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ABSTRACT

Modern large language models (LLMs) excel at tasks that require storing and re-
trieving knowledge, such as factual recall and question answering. Transformers
are central to this capability because they can encode information during training
and retrieve it at inference. Existing theoretical analyses typically study trans-
formers under idealized assumptions such as infinite data or orthogonal embed-
dings. In realistic settings, however, models are trained on finite datasets with
non-orthogonal (random) embeddings. We address this gap by analyzing a single-
layer transformer with random embeddings trained with (empirical) gradient de-
scent on a simple token-retrieval task, where the model must identify an infor-
mative token within a length-L sequence and learn a one-to-one mapping from
tokens to labels. Our analysis tracks the “early phase” of gradient descent and
yields explicit formulas for the model’s storage capacity—revealing a multiplica-
tive dependence between sample size N , embedding dimension d, and sequence
length L. We validate these scalings numerically and further complement them
with a lower bound for the underlying statistical problem, demonstrating that this
multiplicative scaling is intrinsic under non-orthogonal embeddings.

1 INTRODUCTION

Large language models (LLMs) routinely answer knowledge questions with little or no external con-
text, indicating that substantial factual information is stored in parameters and can be retrieved by
suitable prompts (Petroni et al., 2019; Jiang et al., 2020; Roberts et al., 2020). A sharper theoret-
ical account of how such parametric memories are learned and accessed is increasingly important:
it can guide scaling choices (e.g., trading off memory capacity against compute budgets, Carlini
et al., 2022; Allen-Zhu & Li, 2024) and illuminate failure modes (e.g., hallucination, Zucchet et al.,
2025; Huang et al., 2025). Motivated by empirical results documenting the prevalence of parametric
factual recall and its scaling with model size (Allen-Zhu & Li, 2024; Morris et al., 2025), recent
theoretical works have begun to analyze the capacity and learning dynamics of transformers on
controlled factual-recall tasks (Cabannes et al., 2024a; Nichani et al., 2025).

Many theoretical studies of transformer optimization work in population-dynamics settings and
adopt simplifying assumptions such as treating token embeddings as orthogonal or one-hot vec-
tors (see, e.g., Tian et al. 2023b; Chen et al. 2024; Ghosal et al. 2024). These choices do not always
reflect practical applications, but make the math—particularly gradient calculations—more manage-
able. Furthermore, such population analyses do not characterize the statistical and computational
complexity of gradient-based learning. Moreover, in factual-recall setups, it is known that strictly
orthogonal embeddings are not capacity-optimal, whereas random/non-orthogonal embeddings (i.e.,
superposition) enable near-optimal factual storage (Nichani et al., 2025). At the same time, aban-
doning the orthogonality assumption introduces token interference that leads to intricate optimiza-
tion behavior (e.g., oscillatory trajectories Cabannes et al., 2024b); in practice, superposition-based,
memory-efficient solutions can also be more challenging to train (Elhage et al., 2022), highlighting
a fundamental trade-off between optimization/statistical efficiency and optimal storage capacity.

Motivated by the above gaps, we aim to address the following question.

Can we characterize the optimization and sample complexity of a transformer with non-orthogonal
embeddings trained by gradient descent in the learning of a factual recall task?
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1.1 OUR CONTRIBUTIONS

In this paper, we analyze gradient-based learning of a single-layer transformer with an atten-
tion+MLP block and random embeddings on a synthetic task inspired by Nichani et al. (2025): the
model must retrieve an informative token from a context containing many noisy tokens via attention,
then map it to the correct label via factual recall. To mitigate the complex optimization dynamics
arising from non-orthogonal embeddings, we follow Bietti et al. (2023); Oymak et al. (2023) and
consider a simplified training regime involving only a few gradient steps with finite samples on the
attention and value matrices. This perspective effectively zooms in on the “early phase” dynamics
of gradient descent, a common focus in the feature-learning literature (Ba et al., 2022; Damian et al.,
2022; Dandi et al., 2023; Wang et al., 2025).

Figure 1: Empirical scaling of parameter
count required for GD-trained one-layer
transformer to learn factual recall. While
the trained model achieves optimal capac-
ity V ≍ md for small L, increasing the
sequence length L alters the scaling, sug-
gesting a multiplicative rate.

Our analysis provides a fine-grained characterization of
how vocabulary size V , sample size N , embedding di-
mension d, sequence length L, and MLP width m interact
to permit successful gradient-based learning of the recall
mechanism. Our main result states that

• The success of learning depends on (V,N, d, L,m) in
a multiplicative manner: learning becomes easier as
(N, d,m) increase — reflecting benefits from more
data, higher-dimensional (hence more orthogonal) em-
beddings, and larger MLP width — whereas learning be-
comes harder as (V,L) increase, i.e., the task is more
difficult with a larger vocabulary or longer sequences.
This multiplicative relation is visualized in Figure 1,
where we examine how the parameter size m×d depend
on the vocabulary size V at different sequence lengths L.

• Consequently, while optimal capacity and sample com-
plexity can be achieved jointly for short sequences,
successful learning on long sequences requires either
larger embedding dimension (thus sacrificing capacity)
or larger sample sizes (worse statistical complexity).

The multiplicative rate above formalizes the “tradeoff” intuition that smaller embedding dimension d
— which increases superposition and thereby improves storage capacity — simultaneously yields
a harder learning problem, as reflected in the required sample size. We complement this with a
statistical lower bound showing that the trade-off is inherent for any estimator that accesses only
gradient information from the initialized transformer. Finally, although our theory is derived for
a specific three-step training algorithm, we empirically observe qualitatively similar multiplicative
scaling when the transformer is optimized by gradient descent to low empirical risk.

1.2 RELATED WORK

Learning dynamics of transformers. A growing line of theory analyzes how transformers ac-
quire specific behaviors from gradient-based training. Much of this literature imposes population-
level assumptions and orthogonal/one-hot embeddings to make gradients tractable, often on discrete
synthetic tasks (Li et al., 2023; Bietti et al., 2023; Tian et al., 2023a; Nichani et al., 2024; Chen et al.,
2024; Ghosal et al., 2024; Chen et al., 2025; Wang et al., 2025). Several works study few-step train-
ing regimes as a lens on the “early phase” of feature learning (Bietti et al., 2023; Wang et al., 2025).
Beyond discrete settings, related analyses investigate attention learning for continuous inputs and
sparse-signal retrieval (Oymak et al., 2023; Marion et al., 2025). A complementary thread focuses
on the emergence of in-context learning and induction mechanisms: single- and two-layer attention
trained on linear-regression or Markov data provably implements gradient-descent-like updates and
generalized induction heads (Von Oswald et al., 2023; Zhang et al., 2024; Chen et al., 2024; Nichani
et al., 2024). These results typically rely on simplified settings and do not address storage capacity.
In contrast, our work analyzes finite-sample training with random (non-orthogonal) embeddings in
an attention+MLP architecture with a particular focus on factual recall.
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Associative memories and storage capacity. Classical associative memories (Hopfield-type
models) study recall of vector patterns and established foundational capacity results (Hopfield, 1982;
Amit et al., 1985; McEliece et al., 1988; Krotov & Hopfield, 2016; Demircigil et al., 2017; Ram-
sauer et al., 2020; Schlag et al., 2021). Recent works adapt associative-memory viewpoints to trans-
formers, modeling inner weights as superpositions of outer products and deriving scaling laws and
optimization behaviors (Bietti et al., 2023; Cabannes et al., 2024a;b). In factual recall specifically,
random (non-orthogonal) embeddings enable near-parameter-count storage, whereas strictly orthog-
onal embeddings are not capacity-optimal (Nichani et al., 2025). Various empirical works have stud-
ied the mechanisms and scaling behaviors of LLMs in factual association tasks (Petroni et al., 2019;
Jiang et al., 2020; Geva et al., 2020; Allen-Zhu & Li, 2024). We provide a theoretical analysis of
such mechanisms and quantify how vocabulary size, sequence length, embedding dimension, and
MLP width jointly govern learning efficiency. Our work operates in a setting similar to (Nichani
et al., 2025) but allows finite samples and explicitly considers gradient descent dynamics. Our result
is similar to the finite-sample results in (Oymak et al., 2023), where the required sample size grows
with the dimensionality and sparsity level of informative tokens, while we allow non-orthogonal
embeddings and show optimal capacity as in (Nichani et al., 2025) under certain conditions.

2 PROBLEM SETTING

Our goal is to understand the capacity of transformers trained on finite data with non-orthogonal
embeddings, in a setting where the relevant information is hidden in a potentially large sequence
of non-informative noisy tokens. The attention operation should then identify the relevant token,
while the subsequent linear or MLP block can then recall the correct label via an associative mem-
ory mechanism. This is similar to the factual recall task studied by Nichani et al. (2025), with
simplifications that make the analysis more tractable, as detailed below.

Notation. σ denotes the softmax function. 1V := (1, . . . , 1)⊤ ∈ RV is the V -dimensional all-ones
vector; ei is the one-hot vector with a 1 in the i-th position (dimension understood from context).
We use ≳ (resp. ≲) to mean “≥” (resp. “≤”) up to polylogarithmic factors in V : fV ≳ gV ⇐⇒
fV ≥ poly(log V )gV and fV ≲ gV ⇐⇒ fV ≤ poly(log V )gV , for some fixed polynomial.
Lastly, ∥·∥2 denotes the Euclidean norm for vectors and the operator (spectral) norm for matrices.

Problem setup. Let the input/output tokens take values from a finite alphabet [V ] := {1, · · · , V }.
For notational convenience, we represent the alphabet by the one-hot vocabulary V = {e1, · · · , eV }.
Each example in the data consists of a length-L input sequence X = [x1, . . . ,xL] ∈ VL and a label
p ∈ V generated as follows:

• Input tokens are sampled independently and uniformly: [x1, . . . ,xL] ∼ Unif(VL).
• Informative position is a random index ℓ ∼ Unif([L]) independent of X .
• Ground-truth function is a permutation matrix Π∗ ∈ {0, 1}V×V . Labels are generated as the

permuted informative token, p = Π∗xℓ, while the remaining tokens are non-informative.

The goal is to identify the correct token position ℓ and learn the target function (permutation) Π∗.

Transformer architecture. We consider a basic transformer block which first maps input tokens
into a d-dimensional embedding space where d < V . The embedding layer is parameterized by
(Zin,Zout, ztrig, zEOS) ∈ Rd×V × Rd×V × Rd × Rd, where

• The input tokens are embedded by the columns of the matrix Zin ∈ Rd×V .
• Output tokens are associated with unembedding vectors, which are collected in Zout ∈ Rd×V .
• ztrig is a trigger vector that marks the informative token.
• zEOS is the special embedding vector that marks the end-of-sequence.

Given the embedding parameters, we define the self-attention head, parameterized by the key-query
matrix WKQ ∈ Rd×d, which operates on the embedded sequence of inputs ZinX ∈ Rd×L:

attn(X;WKQ) := ZinXσ
(
(ztrige

⊤
ℓ +ZinX)⊤WKQzEOS

)
. (1)
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The trigger embedding ztrig is used to “mark” the informative token with a special direction, mim-
icking the behavior of previous transformer layers that may learn to flag particular tokens by adding
to its residual stream1 (note that the number of trainable parameters inside softmax can be re-
duced to d by collapsing WKQzEOS into a vector). We consider two different learning models:
an Attention-only model and a width-m, two-layer neural network model Attention-MLP, defined
as:

p̂(X;V ,WKQ) =

σ
(
Z⊤

outV attn(X;WKQ)
)
, Attention only

σ
(
Z⊤

outV ϕ(Winattn(X;WKQ)
)
, Attention-MLP

(2)

where V ∈Rd×d for the Attention-only and V ∈Rd×m, Win∈Rm×d for the Attention-MLP model.
Note that compared with Attention-only model, the Attention-MLP model contains an additional set
of trainable parameters and nonlinear activation function ϕ before the value matrix. Constructions
of the two models for a related factual recall task can be found in (Nichani et al., 2025, Figure 3).

For the Attention-MLP, we keep Win fixed at its random initialization. The trainable parameters for
both of our models are (V ,WKQ). We use cross-entropy loss to train our model:

L
(
(V ,WKQ), (X,p)

)
= −

∑V
i=1 pi log p̂i.

Training algorithm. Following Oymak et al. (2023), we consider a 3-step gradient-based algorithm
with dataset {(Xi,pi)}Ni=1 with a sample size of N . We initialize our parameters as V (0) = 0,
W

(0)
KQ = 0 and use the learning rates η, γ > 0:

V (1) = V (0) − η · 1
N

∑N
i=1∇V L

(
(V (0),W

(0)
KQ); (Xi,pi)

)
(3)

W
(1)
KQ = W

(0)
KQ − γ ·

1
N

∑N
i=1∇WKQ

L
(
(V (1),W

(0)
KQ); (Xi,pi)

)
(4)

V (2) = V (1) − γ · 1
N

∑N
i=1∇V L

(
(V (1),W

(1)
KQ); (Xi,pi)

)
. (5)

Network prediction and storage. Given our model and training method, we use argmax decoding
at inference and define the test accuracy as

Accuracy := P(X,p)

[
p = epred(X)

]
, where pred(X) := argmax

j∈[V ]

p̂j(X;V (2),W
(1)
KQ),

where p̂(X;V (2),W
(1)
KQ) is the network output defined in (2). In what follows, we characterize

conditions under which the model stores the informative tokens asymptotically, i.e., Accuracy→ 1
as V →∞, in terms of the relevant parameters (V,N, d, L,m).

3 MAIN RESULTS

We first present our general theorem on learnability via gradient descent, and then specialize into
different regimes to derive more interpretable scaling behaviors in Section 4. We provide a proof
sketch in Section C.1, and defer the full proof to Appendix C.

3.1 TECHNICAL ASSUMPTIONS

We first state generic assumptions that apply to both the Attention-only and Attention-MLP models.
Assumption 1.

• Parameter range: Let L = V c for c ∈ (0, 1), Ω(V log V ) ≤ N = o(V L), and V ≥ Ω(1).

• Learning rate: We use a sufficiently small learning rate η = o(1) for the initial step (3), and
sufficiently large learning rate γ = ω(1) for the remaining steps (4)-(5) that satisfy Assumption 4.

• Embeddings: Let Zin,Zout ∈ Rd×V be independent Gaussian matrices, and let ztrig, zEOS ∈ Rd

be independent Gaussian vectors, all with i.i.d. entries distributed as N (0, 1/d).
1The “trigger” terminology is borrowed from (Bietti et al., 2023), where a special previous token “triggers”

a retrieval operation in the context of induction heads. Our setup resembles learning only the “induction head”
layer assuming the first “previous token head” layer is already in place.

4
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We assume c ∈ (0, 1) since in many practical pretraining setups, the context length is smaller than
the vocabulary size, and the condition L ≪ V simplifies several terms in the proofs. The lower
bound N ≳ V log V is required so that each element from the alphabet of size V is seen at least
once with high probability. The learning rates follow prior analyses (Oymak et al., 2023; Nichani
et al., 2024): a small η ensures that the network’s predictions remain close to uniform after the first
step, whereas a large γ is needed to push the attention scores and predictions toward one-hot vectors.

In addition to the above assumptions, we require the transformer model to have sufficient capacity
to reach perfect test accuracy. Such conditions are characterized by Nichani et al. (2025). For the
Attention-only model, we have the following condition (see Nichani et al., 2025, Theorem 3).

Assumption 2 (Attention-only). For the Attention-only model, we require d ≳
√
V .

With a nonlinear MLP layer, a smaller embedding dimension can suffice if the width is large enough.
Hence for Attention-MLP we require the following condition.
Assumption 3 (Attention-MLP). For the Attention-MLP model, we assume that

• Polynomial activation: ϕ : R→ R satisfies ϕ(0), ϕ′(0), ϕ′′(0) ̸= 0.

• MLP width: md ≳ V and d ≳ V
1

k⋆+1 , where k⋆ denotes the smallest nonzero Hermite mode of
ϕ, i.e., k⋆ := min{k > 0 : EZ∼N (0,1)[ϕ(Z)hk(Z)] ̸= 0} where hk is the kth Hermite polynomial.

• Initialization: Win ∈ Rm×d are fixed with entries i.i.d. distributed as N (0, 1).

The nonlinear MLP layer allows us to compensate for the embedding dimension and go beyond the
d ≳
√
V lower bound required by the Attention-only model (Assumption 2). Note that md ≳ V is

a necessary condition for capacity as shown in (Nichani et al., 2025). The additional requirements
imposed on the polynomial activation function appear to be artifacts of our three-step GD analysis,
and we anticipate that they could be relaxed when considering a longer training horizon.

3.2 LEARNABILITY STATEMENT

Now we are ready to present our main theorem on the complexity of learning the factual recall task.
Specifically, transformer learns the desired mechanism when the signal term dominates the noise
and bias terms as stated below.
Theorem 1. Let Assumptions 1 and 3 hold for Attention-MLP, and 1 and 2 hold for Attention-only.
The Attention-MLP model achieves Accuracy = 1− oV (1) with probability 1− oV (1) whenever

1

V L2︸ ︷︷ ︸
Signal

≳
1

N
√
Ld(d ∧ L)︸ ︷︷ ︸

Gradient noise

+
1

N
√
V d(d ∧ L)︸ ︷︷ ︸
Mean bias

+
1

Nd
√
m︸ ︷︷ ︸

MLP noise

. (6)

For the Attention-only model, the same holds with the last MLP noise term removed.

Theorem 1 characterizes learnability as a function of (V,N, d, L,m) and identifies the following
terms that impact the gradient signal-to-noise ratio:

1. Signal measures the alignment between the key–query weights W (1)
KQ and the trigger ztrig.

2. Gradient noise is due to the concentration error in the update of W (1)
KQ.

3. Mean bias arises from the nonzero mean of token vectors {Xi}Ni=1.
4. MLP noise reflects the randomness in the MLP weight matrix Win in Attention–MLP.

We make the following observations.

• Multiplicative scaling. Note that the parameters (V,N, d, L,m) interact in a multiplicative fash-
ion. For example, the noise and bias terms in (6) all decay with (N × d), suggesting that increas-
ing the embedding dimensions d can lower the statistical complexity of learning the correct recall
mechanism. While the full 5-parameter trade-off can be opaque, in Section 4 we focus on specific
regimes that lead to simplification of the scaling relationship and validate the rate empirically.
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• Optimal storage & sample complexity. Recall that the capacity-optimal construction for the
factual recall task requires md ≳ V parameters (or d2 ≳ V for Attention–only); and as discussed
earlier, a sample size N ≍ V log V is necessary to observe all distinct tokens. (6) implies that in
the small-L regime, the optimized transformer achieve optimal capacity and sample complexity
simultaneously. For longer sequences, however, these two conditions may not be achieved at the
same time, i.e., one must increase either the network width or sample size beyond optimality to
learn the task — this confirms the empirical observation in Figure 1.

3.3 STATISTICAL LOWER BOUND

Theorem 1 provides an upper bound (i.e., sufficient condition) on the model and sample size for
learning factual recall under a 3-gradient-step optimization procedure. We complement this suffi-
cient condition with a lower bound indicating that the multiplicative dependence on the problem
parameters is partly statistical; that is, the scaling behavior will be observed in any model satisfying
the broader conditions stated below. Our lower bound applies to statistical methods that can query
the dataset through the attention outputs at initialization, hi := attn(Xi,W

(0)
KQ). In particular, we

consider queries of the form {hi,hih
⊤
i }Ni=1 as the gradient with respect to the key–query matrix

WKQ depends on these quantities (see (10)). The statement is given below:

Theorem 2 (Informal). Any method that relies on the noisy version of the queries {hi, hih
⊤
i }Ni=1

fails, i.e., Accuracy ̸→ 1 with finite probability, if N ≲ V min{1, L/d2}.

The complete statement of Theorem 2 is deferred to Theorem 4 in Appendix D. We observe that the
lower bound does not exactly match our upper bound in Theorem 1, as Signal ≲ Gradient Noise
in (6) is stronger than the stated lower bound. This being said, Theorem 2 also confirms the multi-
plicative scaling, hence suggesting the trade-off between capacity and sample efficiency is present
in a boarder class of learning algorithms. A stronger computational lower bound for transformers
and gradient-based optimization is an interesting problem we leave for future work.

4 IMPLICATIONS AND EMPIRICAL VERIFICATIONS

In this section, we leverage our main theorem to obtain more concrete scalings between parameters,
and present empirical evidence on the derived multiplicative rate.

4.1 ATTENTION-ONLY MODEL

We start with the Attention-only model which gives a simpler phase diagram.

Corollary 1. For the Attention-only model, the bottleneck term in (6) is the Mean bias term, and
Theorem (1) is equivalent to requiring d ≳ max{

√
V , V

1
3L

4
3 /N

2
3 }.

We make the following observations:

• The condition in Corollary 1 is the maximum of two terms, where d ≳
√
V is due to the capacity

requirement in Assumption 2, whereas the second term ensures Signal ≳ Mean bias and implies
a multiplicative scaling between the sample size N and embedding dimension d (i.e., increasing
one of the parameters can compensate for the other).

• Note that the Mean bias term arises from a nonzero token mean, which can potentially be allevi-
ated by centering the tokens, as is effectively done by normalization layer. Exploring the effect of
applying normalization in this model is an interesting direction for future work.

Empirical Findings. We run the three-step gradient descent algorithm on an Attention-only model
over varying V and d, and report the accuracies in the heatmaps (Figure 2). The plots are in log-log
scale; therefore, the slopes give the exponent s in d ≍ V s. As shown in the top row of Figures 2a-2b,
the slope for relatively small L (where L ≍

√
V ) matches the optimal capacity condition d ≍

√
V .

By contrast, when the context window is larger (L ≍ V ), the requirement becomes d ≍ V , which is
also reflected in the experimental results, as observed in the bottom panel of Figure 2a.

6
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In Figure 2b we run experiments with increasing sample size to observe the multiplicative trade-off.
As seen in the bottom figure of Figure 2b, increasing the sample size from V log V to V 1.5 reduces
the dimension exponent from 1 to 0.7 (the theoretical value is s = 0.66). Finally, the learnability
thresholds for L ≍ V in Figures 2a and 2b are plotted together in Figure 2c, to illustrate that
increasing the sample size can compensate for the number of parameters in the network.

(a) N ≍ V log V (b) N ≍ V 1.5

(c) Attention only, L ≍ V

Figure 2: Empirical scaling of embedding dimension (left) and parameter count (right) via three-step GD for
the Attention-only model. In (a) and (b), top-left and top-right use L ≍

√
V ; bottom-left and bottom-right

use L ≍ V . In the right panel, the L ≍ V case is shown under two sample-size regimes, N ≍ V log V
and N ≍ V 1.5. Line fitting: We identify in the heatmaps the smallest embedding dimension that achieves
accuracies {0.1, 0.125, 0.15} and perform a least squares fit. The slopes of the fitted lines and their theoretical
counterparts are reported on the heatmaps. Differences in transparency in (c) are due to overlapping points.

4.2 ATTENTION-MLP MODEL

For the attention-MLP model, the nonlinear MLP layer introduces additional phases as stated below.
Corollary 2. For the Attention-MLP model, Theorem 1 translates to md ≳ V and

Signal ≳


MLP noise, m = o(d2L) and m = o(dV )

Gradient noise 2, V ≳ dL and m ≳ d2L

Mean Bias, V = o(dL) and m ≳ dV,

where

• Signal ≳ MLP noise is equivalent to Nd ≳ V L2/
√
m.

• Signal ≳ Gradient noise 2 is equivalent to d
√
N ≳ V L

1
4

• Signal ≳ Mean Bias is equivalent to dN
2
3 ≳ L

4
3V

1
3 .

The phase diagram for the Attention-MLP model is richer than Attention-only, as we can trade offm
and d and hence use a smaller embedding dimension; this results in potentially different dominant
terms in the gradient. In particular, since large L and d entails larger magnitude of Mean Bias (as in
the Attention-only setting), we know that by increasing the MLP width m and thereby reducing the
required embedding dimension d, we may suppress this bias term.

Empirical Findings. We run the 3-step gradient descent algorithm on an Attention-MLP network
over varying V and d and plot the accuracies in Figures 3 and 4. We take the nonlinearity to be the
mixture of two Hermite polynomials ϕ = 0.7h2+0.3h3, satisfying the conditions in Assumption 3.
We run experiments with width m ≍ d2 and m ≍ d3. Due to the prohibitive cost of increasing the
width further, we restrict ourselves to the MLP noise-dominated region.

In Figure 1, we plot the scaling of the number of parameters (md) as a function of vocabulary size
V for different sequence-length regimes in L. We observe that L ≍ V 0.25 requires md ≍ V , which

7
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is the optimal capacity, as predicted by our theory. As L increases, we need more parameters to
achieve the same capacity, as observed in the L ≍ V 0.5 and L ≍ V 0.75 cases in Figure 1, where the
slopes agree with our theoretical predictions as well (see Figures 3a and 3b).

We further test the effect of sample size in Figure 3, where we use L ≍ V 0.5 and m ≍ d2. We plot
both heat maps in Figures 3a and 3b, and the fitted lines for L ≍ V 0.5 together in Figure 3c. Note
that we state the plot in terms of parameter count, which scales as md ≍ d3, so the slopes from the
heat map are scaled accordingly. We observe that increasing N from N ≍ V log V to N ≍ V 1.5

reduces the network size to the optimal level, aligning with our theoretical prediction. The heatmap
versions of these experiments are shown in Figures 3a and 3b.

Lastly, we probe the width scaling by keeping the sample size N ≍ V log V and L ≍ V 0.5 fixed in
Figure 4. Here, we observe that we can reduce the embedding-dimension requirement by increasing
m (Figures 4a and 4b), though it increases the total parameter count overall, as seen in Figure
4c, since width must grow proportionally more than d to achieve the same accuracy. This is also
consistent with our theoretical prediction.

(a) N ≍ V log V (b) N ≍ V 1.5 (c) L ≍ V 0.5 and m ≍ d2

Figure 3: Empirical scaling of embedding dimension (left) and parameter count (right) for the Attention-
MLP model under N ≍ V log V and N ≍ V 1.5. In (a) and (b), top-row uses L ≍ V 0.5; bottom-row uses
L ≍ V 0.75. The right panel also shows L ≍ V 0.5 under both sample-size regimes.

(a) m ≍ d2 (b) m ≍ d3

(c) L ≍ V 0.5 and N ≍ V log V

Figure 4: Empirical scaling of embedding dimension (left) and parameter count (right) for the Attention-MLP
model under two width regimes, m ≍ d2 and m ≍ d3. In (a) and (b), top-row uses L ≍ V 0.5; bottom-row
uses L ≍ V 0.75. The right panel also shows L ≍ V 0.5 under both width regimes.
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4.3 BEYOND EARLY PHASE OF TRAINING

While our theoretical analysis handles a particular 3-gradient-step training procedure, we empiri-
cally observe qualitatively similar multiplicative scalings when the transformer model is optimized
beyond the “early phase”. Specifically, we train our Attention-only model for multiple steps us-
ing (i) full-batch gradient descent and (ii) Adam (Kingma & Ba, 2015) with mini-batch gradients.
Throughout this section, we use a sample size N ≍ V log V .

Full-batch gradient descent: We use learning rate η = 0.5 and continue training until the test
accuracy does not improve by more than 0.01 for 10 consecutive checks. In Figures 5a and 5b, we
provide heatmaps for L ≍ V and L ≍

√
V . We observe that when L ≍

√
V , the slope indicates

the network is at the optimal capacity condition; this is also reflected by the slope 1.06 in Figure
5c. By contrast, for large L the slope significantly shifts and becomes suboptimal, confirming the
multiplicative relation established in Section 3.

Adam with mini-batch gradients: We use layer normalization in both the attention and output layers
and choose learning rate η = 0.005. We specifically use batch size ⌊N/40⌋ and run the algorithm
for 3 epochs. In Figure 6, we provide heatmaps for L ≍ V and L = 8 at the end of epochs 2 and
3. We observe that for L ≍ V in early training, the slope is suboptimal, while training the network
for one more epoch improves the capacity condition to a near optimal level. In contrast, for L = 8,
we observe that the network does not exhibit a suboptimal phase at the end of epoch 2, which is in
line with our theoretical findings. A rigorous analysis of the full gradient descent dynamics is left
for future work.

(a) L ≍ V (b) L ≍
√
V (c) Comparison of the fitted lines

Figure 5: Empirical scaling of embedding dimension (a,b) and parameter count (c) for the Attention-only
model trained by multiple-step GD.

(a) L ≍ V , Epoch = 2 (b) L ≍ V , Epoch = 3 (c) L = 8, Epoch = 2 (d) L = 8, Epoch = 3

Figure 6: Empirical scaling of embedding dimension for the Attention-only model trained by Adam.

5 PROOF OVERVIEW: POPULATION ANALYSIS

In this section, we outline the ideas for the proof of Theorem 1. For presentation, we consider the
Attention-only model with population dynamics and orthogonal embeddings. Since we do not use
positional encoding in the model, without loss of generality, we fix the correct position to ℓ = 1.

In the proof, we study the attention scores in (1) and characterize the conditions under which they
align with the trigger vector. Once attention can distinguish informative tokens, the remaining part

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

reduces to learning a linearly separable problem, which is well understood. The pre-softmax scores
evaluated on a fresh sequence Xin, with the key-query matrix given by the first gradient-descent
iterate W

(1)
KQ, is given as

scores:=
(
ztrige

⊤
1 +ZinXin

)⊤
W

(1)
KQzEOS. (7)

For the proof overview part, we analyze the following simplified form of the scores (for the full
expression, see (10)):

scores≈ γX⊤
inZ

⊤
in

( 1

NL

N∑
i=1

ZinXiX
⊤
i Z⊤

in(V
(1))⊤Zout(pi − 1

V 1V )
)

︸ ︷︷ ︸
Non-informative

(8)

+γ∥ztrig∥22e1
( 1

NL

N∑
i=1

x⊤
i,1Z

⊤
in(V

(1))⊤Zout(pi − 1
V 1V )

)
︸ ︷︷ ︸

Informative

. (9)

Here V (1) denotes the first iteration of the value matrix given in (3). The informative term in (9)
captures the alignment between the trigger vector in the fresh input and the one in the learned weights
W

(1)
KQ, and therefore contains the position information of the informative token. By contrast, the

non-informative term in (8) reflects correlations between tokens and does not carry any information
about the token’s position. The proof characterizes conditions under which the informative term in
(9) dominates, which is sufficient for attention to identify the correct position.

To study population dynamics with orthogonal embeddings, we set Zin = Zout = IV and take
N → ∞ while other parameters remain fixed. Under population dynamics, we first observe that
V (1) = O(η)Π∗, where η is the learning rate of the first step in (3). Then, we can write

Non-informative= X⊤
in

O(ηγ)

NL

N∑
i=1

XiX
⊤
i Π⊤

∗ (pi − 1
V 1V )

−−−−→
N→∞

O(ηγ)

L
X⊤

in E[XX⊤(x1 − 1
V 1V )] = (1− 1

V
)
O(ηγ)

V L
1L,

where the last equality follows since Xin has one-hot columns. On the other hand, we have

Informative = O(ηγ)e1

( 1

NL

N∑
i=1

x⊤
i,1Π

⊤
∗ (pi − 1

V 1V )
)
= (1− 1

V
)
O(ηγ)

L
e1,

where we used pi = Π∗xi,1, in the last step. By choosing learning rates that guarantee ηγ → ∞,
we can show that the attention probabilities align with e1 and eventually select the correct position.
The reader may refer to Appendix C.1 for an extended proof overview of the empirical dynamics
with non-orthogonal embeddings, where we detail how each term in Theorem 1 arises from the
terms in (8)-(9).

6 CONCLUSION

In this paper, we derived precise asymptotic rates for learning with gradient descent on transformers
trained on a simple recall task with random embeddings and finite samples. Our analysis and exper-
iments reveal a rich picture of multiplicative scalings between various problem parameters, showing
that parameter count is not the only important factor controlling capacity when learning with finite
samples on large noisy sequences. Our results suggest that finer control of the data distribution
may be necessary for learning efficiently at optimal capacity, for instance by ensuring sequences
are less noisy and more informative, hoping that the discovered mechanisms are robust to harder
settings. This is reminiscent of the procedures used for long context extension in LLMs, where most
of training happens on shorter sequences, but the final models are extended to work with very long
sequences, and empirically do well on retrieval tasks such as “needle-in-a-haystack” (e.g., Gemini
Team, 2024), which resembles our theoretical setup. Analyzing similar scalings in more structured
data distributions and architectures is thus an interesting avenue for future work.
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LLM Usage. Large language models are used to polish the abstract and find relevant references
for the related work section.

B PRELIMINARIES

Proof organization. We combine the proof for both models: Using ϕ(x) = x and m = ∞ is
valid for applying the arguments for Attention-only model in the proof. As the network succeeds
in storing all informative tokens only when attention selects the correct position, we focus on how
attention learns the correct index and under what conditions. This is the bottleneck in our analysis
under Assumptions 1, 2, and 3. Accordingly, we study the pre-softmax scores in (1). Theorem 3
characterizes the scaling of these terms and yields (6). Because the proof involves lengthy expres-
sions, we provide a proof sketch in Section C.1 and refer readers to the corresponding parts of the
formal proof.

Additional Notation. For a vector x ∈ RV , we use diag(x) ∈ RV×V denotes the diagonal matrix
which has the same diagonal entries with x, while for a matrix A, diag(A) ∈ RV denotes the
column vector whose elements coincide with the diagonal entries of A. For a random variable w,
Ew[·] denotes taking expectation with respect to w and keeping the remaining independent terms
fixed. Similarly, we use E[·|w] for conditional expectation, conditioned on w. We use 1Event as
an indicator function, which takes values {0, 1} depending on the event holds or not. We use C to
denote any constant in the upper-bound, which might depend on ϕ.

Since we do not use positional encoding in the model, without loss of generality we can fix the infor-
mative index ℓ = 1. We define the sequence of non-informative tokens as Ni := [xi,2, · · · ,xi,L]

⊤.
We will denote the rows of Win with {wk}mk=1. For compact representation the attention with the
trigger we define

Zin =: [Zin ztrig] and Xi =

[
x⊤
i,1 1
Ni 0

]
∈ RL×(V+1)

With this notation, we can write the iterates in three-step GD. Let

α(0) := σ
(
(ztrige

⊤
ℓ +ZinX)⊤W

(0)
KQzEOS

)
.

We have

V (1) = Zout

( η
N

N∑
i=1

(pi − p̂
(0)
i )ϕ

(
(α

(0)
i )⊤XiZ

⊤
inW

⊤
in

))
W

(1)
KQ = Zin

γ

N

N∑
i=1

X⊤
i

(
diag(α

(0)
i )−α

(0)
i (α

(0)
i )⊤

)
XiZ

⊤
inW

⊤
in

× diag
(
ϕ′
(
WinZinX

⊤
i α

(0)
i

))
(V (1))⊤Zout(pi − p̂

(1)
i )z⊤

EOS (10)

For notational convenience, we define the noise due to finite width as

FW(Win;Zin,Xi,Xj) :=
1

m

(
W⊤

indiag
(
ϕ′
(
1
LWinZinX

⊤
i 1L

))
ϕ
(

1
LWinZinX

⊤
j 1L

)
− EWin

[
W⊤

indiag
(
ϕ′
(
1
LWinZinX

⊤
i 1L

))
ϕ
(

1
LWinZinX

⊤
j 1L

)])
.

and the terms arising in the expected value term as

αij := Ew

[
ϕ′
(
1
Lw

⊤ZinX
⊤
i 1L

)
ϕ′
(
1
Lw

⊤ZinX
⊤
j 1L

)]
,

βij := Ew

[
ϕ′′
(
1
Lw

⊤ZinX
⊤
i 1L

)
ϕ
(
1
Lw

⊤ZinX
⊤
j 1L

)]
.
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C PROOF OF THEOREM 1

C.1 PROOF SKETCH FOR THEOREM 1

For convenience, we fix Π∗ = IV and, accordingly, pi = xi,1, and consider the Attention-only
model unless stated otherwise; however the derivations for Attention-only model holds also for
Attention-MLP. We study the pre-attention scores given in (7), with the explicit formula in (8)–(9).
We derive the terms in (6) in three parts:

• In the first part, we analyze the informative component (9) and derive the scaling of the Signal
term in (6).

• In the second part, we analyze the non-informative component (8) and derive the scaling of Gra-
dient noise and Mean bias in (6), corresponding to its mean and bias components.

• In the third part, we consider the Attention-MLP model and derive the scaling of MLP noise in (8).

Before proceeding, we note that both the informative and non-informative terms in (8)–(9) depend
on the first iterate of the output layer, V (1), which can be decomposed into mean, bias and gradient
noise components as

V (1) ≈ Zout

( 1

NL

N∑
i=1

(xi,1 − 1
V 1V )(Xi1L)

⊤
)
Z⊤

in (11)

≈ Zout

( 1

V L
(IV − 1

V 1V 1
⊤
V )︸ ︷︷ ︸

Mean

+
1

V N

N∑
i=1

(xi,1 − 1
V 1V )1

⊤
V︸ ︷︷ ︸

Bias

+
1√
LV N

Ξ︸ ︷︷ ︸
Gradient noise

)
Z⊤

in (12)

where the gradient noise component is given by

Ξ :=

√
V

LN

( N∑
i=1

(xi,1 −
1

V
1V )(Xi1L − L

V 1V )
⊤ − 1

V
(IV −

1

V
1V 1

⊤
V )
)
.

Here, the bias term arises from aggregating tokens at initialization: the aggregate-token averages
1
LXi1L concentrate around their mean 1

V 1V as L grows, so this effect appears as the bias term. The
gradient-noise term captures finite-sample fluctuations of tokens around this mean. We explicitly
factor out the typical size 1/

√
V LN in (12) so that the remaining matrix Ξ stays of constant size on

average, i.e., E[∥Ξ∥22] = O(1). We are now ready to consider the cases listed above.

Informative term. With the decomposition in (12), the informative term in (9) can be written as the
sum of two contributions:

Informative ≈ 1

V L2

1

N

N∑
i=1

x⊤
i,1Z

⊤
inZin(IV −

1

V
1V 1

⊤
V )Z

⊤
outZout(xi,1 −

1

V
1V )︸ ︷︷ ︸

=O(1)

The first term is due to the mean component; the second term is due to the gradient-noise Ξ compo-
nent in (12). The bias-related terms are ignored, as they do not contribute. By standard concentration
arguments for Gaussian matrices, the first term remainsO(1), whereas the second term concentrates
within ±(log V )/d, yielding the Signal component (6) (the noise component is weaker than the
remaining terms in (6)). See the“Concentration bound for score12” part for the formal proof.

Non-informative term. In this part, we consider large L regime where
1

L
ZinXiX

⊤
i Z⊤

in ≈
1

d
Id. (13)

We consider an arbitrary row of Xin, which we denote with xin. With this approximation, we can
write the non-informative term as

Non-informative ≈ 1

d
√
LNV

x⊤
inZ

⊤
inZinΞZ⊤

outZout
1

N

N∑
i=1

(xi,1 −
1

V
1V )︸ ︷︷ ︸

∈
√

V
N

[
− log V

d , log V
d

]
17
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+
1

V d
x⊤
inZ

⊤
inZin1V︸ ︷︷ ︸

∈
√

V
d [− log V,log V ]

∥∥∥Zout
1

N

N∑
i=1

(xi,1 −
1

V
1V )

∥∥∥2
2︸ ︷︷ ︸

≈ 1
N

,

where we ignore terms depending on the mean component in (11), as they do not contribute. Here,
the first term is due to the gradient-noise component Ξ; by standard concentration arguments, this
yields the scaling of the Gradient noise term. The second term arises from the bias term in (12);
using standard concentration, this gives the scaling of the Mean bias term in (6). See the “Concen-
tration bound for score11” part for the formal proof.

MLP-noise in Attention-MLP. We denote the rows of Win by {wk}mk=1, where wk ∼ N (0, Id).
We work in the large-L regime for illustration, adopting the approximation in (13); however, the
result extends to general L. Under this approximation, MLP-noise can be written as

MLP-noise ≈ x⊤
inZ

⊤
in

1

N2d

N∑
i,j=1

(
1

m

m∑
k=1

wkϕ
′
(

1
Lw

⊤
k ZinXi1L

)
ϕ
(

1
Lw

⊤
k ZinXj1L

)

×
(
xi,1 − 1

V 1V

)
Z⊤

outZout

(
xj,1 − 1

V 1V

))
.

For large L, we have
∥∥ 1
Lw

⊤
k ZinXi1L

∥∥
2
≈ L−1/2 → 0, hence

ϕ′
(

1
Lw

⊤
k ZinXi1L

)
ϕ
(

1
Lwk

⊤ZinXj1L

)
→ ϕ(0)ϕ′(0)︸ ︷︷ ︸

nonzero constant

,

where Assumption 4 ensures ϕ(0)ϕ′(0) ̸= 0. Replacing the ϕ-dependent factors by this constant
yields

MLP noise ≈ ϕ(0)vϕ′(0)

d

1

m

m∑
k=1

x⊤
inputZ

⊤
inwk︸ ︷︷ ︸

∈
[
− log V√

m
,
log V√

m

]
;
∥∥∥Zout

1

N

N∑
i=1

(
xi,1 − 1

V 1V

)∥∥∥2
2︸ ︷︷ ︸

≈ 1
N

,

which, by standard concentration arguments, gives the scaling of the MLP noise term in (6). See the
“Concentration bound for s3” part for the formal proof.

C.2 ATTENTION SCORES AND THEIR ASYMPTOTIC SCALING

Assumption 4 (Technical conditions). We work under the following conditions:

• Permutation. Without loss of generality, assume Π = IV .

• Learning rates. Take η = oV (1), chosen sufficiently small so that any oη(1) terms are negligible;
in particular, we may write p̂1 = 1

V 1V + oη(1).

• Activation. We consider a polynomial activation ϕ with a degree of p⋆ satisfying:

– ϕ(0), ϕ′(0), ϕ′′(0) ̸= 0

– The smallest non-zero Hermite component of ϕ has index q⋆, i.e, q⋆ := min{k >
0|E[ϕ(Z)Hek ] ̸= 0}, for Z ∼ N(0, 1).

By using the technical condition above and ignoring the vanishing terms due to learning rate, we
decompose the attention scores in to three terms s1, s2, s3 ∈ RL.:

XZ⊤
inW

(1)
KQ

=
ηγ

N2L2
XZ⊤

inZin

N∑
i,j=1

αijX
⊤
i

(
IL − 1

L1L1
⊤
L

)
XiZ

⊤
inZinX

⊤
j 1L
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× (xj − 1
V 1V )

⊤Z⊤
outZout(xi − 1

V 1V )

+
ηγ

N2L2
XZ⊤

inZin

N∑
i,j=1

βijX
⊤
i

(
IL − 1

L1L1
⊤
L

)
XiZ

⊤
inZinX

⊤
i 1L

× (xj − 1
V 1V )

⊤Z⊤
outZout(xi − 1

V 1V )

+
ηγ

N2L
XZ⊤

inZin

N∑
i,j=1

X⊤
i

(
IL − 1

L1L1
⊤
L

)
XiZ

⊤
inFW(Win;Zin,Xi,Xj)

× (xj − 1
V 1V )

⊤Z⊤
outZout(xi − 1

V 1V )

=: ηγ
(
s1 + s2 + s3

)
.

The following theorem characterizes the scaling of each term:
Theorem 3. With probability at least 1− oV (1), we have the following:

e⊤l s1 ≍ 1l=1

( 1

V L2
± 1√

NV L3/2d

)
± 1

N
√
Ld(d ∧ L2)1/2(d ∧ L)1/2

e⊤l s2 ≍ ±
( 1

N
√
Ld(L ∧ d)

+
1

NLd(L ∧ d)1/2
)

e⊤l s3 ≍
±1

Nd
√
m
.

Moreover, for notational convenience, we define

A1,ir := Zin

( 1

LN

N∑
j=1

αij(xj − 1
V 1V )(xj − 1

V 1V )
⊤
)

×
( 1

LN

N∑
j=1

αrj(xj − 1
V 1V )(xj − 1

V 1V )
⊤
)
Z⊤

in (14)

A2,ir := Zin

( 1

LN

N∑
j=1

αij(N
⊤
j − 1

V 1V 1
⊤
L−1)1L−1(xj − 1

V 1V )
⊤
)

×
( 1

LN

N∑
j=1

αrj(xj − 1
V 1V )1

⊤
L−1(N

⊤
j − 1

V 1V 1
⊤
L−1)

⊤
)
Z⊤

in (15)

A3,ir :=
1

L2V 2

( 1

N

N∑
j=1

αij(xj − 1
V 1V )

)⊤( 1

N

N∑
j=1

αrj(xj − 1
V 1V )

)
Zin1V 1

⊤
V Z

⊤
in

and

S1 :=
( 1

LN

N∑
j=1

(xj − 1
V 1V )(xj − 1

V 1V )
⊤
)( 1

LN

N∑
j=1

(xj − 1
V 1V )(xj − 1

V 1V )
⊤
)

(16)

S2 :=
( 1

LN

N∑
j=1

(N⊤
j − 1

V 1V 1
⊤
L−1)1L−1(xj − 1

V 1V )
⊤
)

×
( 1

LN

N∑
j=1

(xj − 1
V 1V )1

⊤
L−1(N

⊤
j − 1

V 1V 1
⊤
L−1)

⊤
)

(17)

S3 :=
1

L2V 2

( 1

N

N∑
j=1

(xj − 1
V 1V )

)⊤( 1

N

N∑
j=1

(xj − 1
V 1V )

)
1V 1

⊤
V . (18)

We first make an observation that we will frequently rely on in the following:
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Proposition 1. For any p ∈ N, we have

E[∥A1,ir∥p2] ∨ E[∥A2,ir∥p2] ∨ E[∥A3,ir∥p2] ≤ polyp,p⋆
(d, V, L).

where polyp,p⋆
(N, d, V, L) denotes a polynomial function of (d, V, L) whose degree depends on

(p, p⋆).

Proof. By Proposition 12, we observe that αij ≤ polyp⋆
(d, V, L). Therefore, we have

∥A1,ir∥2 ∨ ∥A2,ir∥2 ∨ ∥A3,ir∥2 ≤ polyp⋆
(d, V, L)∥ZinZ

⊤
in∥2.

from which the result follows.

C.3 PROOF OF THEOREM 3

We observe that

XZ⊤
inZinX

⊤
i =

(
ZinX

⊤ + δZineV+1e
⊤
1

)⊤(
ZinX

⊤
i + δZineV+1e

⊤
1

)
= XZ⊤

inZinX
⊤
i + δe1z

⊤
trigZinX

⊤
i + δXZ⊤

inztrige
⊤
1 + δ2∥ztrig∥22e1e⊤1 . (19)

In the following, we will consider xl = eν , for ν ∈ [V ]. We will write

δe⊤1 elztrig +Z⊤
inX

⊤el = zν + 1k=1δztrig =: zν,δ (20)

and

δe1z
⊤
trigZinX

⊤el + δ2∥ztrig∥22e1e⊤1 el = δz⊤ν,δztrige1 =: δsν,δe1. (21)

In the following, we will consider the event.

Event := (E.1) ∩ (E.2).

C.3.1 CONCENTRATION BOUND FOR s1

By (19)-(20)-(21), we can write that

e⊤l s1 =
1

N2L2

N∑
i,j=1

αijz
⊤
ν,δZinX

⊤
i

(
IL −

1

L
1L1

⊤
L

)
XiZ

⊤
inZinX

⊤
j 1L(xj − 1

V 1V )
⊤Z⊤

outZout(xi − 1
V 1V )

+
δsν,δ
N2L2

N∑
i,j=1

αij

(
e1 −

1

L
1L

)⊤
XiZ

⊤
inZinX

⊤
j 1L(xj − 1

V 1V )
⊤Z⊤

outZout(xi − 1
V 1V )

=: score11 + score12.

We will analyze score11 and score12 separately. We define

Vi := Vi,1 + Vi,2 + Vi,3,

where

Vi,1 :=
( 1

NL

N∑
j=1

αij(xj − 1
V 1V )(xj − 1

V 1V )
⊤
)

Vi,2 :=
( 1

NL

N∑
j=1

αij

(
N⊤

j − 1
V 1V 1

⊤
L−1

)
1L−1(xj − 1

V 1V )
⊤
)

Vi,3 := 1
V 1V

( 1

NL

N∑
j=1

αij(xj − 1
V 1V )

⊤
)
.
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Concentration bound for score11: We start with score11. We define

Ci :=
1

L
(xi − 1

V 1V )z
⊤
ν,δZinX

⊤
i

(
IL −

1

L
1L1

⊤
L

)
XiZ

⊤
inZin

=
1

L
(xi − 1

V 1V )z
⊤
ν,δZinX

⊤
i XiZ

⊤
inZin︸ ︷︷ ︸

:=Ci,1

− 1

L2
(xi − 1

V 1V )z
⊤
ν,δZinX

⊤
i 1L1

⊤
LXiZ

⊤
inZin︸ ︷︷ ︸

:=Ci,2

By Chebyshev’s inequality, with probability 1− oV (1),

score11 =
1

N

N∑
i=1

tr(ViZ
⊤
outZoutCi) = tr

(
Zout

1

N

N∑
i=1

CiViZ
⊤
out

)
= tr

( 1

N

N∑
i=1

CiVi

)
︸ ︷︷ ︸

score111

± 1√
d

∥∥∥ log V
N

N∑
i=1

CiVi

∥∥∥
F︸ ︷︷ ︸

score112

.

We start with bounding score112 term. We have

score112 ≤
1√
d

∥∥∥ 1

N

N∑
i=1

CiVi,1

∥∥∥
F
+

1√
d

∥∥∥ 1

N

N∑
i=1

CiVi,2

∥∥∥
F
+

1√
d

∥∥∥ 1

N

N∑
i=1

CiVi,3

∥∥∥
F

We have for u ∈ {1, 2}∥∥∥ 1

N

N∑
i=1

CiVi,u

∥∥∥2
F
≤ 2

N2

( N∑
i,r=1

tr(Ci,1Vi,uV
⊤
r,uC

⊤
r,1) + tr(Ci,2Vi,uV

⊤
r,uC

⊤
r,2)
)
.

We define

t1 :=
ϕ′(0)4

dL2

( 1
N

+ (1− 1

V
)
1

V

)
, t2 :=

ϕ′(0)4

d
(1− 1

V
)2
L− 1

L2N
, .

For i ̸= r, by using the definition in A1,ir and A2,ir in (14)-(15), we have

tr(Ci,1Vi,uV
⊤
r,uC

⊤
r,1) =

1

L2
(1xi=xr

− 1

V
)z⊤ν,δZinX

⊤
i XiZ

⊤
inAu,irZinX

⊤
r XrZ

⊤
inzν,δ

=
tu
L2

(1xi=xr
− 1

V
)z⊤ν,δZinX

⊤
i XiZ

⊤
inZinX

⊤
r XrZ

⊤
inzν,δ

+
1

L2
(1xi=xr −

1

V
)z⊤ν,δZinX

⊤
i XiZ

⊤
in(Au,ir − tuId)ZinX

⊤
r XrZ

⊤
inzν,δ

≤ tu
L2

(1xi=xr −
1

V
)z⊤ν,δZinX

⊤
i XiZ

⊤
inZinX

⊤
r XrZ

⊤
inzν,δ

+
1

L2
(1xi=xr

− 1

V
)∥Au,ir − tuId∥2∥ZinX

⊤
r XrZ

⊤
inzν,δ∥2∥ZinX

⊤
i XiZ

⊤
inzν,δ∥2

By Proposition 9, we have

tu
L2

E
[
(1xi=xr

− 1

V
)z⊤ν,δZinX

⊤
i XiZ

⊤
inZinX

⊤
r XrZ

⊤
inzν,δ|Zin

]
≤ Ctu

L2

1

V d
. (22)

Moreover, by using Event and Propositions 1 and 9, we have

1

L2
E
[
(1xi=xr −

1

V
)∥Au,ir − tuId∥2∥ZinX

⊤
r XrZ

⊤
inzν,δ∥2∥ZinX

⊤
i XiZ

⊤
inzν,δ∥2|Zin

]
≤ C

V d(L∧d)


ϕ′(0)2

(
1

NdL3 + 1
V dL2

1
V ∧L2∧L

√
d

)
+ ϕ′(0)4

(
log V

L2V 3/2
√
d
+ log2 V

L2N
√
V d

)
, u = 1

√
V

d
√
NL

(
1

NL
3
2
+ 1

V
√
L

1
V ∧L2∧L

√
d

)
+ ϕ′(0)4

(
log V

NL
√
V d

+ log3 V

N
√
LV d

)
, u = 2

≤ C

N3/2
√
V d2L2

1

L ∧ d
+

C

V 3/2
√
NLd2

1

L ∧ d
1

V ∧ L2 ∧ L
√
d
+

C log3 V

NV 3/2L1/2d3/2
1

(L ∧ d)3/2
.

(23)
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On the other hand,

tr(Ci,2Vi,uV
⊤
r,uC

⊤
r,2)

=
1

L4
(1xi=xr

− 1
V )z⊤ν,δZinX

⊤
i 1L1

⊤
LXiZ

⊤
inAu,irZinX

⊤
r 1L1

⊤
LXrZ

⊤
inzν,δ

=
tu
L4

(1xi=xr − 1
V )z⊤ν,δZinX

⊤
i 1L1

⊤
LXiZ

⊤
inZinX

⊤
r 1L1

⊤
LXrZ

⊤
inzν,δ

+
1

L4
(1xi=xr

− 1
V )z⊤ν,δZinX

⊤
i 1L1

⊤
LXiZ

⊤
in(Au,ir − tuId)ZinX

⊤
r 1L1

⊤
LXrZ

⊤
inzν,δ

≤ tu
L4

(1xi=xr
− 1

V )z⊤ν,δZinX
⊤
i 1L1

⊤
LXiZ

⊤
inZinX

⊤
r 1L1

⊤
LXrZ

⊤
inzν,δ

+
1

L4
(1xi=xr − 1

V )∥Au,ir − tuId∥2∥ZinX
⊤
r 1L1

⊤
LXrZ

⊤
inzν,δ∥2∥ZinX

⊤
i 1L1

⊤
LXiZ

⊤
inzν,δ∥2.

By using Event,

tu
L4 E

[
(1xi=xr− 1

V )z⊤ν,δZinX
⊤
i 1L1

⊤
LXiZ

⊤
inZinX

⊤
r 1L1

⊤
LXrZ

⊤
inzν,δ|Zin

]
≤ Ctu

V L
log2 V

V ∧L2∧L
√
d

1
L∧d .

Moreover, by using Event,

1
L4 E

[
(1xi=xr

− 1
V )∥Au,ir−tuId∥2∥ZinX

⊤
r 1L1

⊤
LXrZ

⊤
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1
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1
V ∧L2∧L

√
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√
d
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√
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√
V

d
√
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3
2
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V
√
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1
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√
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)
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(
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√
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N
√
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≤ C
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√
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√
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1
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√
d
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√
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1
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.(24)

On the other hand, for i = r, we have
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⊤
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⊤
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⊤
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⊤
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⊤
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By using Event and Proposition 9, we have
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d
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1
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. (25)

Therefore, we have by (22)-(23)-(24)-(25) and using N ≪ V L and L≪ V , we have

E
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N
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F
|Zin
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N
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F
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]
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√
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On the other hand, we have∥∥∥ 1

N

N∑
i=1

CiVi,3

∥∥∥2
F
≤ 2

N2
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⊤
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⊤
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⊤
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.

We define t3 := ϕ′(0)4
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.

We have for i ̸= r,
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For the first term, by Proposition 9,
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⊤
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]
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For the second term, by using Event, we have
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For the third item and fourth items, by using Event and Proposition 9,
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For i = r, by using Event, we have
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⊤
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⊤
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≤ 2t3
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⊤
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Then, by using Event and Proposition 9,
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Therefore, by using (27)-(28) and using L≪ V and N ≪ V L, we have
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N
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Therefore, by (26)-(29), we have
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For score111, we write
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where we used Event in (30). Next, we consider score11112:
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+
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We have

z⊤ν,δZin E
[(
αjjX

⊤
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⊤
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]
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d
+
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.

Moreover, by using Proposition 6

E
[
X⊤

1 1L1
⊤
LX1Z

⊤
inZin(X

⊤
1 −

1

V
1V 1

⊤
L )1L

∣∣Zin

]
= E

[
X⊤

1 1L1
⊤
LX1Z

⊤
inZinX

⊤
1 1L

∣∣Zin

]
− L
V

E
[
X⊤

1 1L1
⊤
LX1Z

⊤
inZin1V

∣∣Zin

]
= L E

[
x1x

⊤
1 Z

⊤
inZinx1

∣∣Zin

]
+
(L(L− 1)

V 2
tr(Z⊤

inZin)−
2L(L− 1)

V 3
1
⊤
V Z

⊤
inZin1V

)
1V

+
L(L− 2)

V 2
Z⊤

inZin1V

Lastly,∣∣∣ 1

NL3
z⊤ν,δZin E

[
(α11 − ϕ′(0)2)X⊤

1 1L1
⊤
LX1Z

⊤
inZin(X

⊤
1 −

1

V
1V 1

⊤
L )1L

∣∣Zin

]∣∣∣
≤ 1

NL3
E
[
|α11 − ϕ′(0)2||z⊤ν,δZinX

⊤
1 1L| |1⊤

LX1Z
⊤
inZin(X

⊤
1 −

1

V
1V 1

⊤
L )1L|

∣∣∣Zin
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.

Therefore, by Chebyshev’s inequality, with probability 1− oV (1), we have

(31) ≤ C log V
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√
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1
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√
V d

)
Therefore, we have
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√
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√
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Finally, we consider score11111:
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N∑
j=1
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− ϕ′(0)2

NL2
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( 1
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N∑
i=1
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)
Z⊤

inZin(N
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⊤
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=: scoreV 1 + scoreV 2 + scoreV 3 + scoreV 4 + scoreV 5.

For the first summand, we write
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.

We have by Event
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Moreover, let
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L
)
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We have E[scoreV 12,j ] = 0 and E[scoreV 12,jscoreV 12,j′ ] = 0 for j ̸= j′, and
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⊤
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)
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.

Therefore, by Chebyshev’s inequality with probability 1− oV (1), we have

|scoreV 12,j | ≤
C log V√
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.

Therefore,
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√
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Moreover, for the second term, we write
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.

For the third term, we write
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For scoreV 32, we note that
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We have
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Therefore,
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Moreover, we have
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N2V 2L4d
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V
IV

)
Z⊤

inZin

(
N⊤

i Ni −
L− 1

V
IV

)
Z⊤

inzν,δ
]

≤ C

N2V 2L4d

L− 1

V

N∑
i=1

E
[
z⊤ν,δZinZ

⊤
inzν,δ

]
− C

N2V 2L4d

L− 1

V 2

N∑
i=1

E
[
z⊤ν,δZinZ

⊤
inZinZ

⊤
inzν,δ

]

≤ C

NV 2L3d2
.

Therefore, by Chebyshev’s inequality, we have
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For the fourth term, we have E[scoreV 4] = 0 and
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Therefore, by Chebyshev’s inequality with probability 1− oV (1), we have
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For the last term, we have E[scoreV 5] = 0 and
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)
Therefore, by Chebyshev’s inequality with probability 1− oV (1), we have
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Overall, we have
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(33)

Therefore, by (30)-(32)-(33) and using N ≪ V L and L≪ V , we have
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Finally,
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By using Event and Proposition 9, we have
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• For the second summand, by Event,
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Therefore, by Chebyshev’s inequality with probability 1− oV (1), we have
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By (34)-(35), overall we have
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Concentration bound for score12: We recall that

score12 =
δsν,δ
N2L2

N∑
i,j=1

αij

(
e1 −

1

L
1L

)⊤
XiZ

⊤
inZinX

⊤
j 1L(xj −

1

V
1V )

⊤Z⊤
outZout(xi −

1

V
1V )

In this part, we will focus on the term

1

N2L2

N∑
i,j=1

αij

(
e1 −

1

L
1L

)⊤
XiZ

⊤
inZinX

⊤
j 1L(xj −

1

V
1V )

⊤Z⊤
outZout(xi −

1

V
1V )

=
1

N2L2

N∑
i,j=1

tr(Z⊤
inZinX

⊤
j 1L(xj −

1

V
1V )

⊤Z⊤
outZoutαij(xi −

1

V
1V )x

⊤
i )

− 1

N2L3

N∑
i,j=1

αijtr
(
Z⊤

inZinX
⊤
j 1L(xj −

1

V
1V )

⊤Z⊤
outZout(xi −

1

V
1V )1

⊤
LXi

)
= score121 + score122

For the first term, we write

score121 =
ϕ′(0)2

N2L2

N∑
i,j=1

tr(Z⊤
inZinX

⊤
j 1L(xj −

1

V
1V )

⊤Z⊤
outZout(xi −

1

V
1V )x

⊤
i )

+
1

N2L2

N∑
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tr
(
Z⊤

inZinX
⊤
j 1L(xj −

1

V
1V )

⊤Z⊤
outZout(αij − ϕ′(0)2)(xi −

1

V
1V )x

⊤
i

)
= score1211 + score1212

We start with the second term. By Chebyshev’s inequality, we have

score1212 =
1

N2L2

N∑
i,j=1

(αij − ϕ′(0)2)(1xi=xj
− 1

V
)x⊤

i Z
⊤
inZinX

⊤
j 1L

± 1

N2L2
√
d

∥∥∥ N∑
i,j=1

(αij − ϕ′(0)2)(xi −
1

V
1V )x

⊤
i Z

⊤
inZinX

⊤
j 1L(xj −

1

V
1V )

⊤
∥∥∥
F

By Event

N∑
i,j=1

(αij − ϕ′(0)2)2(x⊤
i Z

⊤
inZinX

⊤
j 1L)

2

≤ 1

(V ∧ L2 ∧ L
√
d)2

N∑
i ̸=j=1

(x⊤
i Z

⊤
inZinX

⊤
j 1L)

2 +
1

L2

N∑
i=1

(x⊤
i Z

⊤
inZinX

⊤
i 1L)

2

≤
( N2

(V ∧ L2 ∧ L
√
d)2

+
N

L2

)(
1 +

L

d

)
Therefore,

1

N2L2
√
d

∥∥∥ N∑
i,j=1

(αij − ϕ′(0)2)(xi −
1

V
1V )x

⊤
i Z

⊤
inZinX

⊤
j 1L(xj −

1

V
1V )

⊤
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F
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≤ 1

N2L3/2
√
d(L ∧ d)1/2

( N

V ∧ L2 ∧ L
√
d
+

√
N

L

)∥∥∥ N∑
i=1

(xi −
1

V
1V )(xi −

1

V
1V )

⊤
∥∥∥
2

≤ 1

NV L3/2
√
d(L ∧ d)1/2

( N

V ∧ L2 ∧ L
√
d
+

√
N

L

)
=
oV (1)

V L2
.

Moreover,

∥ 1

N2L2

N∑
i,j=1

(αij − ϕ′(0)2)(1xi=xj −
1

V
)x⊤

i Z
⊤
inZinX

⊤
j 1L∥

≤ 1

N2L2

( N∑
i,j=1

|1xi=xj −
1

V
|
)

sup
i,j∈[N ]

|αij − ϕ′(0)2)x⊤
i Z

⊤
inZinX

⊤
j 1L| ≤

(1− 1
V )

NL2

1

L

(
1 +

√
L

d

)
.

Therefore, |score1212| ≪ 1
V L2 . Next, we consider score122:

score122

=
ϕ′(0)2

N2L3

N∑
i,j=1

(1xi=xj
− 1

V
)1⊤

LXiZ
⊤
inZinX

⊤
j 1L

± ϕ′(0)2√
d

∥∥∥ 1

N2L3

N∑
i,j=1

(xi −
1

V
1V )1

⊤
LXiZ

⊤
inZinX

⊤
j 1L(xj −

1

V
1V )

⊤
∥∥∥
F

+
1

N2L3

N∑
i,j=1

(αij − ϕ′(0)2)(1xi=xj
− 1

V
)1⊤

LXiZ
⊤
inZinX

⊤
j 1L

± 1√
d

∥∥∥ 1

N2L3

N∑
i,j=1

(αij − ϕ′(0)2)(xi −
1

V
1V )1

⊤
LXiZ

⊤
inZinX

⊤
j 1L(xj −

1

V
1V )

⊤
∥∥∥
F

=: score1221 + score1222 + score1223 + score1224.

For score1224, by Event,

1

L2

N∑
i,j=1

(αij − ϕ′(0)2)2(1⊤
LX

⊤
i Z⊤

inZinX
⊤
j 1L)

2

≤ 1

(V ∧ L2 ∧ L
√
d)2

1

L2

N∑
i ̸=j=1

(1⊤
LX

⊤
i Z⊤

inZinX
⊤
j 1L)

2 +
1

L2

1

L2

N∑
i=1

(1⊤
LX

⊤
i Z⊤

inZinX
⊤
i 1L)

2

≤ N2

(V ∧ L2 ∧ L
√
d)3

+
N

L2
.

Therefore,

|score1224| ≤
1

NV L2
√
d

( N

(V ∧ L2 ∧ L
√
d)3/2

+

√
N

L

)
≤ oV (1)

V L2
.

For score1223, by Event,

|score1223| ≤
1

N2L3

( N∑
i ̸=j=1

|1xi=xj
− 1

V
|
)
| sup
i ̸=j
|(αij − ϕ′(0)2)1⊤

LXiZ
⊤
inZinX

⊤
j 1L|

+
1

NL3
sup
i
|(αii − ϕ′(0)2)1⊤

LXiZ
⊤
inZinX

⊤
i 1L| ≤

oV (1)

V L2
.

For the first two terms, we define

V0 :=
1

NL

N∑
j=1

X⊤
j 1L(xj −

1

V
1V )

⊤, V0,1 :=
1

NL

N∑
i=1

xi(xi −
1

V
1V )

⊤
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V0,2 :=
1

NL

N∑
i=1

(
N⊤

j −
1

V
1
⊤
L−1

)
1L−1(xi −

1

V
1V )

⊤, V0,3 :=
1

V
1V

1

NL

N∑
i=1

(xi −
1

V
1V )

⊤.

We have by Event,

|score1222| ≤
ϕ′(0)2√

d

∥∥∥ 1
L
ZinV0V

⊤
0 Z⊤

in

∥∥∥
F
≤ ϕ′(0)2

NV L2
√
d

∥∥∥ZinZ
⊤
in

∥∥∥
F
≤ 2ϕ′(0)2

LdLN
≤ oV (1)

V L2
.

Lastly,

|score1221| =
ϕ′(0)2

L
tr
(
ZinV0V

⊤
0 Z⊤

in

)
≤ ϕ′(0)2

NV L2
√
d
tr
(
ZinZ

⊤
in

)
≤ 2ϕ′(0)2

NL2
√
d
≤ oV (1)

V L2
.

Therefore, |score122| ≪ 1
V L2 . Lastly, we consider score121. By Chebyshev’s inequality, we have

|score121|
= ϕ′(0)2tr(V ⊤

0,1Z
⊤
inZinV0,1) + ϕ′(0)2tr(V ⊤

0,1Z
⊤
inZinV0,2) + ϕ′(0)2(L− 1)tr(V ⊤

0,1Z
⊤
inZinV0,3)

± 1√
d

∥∥∥V ⊤
0,1Z

⊤
inZinV0,1

∥∥∥
F
± 1√

d

∥∥∥V ⊤
0,1Z

⊤
inZinV0,2

∥∥∥
F
± L− 1√

d

∥∥∥V ⊤
0,1Z

⊤
inZinV0,3

∥∥∥
F
.

We have the following:

• The first summand:

tr(V ⊤
0,1Z

⊤
inZinV0,1) = tr(ZinV0,1V

⊤
0,1Z

⊤
in) ≍

1

V L2

• The second summand: By Chebyshev’s inequality, we have

tr(V ⊤
0,1Z

⊤
inZinV0,2) =

1

N2L2

N∑
i,j=1

(1xi=xj
− 1

V )x⊤
i Z

⊤
inZin(N

⊤
j − 1

V 1
⊤
L−1

)
1L−1

= ± 1√
d

∥∥∥V0,2V
⊤
0,1

∥∥∥
F
.

We have by Event, ∥∥∥V0,2V
⊤
0,1

∥∥∥
F
≤ C log V

V L

∥∥∥V0,2

∥∥∥
F
≤ C log V

V L
√
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.

• The third summand: We have

(L− 1)tr(V ⊤
0,1Z

⊤
inZinV0,2)

=
L− 1

N2L2V

N∑
i,j=1

(1xi=xj
− 1

V )x⊤
i Z

⊤
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=
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N2L2V

N∑
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(1xi=xj
− 1

V )± L− 1

N2L2V
√
d

∥∥∥ N∑
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(1xi=xj
− 1

V )xi

∥∥∥
2
.

We have by Event ∣∣∣ L− 1

N2L2V

N∑
i,j=1

(1xi=xj
− 1

V )
∣∣∣ ≤ C log V

NLV 3/2
.

and

L− 1

N2L2V
√
d

∥∥∥ N∑
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(1xi=xj
− 1

V )xi

∥∥∥
2
=
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√
d
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1

N

N∑
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2
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√
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• The fourth summand: We have by Event

1√
d

∥∥∥V ⊤
0,1Z

⊤
inZinV0,1

∥∥∥
F
=

1√
d

∥∥∥ZinV0,1V
⊤
0,1Z

⊤
in

∥∥∥
F
≤ C

V L2d

• The fifth summand: We have by Event∥∥∥V ⊤
0,1Z

⊤
inZinV0,2

∥∥∥2
F
≤ tr

(
V ⊤
0,1Z

⊤
inZinV0,2V

⊤
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⊤
inZinV0,1

)
≤ 1
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⊤
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⊤
in) ≤

V

NLd

1

V 2L2
=

1

NV L3d
.

Therefore,

1√
d
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0,1Z

⊤
inZinV0,2

∥∥∥
F
≤ 1√

NV L3/2d

• The sixth summand:

(L− 1)2
∥∥∥V ⊤

0,1Z
⊤
inZinV0,3

∥∥∥2
F
≤ 1

V 2N
1V Z

⊤
inZinV0,1V

⊤
0,1Z

⊤
inZin1V ≤

1

V 2NL2d

Therefore,

L− 1√
d

∥∥∥V ⊤
0,1Z

⊤
inZinV0,3

∥∥∥
F
≤ C

V L
√
Nd

.

Then,

score121 =
1± oV (1)
V L2

± 1√
NV L3/2d

.

Therefore, we have

score12 = δsν,δ

(1± oV (1)
V L2

± 1√
NV L3/2d

)
.

C.3.2 CONCENTRATION BOUND FOR s2

We have

e⊤l s2

=
1

N2L2

N∑
i,j=1

βijz
⊤
ν,δZinX

⊤
i XiZ

⊤
inZinX

⊤
i 1L(xi − 1

V 1V )
⊤Z⊤

outZout(xj − 1
V 1V )

− 1

N2L3

N∑
i,j=1

βijz
⊤
ν,δZinX

⊤
i 1L1

⊤
LXiZ

⊤
inZinX

⊤
i 1L(xi − 1

V 1V )
⊤Z⊤

outZout(xj − 1
V 1V )

+
δsν,δ
N2L2

N∑
i,j=1

βij
(
e1 −

1

L
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)⊤
XiZ

⊤
inZinX

⊤
i 1L(xi − 1

V 1V )
⊤Z⊤

outZout(xj − 1
V 1V )

=: score21 + score22 + score23.

Concentration for score21: We will write score21 as follows:

score21 =
1

N2L2

N∑
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(βij − ϕ′(0)2)z⊤ν,δZinX
⊤
i XiZ
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⊤
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× (xi − 1
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+
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(
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inZin

(
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)
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× (xi − 1
V 1V )

⊤Z⊤
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+
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(
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)
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(
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)
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V 1V )
⊤Z⊤
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+
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(
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⊤
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)
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(
N⊤
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⊤
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)
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⊤Z⊤
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+
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+
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⊤
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⊤
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⊤Z⊤
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V 1V )

=: score211 + score212 + score213 + score214 + score215 + score216

By Chebyshev’s inequality, we have

score211 =
1

N2L2

N∑
i,j=1

(βij − ϕ′(0)2)(1xi=xj
− 1

V )z⊤ν,δZinX
⊤
i XiZ

⊤
inZinX

⊤
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± 1
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√
d
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⊤
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⊤
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⊤
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⊤
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F

=: score2111 + score2112.

By using Events
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≤ 1
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⊤
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√
d
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1
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√
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2

+
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√
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1
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√
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.

Moreover, by Chebyshev’s inequality
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1
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√
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N
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L
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d
+
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)
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1
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√
d
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.

Therefore,
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1
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√
d
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√
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V
√
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√
d
.

Moreover, by Chebyshev’s inequality, we have
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=
(1− 1

V )
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( N∑
j=1

(xj − 1
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)⊤ N∑
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(
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(
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)
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√
d
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C.3.3 CONCENTRATION BOUND FOR s3
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=: score31 + score32 + score33.

Concentration bound for score31: We start with score31. We have
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where we used Chebyshev’s inequality for the second step. We define

ϕ(t) =: ϕ(0) + tψ(t) and ϕ′(t) =: ϕ(0) + tψ1(t) and ψ(t) =: ψ(0) + tψ2(t).

and write
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.

In the following, we bound each term separately.

• We have
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Moreover, by using Event, we write
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• Moreover,
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• Moreover,
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Therefore, we have

E[score31|Zin] = 0 and Variance(score31|Zin) ≤
C

N2d2m
.

D LOWER BOUND

To prove a lower bound, we construct a Bayesian setting with the same likelihood distribution in our
setting. In particular, the ground truth permutation is chosen from the set of permutation matrices:

H := {P ∈ {0, 1}V×V |Π is a permutation matrix}.
We describe our Bayesian setting as a game between Environment and Learner as follows:

• At the beginning, Environment samples P∗ ∼ Unif(H), probability vectors without revealing
them to the learner.

• Learner observes L + 1 channel that generates words from the set V = {e1, e2, · · · , eV }
sequentially for t = 1, 2, · · · , N with distributions:

– At every round, Environment randomly picks a channel ℓt
– Label: Channel 0 generates pt ∼iid Unif(V)
– Input: Given ℓt and pt, Channel ℓt generates Xℓt,t = P∗pt

– Noise distribution: Channel j ∈ [L]\{ℓt} generate Xj,t ∼ Unif(V) independent of Channel
0.

• Let D := {(Xt,pt)}t≤N be the dataset. We study the Bayes estimator with 0 − 1 loss given the
representation of the past: S = f(D, ℓ1:N ):

P̂ = argmax
P∈H

P[P = P∗|S,Zin]. (40)

In the following we consider the empirical mean and covariance of embedded words as the given
data, i.e., S := {(µt,Σt,pt)}t≤N , where

µt :=
1

L
ZinX

⊤
t 1L +

σµ√
L
gt and Σt :=

1

L
ZinX

⊤
t XtZ

⊤
in +

σΣ√
dL

Gt.

where {(gt,Gt)}t≤N are i.i.d. measurement noise with distributions gt ∼ N (0, 1dId) and
Gt,ij = Gt,ji with Gt,ij ∼ N

(
0,

(1+δij)
d

)
i.i.d. for i < j.

Theorem 4. The following lower bound holds:

P[P̂ ̸= P∗|Zin] ≥ 1− oV (1)−
Ω(N)

V

(
1 ∧

( 1

σ2
µ

d

L log V
+

C

σ2
Σ

d2

L log V

))

We use an information-theoretic argument to prove Theorem 4. For the proof, letH(A) andH(A|C)
denote the entropy and conditional entropy of A given C; let I(A;B) = H(A) − H(A|B) and
I(A;B|C) = H(A|C) −H(A|B,C) denote the mutual information between random variables A
and B and the conditional mutual given C, respectively. We let DKL denote the Kullback-Leibler
(KL) divergence. We start with an auxiliary statement for the proof.
Lemma 1. Let A,B,C,D be discrete random variables defined on the same probability space. The
following statements hold:

• In general, H(A|B,C) ≤ H(A|B). The equality is satisfied if and only if A ⊥⊥ C|B.

• If B ⊥⊥ D | (A,C), we have I(A,B|C,D) ≤ I(A,B|C).

• Let S = g(A,C) be a measurable function of (A,C). If B ⊥⊥ A|(S,C,D), then
I(A;B|C,D) = I(S;B|C,D).

• Given, µ,µ′ ∈ Rd, positive definite Σ ∈ Rd×d and supp(A) ⊆ Rd, we have

DKL(N (µ+A,Σ)||N (µ′ +A,Σ)) ≤ 1

2
(µ− µ′)⊤Σ−1(µ− µ′).
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Proof. We have

H(A|B)−H(A|B,C) = E
[
log

P(A|B,C)
P(A|B)

]
= E

[
log

P(A,C|B)

P(A|B)P(C|B)

]
= I(A,C|B).

Since the mutual information is non-negative, the first item follows. Moreover, since I(A,C|B) = 0
if and only if A ⊥⊥ C|B. For the second item, by using the first item,

I(A,B|C,D) = H(B|C,D)−H(B|A,C,D) ≤ H(B|C)−H(B|A,C) = I(A,B|C).
For the third item, since S is a function of (A,C), we have

I(A;B|C,D) = I((A,S);B|C,D) = H(B|C,D)−H(B|A,S,C,D)

= H(B|C,D)−H(B|S,C,D) = I(S;B|C,D).

Let f denotes the Gaussian pdf with 0 and covariance Σ. For any x ∈ Rd, since t → t log t is
convex( ∑

a∈supp(A)

p(a)f(x− µ− a)
)
log

(∑
a∈supp(A) p(a)f(x− µ− a)

)
(∑

a∈supp(A) p(a)f(x− µ′ − a)
)

≤
∑

a∈supp(A)

p(a)f(x− µ− a) log
f(x− µ− a)

f(x− µ′ − a)
.

Therefore, we have

DKL(N (µ+A,Σ)||N (µ′ +A,Σ)) ≤
∑

a∈supp(A)

p(a)DKL(N (µ+ a,Σ)||N (µ′ + a,Σ))

= DKL(N (µ,Σ)||N (µ′,Σ)),

where the last inequality follows the invariance of KL divergence in the second line to constant shifts.
The final bound follows the known formula for the KL divergence between Gaussian distributions.

The proof of Theorem 4 is given in the following:

Proof of Theorem 4. Since we assume Zin is known by the learner, we will fix it in the following
without explicitly conditioning thte terms on it. Note that we consider the Bayes decision rule in
(40) and use Fano’s inequality (Scarlett & Cevher, 2019) to lower bound its error probability:

P[P̂ ̸= P∗|Zin] ≥ 1− I(P∗;S) + log 2

log|H|
. (41)

We have

I(P∗;S) = I(P∗; {(µt,Σt,pt)}t≤N ) = I(P∗; {pt}t≤N ) + I(P∗; {(µt,Σt)}t≤N |{pt}t≤N , )

(a)

= I(P∗; {(µt,Σt)}t≤N |{pt}t≤N )

=

N∑
t=1

I(P∗; (µt,Σt)|{(µu,Σu)}u<t, {pt}t≤N )

Given fixed Zin, we observe that (µt,Σt) ⊥⊥ {(µu,Σu)}u<t

∣∣ P∗, {pt}t≤N and (µt,Σt) ⊥⊥
{pu}u̸=t|P∗,.Therefore, by Lemma 1,

I(P∗;S) ≤
N∑
t=1

I(P∗; (µt,Σt)|{pt}t≤N ) ≤
N∑
t=1

I(P∗; (µt,Σt)|pt).

Moreover, we have P∗ ⊥⊥ (µt,Σt) |Xℓt,t,pt, where Xℓt,t is a function of (P∗,pt). Therefore, by
Lemma 1,

I(P∗;S) ≤
N∑
t=1

I(Xℓt,t; (µt,Σt)|pt).

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

We have

I(Xℓt,t; (µt,Σt)|pt,Zin) =
1

V

V∑
k=1

DKL(Pk
(µt,Σt)

||P0)
(a)

≤ 1

V 2

V∑
j,k=1

DKL(Pk
(µt,Σt)

||Pj
(µt,Σt)

)

where Pk
(µt,Σt)

denotes the distribution of (st,Σt)|Xℓt,t=ek, P0 denotes P0 = 1
V

∑V
k=1 Pk

(µt,Σt)
,

and (a) follows the convexity of KL divergence in its second argument. For k ̸= j, by the last item
of Lemma 1, we have

DKL(Pk
(µt,Σt)

||Pj
(µt,Σt)

) ≤ C

σ2
µ

d

L
∥zk − zj∥22 +

C

σ2
Σ

d2

L
∥zkz⊤k − zjz

⊤
j ∥2F ≤

C

σ2
µ

d

L
+

C

σ2
Σ

d2

L
.

Therefore, we have

I(P∗;S) ≤ N
( C
σ2
µ

d

L
+

C

σ2
Σ

d2

L

)
.

Moreover, we can write

I(P∗;S) ≤ I(P∗;D, ℓ1:N ) = I(P∗; {Xt}t≤N |{pt}t≤N , ℓ1:N )

≤
N∑
t=1

I(P∗;Xℓt,t|{pt, ℓt}t≤N )

≤
N∑
t=1

I(P∗;Xℓt,t|pt, ℓt)

where the first inequality follows data processing inequality, third and fourth inequalities follow the
first and second items in Lemma 1. We have

I(P∗;Xℓt,t|pt, ℓt) = H(Xℓt,t|pt, ℓt)︸ ︷︷ ︸
log V

−H(Xℓt,t|pt, ℓt,P∗)︸ ︷︷ ︸
=0

= log V.

Therefore, we have I(P∗;S) ≤ N log V . Finally, we have

I(P∗;S) ≤ N

(
log V ∧

( C
σ2
µ

d

L
+

C

σ2
Σ

d2

L

))
.

The result follows from (41).

E AUXILIARY STATEMENTS

E.1 A NICE EVENT CHARACTERIZATION

We characterize a “nice event” under which we use in the proof of Theorem 1 holds.
Lemma 2. We assume V 3 ≫ N ≫ V ≫ L and L ≍ V ϵ1 and d ≍ V ϵ2 for some ϵ1, ϵ2 ∈ (0, 1).
For the following we define, mij := (1− 1/V )δij +

L
V . We define the following events:

(E.1) Let zν := Zineν and zν,δ := (zk + 1l=1δztrig). We have

(E1.1) 1
V ∥ZinZ

⊤
in∥2 ≤ 2

d and maxk≤V ∥zk∥2 ∨ ∥ztrig∥2 ≤ 2

(E1.2) 1√
V
∥Zin1V ∥2 ≤ 2 and 1√

V
∥Z⊤

inZin1V ∥∞ ≤ log V√
d

(E1.3)
∣∣z⊤ν,δZin1V

∣∣ ≤ 2 log V
√

V
d and

∣∣z⊤ν,δZinZ
⊤
inZin1V

∣∣ ≤ CK

(
V
d

) 3
2 and∣∣∣z⊤ν,δZindiag

(
Z⊤

inZin

)∣∣∣ ≤ CK log V
√

V
d

(E1.4) For all i ∈ [N ], |z⊤ν,δZinX
⊤
i 1L| ≤ e⊤ν X

⊤
i 1L + CK log V

∥X⊤
i 1L∥2√

d

(E1.5) For all i ∈ [N ], |1⊤
V Z

⊤
inZinX

⊤
i 1L| ≤ L+ CK log V ∥X⊤

i 1L∥2
√

V
d .
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(E1.6) For all i ∈ [N ],
∣∣z⊤ν,δZinZ

⊤
inZinX

⊤
i 1L

∣∣ ≤ V
d

(
e⊤ν X

⊤
i 1L + CK log V

∥X⊤
i 1L∥2√

d

)
.

(E1.7) For all i, j ∈ [N ], | 1L1
⊤
LXjZ

⊤
inZinX

⊤
i 1L − mij | ≤ | 1L1LX

⊤
j X⊤

i 1L − mij | +

CK
∥X⊤

i 1L∥2∥X⊤
j 1L∥2

L
log V√

d
,

(E1.8) For all i ∈ [N ], ∥ZinN
⊤
i NiZ

⊤
inzν,δ∥2 ≤ CK

(
e⊤ν N

⊤
i 1L−1 +

L
d + log6 V

∥N⊤
i 1L−1∥2√

d

)
.

(E.2) We have

(E2.1) For all i, j ∈ [N ], | 1L1LX
⊤
j X⊤

i 1L −mij | ≤ CK
log2 V√
V ∧L

,

(E2.2) For all i ∈ [N ], ∥X⊤
i 1L∥∞ ≤ logL and ∥X⊤

i 1L∥0 ≥ L
2

(E2.3)
∣∣∣∥ 1

N

∑N
i=1 xi∥2 − 1

N −
1
V

∣∣∣ ≤ CK
log2 N

N
√
V

and
∣∣∣∥ 1

N

∑N
i=1 xi − 1

V 1V ∥2 − 1
N

∣∣∣ ≤ CK
log2 N

N
√
V

and ∥ 1
N

∑N
i=1 xi − 1

V 1V ∥∞ ≤ (e+1)L
V

(E2.4)
∑N

i,j=1|1xi=xj − 1
V | ≤

4N2

V and
∑N

i,j=1(1xi=xj − 1
V ) ≤ 4N2

V

(E2.5) ∥S1∥2 ≤ e
L2V 2 and |tr(S1)− 1

L2

(
1
N + (1− 1

V ) 1
V

)
| ≤ CK log2 V

L2N
√
V

(E2.6) ∥S2∥2 ≤ CK log2 V
NLV and |tr(S2)− (1− 1

V )2 L−1
L2N | ≤

KCK log3 V

N
√
LV

(E2.7) −CK log2 V

N
√
V

1
V 2L21V 1

⊤
V ⪯ S3 − 1

N
1

V 2L21V 1
⊤
V ⪯

CK log2 V

N
√
V

1
V 2L21V 1

⊤
V

For any K > 0, there exists a universal constant CK > 0 depending only on K such that

P[(E.1)] ≥ 1− 1

V K
and P[(E.2)] ≥ 1− 1

V K
.

Proof. For (E.1):

• By Proposition 3, we have ∥ 1
V ZinZ

⊤
in − 1

dId∥2 ≤
2 log V√

V d
and by Proposition 4, we have

maxk≤V ∥zk∥2 ∨ ∥ztrig∥2 ≤ 2 with probability at least 1− CV d exp(−c log2 V ).

• By Proposition 4, 1√
V
∥Zin1V ∥2 ≤ 2 and 1√

V
∥Z⊤

inZin1V ∥∞ ≤ 2 log V√
d

with probability at least

1− CV d exp(−c log2 V ).

• By Propositions 4 and 5, we have 1√
V

∣∣z⊤ν,δZin1V

∣∣ ≤ 2 log V√
d

and
∣∣z⊤ν,δZinZ

⊤
inZin1V

∣∣ ≤ CK

(
V
d

) 3
2

with probability at least 1− CV d exp(−c log2 V ). Moreover

1

V

∣∣∣z⊤ν,δZindiag
(
Z⊤

inZin

)∣∣∣ = 1

V

V∑
i=1
i ̸=ν

∥zi∥22⟨zi, zν⟩+
1l=1δ

V

V∑
i=1
i ̸=ν

∥zi∥22⟨zi, ztrig⟩+
1

V
z⊤ν,δzν︸ ︷︷ ︸

∈ 1
V [−CK ,CK ]

,

where we used previous items to bound the last term. For i ̸= k, by using Lemma 3, we have for
p ≤ d

6 ,

E[∥zi∥4p2 |⟨zi, zk⟩|2p] ≤ d−p E[∥zi∥6p2 ](2p)p

≤ d−p2ppp
d(d+ 2) · · · (d+ 6p− 2)

d3p
≤ d−p24ppp

Therefore,

E[∥zi∥4p2 |⟨zi, zν⟩|2p]
1
2p ≤ 4d−1/2√p.

By Proposition 13, we have for 2 ≤ p ≤ d
6 ,

E
[∣∣∣ 1
V
z⊤ν,δZindiag

(
Z⊤

inZin

)∣∣∣2p] 1
2p ≤ Cd−1/2

[√ p

V
+ V

1
p
p3/2

V

]
By using p = log V , we have the bound in the statement with probability 1− 1

V K .
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• By Proposition 4 with probability at least 1− 1
V K

|z⊤ν,δZinX
⊤
i 1L| ≤ |e⊤ν Z⊤

inZinX
⊤
i 1L|+ 1l=1δ|z⊤trigZinX

⊤
i 1L|

≤ e⊤ν X
⊤
i 1L + CK log V

∥X⊤
i 1L∥2√
d

.

By union bound, the item follows.

• By the same argument,

|1⊤
V Z

⊤
inZinX

⊤
i 1L| ≤ 1

⊤
V X

⊤
i 1L + CK log V ∥X⊤

i 1L∥2

√
V

d

= L+ CK log V ∥X⊤
i 1L∥2

√
V

d

• By Proposition 5, with probability at least 1 − CN exp(−c log2 V ), we have∣∣z⊤ν,δZinZ
⊤
inZinX

⊤
i 1L

∣∣ ≤ V
d

(
e⊤ν X

⊤
i 1L + CK log V

∥X⊤
i 1L∥2√

d

)
for all i ∈ [N ].

• By Proposition 4, with probability at least 1− 1
V K

1

L
1
⊤
LXjZ

⊤
inZinX

⊤
i 1L −mij =

1

L
1
⊤
LXjX

⊤
i 1L −mij

± C log V
∥X⊤

j 1L∥2∥X⊤
i 1L∥2

L

log V√
d
.

• For the last item, let nk := e⊤k Zin. We have

ZinN
⊤
i NiZ

⊤
inzν,δ = nν(∥zν∥22 + δ1l=1z

⊤
ν zδ −

1

d
)zν +

L

d
zν +

V∑
k=1
k ̸=ν

nk
(
zkz

⊤
k −

1

d
Id
)
zν,δ.

By Proposition 11, we have

E
[∥∥∥ V∑

k=1
k ̸=ν

nk
(
zkz

⊤
k −

1

d
Id
)
zν,δ

∥∥∥2p
2

] 1
p ≤ C(p− 1)6 E

[∥∥∥ V∑
k=1
k ̸=ν

nk
(
zkz

⊤
k −

1

d
Id
)
zν,δ

∥∥∥2
2

]

≤ C

d
(p− 1)6∥N⊤

i 1L−1∥22

Therefore, with probability 1− 1
V K , we have

∥ZinN
⊤
i NiZ

⊤
inzν,δ∥2 ≤ CK

(
nν +

L

d
+ log6 V

∥N⊤
i 1L−1∥2√

d

)
.

For (E.2):

• By Proposition 7, we have the first item with probability 1− N2

V K .

• By Corollary 3, we have ∥X⊤
i 1L∥∞ ≤ logL. For the second part, we define nk := ekX

⊤
i 1L.

We observe that

E[∥X⊤
i 1L∥0] =

V∑
k=1

P[nk > 0] = V
(
1− (1− 1

V
)L
)
= L(1− L

2V
+ o(L/V )).

By McDiarmid inequality, we have

P
[
|∥X⊤

i 1L∥0 − L(1−
L

2V
+ o(L/V ))| >

√
L log V

]
≤ 2 exp(−2 log2 V ),

which gives the result.
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• Let n =
∑N

i=1 xi . We have E[n] = N
V 1V and by Proposition 7 with probability 1− 1

V K , we have∣∣∣∥ 1
N

n− 1

V
1V ∥22 − (1− 1

V
)
1

N

∣∣∣ = ∣∣∣∥ 1
N

n∥22 − (1− 1

V
)
1

N
− 1

V

∣∣∣ ≤ CK
log2 V

N
√
V
.

Lastly, by Corollary 3, we have ∥ 1
Nn− 1

V 1V ∥∞ ≤ (e+1)L
V .

• We have
N∑

i,j=1

|1xi=xj −
1

V
| =

( N∑
i,j=1

|1xi=xj −
1

V
| − 2

V
(1− 1

V
)
)
+

2N2

V
(1− 1

V
)

= (1− 2

V
)

N∑
i,j=1

(1xi=xj −
1

V
) +

2N2

V
(1− 1

V
)

= (1− 2

V
)
∥∥∥ N∑

i=1

(xi −
1

V
1V )

∥∥∥2
2
+

2N2

V
(1− 1

V
)

By the previous item, the statement follows

• The events for S1, S2 and S3 follows Proposition 8.

Proposition 2. We consider the parameter regime in Lemma 2. Let ϕ̄ :=
supk1,k2≥1|ϕ(k1)(0)ϕ(k2)(0)|. The intersection of (E.1) and (E.2) implies the following events:

(C.1) For all i, j ∈ [N ], | 1L1LX
⊤
j Z⊤

inZinX
⊤
i 1L −mij | ≤ CK

(
log V√

d
+ log2 V

L

)
,

(C.2) supi,j |αij − ϕ′(0)2| ∨ |βij − ϕ′′(0)ϕ(0)| ≤ ϕ̄
L

(
mij + CK

log V√
d

+ CK
log2 V

L

)
(C.3) Let ∆u,ir := Au,ir − ϕ′(0)4ZinSuZ

⊤
in for u ∈ {1, 2, 3}. We have

- supi,r∈[N ]∥∆1,ir∥2 ≤ CKϕ
′(0)2

(
1

NdL3 + 1
V dL2

1
V ∧L2∧L

√
d

)
.

- supi,r∈[N ]∥∆2,ir∥2 ≤ CK

√
V

d
√
NL

(
1

NL
3
2
+ 1

V
√
L

1
V ∧L2∧L

√
d

)
.

- We have ∆3,ir =
∆̄3,ir

V 2L2Zin1V 1
⊤
V Z

⊤
in such that

sup
i,r∈[N ]

|∆̄3,ir| ≤
CKϕ

′(0)2

N

( 1

NL
+

1√
N

1

V ∧ L2 ∧ L
√
d

)
+
( 1

NL
+

1√
N

1

V ∧ L2 ∧ L
√
d

)2
.

(C.4) For all i, r ∈ [N ],

- We have∥∥∥A1,ir −
ϕ′(0)4

d

( 1
N

+ (1− 1

V
)
1

V

)
Id

∥∥∥
2
≤ CKϕ

′(0)2
( 1

NdL3
+

1

V dL2

1

V ∧ L2 ∧ L
√
d

)
+ CKϕ

′(0)4
( log V

L2V 3/2
√
d
+

log2 V

L2N
√
V d

)
.

- We have∥∥∥A2,ir −
ϕ′(0)4

d
(1− 1

V
)2
L− 1

L2N
Id

∥∥∥
2
≤ CK

√
V

d
√
NL

( 1

NL
3
2

+
1

V
√
L

1

V ∧ L2 ∧ L
√
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√
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N
√
LV d

)
.
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- We have A3,ir − ϕ′(0)4

N
1

V 2L2Zin1V 1
⊤
V Z

⊤
in =:

∆̃3,ir

V 2L2Zin1V 1
⊤
V Z

⊤
in such that

|∆̃3,ir| ≤
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′(0)4 log2 V

N
√
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+
CKϕ

′(0)2

N

( 1
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1√
N

1
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√
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)
+
( 1

NL
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N

1
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√
d

)2
.

Proof. We have the following arguments.

• By (E1.7) and (E2.1), we have (C.1).

• For (C.2), we assume (E2.1) and (C.1) hold. Let ∥ 1
LZinX

⊤
i 1L∥2wi ← 1

Lw
⊤ZinX

⊤
i 1L. We

write ∣∣E [ϕ′(∥ 1
L
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i 1L∥2wi

)
ϕ′
(
∥ 1
L
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i 1L∥u2∥

1

L
ZinX

⊤
j 1L∥v2
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j
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∣∣∣

=
∣∣∣ 1
L2

1
⊤
LXjZ

⊤
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⊤
i 1Lϕ

(2)(0)ϕ(2)(0)

+

p⋆∑
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L
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⊤
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1
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Similarly,∣∣E [ϕ′′(∥ 1
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⊤
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L
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• For (C.3), we assume (E1.1), (E1.2) and (E2.5)-??. We define

∆̄1,ir :=
( 1

LN

N∑
j=1

(αij − ϕ′(0)2)(xj −
1

V
1V )(xj −

1

V
1V )

⊤
)

×
( 1

LN

N∑
j=1

ϕ′(0)2(xj −
1

V
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1

V
1V )

⊤
)
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1

V
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1

V
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V
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)
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+
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)

We have
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.

Therefore,
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.

Moreover, we define
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We have
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Therefore,
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Therefore,
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⊤
V Z

⊤
in,

from which the last result follows.

• For (C.4), we assume (E1.1), (E1.2), (E2.3), and (E2.5)-(E2.7). We write
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√
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Lastly,
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By (E2.3), we have

CK2 log2 V

N
√
V

1
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By (C.3), the result follows.

E.2 GAUSSIAN MATRICES AND RELATED STATEMENTS

Lemma 3. Let z ∼ N (0, Id). We have E[∥z∥2k2 ] = d(d+ 2) · · · (d+ 2k − 2).

Proof. We observe that ∥z∥2 ∼ χ2
d. By using the moment formula for chi-squared distribution, we

have the result.

Lemma 4. Let z ∼ N (0, Id) and S ∈ Rd×d be a symmetric matrix. For u > 0,

P
[
|z⊤Sz − tr(S)| ≥ 2∥S∥Fu+ 2∥S∥2u2

]
≤ 2e−u2

.

Proof. We note that z⊤Sz − tr(S) has the same distribution with
∑d

i=1 λi(S)(Z
2
i − 1), where

Zi ∼iid N (0, 1). By using the Laurent-Massart lemma, we have the result.

Proposition 3. Let S ∈ RV×V be a symmetric positive semidefinite matrix. Let

M = ZinSZ
⊤
in.

For poly(d)≫ V ≫ d, We have

P
[∥∥∥M − tr(S)

d
Id

∥∥∥
2
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{∥S∥F√
d

log V, ∥S∥2 log2 V
}]
≤ exp(−c log2 V ).

Proof. Without loss of generality, we can assume that S is diagonal, i.e., S = diag(s1, · · · , sV ).
We have

M − tr(S)

d
=

V∑
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ziz
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)
.
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E
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By Proposition 13, we have 2 ≤ p ≤ d
2

E
[
∥M − tr(S)

d
∥p2
]
≤ C

(√
p ∨ log d

∥S∥F√
d

+ (p ∨ log d)V
1
p ∥S∥2

)
.

For p = 1
e2C2 log

2 V , we have the result.

Proposition 4. Let S ∈ RV×V be a square matrix. For u,v ∈ Sd−1 and M = ZinSZ
⊤
in , we have

P
[∣∣∣(v⊤Mu− tr(S)

d
v⊤u

)∣∣∣ ≥ ∥u∥2∥v∥2
d
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Proof. Consider g =
√
dvec(Z), where g ∼ N (0, IdV ). We have
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1

d
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1
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By using Proposition 10, we have
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)
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2
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where gi ∼ N(0, 1). By using the subexponential concentration, we have the result.

Proposition 5. For u,v ∈ RV , we have
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Proof. Without loss of generality, we assume that u and v have a unit norm. Let
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Without loss of generality, we consider v = e1 and v⊥ = e2. For the second term, we write
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√
dvec(Z̃).

e⊤1 Z
⊤
inZinZ

⊤
inZine2 = (∥z1∥22 + ∥z2∥22)z⊤

1 z2 + z⊤
1 Z̃Z̃⊤z2

= (∥z1∥22 + ∥z2∥22)z⊤
1 z2 +

1

d
g⊤sym(z1z

⊤
2 )⊗ IV−2g.

We have

• By Lemma 4, and Proposition 4

P
[∣∣∥z1∥22 − 1

∣∣ ≤ 5 log V√
d

and
∣∣∥z2∥22 − 1

∣∣ ≤ 5 log V√
d

and |z⊤
1 z2| ≤

log V√
d

]
≤ 1− 6 exp(−c log2 V ).

• By Proposition 10, we have

– ∥sym(z1z
⊤
2 )⊗ IV−2∥2 ≤ ∥z1∥2∥z2∥2
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– ∥sym(z1z
⊤
2 )⊗ IV−2∥F ≤

√
V ∥z1∥2∥z2∥2

– tr
(
sym(z1z

⊤
2 )⊗ IV−2

)
= (V − 2)z⊤

1 z2.

Therefore, by Lemma 4, we have

P
[∣∣∣1
d
g⊤sym(z1z

⊤
2 )⊗ IV−2g −

(V − 2)

d
z⊤
1 z2

∣∣∣ ≤ 2∥z1∥2∥z2∥2
( log V

d

√
V +

log2 V

d

)]
≤ 1− 2 exp(−c log2 V ).

By union bound of the precious two items, we have

P
[∣∣∣e⊤1 Z⊤

inZinZ
⊤
inZine2

∣∣∣ ≤ 2 log V
( V

d3/2
+

√
V

d

)]
≥ 1− 8 exp(−c log2 V ). (42)

Next, we redefine the notation: Z̃ := {zi}Vi=2. We write

z⊤
1 ZinZ

⊤
inz1 − 1− V − 1

d
= ∥z1∥42 − 1 + z⊤

1

(
Z̃Z̃⊤ − V − 1

d
Id

)
z1 −

V − 1

d
(∥z1∥22 − 1)

By Proposition bla, we have

P
[
z⊤
1

(
Z̃Z̃⊤ − V − 1

d
Id

)
z1 ≤ log V ∥z1∥22

√
V

d

]
≤ 1− 2 exp(−c log2 V )

By using the first item above, we have

P
[∣∣∣z⊤

1 ZinZ
⊤
inz1 − 1− V − 1

d

∣∣∣ ≥ 6 log V
(√V
d

+
V

d3/2

)]
≤ 1− 2 exp(−c log2 V ). (43)

The result follows (42) and (43).

E.3 MULTINOMIAL DISTRIBUTION AND RELATED STATEMENTS

Lemma 5. Let (n1, · · · , nV ) ∈ Mult
(
N ; (p1, · · · , pV )

)
. For t ∈ RV ,

E
[
exp

( V∑
w=1

twnw

)]
=
( N∑

w=1

pwe
tw
)N

.

Then, if pw = 1
V , w ∈ [V ], we have

• E
[∏V

w=1(nw)jw

]
= N(N − 1) · · · (N − J + 1)

∏V
w=1 p

jw
w , where J :=

∑V
w=1 jw.

• We have

– E
[
n2w
]
= N

V + N(N−1)
V 2

– E
[(

nw

N −
1
V

)2
nw

]
= (V−1)(N+V−2)

NV 3 .

– E
[
n3w
]
= N

V + 3N(N−1)
V 2 + N(N−1)(N−2)

V 3

– E
[
n4w
]
= N

V + 7N(N−1)
V 2 + 6N(N−1)(N−2)

V 3 + N(N−1)(N−2)(N−3)
V 4

– E
[
n2wn

2
w′

]
= N(N−1)

V 2 + 2N(N−1)(N−2)
V 3 + N(N−1)(N−2)(N−3)

V 4 .

– E
[(∑V

w=1 n
2
w

)2]
= N2 + (N+4)N(N−1)

V + (N+2)N(N−1)(N−2)
V 2

Proof. Let xi sampled from {e1, · · · , eV } with (p1, · · · , pV ). We have nw =
∑N

i=1 e
⊤
wxi. We

have

E
[
exp

( V∑
w=1

twnw

)]
= E

[
exp

( N∑
i=1

⟨t,xi⟩
)]

=
(
E
[
exp

(
⟨t,x1⟩

)])N
=
( N∑

w=1

pwe
tw
)N

.

The later statement can be derived by using zw = etw and taking derivatives of both sides with
respect (z1, · · · , zV ).
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Proposition 6. Let n = (n1, · · · , nV ) ∈ Mult
(
L, 1

V 1V

)
and S ∈ RV×V be a symmetric matrix..

The following statements hold:

• We have

E[Diag(n)Sdiag(n)] = LE[x⊤
1 Sx1x1x

⊤
1 ] +

L(L− 1)

V 2
S,

E[Diag(n− L
V 1V )SDiag(n− L

V 1V )] = LE[x⊤
1 Sx1x1x

⊤
1 ]−

L

V 2
S.

• We have

E[nn⊤Sn] =
2L(L− 1)

V 2
S1V + LE

[
x1x

⊤
1 Sx1

]
+
(L(L− 1)

V 2
tr(S) +

L(L− 1)(L− 2)

V 3
1
⊤
V S1V

)
1V

• We have

E
[((

n− L
V 1V

)⊤
S
(
n− L

V 1V

))2]
=
L

V

∥∥∥diag(S)− 2

V
S1V +

1

V 2

(
1
⊤
V S1V

)
1V

∥∥∥2
2

+
L(L− 1)

V 2
tr
((

IV − 1
V 1V 1

⊤
V

)
S
)2

+
2L(L− 1)

V 2
tr
((

IV − 1
V 1V 1

⊤
V

)
S
(
IV − 1

V 1V 1
⊤
V

)
S
)

Proof. For the first item, we observe that

e⊤j E[Diag(n)Sdiag(n)]ei = E[njni]Sij =
(L
V
δij +

L(L− 1)

V 2

)
Sij ,

from which the first equation follows. For the second equation,

e⊤j E[diag(n− L
V 1V )Sdiag(n−

L

V
1V )]ei = E[(nj −

L

V
)(ni −

L

V
)]Sij

=
(L
V
δij −

L

V 2

)
Sij .

For the second item, we have

(E[nn⊤Sn])i =
∑
jk

Sjk E[ninjnk]

=
L(L− 1)(L− 2)

V 3
(
∑

i̸=j ̸=k

Sjk) +
(L(L− 1)(L− 2)

V 3
+
L(L− 1)

V 2

)
(2
∑
i ̸=k

Sik +
∑
i ̸=k

Skk)

+
(L
V

+
3L(L− 1)

V 2
+
L(L− 1)(L− 2)

V 3

)
Sii

=
L

V
Sii +

L(L− 1)

V
tr(S) +

2L(L− 1)

V

∑
k

Sik +
L(L− 1)(L− 2)

V 3
(
∑
jk

Sjk).

For the third item, we have
(
n− L

V 1V

)
=d

∑L
ℓ=1(ξ1,ℓ −

1
V 1V ) where the equality holds in distri-

bution. For notational convenience, let

γℓu := (ξ1,ℓ −
1

V
1V )

⊤S(ξ1,u −
1

V
1V ).

Then,

E
[((

n− L

V
1V

)⊤
S
(
n− L

V
1V

))2]
=d

∑
ℓ,u

∑
ℓ′,u′

E[γℓuγℓ′u′ ]

By independence, only (ℓ, u, ℓ′, u′) where each index occur even times contribute. The possible
cases are as follows:
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• All four indices equal (ℓ = u = ℓ′ = u′): There are L many terms here with contribution

E[γℓℓγℓℓ] =
1

V

∥∥∥diag((IV − 1

V
1V 1

⊤
V )S(IV −

1

V
1V 1

⊤
V )
)∥∥∥2

2

=
1

V

∥∥∥diag(S)− 2

V
S1V +

1

V 2
(1⊤

V S1V )1V

∥∥∥2
2
.

• Two distinct indices, both pairs diagonal (ℓ = u and ℓ′ = u′ and ℓ ̸= ℓ′): There are L(L − 1)
many terms here with contribution

E[γℓℓγℓ′ℓ′ ] = E[γℓℓ]E[γℓ′ℓ′ ] = tr
(
(IV −

1

V
1V 1

⊤
V )S

)2
• Two distinct indices, paired off-diagonal: (ℓ = ℓ′ and u = u′ and ℓ ̸= u): There are 2L(L − 1)

many terms here with contribution

E[γℓuγℓu] = tr
(
E[(ξ1,1 −

1

V
1V )(ξ1,1 −

1

V
1V )

⊤S(ξ1,2 −
1

V
1V )(ξ1,2 −

1

V
1V )

⊤S]
)

= tr
(
(IV −

1

V
1V 1

⊤
V )S(IV −

1

V
1V 1

⊤
V )S

)

Proposition 7. Let V 3 ≫ L. There exists a universal C > 0 such that the following holds:

• Let mij := (1− 1
V )1i=j +

L
V . For K > 0 and p ≥ log V ,

E
[∣∣∣ 1
L
1
⊤
LXiX

⊤
j 1L −mij

∣∣∣p] 1
p ≤ C

( p 3
2

√
V

+
p2

L

)
P
[∣∣∣ 1
L
1
⊤
LXiX

⊤
j 1L −mij

∣∣∣ ≥ CK2 log2 V√
V ∧ L

]
≤ 1

V K
.

• For K > 0 and p ≥ log V ,

E
[∥∥∥ 1

NL

N∑
i=1

(
X⊤

i −
1

V
1V 1

⊤
L

)
1L1

⊤
L

(
X⊤

i −
1

V
1V 1

⊤
L

)⊤ − 1

V
(I − 1

V
1V 1

⊤
V )
∥∥∥p
2

] 1
p

≤ C

(√
p

NV
+

p

N

(
1 +

p2√
V ∧ L

))

P
[∥∥∥ 1

NL

N∑
i=1

(
X⊤

i −
1

V
1V 1

⊤
L

)
1L1

⊤
L

(
X⊤

i −
1

V
1V 1

⊤
L

)⊤ − 1

V
(I − 1

V
1V 1

⊤
V )
∥∥∥
2

> CK log2 V
( 1√

NV
+

1

N

(
1 +

log2 V√
V ∧ L

))]
≤ 1

V K
.

Proof. For i = j in the first item, we have

1

L
1
⊤
LXiX

⊤
i 1L = 1 +

2

L

∑
1≤j<k≤L

1ξi,j=ξi,k = 1 +
(L− 1)

V
+

2

L

L∑
k=2

k−1∑
j=1

1ξi,j=ξi,k −
1

V

Define

Yk :=

k−1∑
j=1

(
1ξi,j=ξi,k −

1

V

)
and Fk := σ(Y1, · · · , Yk).

Given that
k−1∑
j=1

1ξi,j=ξi,k |ξi,k ∼ Binomial(k − 1,
1

V
)⇒ E[|Yk|p]

1
p ≤ C(√p

√
L

V
+ p), p ≥ log V.
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where we used Corollary 3. As for the quadratic variation

QL :=

L∑
k=1

E[Y 2
k |Fk−1] =

L∑
k=1

1

V

(
∥X⊤

i 1k−1∥22 −
(k − 1)2

V

))
=

1

V

L∑
k=1

∥(X⊤
i −

1

V
1V 1

⊤
k−1)1k−1∥22

For p ≥ log V , by using triangle inequality,

E[|QL|
p
2 ]

2
p ≤ 1

V

L∑
k=1

E
[
∥(X⊤

i −
1

V
1V 1

⊤
k−1)1k−1∥p2

] 2
p

≤ 1

V

V∑
k=1

(k − 1)E
[
∥X⊤

i 1k−1∥pp
] 2

p

+

L∑
k=V+1

E
[
∥(X⊤

i −
1

V
1V 1

⊤
k−1)1k−1∥pp

] 2
p

≤ Cp2 1

V

L∑
k=1

k = Cp2
L2

V

where we used Corollary 3. By Proposition 13, for p ≥ log V , we have

E
[∣∣∣ L∑

k=1

Yk

∣∣∣p] 1
p ≤ C

(
p
√
p
L√
V

+ p2
)
.

By using p = log V , we have

P

[∣∣∣ 1
L

L∑
k=1

Yk

∣∣∣ > CeK2 log2 V√
V ∧ L

]
≤ 1

V K
.

Hence, we have the i = j case. For the i ̸= j case, we have

1

L
1
⊤
LXjX

⊤
i 1L =

L

V
+

1

L

L∑
ℓ=1

L∑
k=1

1ξi,k=ξj,ℓ −
1

V

We redefine the martingale difference sequence as

Yk :=

L∑
ℓ=1

1ξi,k=ξj,ℓ −
1

V
.

Conditioned on Xj , we have {Y1, · · · , YL} are i.i.d. and

E[Yk|Xj ] = 0 and E[Y p
k |Xj ] =

1

V
∥(X⊤

j −
1

V
1V 1

⊤
L )1L∥pp

By Proposition 13, for p ≥ log V , we have

E[| 1
L

L∑
k=1

Yk|p]
1
p ≤ C(

√
p
√
V

+
p

3
2

√
LV

+
p2

L
).

By using p = log V , we have

P
[∣∣∣ 1
L
1
⊤
LXjX

⊤
i 1L −

L

V

∣∣∣ ≥ CK2 log2 V√
V ∨ L

]
≤ 1

V K
.

For the second item, we define

Yk :=
1

L

(
X⊤

i −
1

V
1V 1

⊤
L

)
1L1

⊤
L

(
X⊤

i −
1

V
1V 1

⊤
L

)⊤ − 1

V
(IV −

1

V
1V 1

⊤
V )

and QN := N E[Y 2
1 ]. We have

QN ⪯ N E
[∥∥∥ 1√

L

(
X⊤

1 −
1

V
1V 1

⊤
L

)
1L

∥∥∥2
2

1

L

(
X⊤

1 −
1

V
1V 1

⊤
L

)
1L1

⊤
L

(
X⊤

1 −
1

V
1V 1

⊤
L

)⊤]
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= N E
[
(1− 1

V
)
1

L

(
X⊤

1 −
1

V
1V 1

⊤
L

)
1L1

⊤
L

(
X⊤

1 −
1

V
1V 1

⊤
L

)⊤]
+N E

[(∥∥∥ 1√
L

(
X⊤

1 −
1

V
1V 1

⊤
L

)
1L

∥∥∥2
2
− (1− 1

V
)
)

×
( 1
L

(
X⊤

1 −
1

V
1V 1

⊤
L

)
1L1

⊤
L

(
X⊤

1 −
1

V
1V 1

⊤
L

)⊤ − 1

V
(IV −

1

V
1V 1

⊤
V

)]
⪯ CN

V
IV +

1

2
QN

Therefore, we have ∥QN∥2 ≤ CN
V . Moreover, by using the first item,

E[∥Yk∥p2]
1
p ≤ E

[∥∥∥ 1√
L

(
X⊤

i −
1

V
1V 1

⊤
L

)
1L∥2p2

] 1
p ≤ 1 + C

( p 3
2

√
V

+
p2

L

)
Therefore, by using Proposition 13, we have

E
[∥∥∥ 1

N

N∑
i=1

Yi −
1

V
(I − 1

V
1V 1

⊤
V )
∥∥∥p
2

]
≤ C

(√
p ∨ log V

√
1

NV
+ (p ∨ log V )N

1
p−1
(
1 +

p
3
2

√
V

+
p2

L

))
By using p = log V , we have

P
[∥∥∥ 1

N

N∑
i=1

Yi −
1

V
(I − 1

V
1V 1

⊤
V )
∥∥∥
2
> CK log2 V

( 1√
NV

+
1

N

(
1 +

log2 V√
V ∧ L

))]
≤ 1

V K
.

Proposition 8. We consider S1, S2 and S3 defined in (16), (17) and (18) in the regime V 3 ≫ N ≫
V and L ≍ V ε, ε ∈ (0, 1). For any K > 0 and V ≥ ΩK,ε(1), the following holds:

1. We have

P
[∣∣∣tr(S1)−

1

L2

( 1
N

+ (1− 1

V
)
1

V

)∣∣∣ > CK2 log2 V

L2N
√
V

or ∥S1∥2 >
e2

L2V 2

]
≤ 2

V K
.

2. We have

P

[∣∣∣tr(S2)− (1− 1

V
)2
L− 1

L2N

∣∣∣ > C
K

3
2 log3 V

N
√
LV

or ∥S2∥2 > C
K

3
2 log2 V

NLV

]
≤ 4

V K
.

3. We have

P
[
−CK2 log2 V

N
√
V

1
V 2L21V 1

⊤
V ⪯ S3 − 1

N
1

V 2L21V 1
⊤
V ⪯

CK2 log2 V

N
√
V

1
V 2L21V 1

⊤
V

]
≤ 1

V K
.

Proof. We define ni := |{j ≤ N | xj = ei}|. We have

tr(S1) = (1− 1

V
)

1

L2N2

V∑
i=1

n2i and ∥S1∥2 ≤ sup
i≤N

n2i
L2N2

By using Proposition 7 and Corollary 3, we have the first item. For the second item, we write

S2 =
(1− 1

V )

L2N2

N∑
j=1

(N⊤
j −

1

V
1V 1

⊤
L−1)1L−11

⊤
L−1(N

⊤
j −

1

V
1V 1

⊤
L−1)

⊤

+
2(1− 1

V )

L2N2

∑
j<k

(
1xj=xk

− 1
V

)
sym

(
(N⊤

j − 1
V 1V 1

⊤
L−1)1L−11

⊤
L−1(N

⊤
k − 1

V 1V 1
⊤
L−1)

⊤
)
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=: S21 + S22

We will analyze S21 and S22 separately. We start with S21. We have

tr(S21)−(1−
1

V
)2
L− 1

L2N

= (1− 1

V
)
L− 1

L2N2

N∑
j=1

∥ 1√
L− 1

(N⊤
j −

1

V
1V 1

⊤
L−1)1L−1∥22 − (1− 1

V
)︸ ︷︷ ︸

:=Yi

.

We have E[Y 2
i ] ≤ 2

V and by the first item in Proposition 7

E[|Yi|p]
1
p ≤ Cp2√

V ∨ L
.

Therefore, by Proposition 13,

E
[∣∣∣tr(S21)− (1− 1

V
)2
L− 1

L2N

∣∣∣p] 1
p ≤ C

LN2

(√pN

V
+ pN

1
p

p2√
V ∨ L

)
By using p = log V , we have

P
[∣∣∣tr(S21)− (1− 1

V
)2
L− 1

L2N

∣∣∣ > C
K log3 V

LN
√
NV

]
≤ 1

V K
. (44)

Moreover, by Proposition 7, we have

P
[∥∥∥S21 −

(
1− 1

V

)L− 1

L2N

1

V
(IV − 1V 1

⊤
V )
∥∥∥
2
> C

K log2 V
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( 1√
NV

+
1

N
(1 +

log2 V√
V ∧ L

)
)]
≤ 1

V K
.

(45)

As for S22, we have

tr(S22)

=
2(1− 1

V )

L2N2

N∑
k=2

k−1∑
j=1

(
1xj=xk

− 1
V

)
1
⊤
L−1(N

⊤
j − 1

V 1V 1
⊤
L−1)

⊤(N⊤
k − 1

V 1V 1
⊤
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=
2(1− 1

V )

L2N2

N∑
k=2

k−1∑
j=1

(
1xj=xk

− 1

V

)
1
⊤
L−1(N

⊤
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1

V
1V 1

⊤
L−1)

⊤N⊤
k 1L−1

We define Fk := σ(N1:k) and

Yk := (1− 1

V
)

2

L2N2

k−1∑
j=1

(
1xj=xk

− 1

V

)
1
⊤
L−1(N

⊤
j −

1

V
1V 1

⊤
L−1)

⊤N⊤
k 1L−1

We have

E[Y 2
k |Fk−1] = (1− 1

V
)3
4(L− 1)

L4N4

1

V

k−1∑
j=1

∥(N⊤
j −

1

V
1V 1

⊤
L−1)1L−1∥22

Then,

QN =

N∑
k=1

E[Y 2
k |Fk−1] = (1− 1

V
)3
4(L− 1)

L4N4

1

V

N∑
k=1
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∥(N⊤
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1

V
1V 1

⊤
L−1)1L−1∥22

= (1− 1

V
)3
4(L− 1)

L4N4

1

V

N∑
k=1

(N − k)∥(N⊤
k −

1

V
1V 1

⊤
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Then, for p ≥ log V ,

E
[
|QN |

p
2

] 2
p ≤ 5

L3N3V

N∑
k=1

E
[
∥N⊤

k 1L−1∥p2
] 2

p ≤ 5

LN3V

N∑
k=1

E
[
∥N⊤

k 1L−1∥pp
] 2

p ≤ 5p2

LN2V
.(46)

By using Proposition 13, we show the following:
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• To bound E[|Yk|p]
1
p for p ≥ log V , we first write

E[|Yk|p|N1:k,xk]
1
p

≤ C

LN2

√
p
√
V

( k−1∑
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∣∣∣ 1
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1

V
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⊤
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⊤
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1

V
1V 1

⊤
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〉∣∣∣2) 1
2
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∣∣∣ 1
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〈
(N⊤
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1

V
1V 1

⊤
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⊤
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1

V
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⊤
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〉∣∣∣p) 1
p

Therefore,

E[|Yk|p]
1
p ≤ C

LN2

(√p√k
√
V

+ pk
1
p

)
× E

[∣∣∣ 1

L− 1

〈
(N⊤

k −
1

V
1V 1

⊤
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⊤
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1

V
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⊤
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〉∣∣∣p] 1
p

≤ C

LN2

(√p√k
√
V

+ pk
1
p

)
E
[∣∣∣ 1

L− 1

〈
N⊤

k 1L−1,N
⊤
1 1L−1

〉
− L−1

V

∣∣∣p] 1
p
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LN2

(√p√k
√
V
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1
p

)( 1√
V
∨ 1

L

)
. (47)

• Then by using (46) and (47), we have for p ≥ log V

E[|tr(S22)|p]
1
p ≤ C

( p
3
2

N
√
LV

+
p3N

2
p

LN
3
2

√
V

( 1√
V
∨ 1

L

))
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3
2

N
√
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.

Therefore, by using p = log V ,

P

[
|tr(S22)| >

CK
3
2 log

3
2 V

N
√
LV

]
≤ 1

V K
(48)

To bound ∥S22∥2, we define

Yk :=

k−1∑
j=1

(
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V

)
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.

We have
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⪯ 2

V
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⊤
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⊤
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V
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V
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⊤
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V
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2
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V
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⊤
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⊤
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⊤
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1

V
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⊤
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⊤

Therefore, we have

QN :=

N∑
k=1

E[Y 2
k |Fk−1]
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⪯ 2NL

V 2
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V

1
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V
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⊤
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Then,
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2
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V
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V
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V 2
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V
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⊤
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+
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⊤
L−1(N

⊤
j −

1

V
1V 1

⊤
L−1)

⊤
∥∥∥ p

2

2

] 2
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p
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(
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p2√
V ∧ L
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V 2

(
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p2√
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To bound E[∥Yk∥p2] , we observe that

• We have

E
[((
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V

)
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⊤
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⊤
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⊤
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⊤
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V
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⊤
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⊤
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• By Proposition 13, we have
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1
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√
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V
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1
p
p3/2

V
∥(N⊤
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1

V
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⊤
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√
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1
p
p5/2√
V
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1

V
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⊤
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p
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p
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V
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V

)
(
√
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√
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V
+

p2√
L
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√
pL

V
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Therefore, for p = log V , we have

E[∥S22∥p2] ≤ C
( √p
NLV

+
p3/2
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√
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+
p5

L2N2

)
Therefore, we have

P
[
∥S22∥2 > C

K3/2 log3/2 V

NLV

]
≤ 1

V K
. (49)

By (44) , (45), (48), and (49), we have the second item. For the last item, we have

S3 −
1

N

1

V 2L2
1V 1

⊤
V =

1

V 2L2
1V 1

⊤
V
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N
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1
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1V )
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By Proposition 7,

P
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N
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1

V
1V )
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2
− 1

N
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N
√
V

]
≤ 1

V K
.

The displayed equation implies the third item.

Proposition 9. Let zν,δ = zν + 1k=1δztrig. Given that (E.1) holds, the following statements hold:

1. We have for i ̸= r,∣∣∣E [(1xi=xr −
1

V
)z⊤ν,δZinX

⊤
i XiZ

⊤
inZinX

⊤
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⊤
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⊤
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⊤
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E
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⊤
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⊤
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⊤
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⊤
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]
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d
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d
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.

5. For notational convenience, let
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(
X⊤
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L

V
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.
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Proof. For the first item, we have
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For the second part, let ci := e⊤i Xi1L. We have
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)z⊤ν,δziz

⊤
i

( V∑
j=1

(cj −
L

V
)zj)

)
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=

V∑
i=1

V∑
j=1

(ci −
L

V
)(cj −

L

V
)z⊤ν,δziz

⊤
i zj

Let S = (sij)ij∈[V ] such that sij := 1
2

(
z⊤ν,δziz

⊤
i zj + z⊤ν,δzjz

⊤
j zi
)
.

• We have∣∣∣tr((IV − 1

V
1V 1

⊤
V

)
S
)∣∣∣ = ∣∣∣tr(S)− 1

V
1
⊤
V S1V

∣∣∣
= V

∣∣∣z⊤ν,δZin E[x1x
⊤
1 Z

⊤
inZinx1]−

1

V
z⊤ν,δZinZ

⊤
inZin1V

∣∣∣
≤ C log V

√
V√

d
.

• Moreover,

tr
((
IV −

1

V
1V 1

⊤
V

)
S
(
IV −

1

V
1V 1

⊤
V

)
S
)
= tr(S2)− 2

V
∥S1V ∥22 +

1

V 2

(
1
⊤
V S1V

)2
.

We have tr(S2) ≤ CV 2 log2 V
d2 and

e⊤i S1V =
1

2

V∑
j=1

z⊤ν,δziz
⊤
i zj +

1

2

V∑
j=1

z⊤ν,δzjz
⊤
j zi = z⊤ν,δziz

⊤
i Zin1V + z⊤ν,δZinZ

⊤
inzi.

Therefore, ∣∣∣tr((IV − 1

V
1V 1

⊤
V

)
S
(
IV −

1

V
1V 1

⊤
V

)
S
)∣∣∣ ≤ CV 2 log2 V

d2
.

• Moreover, ∥diag(S)∥22 ≤
CV log2 V

d .

Therefore, by Proposition 6, we have

E
[(

z⊤ν,δZin

(
X⊤

i Xi −
L

V
IV
)
Z⊤

inZin

(
X⊤

i −
1

V
1V 1

⊤
L

)
1L

)2
|Zin

]
≤ C log2 V

(L
d
+
L2

d2

)
.

F MISCELLANEOUS

Proposition 10. Let A ∈ Rd×d and B ∈ RV×V . Let M := A⊗B. We have

∥M∥2 = ∥A∥2∥B∥2 and ∥M∥F = ∥A∥F ∥B∥F and tr(M) = tr(A)tr(B).

Proof. The Frobenius norm and trace are straightforward. For the ℓ2 norm, let A =:
∑d

i=1 σiuiv
⊤
i

and B =:
∑V

j=1 σ̃jũj ṽ
⊤
j . We have

M =

d∑
i=1

V∑
j=1

σiσ̃j(uiv
⊤
i )⊗ (ũj ṽ

⊤
j ) =

d∑
i=1

V∑
j=1

σiσ̃j(ui ⊗ ũj)(vi ⊗ ṽj)
⊤.

For any (i, j) ̸= (i′, j′), we have

(ui ⊗ ũj)
⊤(ui′ ⊗ ũj′) = (vi ⊗ ṽj)

⊤(vi′ ⊗ ṽj′) = 0.

Therefore,

∥M∥2 = max
i,j

σiσ̃j = max
i
σi max

j
σ̃j .
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Proposition 11. Let z ∼ N (0, Id) and Pk : Rd → [0,∞) denotes a degree k polynomial which
takes nonnegative values. For p ≥ 1, we have

E[|Pk(z)|p]
1
p ≤

(
8(p− 1)

) k
2 E[Pk(z)].

Proof. By hypercontractivity, it is sufficient to prove that E[|Pk(z)
2]

1
2

E[Pk(z)]
≤ 8

k
2 . We have

E[|Pk(z)
2]2 ≤ E[|Pk(z)]E[|Pk(z)

3] ≤ 2
3k
2 E[|Pk(z)]E[|Pk(z)

2]
3
2

which proves the result.

Proposition 12. Let k ∈ N and w ∼ N(0, Id). For L > 0 and u,v ∈ Sd−1, we have

E
[
Hek

( 1√
L
w⊤u

)
Hek

( 1√
L
w⊤v

)]
=

k!

Lk

⌊k/2⌋∑
i=0

(2i− 1)!!

2i!!

(
k

2i

)
(L− 1)2i ⟨u,v⟩k−2i

Proof. For a ∈ R, we have

Hek(ax) =

⌊k/2⌋∑
i=0

k!

2ii!(k − 2i)!
(a2 − 1)iak−2iHek−2i

(x)

Therefore, for a = 1/
√
L, we have

E
[
Hek

( 1√
L
w⊤u

)
Hek

( 1√
L
w⊤v

)]
= E

[( ⌊k/2⌋∑
i=0

k!

2ii!(k − 2i)!
(a2 − 1)iak−2iHek−2i

(w⊤u)
)

×
( ⌊k/2⌋∑

i=0

k!

2ii!(k − 2i)!
(a2 − 1)iak−2iHek−2i

(w⊤v)
)]

=

⌊k/2⌋∑
i=0

( k!

2ii!(k − 2i)!

)2
(a2 − 1)2ia2(k−2i)(k − 2i)! ⟨u,v⟩k−2i

=
k!

Lk

⌊k/2⌋∑
i=0

(2i− 1)!!

2i!!

(
k

2i

)
(L− 1)2i ⟨u,v⟩k−2i

F.1 ROSENTHAL-BURKHOLDER INEQUALITY AND COROLLARIES

We will rely on the following inequality:
Proposition 13 ((Peng et al., 2025, Theorem 2.1)). Let {Mk}Nk=1 be a d-dimensional symmetric
matrix valued martingale adapted to the filtration {Fk}Nk=0. Let Yk := Mk −Mk−1 be its corre-
sponding difference sequence and the quadratic variation is defined as

QN :=

N∑
k=1

E[Y 2
k |Fk−1].

For any p ≥ 2, suppose

E
[
∥QN∥

p
2
2

] 1
p

<∞ and sup
k∈[N ]

E
[
∥Yk∥p2

] 1
p

<∞.

Then it holds that

E
[
∥MN∥p2

] 1
p ≤ C

(√
p ∨ log d E

[
∥QN∥

p
2
2

] 1
p

+ (p ∨ log d)N
1
p sup

k∈[N ]

E
[
∥Yk∥p2

] 1
p
)
.
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We have the following corollaries:
Corollary 3. The following statements holds for general L, V > 0:

1. For X ∼ Binomial(L, 1
V ), we have

E[|X − kq|p]
1
p ≤ C

(√
p

√
L

V
+ p
(L
V

) 1
p
)
.

2. Let c = (c1, · · · , cV ) ∼ Multinomial(L, 1
V 1V ). For p ≥ 1, we have

E[∥c∥pp] ≤ CpV

((L
V

)p
+
(pL
V

) p
2

+ pp
L

V

)
.

3. By following the notation in the second item,

• If V ≫ L, we have for L ≥ e2e + 1,

P [∥c∥∞ ≥ logL] ≤
( 2e

logL− 1

) log L−1
2
(L
V

)logL−2

• If L≫ V , we have

P
[
∥c∥∞ ≥

eL

V

]
≤ 2V e−L/V .

Proof. The first two items are direct consequence of Proposition 13. For the third item, using
1cw≥k ≤ cw(cw−1)···(cw−k+1)

k! and linearity of expectation

P[∥c∥∞ ≥ k] ≤
V∑

w=1

P[cw ≥ k] ≤
V∑

w=1

E[cw(cw − 1) · · · (cw − k + 1)]

k!

=
L(L− 1) · · · (L− k + 1)

k!V k−1
.

For V ≫ L, by choosing k = ⌊logL⌋, the result follows. For L ≫ V , by choosing k = ⌊ eLV ⌋, the
result follows.
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