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Abstract—Current dehazing methods perform well on syn-
thetic haze datasets but often struggle with complex real-world
scenarios. To enhance the model’s generalization ability, we
incorporate Fourier transform and Gaussian filter to capture
frequency domain information. Based on this, we propose a high-
frequency information prompt network to more effectively locate
haze and restore texture details. Additionally, to address the issue
of overly dark dehazing results commonly observed in networks
trained on synthetic datasets, we introduce a brightness loss
function based on threshold division, which effectively enhances
the brightness of the output images. Through extensive exper-
iments, our method demonstrates not only excellent dehazing
performance in challenging and complex scenarios such as
daytime fog and sandstorm, but also significant potential value
for downstream applications.

Index Terms—Image Dehazing, Fourier Transform, Gaussian
Filter, High-Frequency Information

I. INTRODUCTION

Image dehazing aims to improve the visual quality of
images taken under hazy weather conditions. While existing
single image dehazing methods based on deep learning [1], [2],
[3] have achieved impressive results in relatively simple and
controlled scene, they often fall short in handling the complex-
ities of real-world hazy scenarios. A key limitation of these
methods is their inability to accurately locate haze, resulting
in residual haze and significant loss of texture details, which
diminishes image clarity and leads to structural distortion. To
address these challenges, we propose a novel image dehazing
network based on high-frequency information prompt. This
approach enhances the network’s capability to accurately lo-
cate haze and restore image texture details, thereby improving
overall dehazing performance.

The motivation behind our proposed method stems from
our observation that high-frequency information in an image
retains more texture details and contains almost no haze,
whereas a significant amount of haze is present in low-
frequency information.

As illustrated in Figure 1, we utilize the fast Fourier trans-
form to map both hazy and clear images into the frequency do-
main. Then we apply Gaussian filter (GF) to decompose these
images into high-frequency and low-frequency information,
followed by an inverse fast Fourier transform to reconstruct
the high-frequency images (High) and low-frequency images
(Low), respectively. The results show that the high-frequency
image contains more texture details with almost no visible
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Fig. 1. By swapping the high-frequency and low-frequency information
between a clear image and a hazy image, we observe that the high-frequency
information retains more texture details and less haze.

haze, while the low-frequency image captures significant
background information along with yellow haze. Additionally,
we superimpose the low-frequency signal of the hazy image
with the high-frequency signal of the clear image (denoted
as HLCH), and the high-frequency signal of the hazy image
with the low-frequency signal of the clear image (denoted as
CLHH), and then perform an inverse fast Fourier transform
on these combined signals. It is observed that HLCH retains
considerable yellow haze, with enhanced texture details and
a visual similarity to the original hazy image. In contrast,
CLHH shows almost no yellow haze, with blurred texture
details, making it visually closer to the clear image.

To further validate the observation, we employ the haze-
related metric FRFSIM [4] for a statistical analysis of 500
pairs of training data from the OTS dataset [5]. This metric
measures the similarity between the regenerated image and
the input hazy image, with higher scores indicating more
haze in the regenerated image. The average FRFSIM score
for HLCH compared to the input hazy image is 0.6396,
whereas the average FRFSIM score for CLHH is only 0.4242.
These results show that Gaussian filter can effectively separate
texture details from haze in hazy images, providing valuable
guidance for the network to produce clearer and more natural
dehazing results.

Additionally, datasets synthesized using the atmospheric
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light scattering model (ASM) do not account for light absorp-
tion, leading to hazy images that are consistently brighter than
their clear counterparts. As a result, networks trained on these
synthetic datasets often produce darker result when applied
to real hazy scenarios. To address this issue, we design a
brightness loss based on threshold division into the loss func-
tion. Experimental results show that this adjustment effectively
reduces the network’s tendency to generate darker outputs,
thereby enhancing the overall brightness of the images.

Our main contributions are as follows:
• To enhance the network’s ability to locate haze and

restore image texture details, we leverage frequency do-
main information obtained through Fourier transform and
Gaussian filter to develop a dehazing network that utilizes
high-frequency information prompt.

• We introduce a novel brightness loss function based on
threshold division to enhance the overall brightness of the
images, improving visual clarity and detail.

• We perform extensive experiments on real-world haze
dataset, which thoroughly validate the effectiveness and
robustness of our proposed method in handling haze in
real-world scenarios.

II. RELATED WORK

In this section, we review and summarize existing works
on single-image dehazing from two perspectives: dataset con-
struction and training strategies.

A. Dataset Construction

The development of realistic synthetic datasets is crucial
for enhancing the real-world dehazing performance of net-
works. Early efforts primarily involved using the atmospheric
scattering model (ASM) to generate synthetic datasets, such
as the RESIDE dataset synthesized by Li et al. [5], which
remains one of the largest haze datasets. To better simulate
real-world hazy conditions, Wu et al. [6] designed a haze
training dataset incorporating multiple degradation factors.
Additionally, Ancuti et al. [7] developed the indoor dataset
I-Haze and the outdoor dataset O-Haze [8] using a haze
generator to replicate real-world hazy scenarios. These datasets
have significantly advanced dehazing research.

B. Training Strategies

From the perspective of training strategies, deep learning-
based dehazing methods can be categorized into paired and
unpaired data-based approaches.

Paired Data-Based Training: This supervised approach
involves training an end-to-end convolutional neural network
(CNN) with paired hazy and clear images. For instance, Zheng
et al. [3] developed an end-to-end contrast-regularized physical
perception dehazing network utilizing contrastive learning.
Feng et al. [9] introduced a network specifically designed
for haze localization and removal. Additionally, incorporating
image prior information into the network has been shown
to enhance dehazing performance. Wang et al. [2] proposed
a self-prompted dehazing network leveraging image depth

consistency, and Feng et al. [10] utilized two-dimensional
discrete wavelet prior features.

Unpaired Data-Based Training: To enhance the model’s
generalization capability, training based on unpaired data
has also gained significant attention in recent years. This
category includes semi-supervised and unsupervised methods.
Unsupervised approaches often employ generative adversarial
networks (GANs). For example, Li et al. [11] proposed using
conditional GANs for dehazing. Semi-supervised methods are
also effective in various image processing tasks. For instance,
Li et al. [12] aligned synthetic and real data in a high-
dimensional space, and Cong et al. [13] proposed a semi-
supervised network for nighttime dehazing.

III. METHOD

A. Network Architecture
Figure 2 and Figure 3 illustrate the overall pipeline of the

proposed HFIP network and the HFII module, respectively.
Next, we describe the computational process of the HFII
module in detail.

For an input feature x ∈ RH×W×C at the current layer, we
first apply the fast Fourier transform to efficiently map x to
the frequency domain:

F(x)(u, v) =
H−1∑
h=0

W−1∑
w=0

x(h,w) exp

(
−j2π

(
h

H
u+

w

W
v

))
.

(1)
Here, (h,w) and (u, v) denote coordinates in the spatial

domain and frequency domain, respectively. The inverse fast
Fourier transform is denoted as F−1. We then apply Gaus-
sian filter in the frequency domain to extract high-frequency
information (HFI) and low-frequency information (LFI):

HFI = F−1

(
F(x) · exp

(
−H

2 +W 2

2k2

))
,

LFI = F−1

(
F(x) ·

(
1− exp

(
−H

2 +W 2

2k2

)))
,

(2)

where the kernel size k = min(H,W )/10.
To enhance the network’s ability to locate haze and re-

pair texture details, we incorporate both spatial attention and
channel attention [14] (CA(·)) mechanisms. Specifically, we
apply the spatial attention mechanism to HFI to derive
a weight map that emphasizes texture details, denoted as
WH = SA(HFI). Similarly, the channel attention mechanism
is applied to (LFI) to derive a weight map that focuses on
haze, denoted as WL = CA(LFI). These attention weights
are then applied to the input feature x to obtain the output of
FAM as follows:

x∗ =WL × (WH × x). (3)

Inspired by Wang et al. [2], we enhance the application
of window-based multi-head self-attention (W-MSA) to the
feature x∗. Specifically, we linearly superimpose the high-
frequency information (HFI) onto the query (Q) to obtain a
modified query Q′:

Q′ = Q+HFI. (4)
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Fig. 2. The proposed network HFIP mainly consists of high-frequency information interaction modules (HFII) and includes basic convolution (BC), sampling
unit (BU), and fully connected layer (FC). The CatAT module fuses outputs from three consecutive HFII modules.
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Fig. 3. The structure of the high-frequency information interaction module
(HFII) and its submodule, the frequency domain attention module (FAM).

This approach enables the high-frequency information to act
as a prompt, guiding the network to focus more on the texture
details within the image.

B. Training loss optimization

The input hazy images and their corresponding clear labels
are denoted as X and Y. Our proposed HFIP network is
represented by Φ.

The network output and clear labels are aligned in both the
spatial domain and frequency domain:

Ls =∥ Φ(X)− Y ∥1,
Lf =∥ F(Φ(X))− F(Y ) ∥1 .

(5)

Furthermore, to enhance visual perception, we incorporate
a multi-scale structural similarity loss [15]:

Lms = 1−
S∏

s=1

(
2µiµj + c1
µ2
i + µ2

j + c1

)α(
2σij + c2

σ2
i + σ2

j + c2

)β

. (6)

Here, S denotes different scales. µi and µj denote the mean
values of Φ(X) and Y respectively. σi and σj denote the
standard deviation of Φ(X) and Y respectively. σij represents
the covariance between Φ(X) and Y . α, β control the relative
importance of two items, and c1 and c2 are constant values.

As shown in Figure 2, to enhance the brightness of the
dehazing result, we approximate the image’s depth map using
the blue channel [16]. We numerically divide this depth map
into n regions and compute the average pixel value for each
corresponding region in the foggy image. For the m-th region
Ωm of the foggy image X , the average brightness is given by:

ψ(Xm) =
1

3M

2∑
c=0

∑
i,j∈Ωm

Xm(i, j, c), (7)

where M is the number of pixels in Ωm. The brightness
of the corresponding region in the dehazing image Φ(X) is
calculated similarly. We use the parameter γ to adjust the
brightness upper limit, and then average the brightness values
across all regions to obtain the overall brightness loss:

Lb =
1

n

n∑
m=1

∥ ψ(Φ(Xm))− (ψ(Xm))γ ∥1, (8)

where n = 10 and γ = 1.3.
Finally, the total loss function is defined as:

Ltotal = Ls + αLf + Lms + Lb, (9)

where α = 0.1.

IV. EXPERIMENTAL RESULTS

A. Implementation Details

1) Compared Methods: We compare our method with sev-
eral state-of-the-art data-driven supervised dehazing methods,
including TOE [17], C2P [3], DEA [18], SGID [19], and
WeatherDiff (WD) [20].
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Fig. 4. Qualitative results of advanced dehazing methods on the RTTS dataset demonstrate that our method excels in dehazing scenes affected by daytime
fog and sandstorms.

2) Dataset Description: We construct a dataset with 37,129
training pairs, covering various haze types such as daytime
fog, nighttime fog, sandstorm, and colorful fog. To assess
real-world performance, we evaluate different methods on the
RTTS dataset [5] with 4,322 images.

3) Evaluation Metrics: We use five authoritative no-
reference image evaluation metrics to assess the performance
of different methods on real-world hazy scenarios: Fog Aware
Density Evaluator (FADE) [21], Picture-based Predictor of
PM2.5 Concentration (PPPC) [22], Natural Image Quality
Evaluator (NIMA) [23], Image Entropy, and Blind Image
Quality Metric for Enhanced Images (BIQME) [24].

B. Performance Evaluation

As shown in Figure 4, our method produces richer texture
details and more noticeable dehazing effect in daytime hazy
scenarios compared to other approaches. SGID removes some
haze but at the cost of losing texture details, while TOE suffers
from significant color distortion. In sandstorm scenarios, our
method delivers the best dehazing effect, whereas TOE only
partially removes haze, and other methods are powerless. Table
I demonstrates that our method ranks among the top two in
all five authoritative no-reference image quality indicators.

Moreover, we evaluate the practical application of different
dehazing methods by applying their results to downstream
task. We use YOLOv8n for object detection on the RTTS
dataset. As shown in Figure 5, in hazy road scenarios, our
method not only detects more vehicles, but also achieves
higher confidence scores and a lower false detection rate. For
instance, in the second row, other methods misidentify bus
while our method correctly detects more cars. Table II presents
the numerical results for object detection, where our method

TABLE I
QUANTITATIVE RESULTS OF ADVANCED DEHAZING METHODS ON THE
RTTS DATASET ARE PRESENTED USING FIVE NO-REFERENCE IMAGE

QUALITY METRICS. THE TOP TWO SCORES FOR EACH METRIC ARE
HIGHLIGHTED IN BOLD AND UNDERLINED.

Metrics C2P DEA SGID TOE WD Ours
FADE↓ 2.0606 1.7939 1.6441 1.1319 2.4113 1.4914
PPPC↓ 188.05 183.25 178.36 164.16 193.27 160.18
NIMA↑ 3.7139 3.8116 3.6941 3.9794 3.6421 4.8165

Entropy↑ 7.1682 7.1911 7.2199 7.1747 7.1443 7.3150
BIQME↑ 0.5305 0.5404 0.5452 0.5690 0.5158 0.5722

TABLE II
QUANTITATIVE RESULTS OF OBJECT DETECTION ON THE RTTS DATASET
ARE PRESENTED. OUR METHOD ACHIEVES EXCELLENT METRICS ACROSS

ALL EVALUATED INDICATORS.

Methods Person Bicycle Car Motorbike Bus mAP
Hazy 0.5977 0.3543 0.4540 0.2617 0.1940 0.3723
C2P 0.6074 0.3598 0.4598 0.2969 0.2020 0.3852
DEA 0.6106 0.3674 0.4629 0.3058 0.2030 0.3900
SGID 0.6143 0.3741 0.4715 0.3071 0.2086 0.3951
TOE 0.6113 0.3497 0.4646 0.2988 0.2147 0.3878
WD 0.5017 0.3049 0.3403 0.2156 0.1705 0.3066
Ours 0.6431 0.3724 0.5100 0.3486 0.2362 0.4221

ranks among the top two for each detection metric, with a
significantly higher final mAP score.

C. Ablation Study

To evaluate the effectiveness of our method, we conduct
the following ablation experiments: (1) Removing the fre-
quency domain attention module (FAM). (2) Removing the
concatenation attention module (CatAT). (3) Removing the
high-frequency information prompt (HFI). (4) Removing the
brightness loss term (Lb).
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Fig. 5. Qualitative results of vehicle detection using YOLOv8n in real foggy road scenes demonstrate that our method significantly improves detection
performance.

TABLE III
THE IMPACT OF VARIOUS COMPONENTS ON THE PERFORMANCE OF THE

NETWORK MODEL.

Model PSNR↑ SSIM↑ Params FLOPs
w/o FAM 18.39 0.88 1.31M 15.01G

w/o CatAT 22.18 0.87 1.28M 15.06G
w/o HFI 19.71 0.89 1.33M 15.11G
w/o Lb 23.44 0.91 1.33M 15.11G

Full model 25.38 0.93 1.33M 15.11G

We use Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM) to evaluate the effectiveness of dif-
ferent modules on the synthetic SOTS dataset [5] with 500
images. As shown in Table III, removing the frequency domain
attention module (FAM) or the high-frequency information
prompt significantly degrades dehazing performance. More-
over, the FAM has a very small parameter count, and the high-
frequency information prompt does not require any additional
parameters, demonstrating the efficiency and effectiveness of
our module design.

To thoroughly demonstrate the effectiveness of brightness
loss, we conducted a visual evaluation on the RTTS and URHI
dataset [5]. As shown in Figure 6, introducing brightness loss
not only improves the dehazing effect but also enhances the
overall brightness of the image.

V. CONCLUSION

To address the dehazing problem in real-world scenarios,
we use Fourier transform and Gaussian filter to extract haze
and texture information from images, guiding the network
to produce clearer dehazing results. Additionally, we design
a threshold-based brightness loss function to enhance im-
age brightness. Extensive experiments on real hazy scenarios
demonstrate the effectiveness and robustness of our method.
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Fig. 6. The impact of brightness loss on dehazing results.
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