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Abstract
Stochastic bilevel optimization (SBO) has been in-
tegrated into many machine learning paradigms
recently including hyperparameter optimization,
meta learning, reinforcement learning, etc. Along
with the wide range of applications, there have
been abundant studies on concerning the comput-
ing behaviors of SBO. However, the generaliza-
tion guarantees of SBO methods are far less un-
derstood from the lens of statistical learning the-
ory. In this paper, we provide a systematical
generalization analysis of the first-order gradient-
based bilevel optimization methods. Firstly, we
establish the quantitative connections between the
on-average argument stability and the generaliza-
tion gap of SBO methods. Then, we derive
the upper bounds of on-average argument stabil-
ity for single timescale stochastic gradient de-
scent (SGD) and two timescale SGD, where three
settings (nonconvex-nonconvex (NC-NC), convex-
convex (C-C) and strongly-convex-strongly-convex
(SC-SC)) are considered respectively. Experimen-
tal analysis validates our theoretical findings. Com-
pared with the previous algorithmic stability analy-
sis, our results do not require the re-initialization of
the inner-level parameters before each iteration and
are suited for more general objective functions.

1 Introduction
In this paper, we focus on establishing stability and general-
ization analysis for the stochastic bilevel optimization (SBO)
(Bracken and McGill, 1973; Ji et al., 2021; Bao et al., 2021)
defined as follows:

min
x∈Rd1

R(x) = F (x, y∗(x)) := Eξ [f (x, y
∗(x); ξ)]

s.t. y∗(x) = arg min
y∈Rd2

{G(x, y) := Eζ [g(x, y; ζ)]} ,
(1)

∗Corresponding author.

where d1, d2 ∈ N+, the outer objective function f and the
inner objective function g are both continuous and differen-
tiable, ξ, ζ are samples drawn from the validation set and
training set respectively.

For this bilevel optimization scheme, we often call
miny∈Rd2 Eζ [g(x, y; ζ)] as the inner (or lower-level) prob-
lem, and name minx∈Rd1 Eξ [f (x, y

∗(x); ξ)] as the outer (or
upper-level) problem. The goal of (1) is to minimize the outer
objective function R(x) (also F (x, y∗(x))) with respect to
(w.r.t.) the model parameter x, where parameter y∗(x) is de-
rived from the inner minimization formulation.

The SBO formulation in (1), stemming from (Bracken and
McGill, 1973), has attracted increasing attention in many ma-
chine learning applications including hyper-parameter opti-
mization (Franceschi et al., 2017, 2018; Lorraine and Du-
venaud, 2018; MacKay et al., 2019; Okuno et al., 2021;
Zhang et al., 2023), generative adversarial learning (Pfau
and Vinyals, 2016), meta learning (Franceschi et al., 2018;
Bertinetto et al., 2018; Zügner and Günnemann, 2019; Ra-
jeswaran et al., 2019; Ji et al., 2020), and reinforcement
learning (Tschiatschek et al., 2019). Indeed, there are rich
computing methods to implement this bilevel optimization
scheme, as well as theoretical works on optimization conver-
gence analysis (Li et al., 2020; Ji et al., 2021). However,
the generalization analysis of SBO is still far less understood
from the viewpoint of statistical learning theory (STL), e.g.,
algorithmic stability and generalization analysis (Hardt et al.,
2016; Lei and Ying, 2020; Bao et al., 2021).

Stability-based generalization analysis can be traced back
to the 1970s (Rogers and Wagner, 1978) and has achieved
rapid developments in STL, see e.g., (Bousquet and Elisse-
eff, 2002; Elisseeff et al., 2005; Hardt et al., 2016; Liu et al.,
2017; Lei and Ying, 2020; Lei et al., 2021a; Deng et al., 2021;
Kuzborskij and Lampert, 2018). To match the characteriza-
tions of various algorithms, different definitions of algorith-
mic stability have been formulated (including the uniform sta-
bility (Bousquet and Elisseeff, 2002), uniform argument sta-
bility (Liu et al., 2017), locally elastic stability (Deng et al.,
2021), on-average stability (Kuzborskij and Lampert, 2018)
and on-average argument stability (Lei and Ying, 2020)) to
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better investigate their generalization bounds. The on-average
argument stability was proposed in (Lei and Ying, 2020) to
establish the fine-grained generalization analysis of single-
level pointwise stochastic gradient descent (SGD). Subse-
quently, Lei et al. extended the stability-based generalization
assessment to the pairwise SGD (Lei et al., 2021a), where
systematic strategies have been provided to make a better bal-
ance between generalization error and optimization error. As
far as we know, there is only one study exploring the general-
ization analysis of SBO (Bao et al., 2021), which presents an
expectation generalization bound w.r.t. the validation set via
the uniform stability approach. However, the theoretical anal-
ysis of (Bao et al., 2021) is limited to unrolled differentiation
(UD) based algorithms with re-initialization in inner-level for
hyper-parameter optimization, which may not be applicable
to other commonly used optimization algorithms, e.g., single
timescale SGD (SSGD) (Zhou et al., 2022a; Liu et al., 2022;
Chen et al., 2022) and two timescale SGD (TSGD) (Zhou et
al., 2022a; Liu et al., 2022; Hong et al., 2023). Therefore, it is
important to further investigate the generalization guarantees
for general SBO formulation to cover wider bilevel optimiza-
tion algorithms.

To address the aforementioned issue, this paper establishes
the fine-grained stability and generalization analysis for gen-
eral first-order bilevel optimization methods. Our main con-
tributions are summarized as follows:

• Firstly, we establish the quantitative connection between
the generalization gap of bilevel optimization methods
and on-average argument stability. Especially for the
l2 on-average argument stability, the derived stability-
based generalization bounds involve the empirical risks,
which is consistent with the previous analysis for singe-
level optimization (Lei and Ying, 2020; Lei et al.,
2021a).

• Secondly, this paper provides several stability bounds
of bilevel optimization methods associated with both
SSGD and TSGD algorithms, where different condi-
tions of objective functions (i.e., SC-SC, C-C, NC-NC)
are considered. Moreover, we extend the results to the
more general setting by relaxing the restriction (e.g.,
Lipschitz continuity and smoothness assumptions) of
the optimization objective. As far as we know, this is
the first systemic generalization analysis for first-order
SGD-based bilevel optimization under the low-noise set-
ting.

• Finally, we conduct experimental evaluations for bilevel
optimization methods including hyperparameter opti-
mization. Empirical results validate our theoretical find-
ings about the relationship between the generalization
gap and the size of the validation set as well as the max-
imum value of inner (outer) iterations.

To better evaluate our results, we compare them with the
most related work on stability and generalization analysis
(Bao et al., 2021) from the following perspectives:

• Optimization strategy. The previous UD-based hyperpa-
rameter optimization (Algorithm 1 in (Bao et al., 2021))
requires reinitialization in the inner-level parameters be-
fore each iteration. Different from this special case, this

paper considers the SBO algorithms where the parame-
ters in inner-level and outer-level are both updated con-
tinuously (e.g., SSGD (Zhou et al., 2022a; Chen et al.,
2022) and TSGD (Zhou et al., 2022a; Liu et al., 2022;
Hong et al., 2023)). The iteration strategy matching our
analysis has been used extensively in practice (Ji et al.,
2021; Liu et al., 2022; Ghadimi and Wang, 2018). Espe-
cially for theoretical analysis of TSGD, it is challenging
to deal with the gradient summation during the inner it-
erations and the previous analysis technique (Bao et al.,
2021) can not be extended to this case directly.

• Analysis tool. Different from uniform stability used in
(Bao et al., 2021), this paper develops the analysis tech-
nique of on-average argument stability to provide the
fine-gained generalization bounds under low noise set-
tings, where the stability bounds involve a weighted sum
of empirical risks instead of the uniform Lipschitz con-
stants.

• Conditions of objective functions. Similar to the previ-
ous stability analysis in (Lei et al., 2020; Shen et al.,
2020; Zhou et al., 2022b), the objective functions in
(Bao et al., 2021) are assumed to be bounded, third or-
der continuously differentiable and smooth. Here, we
merely need the bilevel objective functions to be non-
negative, smooth and Lipschitz continuous, where the
last condition for the outer-level function can be fur-
ther removed by the l2 on-average argument stability.
Detailed stability results have been derived for both
SSGD and TSGD algorithms under NC-NC, C-C and
SC-SC settings. In addition, we also establish general-
ization bounds by replacing the smooth condition with
the weaker Hölder continuous assumption.

2 Problem Formulation
Given distributions D1, D2, we get the validation set

Dm1 := {ξi}m1
i=1 ∼ Dm1

1

and the training set

Dm2
:= {ζi}m2

i=1 ∼ Dm2
2

by independent sampling, where m1 and m2 are the sample
sizes. This paper focuses on the outer-level population risk
w.r.t D1 and empirical risk w.r.t Dm1

1, which are defined
respectively as

R (x, y) = Eξ∼D1 [f(x, y(x); ξ)]

and RDm1
(x, y) =

1

m1

m1∑
i=1

[f (x, y(x); ξi)] ,

where f : Rd1 × Rd2 → R is an objective function and y(x)
is the inner model parameter given the outer model parameter
x (also see (1)).

Let (x, y(x)) in (1) be estimated by a stochastic algorithm
A with data Dm1 , Dm2 , i.e. A (Dm1 , Dm2). Similar to the

1Thus we consider adding corruptions to Dm1 to access the gen-
eralization behavior of the meta-learner (Thrun, 1998) at upper level.
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previous works (Bao et al., 2021; Hoffer et al., 2017; Keskar
et al., 2017), in order to evaluate the approximated searching
of hyperparameters, we define
EA,Dm1

,Dm2

[
R (A (Dm1

, Dm2
))−RDm1

(A (Dm1
, Dm2

))
]

(2)
in the upper (outer) level as the generalization gap of A,
which measures the difference between the population risk
R(A) and the empirical risk RDm1

(A).
The following conditions have been used to characterize

the theoretical properties of objective functions in (1).
Definition 1. (Joint Lipschitz Continuity (Ji et al., 2021; Liu
et al., 2022)). An objective function f is jointly Lf -Lipschitz
over Rd1 × Rd2 , if there holds

|f(x, y; ξ)− f(x′, y′; ξ)| ≤ Lf

√
∥x− x′∥22 + ∥y − y′∥22

for any (x, y), (x′, y′) ∈ Rd1 × Rd2 , ξ ∼ D1.
Definition 2. (Joint Smoothness (Lei et al., 2021b)). An ob-
jective function f is ℓf -smooth over Rd1 × Rd2 , if

∥∇f(x, y; ξ)−∇f(x′, y′; ξ)∥2 ≤ ℓf

√
∥x− x′∥22 + ∥y − y′∥22

for any (x, y), (x′, y′) ∈ Rd1 × Rd2 , ξ ∼ D1,
Definition 3. (Strong Convexity). A function ψ is µ-strongly-
convex over a set X , if ∀t, t′ ∈ X ,

ψ(t′) + ⟨∇ψ(t′), t− t′⟩+ µ

2
∥t− t′∥22 ≤ ψ(t).

Definition 4. (Hölder Continuity). Let τ > 0, α ∈ [0, 1].
Gradient ∇f is (α, τ)-Hölder continuous over Rd1 × Rd2 , if
there holds

∥∇f(x, y; ξ)−∇f(x′, y′; ξ)∥2 ≤ τ

∥∥∥∥ x− x′

y − y′

∥∥∥∥α
2

for all (x, y), (x′, y′) ∈ Rd1 × Rd2 and ξ ∼ D1.
The above conditions for objective functions have been

used extensively in convergence analysis for bilevel optimiza-
tion (Ji et al., 2021; Ghadimi and Wang, 2018; Liu et al.,
2022) and stability-based generalization analysis for single-
level optimization methods (Hardt et al., 2016; Lei et al.,
2021b). Moreover, the Hölder continuity is much weaker than
the Lipschitz continuity and smoothness (Lei and Ying, 2020;
Nesterov, 2015). If Definition 4 holds with α = 1, then f is
smooth (see Definition 2). And if Definition 4 holds with
α = 0, f becomes Lipschitz continuous as in Definition 1
and can be non-differentiable (Lei and Ying, 2020). The ob-
jective functions satisfying Definition 4 include the mean ab-
solute function, the hinge function and some of their variants
(Lei and Ying, 2020; Steinwart and Christmann, 2008).
Definition 5. (On-average Argument Stability (Lei and
Ying, 2020)). Let Dm1

= {z1, . . . , zm1
} and D̃m1

=
{z̃1, . . . , z̃m1

} be two sets drawn independently from dis-
tribution Dm1

1 . For any i = 1, . . . ,m1, define D(i) =
{z1, . . . , zi−1, z̃i, zi+1, . . . , zm1}. Denote the E as the expec-
tation of EDm1

,Dm2
,D̃m1

,A. We say a randomized algorithm
A is l1(β) on-average argument stable if

E

[
1

m1

m1∑
i=1

∥∥∥A(Dm1
, Dm2

)−A
(
D(i)

m1
, Dm2

)∥∥∥
2

]
≤ β,

and l2(β2) on-average argument stable if

E

[
1

m1

m1∑
i=1

∥∥∥A(Dm1
, Dm2

)−A
(
D(i)

m1
, Dm2

)∥∥∥2
2

]
≤ β2.

Remark 1. The on-average argument stability measures the
average sensitivity (stability) of output parameters of the
learning algorithm when at most one validation sample is
changed. Definition 5 is different from Definition 1 in (Bao
et al., 2021), where the uniform stability is evaluated by the
drift of prediction error of hyperparameter optimization algo-
rithm and the boundedness of loss function often is required.

Based on the above definitions, we introduce the require-
ments of f, g in our analysis.
Assumption 1. (Outer Function Assumption). Assume that
the outer objective function f in (1) satisfies

(I) f is jointly Lf -Lipschitz.
(II) f is nonnegative, continuously differentiable and ℓf -

smooth.

Assumption 2. (Inner Function Assumption). Assume that
the inner objective function g in (1) satisfies

(I) g is jointly Lg-Lipschitz.
(II) g is continuously differentiable and ℓg-smooth.

3 Quantitative Relationship between
Generalization and Stability

This section states that the generalization gap of (1) can be
bounded by the on-average argument stability. Before provid-
ing the detailed conclusion of Theorem 1, we first introduce
the self-bounding property definition.
Lemma 1. (Self-bounding property). Assume that for all z ∈
D, the map w 7→ f(w; z) is nonnegative, and w 7→ ∂f(w; z)
is (α, τ)-Hölder continuous with α ∈ [0, 1]. Then we have

∥∂f(w, z)∥2 ≤ cα,τf
α

1+α (w, z), ∀w ∈ Rd, z ∈ D,

where cα,τ =

{
(1 + 1/α)

α
1+α τ

1
1+α , if α > 0

supz ∥∂f(0; z)∥2 + τ, if α = 0
.

The self-bounding property of f with (α, τ )-Hölder con-
tinuous (sub)gradient contains the specific Lipschitz continu-
ous (α = 0) and smoothness (α = 1) conditions (Lei et al.,
2021b).
Theorem 1. (I) If algorithm A is l1(β) on-average argument
stable in expectation and the outer-level function f is Lf -
Lipschitz continuous w.r.t. (x, y) ∈ Rd1 × Rd2 , denote E as
EA,Dm1 ,Dm2

, there holds

|E
[
R (A (Dm1 , Dm2))−RDm1

(A (Dm1 , Dm2))
]
| ≤ Lfβ.

(II) If algorithmA is l2(β2) on-average argument stable in
expectation and f is nonnegative and ℓf -smooth w.r.t. (x, y) ∈
Rd1 × Rd2 , denote E as EA,Dm1

,Dm2
, then

E
[
R (A (Dm1 , Dm2))−RDm1

(A (Dm1 , Dm2))
]

≤ ℓf
γ
E
[
RDm1

(A(Dm1 , Dm2))
]
+

(ℓf + γ)β2

2
,
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Algorithm 1 Computing algorithm of SSGD
Input: Validation data Dm1

= {ξi}m1
i=1 and training set

Dm2
= {ζi}m2

i=1, the total number of iterations K, step sizes
ηx, ηy .
Initialization: x0 and y0.

1: for k = 1 to K − 1 do
2: Uniformly sample ξi ∈ Dm1

and ζi ∈ Dm2
:

3: yk+1 = yk − ηy∇yg (xk, yk (xk) ; ζi)
4: xk+1 = xk − ηx∇xf (xk, yk (xk) ; ξi)
5: end for

Output: xK and yK .

Algorithm 2 Computing algorithm of TSGD
Input: Validation data Dm1

= {ξi}m1
i=1 and training set

Dm2
= {ζi}m2

i=1, the total number of inner iterations T and
outer iterations K, step sizes ηx and ηy .
Initialization: x0 and y00 .

1: for k = 0 to K − 1 do
2: for t = 0 to T − 1 do
3: Uniformly sample ζi ∈ Dm2

:
4: yt+1

k = ytk − ηy∇yg (xk, y
t
k (xk) ; ζi)

5: end for
6: Uniformly sample ξi ∈ Dm1

:
7: xk+1 = xk − ηx∇xf

(
xk, y

T
k (xk) ; ξi

)
8: y0k+1 = yTk
9: end for

Output: xK and y0K .

where the constant γ > 0.
(III) If algorithm A is l2(β2) on-average argument stable

in expectation, f is nonnegative and (α, τ)-Hölder continuous
w.r.t. (x, y) ∈ Rd1 × Rd2 with α ∈ [0, 1], then

E
[
R (A (Dm1

, Dm2
))−RDm1

(A (Dm1
, Dm2

))
]

≤
c2α,τ
2γ

E
[
R

2α
1+α (A (Dm1

, Dm2
))
]
+
γ

2
β2

forDm1
∼ Dm1

1 andDm2
∼ Dm2

2 , where the constant γ > 0.
Remark 2. Theorem 1 validates the connection between on-
average argument stability and the generalization gap. Es-
pecially, the smoothness assumption is further relaxed by the
Hölder continuity in Theorem 1(III).
Remark 3. Different from the uniform stability technique em-
ployed in (Bao et al., 2021), the on-average argument stabil-
ity further exploits the Lipschitz continuous (Lf ) or smooth
properties (ℓf ) of the objective function as well as the sta-
bility parameter (β) to bound the algorithmic generalization
gap. Especially, there is a trade-off between the empirical
risk and the algorithmic stability bound.

Remark 4. There are several advantages of l2 on-average
argument stability in Theorem 1 (II), where Assumption 1(I) is
removed and the low noise assumption can be used to obtain
a fine-gained result instead of the Lipschitz constant (Lei and
Ying, 2020). If algorithm A is l2(β2) on-average argument
stable, then we derive the upper bound of generalization gap

Algorithm 3 Computing algorithm of UD (Bao et al., 2021)
Input: Validation data Dm1

= {ξi}m1
i=1 and training set

Dm2
= {ζi}m2

i=1, the total number of inner iterations T and
outer iterations K, step sizes ηx and ηy .
Initialization: x0 and y0.

for k = 0 to K − 1 do
y0k = y0

for t = 0 to T − 1 do
Uniform sampling ζi ∈ Dm2

:
yt+1
k = ytk − ηy∇yg (xk, y

t
k (xk) ; ζi)

end for
Uniform sampling ξi ∈ Dm1

:
xk+1 = xk − ηx∇xf

(
xk, y

T
k (xk) ; ξi

)
y0k+1 = yTk

end for
Output: xK and y0K .

with
√
2ℓfE

[
RDm1

(A(Dm1
, Dm2

))
]
β + ℓfβ

2/2 by taking

γ =
√
2ℓfE

[
RDm1

(A(Dm1 , Dm2))
]
/β. Moreover, if the

output model achieves a small empirical risk (e.g., low noise
assumption E

[
RDm1

(A(Dm1
, Dm2

))
]
= O(m−1

1 )), we get
that E

[
R (A (Dm1 , Dm2))−RDm1

(A (Dm1 , Dm2))
]

=

O
(
β2 + β/

√
m1

)
.

4 Stability Analysis for Stochastic Bilevel
Optimization

To solve bilevel optimization formulation (1), some gradient-
based algorithms are designed based on the single timescale
or two timescale strategies (Ji et al., 2021; Chen et al., 2022;
Liu et al., 2020, 2022; Zhou et al., 2022a). In the follow-
ing, we introduce the computing approaches for (1) (SSGD
in Algorithm 1 and TSGD in Algorithm 2), and then establish
their generalization assessments by presenting their algorith-
mic stability bounds.

4.1 Stability and Generalization Analysis for
SSGD

Let ηx and ηy be the step sizes for updating x and y. Ac-
cording to Theorem 1, the on-average argument stable met-
rics in Definition 5 for SSGD algorithm A with K iterations∥∥∥A(Dm1

, Dm2
)−A

(
D

(i)
m1 , Dm2

)∥∥∥
2

can be measured by√
∥xK − x

(i)
K ∥22 + ∥yK − y

(i)
K ∥22.

Now we state the upper bounds of on-average argument
stability for SSGD in Algorithm 1.

Theorem 2. Suppose that Assumptions 1, 2 hold and Al-
gorithm A is SSGD with K iterations. Denote ℓ =
max {ℓf , ℓg}, η = max{ηx, ηy}.

(I) Assume that the bilevel optimization problem (1) is SC-
SC with strong convexity parameters µf and µg . Let the step

sizes satisfy that
2(µf+µg)−

√
4(µf+µg)2−2(ℓ2f+ℓ2g)
2(ℓ2f+ℓ2g)

≤ ηx =
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Algorithms Stability SC-SC C-C NC-NC

SSGD l1 O
(

K
m1

)
O
(

KC4 ln(K)
m1

)
—

(Theorem 2) l2 O
(

(m1+K)K
m2

1

)
O
(

(m1+K)K2C4−1 ln2(K)
m2

1

)
—

TSGD l1 O
(

KTC5

m1

)
O
(√

2
K
TC6 ln(T )
m1K

)
O
(√

2
K
KC2T1+C3

T
m1

)
(Theorem 3) l2 O

(
(m1+K)KT 2C5

m2
1

)
O
(

(m1+K)2KT 2C6 ln2(T )
m2

1K
2

)
O
(

(m1+K)2KK2C2T1+C3
T 2

m2
1

)
SSGD l1 O

(
1

m1

)
O
(

1
m1

)
O
(

KC1

m1

)
(Proposition 1) l2 O

(
m1+K

m2
1

√
K

)
O
(

m1+K

m2
1

√
K

)
O
(

(m1+K)K2C1

m2
1

)
TSGD l1 O

(
K
m1

)
O
(√

2
K

m1K

)
O
(√

2
K
KC2TC3

T
m1

)
(Proposition 2) l2 O

(
(m1+K)K)

m2
1

)
O
(

(m1+K)2K

m2
1K

2

)
O
(

(m1+K)2KKC2TC3
T 2

m2
1

)
Table 1: Summary of the generalization bounds under different settings. For briefly, l1 (l2) represents the l1(l2) on-average argument stability
and C1 − C6 are positive constants. m1 is the number of validation samples; K and T are the total numbers of outer and inner iterations.
Assume that the output model has a small empirical risk E

[
RDm1

(A(Dm1 , Dm2))
]
= O(m−1

1 ).

ηy ≤
2(µf+µg)+

√
4(µf+µg)2−2(ℓ2f+ℓ2g)
2(ℓ2f+ℓ2g)

. Then, A is l1(β) on-

average argument-stable in expectation with

β =
2C

m1

K∑
k=1

√
2ℓfEA,Dm1

[RDm1
(xk, yk)] + L2

g

and l2(β2) on-average argument-stable in expectation with

β2 =
4(m1 +K)eC2

m2
1

K∑
k=1

(2ℓfEA,Dm1
[RDm1

(xk, yk)] + L2
g),

where C =
2(µf+µg)+

√
4(µf+µg)2−2(ℓ2f+ℓ2g)
2(ℓ2f+ℓ2g)

.

(II) Assume that the bilevel optimization problem (1) is C-
C. If η ≤ c1 ln(K)√

2Kℓ
for some c1 > 0, then A is l1(β) on-

average argument-stable in expectation with β =

√
2c1 ln(K)Kc1−1

m1ℓ

K∑
k=1

√
2ℓfEA,Dm1

[RDm1
(xk, yk)] + L2

g.

And A is l2(β2) on-average argument-stable in expecta-
tion, where β2 =

2c21(m1 + K)eK2c1−2 ln2(K)

m2
1ℓ

2

K∑
k=1

(2ℓfEA,Dm1
[RDm1

(xk, yk)] + L
2
g).

Remark 5. Theorem 2 demonstrates that the algorithmic sta-
bility can be improved when the model can achieve a rela-
tively small optimization error. In addition, the ℓf -smooth
assumption also can be replaced by Hölder continuous con-
dition. In order to obtain tighter bounds for the SSGD algo-
rithm, we further derive its algorithmic stability with refined
step sizes in Proposition 1 in Appendix C.

Combining Theorems 1 and 2, the algorithmic generaliza-
tion bounds of SSGD are further summarized in Table 1 un-
der the low noise settings (small empirical risk). As shown in
Table 1, the generalization bounds of some SSGD algorithms

achieve the rate of O(m−1
1 ) under the limitations of step sizes

in Theorem 2. From Table 1, one can easily find that objective
functions with better (convexity) properties usually lead to
better algorithmic stability and generalization performance,
which is consistent with the existing stability and generaliza-
tion analysis for single-level problems (Lei and Ying, 2020;
Kuzborskij and Lampert, 2018; Lei et al., 2021b).

4.2 Stability and Generalization Analysis for
TSGD

Now we turn to establish the stability bounds of the TSGD
algorithm with different inner and outer functions (i.e., NC-
NC, C-C and SC-SC).

Assume that f is ℓf -smooth and g is ℓg-smooth. Let ηx
and ηy be the step sizes for updating x and y, respectively.
Denote ∇yg(x, y) as the partial derivative of function g over
variable y. ytK represents the inner parameter y in K-th outer
loop and t-th inner loop. For the TSGD algorithm A with
K outer iterations and T inner iterations, the argument sta-
bility

∥∥∥A(Dm1 , Dm2)−A
(
D

(i)
m1 , Dm2

)∥∥∥
2

is measured by√
∥xK − x

(i)
K ∥22 + ∥y0K − (y0K)(i)∥22, where

y0K = yTK−1 = y0K−1 −
T−1∑
t=0

ηy∇yg(xK−1, y
t
K−1).

Remark 6. Analogous to TSGD algorithm, the UD algorithm
employed in (Bao et al., 2021) (see Algorithm 3) also involves
two layers of nested loops but requires re-initialization in the
inner level before each new outer loop. In their stability
analysis, the inner-level parameter updates are not consid-
ered, but used to determine the constants of Lipschitz conti-
nuity and smoothness of the outer-level function. This paper
considers the general TSGD algorithms where both inner-
level and outer-level parameters are updated continuously,
e.g. yTK−1 = y0K . The gradient summation of the inner-level
parameter is relatively complex and makes it difficult to uti-
lize the (smooth or convex) properties as (Bao et al., 2021;
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Hardt et al., 2016) directly, which brings challenges to the
stability analysis.

Theorem 3. Suppose that Assumptions 1 and 2 hold and al-
gorithm A is TSGD with T inner loops and K outer loops.
Denote ℓ = max{ℓf , ℓg}, η = max{ηx, ηy}, E[RDm1

] =
EA,Dm1

[RDm1
(xk, yk)].

(I) Assume that the bilevel optimization prob-
lem is SC-SC with strong convexity parameters
µf and µg . Denote ρ1 =

2(Tµg+µf−Tℓ)
2(1+T 2)ℓ2 and

ρ2 =

√
4(Tℓ−µf−Tµg)2−2(1+T 2)ℓ2(1− c1 ln(T )

K )

2(1+T 2)ℓ2 for simplicity.
Let the step sizes satisfy that ρ1 − ρ2 ≤ η ≤ ρ1 + ρ2 = C1

for some positive constant c1, C1. ThenA is l1(β) on-average
argument-stable in expectation with

β =
2T

c1
2 C1

m1

K∑
k=1

√
2ℓfE[RDm1

] + T 2L2
g

and l2(β2) on-average argument-stable with

β2 =
4(m1 +K)eT c1C2

1

m2
1

K∑
k=1

(2ℓfE[RDm1
] + T 2L2

g).

(II) Assume that the bilevel optimization problem is C-C.
When η ≤ c2 ln(T )√

1+T 2Kℓ
for some c2 > 0, A is l1(β) on-average

argument-stable in expectation with

β =
2c2 ln(T )T

c2

m1

√
1 + T 2Kℓ

K∑
k=1

2
K−k

2

√
2ℓfE[RDm1

] + T 2L2
g,

and is l2(β2) on-average argument-stable with β2 =

4c22(K +m1) ln
2(T )T 2c2e

m2
1(1 + T 2)K2ℓ2

K∑
k=1

2K−k(2ℓfE[RDm1
] + T 2L2

g).

(III) Assume that the bilevel optimization problem is NC-
NC. Denote ηy,t as the inner step size in t-th inner loop,
denote ηk = max{ηx,k, ηy,k} as the outer step size in k-th
outer loop. Let ηy,t ≤ c3

ℓg(t+1) , ηk ≤ c4
ℓk and

∑b
x=a f(x) ≤

c5
∫ b

a
f(x)dx for some positive constants c3, c4, c5, then A is

l1(β) on-average argument-stable in expectation with

β =
2c4
m1ℓ

K∑
k=1

2
K−k

2 (
K

k
)c4c5T

c6
√

1+T2
√

2ℓfE[RDm1
] + T 2L2

g,

and l2(β2) on-average argument-stable with β2 =

4(m1 + K)c24e

m2
1ℓ

2

K∑
k=1

(
K

k
)
2c4c5Tc6

√
1+T2

2
K−k

(2ℓfE[RDm1
] + T

2
L

2
g).

Notice that T c6
√
1 + T 2 with ηy,t ≤ c3

ℓg(t+1) is obtained
from Lemma 6 for NC-NC in Appendix D, where the original
form is T c0c1

√
1 + T 2 with ηy,t ≤ c0

ℓg(t+1) .

Remark 7. After integrating Theorems 1 and 3, we summa-
rize the generalization bounds of Algorithm 2 in Table 1. Sim-
ilar to Theorem 2, the results of Theorem 3 also demonstrate
that the total numbers of the validation samples m1 (↑), the

inner iterations T (↓) and outer iterations K (↓) directly af-
fect the generalization performance (↑) of TSGD algorithms.
We also observe that the impacts of K and T on generaliza-
tion are suppressed for Algorithm 2 with SC-SC (or C-C) with
a small enough step size. In order to obtain tighter bounds
w.r.t. Theorems 2 and 3, we further derive the corresponding
results with refined step sizes in Propositions 1 and 2 in Ap-
pendix C, D. The results shown in Table 1 are comparable to
Bao et al. (2021) with the bound of O(K

c

m ) where 0 < c < 1.
Relaxing the stepsize limitations, especially for SC-SC, is a
meaningful direction, which is left for future work.

5 Empirical Evaluations
This section empirically validates our theoretical findings on
two real-world datasets. We consider Algorithm 2 here, since
it is equal to Algorithm 1 as T = 1. The distributions of
the testing samples and validation samples are assumed to be
same, but can differ from the training data (Ren et al., 2018;
Bao et al., 2021). Similar to (Bao et al., 2021), we focus
on evaluating the generalization behavior of outer-level prob-
lems based on the validation set. All experiments are imple-
mented in Python on an Intel Core i7 with 32 GB memory.
Implemented codes (including (Bao et al., 2021) for hyper-
parameter optimization) and data sets (including the MNIST
data (LeCun, 1998) and the Omnilot data (Lake et al., 2015))
are from publicly available sources.

This section considers the general hyperparameter opti-
mization formulation (Ji et al., 2021). Given the training set
Dtrain and the validation set Dval, the hyperparameter opti-
mization scheme can be formulated as

min
x

RDval (x) =
1

|Dval |
∑

ξ∈Dval

h (x, y∗(x); ξ)

s. t. y∗ = argmin
y

1

|Dtrain |
∑

ζ∈Dtrain

(h(x, y; ξ) + Ωy,x)︸ ︷︷ ︸
RDtrain

(x,y)

,

where h is the loss function, Ωy,x is the regularizer and
|Dtrain | represents the size of training data.

5.1 Experiment Settings
We evaluate the impact of several factors on the generaliza-
tion gap (2) based on the famous MNIST data (LeCun, 1998),
which totally consists of more than 6 × 105 handwritten fig-
ures with the size of 28 × 28. Following the same task of
data reweighting in (Bao et al., 2021), we corrupt the labels
of training samples randomly with the probability of 50% and
employ a fully connected network (with size of 784/256/10)
with cross-entropy loss for classification. Initially, we ran-
domly select 2000, 2000, and 1000 figures for training, val-
idation and testing, respectively. Meanwhile, set the initial
batch size as 8, the maximum number of inner iterations as
T = 5000, and the number of outer iterations as K = 5000.
The initial step sizes for inner and outer minimization prob-
lems are 0.01 and 5, respectively. For the given parameter
settings, each experiment is randomly repeated five times on
one GeForce GTX 1660 SUPER GPU, and the average results
are reported.
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(a) Validation Error (b) Testing Error (c) Generalization Gap

Figure 1: Results of hyperparameter optimization in data reweighting with varying T and K

(a) Validation Error (b) Testing Error (c) Generalization Gap

Figure 2: Results of hyperparameter optimization in data reweighting with varying K and m1

5.2 Experimental Results
The generalization gap defined in (2) is estimated by the di-
vergence between the validation error and the testing error.

Impact of iteration numbers K and T . Now we evaluate
the impact of parameters (e.g., the numbers of validation sam-
ples m1, inner iteration T and outer iteration K) on the gen-
eralization performance. Figure 1 shows the curves of valida-
tion error, testing error and the generalization gap under dif-
ferent settings of maximum inner iteration T and maximum
outer loop K. Figures 1(a) and 1(b) imply that the classifica-
tion model might be overfitting with increasing testing errors
as K > 3000 and T = 32. Besides, Figure 1(c) demonstrates
that too large K and T may reduce the generalization abil-
ity of the hyperparameter optimization method due to overfit-
ting. This empirical finding is consistent with our theoretical
results and the previous related analysis (Franceschi et al.,
2018; Bao et al., 2021).

Impact of sample size m1 with T = 1. Figure 2 presents
the results of SSGD (Algorithm 1) under different choices of
K and m1. From Figure 2(c), we observe that a small sample
size m1 = 500 leads to an increase in validation error and
testing error. This indicates that the larger number of vali-
dation samples is beneficial to reduce the generalization gap.
The above empirical findings match our theoretical results,

see e.g., Theorem 3 and Table 1.
Based on theoretical analysis and empirical evaluations,

we can get some understanding of the generalization perfor-
mance of bilevel optimization. Explicitly, the generalization
ability of SBO often can be improved with the increase ofm1

and proper iteration numbersK,T , where too small iterations
may cause underfitting and large ones can lead to overfitting.
Usually, it is beneficial for generalization through setting ap-
propriate learning rates, especially for NC-NC. For real ap-
plications, the trade-off between m1, T , and K is of great
importance to guarantee the effectiveness of SBO methods.

6 Conclusion
This paper established the stability and generalization anal-
ysis for stochastic bilevel optimization with first-order
gradient-based approximate algorithms. Our theoretical re-
sults are obtained by developing the analysis technique asso-
ciated with the on-average argument stability, and can cover
wider bilevel optimization algorithms under low noise set-
tings. Compared with the state-of-the-art analysis (Bao et al.,
2021), our theoretical results do not require reinitializing the
inner-level parameter before each iteration and suit for objec-
tive functions under milder conditions.
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