguishability feedback, we assume that
the labeler chooses between PCQ0 = (σ0

0 , σ
1
0) and PCQ1 =

(σ0
1 , σ

1
1) according to a Bradley-Terry model. Using reward

model r̂ψ , the labeler’s response can be predicted by:

P̃ψ[(σ
0
1 , σ

1
1) ≻ (σ0

0 , σ
1
0)] =

expM̂ψ(σ
0
1 , σ

1
1)∑

h∈{0,1}

expM̂ψ(σ
0
h, σ

1
h)

, (7)

where (σ0
1 , σ

1
1) ≻ (σ0

0 , σ
1
0) means that PCQ1 is more distin-

guishable than PCQ0.

Under this assumption, we can then train the reward model
with feedback d by formulating the distinguishability prefer-
ence prediction also as a supervised classification problem.
Similarly to Equation (2), we define the cross-entropy loss
for the distinguishability preference feedback d as

LRew
d = −EDDQ

[
d0 log P̃ψ

[
(σ0

0 , σ
1
0) ≻ (σ0

1 , σ
1
1)
]

+ d1 log P̃ψ
[
(σ0

1 , σ
1
1) ≻ (σ0

0 , σ
1
0)
]]

, (8)

where EDDQ represents the (empirical) expectation for
((σ0

0 , σ
1
0), (σ

0
1 , σ

1
1), yDQ) ∼ DDQ. Recall that distinguisha-

bility feedback yDQ = (d, yPCQ) consists of both distin-
guishability preference feedback d and pairwise preference
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Figure 3. Performance comparison of DistQ against baselines on classic control tasks. Results show episode reward for DMControl
locomotion tasks (Figures 3(a) to 3(c)) and success rate for Meta-World manipulation tasks (Figures 3(d) to 3(h)). To account for DistQ’s
different query structure, we show ‘DQ’ (same query budget as baselines) and ‘DQ (half)’ (half query budget) to bracket the human effort
for comparison. The solid curves and shaded regions represent the mean and standard deviation, respectively, across five runs.

feedback yPCQ. The latter feedback yPCQ can also be ex-
ploited for reward training by writing loss LRew

PCQ in Equa-
tion (2) on the pairwise comparison query selected by d.

Finally, we update the reward model r̂ψ by minimizing the
linear combination of LRew

d and LRew
PCQ as

LRew
DQ = λdLRew

d + λpLRew
PCQ , (9)

where hyperparameters λd and λp denote the weight for
LRew
d and LRew

PCQ , respectively.

Our proposition, DistQ, corresponds to enhancing Step 2
(reward learning) described in Section 3. For simplicity, we
do not change Step 1 (agent learning). The pseudo-code
for the general procedure can be found in Algorithm 1 in
Appendix C.

5. Experiments
In this section, we conduct experiments to investigate the
following questions: (1) How do the proposed distinguisha-
bility query and corresponding query selection method help
with performance and query efficiency compared with state-
of-the-art (SOTA) RLHF methods that only use pairwise
comparison queries? (2) Are the pairwise comparison
queries selected by our method easier to answer compared
to those selected by the baseline methods? (3) How does
each proposed technique contribute to the overall design?

5.1. Experimental Setup

Tasks Similar to prior works (Lee et al., 2021b;a; Park
et al., 2022; Liang et al., 2022; Liu et al., 2022; Hu et al.,
2024), we consider a series of locomotion tasks from the
DeepMind Control Suite (Tassa et al., 2018) and robotic
manipulation tasks from the Meta-World benchmark (Yu
et al., 2019).

To quantitatively evaluate the performance of the involved
RLHF methods, we follow a general setting where the agent
has no access to the ground truth reward from the envi-
ronment but can only receive synthetic feedback based on
the ground truth reward from a scripted labeler (Lee et al.,
2021b). Given the feedback, the agent learns to solve the
corresponding task guided by the underlying reward func-
tion. The performance is then measured as the true average
return for locomotion tasks and the success rate for manip-
ulation tasks. We report the mean and standard deviation
across five runs for all experiments.

Baselines For comparison, we adopt a variety of SOTA
methods in the field of RLHF, including PEBBLE (Lee
et al., 2021b), SURF (Park et al., 2022), RUNE (Liang
et al., 2022), MRN (Liu et al., 2022), and QPA (Hu et al.,
2024). All of these baseline methods use pairwise compari-
son queries. Regarding query selection, PEBBLE adopts an
entropy-based method (i.e., smaller E), while SURF, RUNE,
and MRN adopt a variance-based method (i.e., larger I).
QPA selects queries randomly from a buffer of near-on-
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Figure 4. Number of incorrectly predicted pairwise comparison feedback across training iterations on locomotion tasks. Lower values
indicate queries that are easier for the labeler to answer, as the reward model’s predictions better align with the labeler’s preferences. Note
that this figure includes results of ablation studies, as detailed in Section 5.5. The solid curves and shaded regions represent the mean and
standard deviation, respectively, across five runs.

policy trajectories. All baselines are evaluated with the
original settings listed in their paper. More details are pro-
vided in Appendix A. What is more, considering that all
these methods employ SAC for agent learning, we also mea-
sure the performance of SAC using the ground truth reward
function as an upper bound of performance.

Implementation We implement the distinguishability
query and the query selection method on top of the widely
adopted method PEBBLE (Lee et al., 2021b). We also
adopt the same generic hyperparameter settings as PEBBLE
without any tuning for a fair comparison. This implemen-
tation is then evaluated and compared with all baselines.
We argue that the proposed new query and corresponding
query selection method can be implemented on top of any
RLHF method utilizing pairwise comparison queries. See
Appendix B for more details on the implementation.

5.2. Benchmark Tasks with Unobserved Rewards

Figure 3 shows the learning curves of DistQ and the
five baselines on three locomotion tasks (Walker walk,
Quadruped walk, and Humanoid stand) and five robotic
manipulation tasks (Window open, Door unlock, Door open,
Sweep into, and Disassemble). All baseline methods use a
budget of pairwise comparison queries indicated by “Query
budget” in each subfigure.

Note that for DistQ, although a distinguishability query is
composed of two pairwise comparison queries, we only ask
the more distinguishable pairwise comparison query to
the labeler. Therefore, we show the results of DistQ using
both full budget (i.e., the DQ curve) and half budget (i.e.,
the DQ (half) curve), aiming for a fair comparison that
lies somewhere in between these cases. In Figure 3(a), for
example, the curves of all baseline methods are obtained by
asking 200 pairwise comparison queries, while DQ (half)
uses only 100 distinguishability queries. It is indeed difficult
to set a precise budget for DistQ to enable a completely fair

comparison. However, by presenting the results in this
manner, we believe that the full and half budget settings
provide a performance range of DistQ, which can serve as a
meaningful comparison with baselines.

Locomotion Tasks from DMControl As shown in Fig-
ures 3(a) to 3(c), DistQ with a full budget largely outper-
forms the baseline methods. This aligns with our expecta-
tions, as distinguishability queries naturally provide richer
information for reward learning, leading to superior reward
models for guiding the agent. The primary exception is the
challenging Humanoid stand task, where QPA outperforms
DistQ with full budget slightly. Notably, Humanoid stand
has not been addressed by most other baselines, prompting
us to adopt QPA’s hyperparameter settings of the total query
budget and the query batch size in one feedback session for
all methods on this specific task for a fair comparison. Addi-
tionally, even with only half the budget, DistQ demonstrates
competitive performance compared with most baselines (ex-
cluding QPA). Across the other tasks, DQ (half) generally
surpasses most baselines, with MRN on Quadruped walk
being the other exception. The ability of DQ (half) to match
or outperform many of the baselines despite the reduced
query budget demonstrates distinguishability queries are
efficient while providing rich information and allowing for
selective answering of easier queries.

DistQ shares PEBBLE as the common foundation with the
baselines (see Appendix A). As these baselines focus mainly
on different aspects to improve query efficiency and perfor-
mance, such as exploration, augmentation of unlabeled data,
and new training procedures for the agent, which are orthog-
onal to DistQ, we expect that combining DistQ with each
of the baselines could further improve performance, which
would be worthwhile to explore for future work.

Robotic Manipulation Tasks from Meta-World The re-
sults in Figures 3(d) to 3(h) showcase similar phenomena to
the locomotion results. DistQ with full budget still outper-
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forms all baselines and even converges to the same perfor-
mance as SAC (yellow) or outperforms SAC. The version
with half budget also exhibits better or similar performance
compared with baselines with the exception of RUNE on
Sweep into and SURF on Door unlock.

These results effectively demonstrate that the proposed
DistQ can generally improve both performance and query ef-
ficiency. We present the results numerically in Appendix D.1
for a clearer comparison.

5.3. Query Easiness

Typically, in reward learning, a batch of pairwise compar-
ison queries is selected and presented to a human labeler
during each feedback session. We consider queries to likely
be difficult to answer when the reward model’s prediction
for a pairwise comparison is inconsistent with the labeler’s
actual response. The model, trained on prior feedback,
should discern clear preferences. An inconsistency therefore
suggests the query involved subtle differences, conflicting
attributes, or unmastered nuances. These cognitively de-
manding queries align with the concept of “wrong answers”
that Bıyık et al. (2019) describe, as they are more prone to
human error and deliberation.

To investigate whether we ask easier pairwise comparison
queries than baselines, we show curves of incorrectly pre-
dicted feedback to pairwise comparison queries along the
training process of various methods in Figures 4(a) and 4(b).
Note that here DistQ with half budget (blue) also adopts
half of the query batch size. We see that among all methods,
DistQ with full budget (pink) always makes the fewest mis-
predictions given the same number of pairwise comparison
queries allowed to all baselines, which indicates that DistQ
can really ask easier-to-answer queries and thus reduce the
labeler’s effort.

5.4. User Study

To provide a more direct validation of DistQ’s effectiveness
and user-friendliness, we conduct a user study involving a
real human labeler. This study compares DistQ against its
backbone method, PEBBLE. For this evaluation, we design
a novel task within the Quadruped environment: the agent
is intended to learn to stand and then wave its right hind
leg. The human participant provides feedback on the agent’s
behavior based on short video demonstrations, guiding the
learning process for both methods.

The agent’s learned behavior is evaluated at the end of the
training period for both DistQ and PEBBLE. The results
highlight a significant performance difference: the agent
trained with DistQ successfully performs the desired behav-
ior in 100% of 10 evaluation rounds. In contrast, the agent
trained with PEBBLE fails to perform the behavior in any

round (0% success rate), often struggling even to achieve a
stable standing posture. Furthermore, qualitative feedback
from the participant indicates that providing feedback for
DistQ is perceived as noticeably easier compared to PEB-
BLE, suggesting a reduced cognitive burden on the human
with DistQ. More comprehensive details of the user study
settings and results can be found in Appendix D.3.
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Figure 5. Ablation study evaluating different query selection
strategies. Learning curves on locomotion tasks illustrate the
comparison between our full method (DQ) and variants prioritiz-
ing easiness then informativeness (EI), only informativeness (I), or
only easiness (E). The solid curves and shaded regions represent
the mean and standard deviation, respectively, across five runs.
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Figure 6. Ablation study evaluating different PCQ pairing ap-
proaches. Learning curves on locomotion tasks illustrate the
comparison between our full method (DQ) and a variant employ-
ing random pairing (rnd pairing). The solid curves and shaded
regions represent the mean and standard deviation, respectively,
across five runs.

5.5. Ablation Studies

To isolate the contributions of our proposed techniques to
the overall performance of DistQ, we conduct ablation stud-
ies focusing on three key components: the query selection
strategy, the PCQ pairing approach, and the newly designed
loss function.

First, we examine the query selection strategy. Our full
method (DQ, pink) prioritizes first selecting informative
PCQs and then considers query easiness among those can-
didates. We compare this against three variants: a variant,
EI (blue), which reverses this order by prioritizing easiness
first and then informativeness; a variant, I (green), which
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Figure 7. Ablation study evaluating different loss functions. Learn-
ing curves on locomotion tasks illustrate the comparison between
our full method (DQ), a variant using only the pairwise loss, and
the baseline PEBBLE. The solid curves and shaded regions rep-
resent the mean and standard deviation, respectively, across five
runs.

selects PCQs based solely on informativeness; and a variant,
E (orange), which selects PCQs based solely on easiness.
Performance in terms of episode reward on two locomotion
tasks is presented in Figure 5. To complement this, we also
assess easiness of the PCQs selected by each variant by plot-
ting the count of incorrectly predicted preference feedback
in Figures 4(c) and 4(d), as discussed in Section 5.3.

The EI variant (blue), which prioritizes easy queries before
informative ones, shows a significant decrease in episode
reward on the considered tasks (Figure 5). This outcome
suggests that an “easy first” approach can be detrimental as
it may not provide sufficient information for robust reward
learning. When selecting queries based only on informa-
tiveness (I, green), the agent achieves strong, sometimes
near-optimal, reward performance. However, this variant
consistently generates the highest number of queries that
are incorrectly predicted (Figures 4(c) and 4(d)), indicating
that these queries would likely be most difficult for the la-
beler. Conversely, selecting solely for easiness (E, orange)
results in the fewest incorrect predictions (i.e., the easiest
queries for the labeler) but leads to the poorest reward per-
formance. These findings highlight a clear trade-off. DQ
(pink) effectively balances these aspects. By first ensur-
ing informativeness and then selecting for easiness from
that informative pool, DistQ achieves strong performance
while presenting queries that are demonstrably easier to an-
swer than those from the informativeness-only approach and
more effective for learning than the “easy first” EI variant.

Second, we investigate the PCQ pairing approach used to
construct DQs. We compare our proposed pairing approach
against a random pairing baseline (“rnd pairing”). As shown
in Figure 6, our pairing method significantly outperforms
random pairing. This result underscores that the method
used to combine PCQs into DQs influences their effective-
ness, with our approach yielding DQs that better leverage
human feedback for learning.

Finally, we ablate the components of our newly designed
loss function, LRew

DQ (from Equation (9)), which integrates
distinguishability preference feedback (LRew

d ) with standard
pairwise preference feedback (LRew

PCQ ). To assess the contri-
bution of LRew

d to the final performance, we compare three
configurations in Figure 7: DistQ using the full LRew

DQ (pink),
DistQ trained using only LRew

PCQ (blue), and the baseline PEB-
BLE (green), which also uses only a pairwise preference
loss. As anticipated, removing LRew

d (the blue variant) im-
pairs the performance compared to the full DistQ (pink),
confirming the utility of distinguishability feedback. Sur-
prisingly, though, DistQ trained only with LRew

PCQ (blue) still
outperforms PEBBLE (green). Given that both configura-
tions rely solely on the same number of pairwise comparison
queries, this indicates that the queries selected by DistQ are
more effective for reward learning.We provide results of
above ablation studies on more tasks in Appendix D.

6. Discussion
We introduce DistQ, a novel framework for RLHF designed
to enhance both query efficiency and user-friendliness. At
its core, DistQ features the distinguishability query, a new
type of human interaction, coupled with an efficient and
user-friendly query selection method that strategically bal-
ances the informativeness and easiness of queries. These key
features, supported by a specifically designed loss function
for reward learning, allow DistQ to learn more effectively
from human feedback while minimizing the labeling effort.
Experiments on a variety of locomotion and robotic manip-
ulation tasks demonstrate that DistQ outperforms current
state-of-the-art baselines in RLHF for control, particularly
when considering the dual objectives of query efficiency
and user-friendly query design.

Limitations While DistQ demonstrates strong perfor-
mance, future work could further extend the method and its
evaluation and apply it to new domains such as language
modeling. The current measures for informativeness and
easiness, though effective, could potentially be refined or
replaced with more sophisticated metrics, which might fur-
ther optimize query selection. Furthermore, our present
evaluation is focused on simulated control tasks. Extending
the validation of DistQ to more realistic and diverse real-
world applications would provide further insights into its
capabilities and robustness.

Conclusion In summary, DistQ offers a step towards more
practical RLHF by directly addressing the need for queries
that are both highly informative for the agent and easy to
answer for human labelers. By advancing these dual objec-
tives, we believe that DistQ contributes a valuable perspec-
tive and a robust set of tools to develop more efficient and
user-friendly RLHF systems.
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Hüllermeier, E. and Waegeman, W. Aleatoric and epistemic
uncertainty in machine learning: An introduction to con-
cepts and methods. Machine Learning, 110(3):457–506,
2021.

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and
Amodei, D. Reward learning from human preferences
and demonstrations in Atari. In Advances in Neural In-
formation Processing Systems (NIPS), volume 31. Curran
Associates, Inc., 2018.

Jansen, C., Schollmeyer, G., and Augustin, T. Concepts
for decision making under severe uncertainty with partial
ordinal and partial cardinal preferences. International
Journal of Approximate Reasoning, 98:112–131, 2018.

Jansen, C., Blocher, H., Augustin, T., and Schollmeyer, G.
Information efficient learning of complexly structured
preferences: Elicitation procedures and their application
to decision making under uncertainty. International Jour-
nal of Approximate Reasoning, 144:69–91, 2022.

Jeon, H. J., Milli, S., and Dragan, A. Reward-rational (im-
plicit) choice: A unifying formalism for reward learning.
In Advances in Neural Information Processing Systems
(NeurIPS), volume 33. Curran Associates, Inc., 2020.

Kaufmann, T., Weng, P., Bengs, V., and Hüllermeier, E. A
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A. Baselines
All baseline methods considered in this paper are under the RLHF framework as we explained in Section 3. In this section,
we provide more details about these baselines. Specifically, we summarize the query selection methods adopted by DistQ
and baselines in Appendix A.

Table 1. Query selection strategies employed by different methods.

Method Query Selection Strategy

DistQ Larger variance + lower entropy
PEBBLE Larger entropy
SURF Larger variance
RUNE Larger variance
MRN Larger variance
QPA Random selection from near-on-policy buffer

A.1. PEBBLE

PEBBLE (Lee et al., 2021b) refines the preference-based reward learning paradigm introduced by Christiano et al. (2017) by
substituting the original on-policy RL algorithm with the off-policy algorithm SAC. It further enhances the sample efficiency
and stability of the preference-based RL framework (as described in Section 3) through three primary mechanisms:

1. Unsupervised Pre-training: To generate diverse initial trajectories and accelerate subsequent reward learning,
PEBBLE pre-trains the policy by maximizing the entropy of states encountered during exploration. This contrasts with
random initialization and aims to provide a richer starting point for learning from preferences.

2. Entropy-based Query Selection: To select informative PCQs for human labeling, PEBBLE first samples a large batch
of candidates. It then preferentially selects pairs that exhibit higher predictive entropy (H(Pψ)) from the current reward
model, prioritizing queries where the reward model is most uncertain.

3. Replay Buffer Relabeling: To ensure consistent reward signals for the off-policy SAC algorithm, which can be
sensitive to non-stationary rewards, PEBBLE periodically re-evaluates and updates the reward labels for transitions
stored in its replay buffer using the latest learned reward model.

A.2. SURF

SURF (Park et al., 2022), building upon the PEBBLE framework, aims to reduce the quantity of human feedback required in
RLHF while maintaining or even enhancing task performance. This is achieved by introducing data augmentation techniques
designed to maximize the utility of available data. Specifically, SURF employs a semi-supervised learning (SSL) approach
to generate pseudo-labels for unlabeled trajectory segments and proposes a tailored data augmentation strategy for PCQs.
These mechanisms collectively enable SURF to significantly improve the query-efficiency of RLHF.

A.3. RUNE

RUNE (Liang et al., 2022), which also integrates with the PEBBLE framework, introduces an intrinsic reward mechanism to
enhance exploration. This intrinsic reward quantifies novelty by measuring the disagreement across an ensemble of learned
reward models. By incorporating the uncertainty of reward models directly into the agent’s total reward signal, RUNE
incentivizes the agent to explore regions of the state space where the reward function is least certain, thereby encouraging
better exploration.

A.4. MRN

MRN (Liu et al., 2022) is a data-efficient RLHF framework that uses bi-level optimization for concurrent reward and
policy learning, learning the Q-function and the policy at the inner level while adapting the reward model to the Q-function
performance at the outer level. Specifically, MRN operates in two nested loops:
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• Inner Loop: The agent learns a Q-function and a corresponding policy using a conventional RL algorithm, based on
the current estimate of the reward function.

• Outer Loop: The reward function is adaptively updated to improve the consistency of theQ-function with the collected
human preference data.

By optimizing the reward function based on its downstream impact on policy performance with respect to human preferences,
MRN aims to significantly improve data efficiency.

A.5. QPA

QPA (Hu et al., 2024) addresses the issue of query-policy misalignment observed in PEBBLE. The authors find that selecting
PCQs solely to maximize the overall quality of the learned reward model may not translate to improved policy performance,
as such queries might not be relevant to the agent’s current learning needs. QPA tackles this by enforcing a bidirectional
alignment between the queries presented to the human and the agent’s evolving policy. This is primarily achieved through
two components:

• Policy-Aligned Query Selection: Queries are preferentially selected from recent trajectories generated by the current
policy. This ensures that human feedback is directly relevant to the agent’s ongoing behavior, making the feedback
more impactful for policy learning.

• Hybrid Experience Replay: A specially designed experience replay mechanism is used, which prioritizes recent,
on-policy experiences.

B. Experimental Settings

HYPERPARAMETER VALUE HYPERPARAMETER VALUE

General settings

Initial temperature 0.1 Hidden units per each layer 1024(DMControl)
256(Meta-world)

Length of segment 50 # of layers 2(DMControl)
3(Meta-world)

Learning rate 0.0003 (Meta-world) Batch Size 1024(DMControl)
0.0005 (Walker) 512(Meta-world)
0.0001 (Quadruped, Humanoid) Optimizer Adam

Critic target update freq 2 Critic EMA τ 0.005
(β1, β2) (0.9,0.999) Discount γ̄ 0.99
Frequency of feedback 5000 (Meta-world, Humanoid) Maximum budget / 10000/50, 500/50, 200/20 (DMControl)

20000 (Walker) # of queries per session 10000/50, 3000/30,
30000 (Quadruped) 2000/100, 400/10 (Meta-world)

# of ensemble models Nen 3 # of pre-training steps 10000

Other settings for DistQ

Loss weights (λd, λp) (1, 1) Size of Qp 10×# of queries per session
Size of Qpv (nI ) 5×# of queries per session Size of Qpve (2nE) 2×# of queries per session

Table 2. Hyperparameters setting

B.1. Implementation Details

DistQ is implemented based on the PEBBLE framework. DistQ and all the baseline methods follow the general hyperpa-
rameter configurations described in Appendix B. For other specific hyperparameter settings of the baselines, we follow the
corresponding publications and published source code.
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For the evaluation tasks, we choose the ones that were adopted by the baselines with their corresponding settings of the
querying process. This choice is motivated by two considerations: First, given the complex framework combining reward
learning and RL training, it may take a lot of effort to tune the hyperparameters for each method to work for new tasks.
Second, we try to ensure a fair comparison with baselines by avoiding the possibility of choosing specific tasks and tuning
hyperparameters that are beneficial to our method. In addition, this showcases the robustness of our method to some extent.

B.2. Computational Resources

For all experiments, we only need one GPU card to launch experiments. Experiments were carried out on different platforms,
including GeForce RTX 3060 12G GPU + 48GB memory + Intel Core i7-10700F, or GeForce RTX 3060 12G GPU + 64GB
memory + Intel Core i7-12700, or GeForce RTX 2070 SUPER + 32GB memory + Intel Core i7-9700, or GeForce RTX
2060 + 64GB memory + Intel Core i7-8700.

Note that the training time for one specific method varies when run on different platforms. However, given the same
computational platform, all evaluated methods take similar training time (no more than 12 hours even for the task requiring
most queries). That is, introducing DistQ does not bring about excessive additional computational cost.

C. Algorithm

Algorithm 1 DistQ
1: Randomly initialize policy model πϕ and reward model r̂ψ
2: Dataset for trajectories B ← ∅
3: Dataset for distinguishability feedback QDQ ← ∅
4: //PRE-TRAIN
5: Pre-training as PEBBLE’s to obtain B, πϕ
6: for each iteration do
7: //REWARD LEARNING
8: if Iteration%K == 0 then
9: //SAMPLING QUERIES

10: Randomly sample segment pairs Qp = {(σ0, σ1)} from B
11: Calculate informativeness I of PCQs in Qp (Equation (5)). Qpv consists of the top nI PCQs with larger I
12: Calculate easiness E of PCQs in Qpv (Equation (6)). Qpve consists of the top and bottom nE PCQs in terms of E
13: Sort PCQs in Qpve according to E , and pair the i-th with the (i+ nE)-th to form Qd
14: QDQ

′ ← Qd with feedback
15: QDQ ← QDQ ∪QDQ

′

16: //TRAINING r̂ψ ON EXTENDED QDQ
17: for each gradient step do
18: Randomly sample a minibatch {((σ0

0 , σ
1
0), (σ

0
1 , σ

1
1),y

DQ)} from QDQ
19: Optimize LRew

DQ ( Equation (9)) with respect to ψ
20: end for
21: end if
22: //COLLECT TRAJECTORIES
23: for each timestep t do
24: Collect interaction data by at ∼ πϕ(at|st), st+1 ∼ P (st+1|st, at)
25: Store B ← B ∪ (st, at, st+1)
26: end for
27: //POLICY LEARNING
28: for each gradient step do
29: Optimize πϕ with a minibatch {(s, a, r̂ψ(s, a), s′)} randomly sampled from B
30: end for
31: end for
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C.1. Pseudo-Code

Algorithm 1 lists the pseudo-code of our algorithm, differentiating between PEBBLE and our changes with the use of color
(changes in orange).

D. Additional Experimental Results and Analysis
D.1. Numerical Experimental Results

To compare the performance of DistQ and other baseline methods shown in Figure 3 more precisely, we list average values
of the final performance over five runs for each method in Tables 3 and 4, along with the corresponding standard deviation
shown in parentheses. For each task, the highest average performance is shown in bold and the second highest is in italic,
except for the upper bound SAC.

Note that the table only shows the final performance of each method. The overall performance needs to be compared via
both the learning curves and the numerical values. Tables 3 and 4 show that DistQ with full budget always achieves the
best average final performance compared with other baselines on all considered tasks except Humanoid stand, which is
consistent with Figure 3. In addition, DistQ with half budget also realizes superior or competitive performance considering
all the other baselines on different tasks.

Task Walker walk [200] Quadruped walk [500] Humanoid stand [10000]

SAC 968.42 (8.09) 894.08 (58.34) 542.32 (55.72)
DistQ 909.93 (25.22) 828.67 (56.95) 420.76 (60.15)
DistQ (half) 891.64 (72.68) 538.25 (236.65) 251.44 (198.28)
PEBBLE 795.28 (127.04) 398.45 (288.37) 233.66 (208.78)
SURF 756.56 (110.78) 257.82 (78.70) 6.69 (1.66)
RUNE 602.69 (301.13) 306.57 (240.40) 298.15 (159.73)
MRN 877.63 (49.05) 615.08 (207.24) 261.18 (233.49)
QPA 874.97 (193.05) 413.22 (298.14) 456.17 (54.38)

Table 3. Episode reward on locomotion tasks, with query budget denoted in the square brackets, corresponding to Figures 3(a) to 3(c).

Task Window open [400] Door unlock [2000] Door open [3000] Sweep into [10000] Disassemble [10000]

SAC 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.00 (0.00)
DistQ 0.98 (0.04) 0.98 (0.04) 1.00 (0.00) 0.98 (0.04) 0.20 (0.44)
DistQ (half) 0.78 (0.43) 0.78 (0.43) 0.94 (0.13) 0.78 (0.43) 0.18 (0.40)
PEBBLE 0.54 (0.30) 0.50 (0.46) 0.46 (0.50) 0.70 (0.40) 0.00 (0.00)
SURF 0.80 (0.44) 0.92 (0.17) 0.60 (0.54) 0.58 (0.53) 0.02 (0.04)
RUNE 0.80 (0.39) 0.86 (0.19) 1.00 (0.00) 0.96 (0.08) 0.00 (0.00)
MRN 0.28 (0.42) 0.50 (0.47) 0.80 (0.44) 0.78 (0.43) 0.00 (0.00)
QPA 0.80 (0.18) 0.69 (0.33) 0.52 (0.45) 0.55 (0.41) 0.008 (0.008)

Table 4. Success rate on manipulation tasks, with query budget denoted in the square brackets, corresponding to Figures 3(d) to 3(h).

D.2. Results of Ablation Study

In this section, we provide more results of the ablation study in Figure 8 as mentioned in Section 5.5.

D.3. Detailed User Study

This section provides implementation details for the user study conducted in the Quadruped environment. Since DistQ
builds on PEBBLE, an online RLHF framework, we implemented our own user study pipeline rather than using existing
platforms designed for offline RLHF (Yuan et al., 2024). While developing systematic platforms for online RLHF remains
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Figure 8. Learning curves of more ablation studies on the manipulation task. The solid curves and shaded regions represent the mean and
standard deviation, respectively, across five runs.

an open problem for future work, our custom implementation enables direct evaluation of our method in human feedback
scenarios.

In our designed user study, the human labeler aims to train the agent to stand and wave its right hind leg. For both DistQ
and PEBBLE, the labeler is asked 150 queries in total by the agent, which take about 3 hours to answer during the online
interleaving of reward learning and agent learning. We evaluate the learned behavior of the agent at the end of training
for both methods. Results show that with DistQ, the agent can successfully perform the desired behavior. However, with
PEBBLE, it hardly even stands up. Videos of selected queries and evaluation of trained agents for both methods are available
at https://zenodo.org/records/15606992.
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