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ABSTRACT

Modern large language models (LLMs) excel at tasks that require storing and re-
trieving knowledge, such as factual recall and question answering. Transformers
are central to this capability because they can encode information during training
and retrieve it at inference. Existing theoretical analyses typically study trans-
formers under idealized assumptions such as infinite data or orthogonal embed-
dings. In realistic settings, however, models are trained on finite datasets with
non-orthogonal (random) embeddings. We address this gap by analyzing a single-
layer transformer with random embeddings trained with (empirical) gradient de-
scent on a simple token-retrieval task, where the model must identify an infor-
mative token within a length-L sequence and learn a one-to-one mapping from
tokens to labels. Our analysis tracks the “early phase” of gradient descent and
yields explicit formulas for the model’s storage capacity—revealing a multiplica-
tive dependence between sample size N, embedding dimension d, and sequence
length L. We validate these scalings numerically and further complement them
with a lower bound for the underlying statistical problem, demonstrating that this
multiplicative scaling is intrinsic under non-orthogonal embeddings.

1 INTRODUCTION

Large language models (LLMs) routinely answer knowledge questions with little or no external con-
text, indicating that substantial factual information is stored in parameters and can be retrieved by
suitable prompts (Petroni et al., 2019; Jiang et al., 2020; Roberts et al., 2020). A sharper theoret-
ical account of how such parametric memories are learned and accessed is increasingly important:
it can guide scaling choices (e.g., trading off memory capacity against compute budgets, Carlini
et al., 2022; Allen-Zhu & Li, 2024) and illuminate failure modes (e.g., hallucination, Zucchet et al.,
2025; Huang et al., 2025). Motivated by empirical results documenting the prevalence of parametric
factual recall and its scaling with model size (Allen-Zhu & Li, 2024; Morris et al., 2025), recent
theoretical works have begun to analyze the capacity and learning dynamics of transformers on
controlled factual-recall tasks (Cabannes et al., 2024a; Nichani et al., 2025).

Many theoretical studies of transformer optimization work in population-dynamics settings and
adopt simplifying assumptions such as treating token embeddings as orthogonal or one-hot vec-
tors (see, e.g., Tian et al. 2023b; Chen et al. 2024; Ghosal et al. 2024). These choices do not always
reflect practical applications, but make the math—particularly gradient calculations—more manage-
able. Furthermore, such population analyses do not characterize the statistical and computational
complexity of gradient-based learning. Moreover, in factual-recall setups, it is known that strictly
orthogonal embeddings are not capacity-optimal, whereas random/non-orthogonal embeddings (i.e.,
superposition) enable near-optimal factual storage (Nichani et al., 2025). At the same time, aban-
doning the orthogonality assumption introduces token interference that leads to intricate optimiza-
tion behavior (e.g., oscillatory trajectories Cabannes et al., 2024b); in practice, superposition-based,
memory-efficient solutions can also be more challenging to train (Elhage et al., 2022), highlighting
a fundamental trade-off between optimization/statistical efficiency and optimal storage capacity.

Motivated by the above gaps, we aim to address the following question.

Can we characterize the optimization and sample complexity of a transformer with non-orthogonal
embeddings trained by gradient descent in the learning of a factual recall task?
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1.1 OUR CONTRIBUTIONS

In this paper, we analyze gradient-based learning of a single-layer transformer with an atten-
tion+MLP block and random embeddings on a synthetic task inspired by Nichani et al. (2025): the
model must retrieve an informative token from a context containing many noisy tokens via attention,
then map it to the correct label via factual recall. To mitigate the complex optimization dynamics
arising from non-orthogonal embeddings, we follow Bietti et al. (2023); Oymak et al. (2023) and
consider a simplified training regime involving only a few gradient steps with finite samples on the
attention and value matrices. This perspective effectively zooms in on the “early phase” dynamics
of gradient descent, a common focus in the feature-learning literature (Ba et al., 2022; Damian et al.,
2022; Dandi et al., 2023; Wang et al., 2025).

Our analysis provides a fine-grained characterization of
how vocabulary size V', sample size N, embedding di-
mension d, sequence length L, and MLP width m interact
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data, higher-dimensional (hence more orthogonal) em-
beddings, and larger MLP width — whereas learning be-
comes harder as (V, L) increase, i.e., the task is more
difficult with a larger vocabulary or longer sequences.

This multiplicative relation is visualized in Figure 1,
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The multiplicative rate above formalizes the “tradeoff” intuition that smaller embedding dimension d
— which increases superposition and thereby improves storage capacity — simultaneously yields
a harder learning problem, as reflected in the required sample size. We complement this with a
statistical lower bound showing that the trade-off is inherent for any estimator that accesses only
gradient information from the initialized transformer. Finally, although our theory is derived for
a specific three-step training algorithm, we empirically observe qualitatively similar multiplicative
scaling when the transformer is optimized by gradient descent to low empirical risk.

1.2 RELATED WORK

Learning dynamics of transformers. A growing line of theory analyzes how transformers ac-
quire specific behaviors from gradient-based training. Much of this literature imposes population-
level assumptions and orthogonal/one-hot embeddings to make gradients tractable, often on discrete
synthetic tasks (Li et al., 2023; Bietti et al., 2023; Tian et al., 2023a; Nichani et al., 2024; Chen et al.,
2024; Ghosal et al., 2024; Chen et al., 2025; Wang et al., 2025). Several works study few-step train-
ing regimes as a lens on the “early phase” of feature learning (Bietti et al., 2023; Wang et al., 2025).
Beyond discrete settings, related analyses investigate attention learning for continuous inputs and
sparse-signal retrieval (Oymak et al., 2023; Marion et al., 2025). A complementary thread focuses
on the emergence of in-context learning and induction mechanisms: single- and two-layer attention
trained on linear-regression or Markov data provably implements gradient-descent-like updates and
generalized induction heads (Von Oswald et al., 2023; Zhang et al., 2024; Chen et al., 2024; Nichani
et al., 2024). These results typically rely on simplified settings and do not address storage capacity.
In contrast, our work analyzes finite-sample training with random (non-orthogonal) embeddings in
an attention+MLP architecture with a particular focus on factual recall.
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Associative memories and storage capacity. Classical associative memories (Hopfield-type
models) study recall of vector patterns and established foundational capacity results (Hopfield, 1982;
Amit et al., 1985; McEliece et al., 1988; Krotov & Hopfield, 2016; Demircigil et al., 2017; Ram-
sauer et al., 2020; Schlag et al., 2021). Recent works adapt associative-memory viewpoints to trans-
formers, modeling inner weights as superpositions of outer products and deriving scaling laws and
optimization behaviors (Bietti et al., 2023; Cabannes et al., 2024a;b). In factual recall specifically,
random (non-orthogonal) embeddings enable near-parameter-count storage, whereas strictly orthog-
onal embeddings are not capacity-optimal (Nichani et al., 2025). Various empirical works have stud-
ied the mechanisms and scaling behaviors of LLMs in factual association tasks (Petroni et al., 2019;
Jiang et al., 2020; Geva et al., 2020; Allen-Zhu & Li, 2024). We provide a theoretical analysis of
such mechanisms and quantify how vocabulary size, sequence length, embedding dimension, and
MLP width jointly govern learning efficiency. Our work operates in a setting similar to (Nichani
et al., 2025) but allows finite samples and explicitly considers gradient descent dynamics. Our result
is similar to the finite-sample results in (Oymak et al., 2023), where the required sample size grows
with the dimensionality and sparsity level of informative tokens, while we allow non-orthogonal
embeddings and show optimal capacity as in (Nichani et al., 2025) under certain conditions.

2 PROBLEM SETTING

Our goal is to understand the capacity of transformers trained on finite data with non-orthogonal
embeddings, in a setting where the relevant information is hidden in a potentially large sequence
of non-informative noisy tokens. The attention operation should then identify the relevant token,
while the subsequent linear or MLP block can then recall the correct label via an associative mem-
ory mechanism. This is similar to the factual recall task studied by Nichani et al. (2025), with
simplifications that make the analysis more tractable, as detailed below.

Notation. o denotes the softmax function. 1y == (1,...,1)T € RV is the V-dimensional all-ones
vector; e; is the one-hot vector with a 1 in the ¢-th position (dimension understood from context).
We use 2 (resp. <) to mean “>” (resp. “<”) up to polylogarithmic factors in V: fy 2 gy <=
fv = poly(logV)gy and fiy < gy <= fy < poly(logV)gy, for some fixed polynomial.
Lastly, ||-||2 denotes the Euclidean norm for vectors and the operator (spectral) norm for matrices.

Problem setup. Let the input/output tokens take values from a finite alphabet [V] :== {1,--- ,V}.
For notational convenience, we represent the alphabet by the one-hot vocabulary ¥V = {e1,--- , ey }.
Each example in the data consists of a length-L input sequence X = [x1,...,x1] € VL and a label

p € V generated as follows:

s Input tokens are sampled independently and uniformly: [z, ..., 2] ~ Unif(VF).

* Informative position is a random index ¢ ~ Unif([L]) independent of X.

* Ground-truth function is a permutation matrix IT, € {0,1}V*V. Labels are generated as the
permuted informative token, p = Il,x,, while the remaining tokens are non-informative.

The goal is to identify the correct token position £ and learn the target function (permutation) IT,.

Transformer architecture. We consider a basic transformer block which first maps input tokens
into a d-dimensional embedding space where d < V. The embedding layer is parameterized by
(Zin, Zouts Zixig, 2E0s) € RV x RV R x RY, where

+ The input tokens are embedded by the columns of the matrix Z;, € R¥*V.

* Output tokens are associated with unembedding vectors, which are collected in Z,,; € R4xV,
* Zirig 1s a trigger vector that marks the informative token.

* zpos is the special embedding vector that marks the end-of-sequence.

Given the embedding parameters, we define the self-attention head, parameterized by the key-query
matrix Wiq € R?*?, which operates on the embedded sequence of inputs Z;, X € R?¥*L:

attn(X; Wiq) = ZinX(,r((ztrige;;r n ZinX)TWKQzEOS>. (1)
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The trigger embedding z:.i; is used to “mark” the informative token with a special direction, mim-
icking the behavior of previous transformer layers that may learn to flag particular tokens by adding
to its residual stream' (note that the number of trainable parameters inside softmax can be re-
duced to d by collapsing Wkqzgogs into a vector). We consider two different learning models:
an Attention-only model and a width-m, two-layer neural network model Attention-MLP, defined
as:

out

o (Z—r Vattn(X; WKQ)) , Attention only
p(X;V, Wiq) = 2)

o (ZthV(b(VVinattn(X; WKQ)) , Attention-MLP

where V € R4¥¢ for the Attention-only and V € R&*™, Wi, € R™*¢ for the Attention-MLP model.
Note that compared with Attention-only model, the Attention-MLP model contains an additional set
of trainable parameters and nonlinear activation function ¢ before the value matrix. Constructions
of the two models for a related factual recall task can be found in (Nichani et al., 2025, Figure 3).

For the Attention-MLP, we keep W, fixed at its random initialization. The trainable parameters for
both of our models are (V', Wkq). We use cross-entropy loss to train our model:

L((V,Wkq), (X,p)) = — S\, pi log pi.

Training algorithm. Following Oymak et al. (2023), we consider a 3-step gradient-based algorithm
with dataset {(X;,p;)}Y., with a sample size of N. We initialize our parameters as V(*) = 0,

ng = 0 and use the learning rates 7,y > 0:

VO =vO . LSV Ty L(VO, W) (X pi)) 3)
W =W — 7 L5 Vo L(VO, W) (X, pi)) @)
VR =V LS Ty L (VO W) (Xi,pi). ©)

Network prediction and storage. Given our model and training method, we use argmax decoding
at inference and define the test accuracy as

Accuracy = P(X,p) [p = eprcd(X):Iﬂ where pred(X) = ar]ge?‘i]ax ﬁ] (X7 V(Q), WI((l(%)a

where p(X; V@), W}(g(%) is the network output defined in (2). In what follows, we characterize
conditions under which the model stores the informative tokens asymptotically, i.e., Accuracy — 1
as V' — oo, in terms of the relevant parameters (V, N, d, L, m).

3  MAIN RESULTS

We first present our general theorem on learnability via gradient descent, and then specialize into
different regimes to derive more interpretable scaling behaviors in Section 4. We provide a proof
sketch in Section C.1, and defer the full proof to Appendix C.

3.1 TECHNICAL ASSUMPTIONS

We first state generic assumptions that apply to both the Attention-only and Attention-MLP models.

Assumption 1.

* Parameter range: Let L = V° forc € (0,1), Q(V1ogV) < N =0o(VL), and V > Q(1).

* Learning rate: We use a sufficiently small learning rate n = o(1) for the initial step (3), and
sufficiently large learning rate v = w(1) for the remaining steps (4)-(5) that satisfy Assumption 4.

* Embeddings: Let Z;\,, Zoyt € R4XV pe independent Gaussian matrices, and let z4,ig, 2ZE0OS € R¢
be independent Gaussian vectors, all with i.i.d. entries distributed as N'(0, 1/a).

"The “trigger” terminology is borrowed from (Bietti et al., 2023), where a special previous token “triggers”
a retrieval operation in the context of induction heads. Our setup resembles learning only the “induction head”
layer assuming the first “previous token head” layer is already in place.

4
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We assume ¢ € (0, 1) since in many practical pretraining setups, the context length is smaller than
the vocabulary size, and the condition L. < V simplifies several terms in the proofs. The lower
bound N 2 V'logV is required so that each element from the alphabet of size V is seen at least
once with high probability. The learning rates follow prior analyses (Oymak et al., 2023; Nichani
et al., 2024): a small 7 ensures that the network’s predictions remain close to uniform after the first
step, whereas a large +y is needed to push the attention scores and predictions toward one-hot vectors.

In addition to the above assumptions, we require the transformer model to have sufficient capacity
to reach perfect test accuracy. Such conditions are characterized by Nichani et al. (2025). For the
Attention-only model, we have the following condition (see Nichani et al., 2025, Theorem 3).

Assumption 2 (Attention-only). For the Attention-only model, we require d > \/V.

With a nonlinear MLP layer, a smaller embedding dimension can suffice if the width is large enough.
Hence for Attention-MLP we require the following condition.

Assumption 3 (Attention-MLP). For the Attention-MLP model, we assume that
* Polynomial activation: ¢ : R — R satisfies ¢(0), ¢'(0), ¢”(0) # 0.

* MLP width: md 2V and d 2 Vﬁ, where k, denotes the smallest nonzero Hermite mode of
¢, e, ke :=min{k > 0: Ezopno,1)[0(2)hi(Z)] # 0} where hy, is the k™ Hermite polynomial.

o Initialization: W3, € R™*? are fixed with entries i.i.d. distributed as N'(0,1).

The nonlinear MLP layer allows us to compensate for the embedding dimension and go beyond the
d > +/V lower bound required by the Attention-only model (Assumption 2). Note that md > V is
a necessary condition for capacity as shown in (Nichani et al., 2025). The additional requirements
imposed on the polynomial activation function appear to be artifacts of our three-step GD analysis,
and we anticipate that they could be relaxed when considering a longer training horizon.

3.2 LEARNABILITY STATEMENT

Now we are ready to present our main theorem on the complexity of learning the factual recall task.
Specifically, transformer learns the desired mechanism when the signal term dominates the noise
and bias terms as stated below.

Theorem 1. Let Assumptions 1 and 3 hold for Attention-MLP, and 1 and 2 hold for Attention-only.
The Attention-MLP model achieves Accuracy = 1 — oy (1) with probability 1 — oy (1) whenever

1 > 1 1 1

Z + + . (6)
VL2~ NVLd(dAL) NVVddAL) Ndym
; N——
Signal Gradient noise Mean bias MLP noise

For the Attention-only model, the same holds with the last MLP noise term removed.

Theorem 1 characterizes learnability as a function of (V, N, d, L, m) and identifies the following
terms that impact the gradient signal-to-noise ratio:

1. Signal measures the alignment between the key—query weights Wég and the trigger z,ig.

2. Gradient noise is due to the concentration error in the update of W}((I).

3. Mean bias arises from the nonzero mean of token vectors { X;} 2V ;.
4. MLP noise reflects the randomness in the MLP weight matrix Wy, in Attention—MLP.

‘We make the following observations.

* Multiplicative scaling. Note that the parameters (V, N, d, L, m) interact in a multiplicative fash-
ion. For example, the noise and bias terms in (6) all decay with (N x d), suggesting that increas-
ing the embedding dimensions d can lower the statistical complexity of learning the correct recall
mechanism. While the full 5-parameter trade-off can be opaque, in Section 4 we focus on specific
regimes that lead to simplification of the scaling relationship and validate the rate empirically.
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* Optimal storage & sample complexity. Recall that the capacity-optimal construction for the
factual recall task requires md > V parameters (or d*> > V for Attention—only); and as discussed
earlier, a sample size NV < V' log V' is necessary to observe all distinct tokens. (6) implies that in
the small-L regime, the optimized transformer achieve optimal capacity and sample complexity
simultaneously. For longer sequences, however, these two conditions may not be achieved at the
same time, i.e., one must increase either the network width or sample size beyond optimality to
learn the task — this confirms the empirical observation in Figure 1.

3.3 STATISTICAL LOWER BOUND

Theorem 1 provides an upper bound (i.e., sufficient condition) on the model and sample size for
learning factual recall under a 3-gradient-step optimization procedure. We complement this suffi-
cient condition with a lower bound indicating that the multiplicative dependence on the problem
parameters is partly statistical; that is, the scaling behavior will be observed in any model satisfying
the broader conditions stated below. Our lower bound applies to statistical methods that can query

the dataset through the attention outputs at initialization, h; := attn(X;, WI(%) In particular, we

consider queries of the form {h;, h;h] } Y| as the gradient with respect to the key—query matrix
Wxkq depends on these quantities (see (10)). The statement is given below:

Theorem 2 (Informal). Any method that relies on the noisy version of the queries {h;, h;h] }¥ |
fails, i.e., Accuracy 4 1 with finite probability, if N < V min{1, L/d?}.

The complete statement of Theorem 2 is deferred to Theorem 4 in Appendix D. We observe that the
lower bound does not exactly match our upper bound in Theorem 1, as Signal < Gradient Noise
in (6) is stronger than the stated lower bound. This being said, Theorem 2 also confirms the multi-
plicative scaling, hence suggesting the trade-off between capacity and sample efficiency is present
in a boarder class of learning algorithms. A stronger computational lower bound for transformers
and gradient-based optimization is an interesting problem we leave for future work.

4 IMPLICATIONS AND EMPIRICAL VERIFICATIONS

In this section, we leverage our main theorem to obtain more concrete scalings between parameters,
and present empirical evidence on the derived multiplicative rate.

4.1 ATTENTION-ONLY MODEL

We start with the Attention-only model which gives a simpler phase diagram.

Corollary 1. For the Attention-only model, the bottleneck term in (6) is the Mean bias term, and
Theorem (1) is equivalent to requiring d > max{y/V,V3L3 /N3 }.

We make the following observations:

* The condition in Corollary 1 is the maximum of two terms, where d > +/V is due to the capacity
requirement in Assumption 2, whereas the second term ensures Signal 2 Mean bias and implies
a multiplicative scaling between the sample size N and embedding dimension d (i.e., increasing
one of the parameters can compensate for the other).

* Note that the Mean bias term arises from a nonzero token mean, which can potentially be allevi-
ated by centering the tokens, as is effectively done by normalization layer. Exploring the effect of
applying normalization in this model is an interesting direction for future work.

Empirical Findings. We run the three-step gradient descent algorithm on an Attention-only model
over varying V' and d, and report the accuracies in the heatmaps (Figure 2). The plots are in log-log
scale; therefore, the slopes give the exponent s in d < V°. As shown in the top row of Figures 2a-2b,
the slope for relatively small L (where L = +/V') matches the optimal capacity condition d =< \/V.
By contrast, when the context window is larger (L < V), the requirement becomes d < V, which is
also reflected in the experimental results, as observed in the bottom panel of Figure 2a.



Under review as a conference paper at ICLR 2026

In Figure 2b we run experiments with increasing sample size to observe the multiplicative trade-off.
As seen in the bottom figure of Figure 2b, increasing the sample size from V log V' to V'1'® reduces
the dimension exponent from 1 to 0.7 (the theoretical value is s = 0.66). Finally, the learnability
thresholds for L =< V in Figures 2a and 2b are plotted together in Figure 2c, to illustrate that
increasing the sample size can compensate for the number of parameters in the network.
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Figure 2: Empirical scaling of embedding dimension (left) and parameter count (right) via three-step GD for

the Attention-only model. In (a) and (b), top-left and top-right use L < +/V; bottom-left and bottom-right
use L =< V. In the right panel, the L =< V case is shown under two sample-size regimes, N =< V'logV
and N =< V'5. Line fitting: We identify in the heatmaps the smallest embedding dimension that achieves
accuracies {0.1,0.125,0.15} and perform a least squares fit. The slopes of the fitted lines and their theoretical
counterparts are reported on the heatmaps. Differences in transparency in (c) are due to overlapping points.

4.2 ATTENTION-MLP MODEL

For the attention-MLP model, the nonlinear MLP layer introduces additional phases as stated below.
Corollary 2. For the Attention-MLP model, Theorem 1 translates to md 2,V and

MLP noise, m = o(d*L) and m = o(dV)
Signal > ¢ Gradient noise 2, V > dL and m = d*L
Mean Bias, V =o(dL) and m = dV,

where

* Signal > MLP noise is equivalent to Nd > V L? /\/m.
« Signal > Gradient noise 2 is equivalent to d\/N > V L
« Signal > Mean Bias is equivalent to AN3 > L3 V3.

The phase diagram for the Attention-MLP model is richer than Attention-only, as we can trade off m
and d and hence use a smaller embedding dimension; this results in potentially different dominant
terms in the gradient. In particular, since large L and d entails larger magnitude of Mean Bias (as in
the Attention-only setting), we know that by increasing the MLP width m and thereby reducing the
required embedding dimension d, we may suppress this bias term.

Empirical Findings. We run the 3-step gradient descent algorithm on an Attention-MLP network
over varying V' and d and plot the accuracies in Figures 3 and 4. We take the nonlinearity to be the
mixture of two Hermite polynomials ¢ = 0.7ha + 0.3h3, satisfying the conditions in Assumption 3.
We run experiments with width m =< d? and m =< d>. Due to the prohibitive cost of increasing the
width further, we restrict ourselves to the MLP noise-dominated region.

In Figure 1, we plot the scaling of the number of parameters (md) as a function of vocabulary size
V for different sequence-length regimes in L. We observe that L =< V925 requires md = V/, which
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is the optimal capacity, as predicted by our theory. As L increases, we need more parameters to
achieve the same capacity, as observed in the L =< V% and L =< V7 cases in Figure 1, where the
slopes agree with our theoretical predictions as well (see Figures 3a and 3b).

We further test the effect of sample size in Figure 3, where we use L =< V°-5 and m < d?. We plot
both heat maps in Figures 3a and 3b, and the fitted lines for L = V' together in Figure 3c. Note
that we state the plot in terms of parameter count, which scales as md =< d3, so the slopes from the
heat map are scaled accordingly. We observe that increasing N from N < VlogV to N < V!
reduces the network size to the optimal level, aligning with our theoretical prediction. The heatmap
versions of these experiments are shown in Figures 3a and 3b.

Lastly, we probe the width scaling by keeping the sample size N < V' 1ogV and L =< V95 fixed in
Figure 4. Here, we observe that we can reduce the embedding-dimension requirement by increasing
m (Figures 4a and 4b), though it increases the total parameter count overall, as seen in Figure
4c, since width must grow proportionally more than d to achieve the same accuracy. This is also
consistent with our theoretical prediction.
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Figure 3: Empirical scaling of embedding dimension (left) and parameter count (right) for the Attention-
MLP model under N =< VlogV and N =< V!®. In (a) and (b), top-row uses L =< V°5; bottom-row uses
L = V975 The right panel also shows L < V-5 under both sample-size regimes.
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Figure 4: Empirical scaling of embedding dimension (left) and parameter count (right) for the Attention-MLP
model under two width regimes, m = d* and m =< d>. In (a) and (b), top-row uses L = V°°; bottom-row
uses L =< V%75 The right panel also shows L = V-5 under both width regimes.
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4.3 BEYOND EARLY PHASE OF TRAINING

While our theoretical analysis handles a particular 3-gradient-step training procedure, we empiri-
cally observe qualitatively similar multiplicative scalings when the transformer model is optimized
beyond the “early phase”. Specifically, we train our Attention-only model for multiple steps us-
ing (i) full-batch gradient descent and (ii)) Adam (Kingma & Ba, 2015) with mini-batch gradients.
Throughout this section, we use a sample size N < V' log V.

Full-batch gradient descent: We use learning rate = 0.5 and continue training until the test
accuracy does not improve by more than 0.01 for 10 consecutive checks. In Figures 5a and 5b, we
provide heatmaps for L =< V and L = /V. We observe that when L = \/V, the slope indicates
the network is at the optimal capacity condition; this is also reflected by the slope 1.06 in Figure
Sc. By contrast, for large L the slope significantly shifts and becomes suboptimal, confirming the
multiplicative relation established in Section 3.

Adam with mini-batch gradients: We use layer normalization in both the attention and output layers
and choose learning rate n = 0.005. We specifically use batch size | N/40] and run the algorithm
for 3 epochs. In Figure 6, we provide heatmaps for L < V and L = 8 at the end of epochs 2 and
3. We observe that for L < V' in early training, the slope is suboptimal, while training the network
for one more epoch improves the capacity condition to a near optimal level. In contrast, for L = 8,
we observe that the network does not exhibit a suboptimal phase at the end of epoch 2, which is in
line with our theoretical findings. A rigorous analysis of the full gradient descent dynamics is left
for future work.
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Figure 5: Empirical scaling of embedding dimension (a,b) and parameter count (c) for the Artention-only
model trained by multiple-step GD.
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Figure 6: Empirical scaling of embedding dimension for the Attention-only model trained by Adam.
5 PROOF OVERVIEW: POPULATION ANALYSIS

In this section, we outline the ideas for the proof of Theorem 1. For presentation, we consider the
Attention-only model with population dynamics and orthogonal embeddings. Since we do not use
positional encoding in the model, without loss of generality, we fix the correct position to £ = 1.

In the proof, we study the attention scores in (1) and characterize the conditions under which they
align with the trigger vector. Once attention can distinguish informative tokens, the remaining part
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reduces to learning a linearly separable problem, which is well understood. The pre-softmax scores
evaluated on a fresh sequence Xj,, with the key-query matrix given by the first gradient-descent

iterate WI(((% is given as
T 1
scores:= (ztrigeir + ZinXin) WIEC;ZEOS. (7)

For the proof overview part, we analyze the following simplified form of the scores (for the full
expression, see (10)):

scores~ v X! Z;| (NL Z Zn X X, Z, (VD) Zoui(pi — %RV)) ®)

Non-informative

Hllzslien (577 Zw V2V Zgu(pi — $1v)) ©)

Informative

Here V() denotes the first iteration of the value matrix given in (3). The informative term in (9)
captures the alignment between the trigger vector in the fresh input and the one in the learned weights
W}gg, and therefore contains the position information of the informative token. By contrast, the
non-informative term in (8) reflects correlations between tokens and does not carry any information
about the token’s position. The proof characterizes conditions under which the informative term in
(9) dominates, which is sufficient for attention to identify the correct position.

To study population dynamics with orthogonal embeddings, we set Z;, = Z,,; = Iy and take
N — oo while other parameters remain fixed. Under population dynamics, we first observe that
V() = O(n)II,, where 7 is the learning rate of the first step in (3). Then, we can write

O(n
Non-informative= X, Z X; X, 1] (p; — w1v)

m NL
O(n ) T T 1 _ 1,00m)

where the last equality follows since Xj,, has one-hot columns. On the other hand, we have

N
. 1 1,00y
Informative = O(ny)ey (ﬁ Zaszll_[;r(pi - %]lv)) =(1- V)%el,
i=1
where we used p; = Il.x; 1, in the last step. By choosing learning rates that guarantee 77y — oo,
we can show that the attention probabilities align with e; and eventually select the correct position.
The reader may refer to Appendix C.1 for an extended proof overview of the empirical dynamics

with non-orthogonal embeddings, where we detail how each term in Theorem 1 arises from the
terms in (8)-(9).

6 CONCLUSION

In this paper, we derived precise asymptotic rates for learning with gradient descent on transformers
trained on a simple recall task with random embeddings and finite samples. Our analysis and exper-
iments reveal a rich picture of multiplicative scalings between various problem parameters, showing
that parameter count is not the only important factor controlling capacity when learning with finite
samples on large noisy sequences. Our results suggest that finer control of the data distribution
may be necessary for learning efficiently at optimal capacity, for instance by ensuring sequences
are less noisy and more informative, hoping that the discovered mechanisms are robust to harder
settings. This is reminiscent of the procedures used for long context extension in LLMs, where most
of training happens on shorter sequences, but the final models are extended to work with very long
sequences, and empirically do well on retrieval tasks such as “needle-in-a-haystack” (e.g., Gemini
Team, 2024), which resembles our theoretical setup. Analyzing similar scalings in more structured
data distributions and architectures is thus an interesting avenue for future work.

10
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LLM Usage. Large language models are used to polish the abstract and find relevant references
for the related work section.

B PRELIMINARIES

Proof organization. We combine the proof for both models: Using ¢(z) = x and m = oo is
valid for applying the arguments for Attention-only model in the proof. As the network succeeds
in storing all informative tokens only when attention selects the correct position, we focus on how
attention learns the correct index and under what conditions. This is the bottleneck in our analysis
under Assumptions 1, 2, and 3. Accordingly, we study the pre-softmax scores in (1). Theorem 3
characterizes the scaling of these terms and yields (6). Because the proof involves lengthy expres-
sions, we provide a proof sketch in Section C.1 and refer readers to the corresponding parts of the
formal proof.

Additional Notation. For a vector z € RV, we use diag(x) € RV*V denotes the diagonal matrix
which has the same diagonal entries with @, while for a matrix A, diag(A) € RY denotes the
column vector whose elements coincide with the diagonal entries of A. For a random variable w,
E. -] denotes taking expectation with respect to w and keeping the remaining independent terms
fixed. Similarly, we use E[-|w] for conditional expectation, conditioned on w. We use Lgyent as
an indicator function, which takes values {0, 1} depending on the event holds or not. We use C' to
denote any constant in the upper-bound, which might depend on ¢.

Since we do not use positional encoding in the model, without loss of generality we can fix the infor-
mative index ¢ = 1. We define the sequence of non-informative tokens as N; == [x; 2, - - , ;, L]T.
We will denote the rows of Wi, with {wy,}}" ;. For compact representation the attention with the
trigger we define

Zin = [Zin  Zuig) and X; = w;vrl 1 e REX(V+D)
in in rig i N,L 0

With this notation, we can write the iterates in three-step GD. Let
(0) = a((zmge[ + ZmX)TWI({QZEos>

We have

N
v = out(% Z A(O))qb((aEO))TXiZ;VViI))

i=1

v )¢ (O\T
=Zi, NZX (diag(ax ) o (a; ) X, Z W,

in
i=1

% diag((ﬁ’(VVinZinX;raz(_O))) (VT Zoi(pi — 9 zos (10)
For notational convenience, we define the noise due to finite width as
FW (Wi Zan, Xo, X;) = (Wil ding (0 (Wi 20 X 1) ) o (E Wi Zi X 1)
— B, |Wildiag(¢/(:WinZu X 1) )0 (2 Win Zu X 1,)] ).
and the terms arising in the expected value term as
i =B | (F07 ZuX[10)6 (F0" Zu X 11)],

By = Bu ¢ (F07 Zu X[ 11)0(2w" 20X 11)].
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C PROOF OF THEOREM 1

C.1 PROOF SKETCH FOR THEOREM 1

For convenience, we fix II, = Iy and, accordingly, p; = «; 1, and consider the Attention-only
model unless stated otherwise; however the derivations for Attention-only model holds also for
Attention-MLP. We study the pre-attention scores given in (7), with the explicit formula in (8)-(9).
We derive the terms in (6) in three parts:

* In the first part, we analyze the informative component (9) and derive the scaling of the Signal
term in (6).

* In the second part, we analyze the non-informative component (8) and derive the scaling of Gra-
dient noise and Mean bias in (6), corresponding to its mean and bias components.

* In the third part, we consider the Attention-MLP model and derive the scaling of MLP noise in (8).

Before proceeding, we note that both the informative and non-informative terms in (8)—(9) depend
on the first iterate of the output layer, V1), which can be decomposed into mean, bias and gradient
noise components as

N
Vv x Z, . x;, V(X)) ")z (11)
(NLZZ_; v L )
~Z (L(I — L1y1y) iix V1T 1 =)Z‘T (12)
~ Lout VI \% 1% VN - 7,1 — \/m“ in

Mean ) Gradient noise
Bias

where the gradient noise component is given by
Vo 1 1 1
= . L T T
—_ = m(z(wi’l_vﬂv)(Xi]lL_V]lv) —V(Iv—v]lv]lv)).
i=1

Here, the bias term arises from aggregating tokens at initialization: the aggregate-token averages
%X ;17 concentrate around their mean % 1y as L grows, so this effect appears as the bias term. The
gradient-noise term captures finite-sample fluctuations of tokens around this mean. We explicitly

factor out the typical size 1/v/V LN in (12) so that the remaining matrix = stays of constant size on
average, i.e., E[||Z]|3] = O(1). We are now ready to consider the cases listed above.

Informative term. With the decomposition in (12), the informative term in (9) can be written as the
sum of two contributions:

1

1
Informative ~ Zmz 1ZTZIH(IV - V]]-V]]-T)Z Zout(mi,l - V]]-V)

out

VI2 N

=0(1)

The first term is due to the mean component; the second term is due to the gradient-noise = compo-
nent in (12). The bias-related terms are ignored, as they do not contribute. By standard concentration
arguments for Gaussian matrices, the first term remains O(1), whereas the second term concentrates
within £(log V')/d, yielding the Signal component (6) (the noise component is weaker than the
remaining terms in (6)). See the“Concentration bound for scores” part for the formal proof.

Non-informative term. In this part, we consider large L regime where

1 1

—ZnX:X'Z! ~ =1, 13

L 7 in d d ( )
We consider an arbitrary row of Xj,, which we denote with x;,,. With this approximation, we can

write the non-informative term as

. . 1
Non-informative ~ ——— TZTZm:Z

N
1 1
Z out 5 Z; — 7]1
dvVILNV outFout r ;( ATy
eVE [t ket
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2

7

N
1
+ o @02 Zuly Hz iju —nv\

€4/ %[— log V,log V]

2|

where we ignore terms depending on the mean component in (11), as they do not contribute. Here,
the first term is due to the gradient-noise component =; by standard concentration arguments, this
yields the scaling of the Gradient noise term. The second term arises from the bias term in (12);
using standard concentration, this gives the scaling of the Mean bias term in (6). See the “Concen-
tration bound for scoreq;” part for the formal proof.

MLP-noise in Attention-MLP. We denote the rows of Wi, by {wy}}",, where wy, ~ N (0, I).
We work in the large-L regime for illustration, adopting the approximation in (13); however, the
result extends to general L. Under this approximation, MLP-noise can be written as

1
MLP-noise ~ @, Z;}, ~- ( Zwk(b ( ;ZinXi]lL)d)(%w,jZian]lL)
i,7=1
X (iBZ 1— 7 )ZoutZout (Zlij’l — é]lv)) .
For large L, we have H%w;ZinXi]lLHQ ~ L~1/2 - 0, hence

¢’(%w,jzinxih)qs(%wﬂzmxjh) 5 $(0)¢/(0) |
—_———
nonzero constant

where Assumption 4 ensures ¢(0)¢’'(0) # 0. Replacing the ¢-dependent factors by this constant
yields

m N
s $(0)ve’(0) 1 T T, . 1 1 2
MLP noise ~ — Q0 m kz::lwmputZinwk, HZOUtN ; (:ci,l — V]lV) HQ,
logV logV zi
[l test ] <

which, by standard concentration arguments, gives the scaling of the MLP noise term in (6). See the
“Concentration bound for s3” part for the formal proof.

C.2 ATTENTION SCORES AND THEIR ASYMPTOTIC SCALING
Assumption 4 (Technical conditions). We work under the following conditions:

» Permutation. Without loss of generality, assume 11 = Iy,.

* Learning rates. Take 11 = oy (1), chosen sufficiently small so that any o, (1) terms are negligible;
in particular, we may write p; = % 1y + o,(1).

* Activation. We consider a polynomial activation ¢ with a degree of p, satisfying:
= ¢(0),¢'(0),9"(0) # 0

— The smallest non-zero Hermite component of ¢ has index q., ie, ¢* = min{k >
0|E[¢p(Z)H,,] # 0}, for Z ~ N(0,1).

By using the technical condition above and ignoring the vanishing terms due to learning rate, we
decompose the attention scores in to three terms s1, S3, S3 € RE .

XZL W)

- NZ’}ﬂ XZI,Zm Z a5 X IL - ]lL]lT)X Zl—IrlZmX Lz
1,0=1
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X (iL’j — %ILV)TZ;tZout(mi — %ﬂ.v)

N
m T T 1q 17T T T
+ w27z XZmnZin S BuX] (I, — £1.1]) X Z,) Zin X, 1,
ij=1
X (wj - %]IV)TZ;EltZout(mi - %]]-V)
N
M 7T T 1 T T )
+ 727 X ZinZin >OXT (I = $101]) X ZLFW(Wiy; Zin, X, X))

ij=1
x (x; — %ILV)TZ;tZout(wi - %ILV)
= n’y(sl + s + 53).
The following theorem characterizes the scaling of each term:
Theorem 3. With probability at least 1 — oy (1), we have the following:

1 1 1
Fs1 =1, + +
€ 5 H(VLQ \/NVL3/2d) NVId(d A L2)Y/2(d A L)'/2
1 1

Tsy <+
e (Nﬁd(L nd) " NLA(Z A d)1/2>
T 1

L2372 Ndym'

Moreover, for notational convenience, we define

N
1 T
Alir = Zin(iLN 5 1 aij(z; — 3 1v)(z; — v 1v) >
=
| X
< (o il = 1)@ - $1v)7) 2,
i=1

N
1 T T T
Ay = Zin(ﬁ Z:laij(Nj - %lVlLfl)lLfl(wj - %ILV) )
j=

N
1
% (ﬁ Zarj(mj — v ly)1  (N) - %ﬂvﬂ_l)T)Zil
i=1
1 1Y Tl
o 1 1 T,T
A3 = LTV?(N ;azj(%‘ - V]lv)> <N ;Oérj(wj - V]lv))Zin]lv]l‘,Zm

and

Jj=1 j=1
N
1 T T
52 — (m ;(N] — V]lvllLil)]lL,l(a:j — V]lv) )

—_

=1
N N
5= oo - #0) (3 e - oo

J=1 Jj=1

We first make an observation that we will frequently rely on in the following:

19

(14)
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Proposition 1. For any p € N, we have

E[ll A1 irl[5] V E[|| Az,irl|5] V E[| Azir[[2] < poly,, 5, (d, V, L).
where poly,, , (N,d,V, L) denotes a polynomial function of (d,V, L) whose degree depen
(P, ).

Proof. By Proposition 12, we observe that o;; < poly,, (d,V, L). Therefore, we have

|A1irll2 V | Azirll2 V [[A3irll2 < poly,, (d,V, D)1 ZinZ3 || 2-

from which the result follows.

C.3 PROOF OF THEOREM 3
We observe that
XZi—rrlZinxlT = (ZinXT + 5Zin6v+1e]—)—r (ZmXiT + 5Zinev+1e]—>
= XZ| Zin X +6e12, Zin X" + 06X Z| zinige] + 6%||zuigll3ere, -
In the following, we will consider x; = e,,, for v € [V]. We will write
5efelzmg + Z;XTel =27, + 1p=10Ztrig = Zu5
and
5elthrigZinXTel + 52||ztrig||§ele1Tel = 52,Iéztrige1 = 0sy5€1.
In the following, we will consider the event.

Event := (E.1)N (E.2).

C.3.1 CONCENTRATION BOUND FOR 87

By (19)-(20)-(21), we can write that

N
1 1
e 51 = Iz > aijz) s Zin X[ (I — E]lL]lz)XiZiIZianT]lL(scj -Lt1v)"2,,.2,

out
ij=1
ds N 1 T
v,0
N2[2 o (er — Z]lL) X,»Z;ZianT]lL(wj _ %HV)TZ;EltZOut(xi _1y,
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Concentration bound for score;;: We start with score;;. We define
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On the other hand,
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On the other hand, we have
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i=1 j=1

N N
1 1
+ NoLV2 E E aij(]leacj - V)ZI(SZinZi—Ir]Zin]]-V

i=1 j=1
1 L 1
T To 4T T
T N2IAV ;;O‘i‘i(ﬂwi:% - V)Zu,ézinXi 11y X2, Zin 1y

By using Event and Proposition 9, we have

¢ For the third summand,

< M(L—k Z)

1
SB[ Zu X L1 X2 2Ly ) (2| < =

¢ For the first summand,

L

E [(ZI(;Zin (XlTXl — VIV)ZiEZin]]-V)ﬂZin]

. . . 9 L2, -+ . 2> CVLlog*V
=K |:(Zy7ézinXi XiZinZin]lV) |Zin:| - W(Z%ézinzinzin]l‘/) = 42

Therefore
1 N N 1 L 2
T T T

E [(W Zzaij(]lm:wj - V)Zu,ézin (Xi Xi — VIV> ZinZin]lv) |Zin}

i=1 j=1
1 N N 1 )
+E {(W Zzaij(lmi:mj - V)ZI(sZinX;r]lL]linZ;Zin]lv> |Zin:|
i1 j=1
Clog®V
— NIL3Vd?’

* For the second summand, by Event,

1 LY 1
W Zzaij(]lm,‘,:mj - V)ZlgzinZ;Zin]lv

i=1j=1
N N
1 1 T T ClogV
< e (?_1 j§:1|1m:wj - V‘) suplaz, s ZnZn Znlv| < Lo

Therefore, by Chebyshev’s inequality with probability 1 — oy (1), we have

Clog®V Clog®V

NIVE T VIV 53

|[scorejiia] <

By (34)-(35), overall we have

1 1 1 1
scorej; < ClogV + + +
H 5 <VL2\/& VNVI3/2d ' NJVLAVIAd NLdVV(LA \/V))
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4 Clo V( 1 n 1 n 1 ) ClogV 1
& NVV(LAdWA  NVVd:  NIL2VLAd/)  VVLALAd)V AL2ALVA
1 1 1 1
< ClogV + + +
=Te <NW(L ANd)Vd  VNVL32d  VL32d(LAd)  V2/Ld(L A d))
ClogV
VL2(L Ad)Y/?2’
Concentration bound for score;s: We recall that
N
08u.6 1.7 1 1
score12 = oy ij:laij (e1 - EHL) XiZy Zin X ] 11 (2 — 71v) T Z3 Zows (s — 71v)

In this part, we will focus on the term

1 1
N2L2 Z aij(e ) X, Z Zin X[ 1 () — VHV) " Z) i Zow (i — V]lv)
1,j=1
tr(Zy, Zin X 11 (2; L1727 2 L,
N2L2 1221 r in L( - v V) out outaw( V V) )
(2] Zn X 1 L) 2Tz LT x,
N2L3 ijl Qg5 tr in L( v ) out out( TV V) L\

= scorejg; + scorejos

For the first term, we write

1 1
scorejs; = N2L2 ;1 ZTZmX 1p(z; — V]]-V)Tzoutzout( - VILV)w;r)
1 1
N2L2 Z (20 20X 10(@; — - 10) T 20 Zowslis = ¢/(0)%) (@ — - 1v)a] )
i,j=1

= scorej211 + scorej2i2
We start with the second term. By Chebyshev’s inequality, we have
R 1
SCorejgig2 — W Z (Oéz'j — (25/(0)2)(]].1,1:1,} — V)wq—erZmXJT]]-L

ij=1

L 1
2 TrT T T
NQLQ\/’H Z g — ¢'(0)7) (i — Vﬂv)wi ZiwZin X 1 (x; V]lv) HF
By Event
N
> (i — ¢/ (02)(@] 20, 20X 1)
i,j=1
1 N 1 X
= (@] Z0ZuX] 10 + — > (@] Z7 Ziu X 11)?
(VA L2 A LVA)? ;1 + 13 g
(s #)0+7)
T \(VAL2ALVA?  L? d
Therefore,
1 1
2 T,T T T
Nsz\fH Z ay; — ¢'(0)7)(xi — V]lV)mi ZZin X 11 (z — V]lv) HF
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\/* N
= N2L3/2\/$(L A d)1/2 (V A Liv/\ Lvd * TN) H ;(mi - l]lV)(“’i - *HV)THQ

- 1 ( N N \/ﬁ) oy (1)
T NVI32VA(LAd)Y/2\V AL2 A LVd '
Moreover,

N
1 1
HW Z (cvij — ¢/(0)2)(]]‘mi:mj - V)wiTZ;ZianT]lLH
i,j=1

< (ZN:W *il)s |ovij — ¢'(0)*)a] Z,], Z; XT1|<(1_%)3(1 L
— N2[2 = Ti=Ty 1% I,JE[IJ)V] Qij in #in L| > NILZ L a)

Therefore, |scoreiaia| < ﬁ Next, we consider scorejgs:

SCOoreq99

Z Ti=Tj ]lTX ZTZlnXTlL

l]_

N2L3

N
1 1
Z (:132 — V]]-V)]]-IXZZ;ZijT]]-L(wJ - V]]-V)TH

F

N
1 1
+ 52 2 (@i = (0 (Mayma, = )L X0 2 Z0n X[ 1y

ij=1

N
1
> (aij — ¢'(0)%) (i — Vlv)linZ;ZianT]lL(w] ﬂv)TH

i 1 H 1
VAIIN2L3 £
1,j=1
=!: Scorejgy] + SCOrejogy + SCorejge3 + SCorejooy.

For scorejsay, by Event,

1z Z i — N1 X[ 202w X 1,)?
3,7=1
! Z 1, X' Z] Zin X[ 1) iii 1, X, 2] Z, X, 1,)?
(V/\L2/\L\f2L2,L¢J1 LL — ) in [
M N
T (VAL2ALVA)3
Therefore,
1 N VNN _ oy(1)
score < ( - —|——> < .
lscorernl < Se (VAL2ALVAP? L VL2

For scorejsas, by Event,

|SCOI‘€1223| N2L3( Z | Ti=x; |)|Sip|(a1j ¢/(0)2)12X2Z$ZIDX;1L|

i#j=1
+ L sup|(as — ¢ (0)1] X, 2, 2, X, 11| < (1).
NL3 in V2
For the first two terms, we define
. 1« T 1 T . 1« 1 T
Vo.zﬁjng L(e; — 1v)", Vo .:ﬁ;mi(mi—vlv)
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1 1 1 1
= 11 1 = =1y)T, Vozi= —ly— — L)’
Vo2 NLZ L— 1) r—1(; v v) , Vo vV VNL izl(mZ v v)
We have by Event,
2¢'(0)* _ ov(1)
<? ZVoV,' Z3] 7H = =
|[scoreiaos] HL = NVL2Vd ~ LdLN — VL?

Lastly,

(0> 2¢'(0)* _ ov(1)
NVLQf (ZanT) NL2\f< VI

Therefore, |scoreiss| < 4z Lastly, we consider score;o;. By Chebyshev’s inequality, we have

/ 0 2
|scorejsn| = ¢ (L) tr(ZinVOVO Z;)

|score;a|

= ¢'(0)*t:(Vo1 Ziy, Zin Vo.1) + ¢/ (0)°tr (Vg Zip, Zin Vo.2) + ¢/ (0)° (L — 1)tx(Vo ) Zigy Zin Vi 3)

1 1 L1
+ ﬁHVlezllzmv(-),lHF + ﬁH‘/OTlZiIZin‘/O,QHF + WH%EZ{LZm%,?’HF

We have the following:

¢ The first summand:
1
VL2

tr(Vol Zin Zin Vo) = tr(ZinVoa Vol Ziy) <
* The second summand: By Chebyshev’s inequality, we have
tr(Voh Zi, Zin Vo 2) N2L2 Z wi—z; — 9)T Ziy Zin(N} — $1] 1)1
1,0=1
= i* HVo 2Voh H

We have by Event,

ClogV ClogV
VoaVol |, < = |eel , < vovw
H 0250y = v I17?r T VIVIN

¢ The third summand: We have
(L = 1)tx(Vy, Z3), Zin Vi 2)

L1 (1 -z z! z,.1y
N2T 21/ T;=T; Vv 7 in“/1n

T N2y =

L-1 &

— 1 1
= N2L2Vij:1(]]-wi=wj - V) N2L2Vf" Z T =x; V)m’t 2.

We have by Event

N2L2V mt*% V - NLv3/2'
i,j=1
and
N

2 LV\fH *IN Z H \/>V2L\f

1

N?LWWHZ wme V)
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* The fourth summand: We have by Event
C
<
r~ VL2

T T
‘Zin%,leZin

1 H T T 1
—|viizizuvea | = —|
\/E 0,1 0,1 F \/a
* The fifth summand: We have by Event

2
(Va2 ZuVoo|| | < (Vi 2 2 Voo Vol 2t Ziu Ve )

1 \% 1 1

< ——tr(Zin Vo VL Z) < = :
< NzaTEnVoaVoaZu) S TR T NV
Therefore,
1 ’ T T 1
vzl z i H <
x/&‘ 01 2Nr = VNV L324
¢ The sixth summand:
2 1 1
(L - 1)2H‘/0T1Z£Zin%,3HF S mlvzizzin%,l%T1ZiIZin1V S m
Therefore,
L—-1 C
vz z. W H < v
NG [zt 20 |, < VLVNd
Then,
1+oy(1) 1
SCcorejg =

VL2 VNV L3/2d

Therefore, we have

1+ oy (1) 1 )

scoreqp = 55u,5( VIZ2 \/WL3/2d

C.3.2 CONCENTRATION BOUND FOR Sg

‘We have
elTSQ
1 N
= w212 > Bijze s Zin X XiZ L Zin X 1 (i — F1v) T 2y Zows(x; — w1v)
i,j=1
1 N
- NopE > Bijz)5Zin X V1] X 2 Zin X (i — $1v) T 2y Zow (x5 — £1v)

i.j=1

N

05y, 1 T

+ N2£$2 Z Bi; (61 — Z]]-L) XiZiIZinXZ-TILL(wi — %]]‘V)TZ;LtZout(wj o %Ilv)
1,j=1

—! SCorep; + SCOregs + Scores;s.

Concentration for scores;:  We will write scores; as follows:

N
1
scores = 15y ‘Z (Bij — ¢'(0)*)z, 52w X, XiZ;, Zin X, 11,

i,j=1
x (i — $1v) " Z0y Zow (z; — H1v)

¢/(O)2 al T T 1 T L—1
+ 5577 O 2% (m,x - VIV)ZinZin(mi + L=y

ij=1
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X (CEZ — %ﬂv) Z;tzout(wj — %lv)

¢/(0)2 al T T L—1 T L—1
+ St O 2 (NN = 5L ) 20 2 (@i + S5t 1)

i,j=1
x (i — $1v) " Zy Zows (z; — 1)

90 $~ v T 1122 (NT — 11,17
+ > 2aZin (@@l = $1v) 2020 (N — $1v1] )1

N2L?
Q=1
X (CEZ — %ﬂv) Z;tZout(:cj — %ﬂv)
/(0)
+ %LQ Z 2] 5 Zim (N N - IV) Z] Z (N — L1y1] )
1,5=1

X (i — t1v) " Zy Zows (z; — 1)

¢'(0)2
t Ny Z 2y 5ZinZin Zin X 11(®i — $1v) | Zgy Zow(®j — 3 1v)

i,j=1
=! SCOoresi] + scoresgi2 + scoresi3 + scoresiy + Scoresys + Scoresig
By Chebyshev’s inequality, we have
1 N
Z (Bij — ¢'(0)*) (1,=a, — %)Zj,azinX;XiZiEZinX;]lL

SCcoregy 1 = W
ij=1

N
1 B N2\ (e 1 T v vy 7T wvT 1 T
+ m“ MZZI(@J - ¢'(0) )(% - V]lV)Zy,z?ZmXi XiZZinX; 11(z; — V]lv) HF

—=: 8Ccoresgii] + scoresii2.
By using Events

|scoreaii]
N

= N2L2<Z(iﬁm ()2)(1%:% )2>2(Z V5Z XTX ZTZ X—r )2)

i=1

Clog’V /vV/N N3/2 1 L
- N3/2[L2 (T+ %4 V/\LQ/\L\/E)(\/Q(LAd)%)
Clog?V /v/N N3/2 1 VIV
N3/2LV<T+ 14 V/\LQ/\L\/E><d3/2 )
Clog*V Clog*V Clog*V 1
T VI2VA(L A d)? NpEaEr VVLd3/2V NL2 A LVd

Moreover, by Chebyshev’s inequality

1 1 17 N\T
|scoresiia| < m“ Z(:Bz —vlv)(x; — 1v) H2

( ZZ Bij — |Z 5Z1an‘TXiZiZZinXiT]1L‘2)%
=1 j=1
Clog’V N VN 1\ /VL L3?
N3/2L2fV<v/\L2/\Lf L)(f+d3/2)
_ Clog®V ( VN n l)
 VNLVALAd\VAL:ANLVd L
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Clog?V 1 i Clog?V
T VVLALAd)VAL2ALVA  VNVI32d(LAd)
Therefore,
1 Clog*V 9 1 1 1
score < + + Clo V( + - ) .
| il S e T ND R Y \VVIAT A d) | VISR VAL A LVA
Moreover, by Chebyshev’s inequality, we have
SCoregi2
N N
_ -y z [ —Li1,)z] z 11
= wrzz (L Z 2} 2 (i, (@i + 57 1v)
j=1 i=1
N
el e = 410 e #1017 ] — 1) L+ 10|
NZLQ\/g =~ J vV 9 s y5 in i vV inin\*1% 1% 14 2~
Letn; == |{j < N|x; = e;}|. We have
1 N
T T -
vz | e~ +1v) HZ W)2lsZin (o] = $1v) 20 (@ + S10)
j=1
1 < . . L1
| (e = 1) HZ )2l sZin(@i] = ¥ ) 202 (i =5 1)
j=1
I N N
1 T T 1 T
7 NQLVHZz: ﬂV)’LH;(wi_V]lV)Zy7ézin(wiwi _VIV)ZinZiH]IVHQ
\4 1
c 1 2T T T 2\ 2
< NIz (N ;nl zy’(;Zin(eiei —%IV)ZinZinei )
T T T
o g el - n )
By Event, we have
N 1 ClogV
— n; sup |z, Zm(eze e )Z Zine;| < .
‘Ni_l Vv om0 v v
Moreover,
1 & 1
B[ 2t~ pivizlszu(wal [ h) 2z 2)
1
<SEz [ Mzm(m x] — VIV>ZLZH1]1V]1TZ Zm(% VIV)Z zy5|zm]
1 al 1
+mE[ 3 (Loyea, — -z V5Z1n(a: x; fVIV)Z Zwly1lZ)] Zm(mj x) fVIV>Z zu5|zm}
i#j=1
1 N -1
< (ot IE[ Zm( vix] — —Iv ) 2] Znlyv1] 2] Zm( LY )Z ) zm}
,(NJ'_ NV) Zu8 VV) v VV 26|
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< (i n N — 1)CV10gV
- N NV az
where we used Events in the last step. Therefore, by Chebyshev’s inequality, we have

|scoress| <

ClogV ( n L )
T VNVLAAN VVd)
Moreover, by using Chebyshev’s inequality

SCoresis
N

N2L2(Z *HV )T

j=1

1 L—
X (Z(mi - 1)z Zn <NZ-TN1- - %IV>Z;ZHI (: +
i=1

N

* NzLIQ\/gH;(%‘ -y,

N
1 T T L— T L-1
x HE_;(:B — 102,20 (N N = 55 ) 2 Zn (w0 + — 1) |
We have
- T T L-1 2
( m7_mJ* y(SZlIl(N N I )Z Zin(mi+ % ]]-V)) Zin
j:l
N N 2
Z (Z zi=z; — V6ZIH(NTN ;IIV)ZiEZinCCi) Zin]
=1 ]:1
1, L—1 L—1 2
< IRy T o T _ ™ T (o - ‘ _
<2(1-7) ;E (z,,,ézm(Nz N, IV)ZmZm(mZ—i— 1v)) Zin
201 - I K & L-1 L-1 2
L20-y) ( ZZ (zjézill(Nj N, -~ IV)Z;Zm(mmL le)) Ziu | 36)
i=1 j#i
‘We have
L1 L1 2 L %
E | ()02 (N N, = “o=1v) 2} Zin (2 + = —1v)) zinl <Y

Therefore, we have (36) < C‘%izL Also,

v |4

N
1 1

E[H i —1y)z) Zin(N-TNZ-——I )ZTZin :

;(dﬂ V)Zv,5 7 v 14 in (:B +
Therefore, by Events and Chevushev’s inequality, we have

1 n 1 n 1 n 1 )
NVVI3/2d NVLd NL3/2d3/2  N\/V\/Ld3/?
Moreover, by Chebyshev’s inequality

|scores;s| < Clog V(

SCOoregigq —

W(z )’
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X (Z(ml — ‘}.]lV)ZIC;Zm (.’BZ.’I}: — %_[V)lem(]\rlT — %]]-V]]-—Lr_l)]]-L—l)

1
s el S0

K2

N
X H Z(ml — %]IV)ZI,;Zin(wimiT — %I\/)ZIIZIH(NT - %1V12—1)1L—1H2-
i=1

N 2
( Z (]]-mi:mj 7%)225Zin (w;ra:l — %IV)ZIIZIH (Nl—r — %]]-V]]-I—l)]ll;—1>> |Zin‘|
i,j=1

N 2
(D (aima, = $)2L 52 (i) = 510 ) 20 2 (N = 51017 ,)110) ) |zin]

2
(leézin (l’ﬂ?j - %IV>ZiIZin(NiT - %]lv]lz_l)]h;—l)) |Zin]

2(1V%) ii]E (2052 (zi] — $1v) 21 Zi (N - énvnz_l)h_l))z |zin] (37)
i=1 ji
We have
E (zlézin(wimj — %I\/)ZIIZ (NLT — %lv]lz_l)]lLA))z |Zin
< %zjﬁl@ [(mim; — %IV>Z£Zm (:c 1 IV) |zm} Zlz2,5 < CdL
Therefore, (37) < C‘ﬁ\;f Also,

1

N
1 _
H Z(:c - 1)z 5% (:c:cT - %IV) Z5Zn(N] -

2
nvﬂz_l)ﬂL_lHQ |zin]

Zz,,gsz [(a: z; VIV)Z Zi (:c x; VIV) |zm} Zl 2,5 < le\;L.

Therefore, by Events and by Chebyshev’s inequality, we have

1 1
|scorezis| < CIOgV(N\/VL?’/?d + NL3/2d3/2>

Moreover, let

1
Y= 2] 52 (NI Ny = L5100 ) 20 26 (NT = 2101 ) T

v
1
—E [zlézin (NiTNi - %Iv)zgzin (NiT - Vﬂvﬂil)h_ﬂzin}.
We have
SCoregis =
N N
1 1 T 1

N2[2 (jzl(wj - V]lv)) (;(ml - V]lv)%‘)

1 al 1 al 1
N2L2\/d jzzl( iy, Zi:l( v
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‘2'

.
N2L2 (Z *HV )
Jj=1
x (Z(mi—%]lv)zI[;ZinE[(NiTNi L 1IV)ZTZm(N Liy1] )i, 1|sz
i=1
£ eyl @ )|
Nereyvall & vl
1
.= =1y)z" ZinIE[(NTNi Ll )ZTZm N - L1y1] )1 zm}
X H;(Sﬂ v V)Z,s ; v ( vig )1
By Proposition 9
N N N
1 2 1 2
E [( Z (Lo =a; V)%) ] = ZE [(Z(lcm—m] V)%) ]
i,j=1 i=1 7=1
N 1 N N
1 2(1— 1) N2/ L2
<2(1—V)QZ]E[%2]+ Vv ZZE[VE]<CIOg2V7(g+ﬁ)
i=1 i=1 ji
Then,

]| St prvn] < Sent < ooty (5 + 2).

Moreover, by Proposition 9 and Event, we have

N
1
H > (@i~ 1)z, Z0nE [(N;Nl- - %IV) Z] Zin(N] - énvnz_l)ﬂL_l\zm}
=1

LVN
§C’logV£

VVd'

Therefore, by Chebyshev’s inequality, we have

‘ 2

1 1 1
score < Clog®V + +
\ 215| > g (NL\/W(L /\d)1/2 NLd(L/\ d)1/2 NL\/W)

Lastly, by Chebyshev’s inequality, we have
/ 0 2 1
scoresig = ](;\5/'2(L)V Z ez — V)ZlézinZiIZiHXiT]lL

1,9=1

¢ 1 1
+ m” ;1(% ~ V)2 B2 2 X (s — 1)

_J0? LTy Ty xT
(]]-m,;:mj - 7)ZV,JZinZinZinXi 1
- N2LV ;1 Vv
P(0)2, 1 & 1 1 &
+ I 2_@i = w1l 5 —nv 2, s ZinZi Zin X, 11|
Vvd'"N ; v NL z:: 2

We have

1
ZnZl Zn X 11 (2 — —1 TH
HNL ZZ 6 @i = hv)
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N
1 1 1
T T T T T
Zu,ézinzinzinﬁ;(Xi —V]lv]lL)]lL(wi—V]lv) H2
 p Lz | 3 e - 1|
VV,51n1nan N < % VV 9
N
cv 1 1 VV
< zpw— T 1y 1)) (s — —1 H ClogV
—dHNXZ: VV)L( VV) +Ogd3/2\/ﬁ
cv cv
< ———7 +ClogV vV < .
VNLd3/? d3/2/N = V/NLd?3/?
Moreover,
E ! Ly 2020 2.%x71,) 12
NQLV ljz: m@—m77V)zV,6 in4in&in<»; 1L | in
1 N 2
= T T
T ON4A[2Y2 ZE {(Z Ti=T; uészinZinXi ]lL) |Zin}
j=1 i=1
2 N 2
T T T
2 N N 2
T Ty
TNy ZE[(Z vz, =y 2o ZinZn X, ) |Zm}
j=1 i=1
i#]
2 N 2
T T T
= NiLev? ZE {(ZVﬁZi“ZinZi“Xi HL) |Zi“]
T
+N2V3Z [HNL ZZ $ZinZin Zin X 11 (2 '_*ILV H |Z’“]
#J
2 > T T T 2 C
< s ANA . .
< ey ;E (25202 20X 10) 2] + S5
where we used C.3.2 in the last step. We have
N E[(z];202] 2,X71,) |2
N4L2VZZ Z, 54in4in4inA; L |Zin
j=1
1 T T L? L Clog®V
< N3L2V22V75Zinzinz (V2 ]lV]]'V+ VIV>Z Zan1nZV6 < N3Ld3
Therefore, by Chebyshev’s inequality, we have
1 1 ClogV
[scoren| < Clogv(N\/ZcP - N\/VLd?’/?) = NVLE
Overall, by using N < VL,
|[scores|
1 1 1 1 1
<Clo 2V( + + + +
® "\NVId(Lrd) " NLALAND)7Z " NLYVA  VNVLd x/NVLQ\/g)
1 1
+Clog? v ( ).
& T \VIavevIae
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C.3.3 CONCENTRATION BOUND FOR s3
We have

elTSg

Z Z,, 6ZmXiTXiZi£

1,7=1

N2L

x (= Zwm w] 2 X 11)6(1w] 20X 1)
~E [und' (] ZuXT 11)o( T] ZuX] 11)] ) @,

1
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—NopE D e Zu X[ 11 X0 Z
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_E [wk(b'(%w,;erXiT]lL)qﬁ(i ZmXﬁlL)D(

N

1
(1 — ZILL)TXiZiE
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N2L
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- E {wkqb'(%w,IZinXiTHL)¢(%w,;rZianT]lLﬂ)(:nj

=:! scores; + scoress + scoress.

Concentration bound for scores;: We start with scores;. We have
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1

——1
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1

- =1
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1
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Lv)

1 1 1
scoresjy ‘= tr(NL Z(wl — V]lv)zlasz X; Zka¢ (Lw,;'—ZinXiT]lL)

N
1 1 1
x ~ jz_;gb(Lw,;erXjT]lL)(:cj - o) 2], Z,

NL

L X
Nz ( kTZianTlL)(w

1

THN

m

an

1L 1
| X o gl 2uXT11) (@,
j=1

=! scoresjj, + ScCoresij,,
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i *]lv)T)
1
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where we used Chebyshev’s inequality for the second step. We define

o(t) = ¢(0) + tp(t) and ¢'(t) = ¢(0) + t1p1(t) and (t) =: (0) + teha(t).

and write
N
scoresii, = ¢(0)¢ ( Z:v z 5ZmX X; Zka Z )
1 N
T T
+ ¢(0)tr(NL2 Zaz 2] s Zniw] Zywiw] ZinX] 1ot (Fw] 2 X 10) 1 z;(mj ~L1y) )
p
1 N
T T T T
+ (;S(O)tr(NL2Z:c 2)sZinN; NiZwiw] Zun X[ 101 (Fw] X[ 11) Zl(mj —L1y) )
p
1 & 1 1
T T T
—|—tr(NL;(a:i - o)z Zn X[ X Zwd! (fw] Zn X[ 11)

N
1 L T T L T T
x N;w(ka ZuX, ]1L> Tl Zn X1

=! scoresik,, + sScoresik,, + scoresig,, + scoresiy,,-

In the following, we bound each term separately.

¢ We have

\%
1 Naw 1 ny
scoresiy,, = I E (Wu - =) ]\1/1. I(;Zm (6 e + L IV>ZII'U’1§

Vv
+2) 5T Z w2y Y (NTN Lig )Zka

%G{il,--' sinay }

We have
”
B D7) }<Nfo—Lv-lfv>zxwk>ﬂzin]
w= i€q{11 2
. 1 & one 1 .
el N ) X (NN )z )
w=1 i€{i1, ying }

1 n 1
_ T w 2 T L—1 T T
_ZV!SZinW;E[<N_V) nwi|E|:(N1 Nl_TIV)ZinZin(Nl Nl_

C B _
< ~aprp s ZinE [(NIN1 e )ZTZm(NlTNl - VlIV>|Zm} Zlz,5 =

Moreover, by using Event, we write

\%
1 Ny 1 Ny T T
E |:(z wz:l(ﬁ - V) uézln(ewew + IV)Zlnwk) |Zi11:|
14
1 1. n, n 1 2
=— Z( 7_77wa 7“’_72@1)27
L2 |:Z,6 — Neew+(N V) v 1tV in||,
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2 “ w 1 nu) T Nw 1 2L-1 2
< B | S - P enel + O - 5250 2]
<“ﬂEhuk“ﬂ9V“T+CEKVU“—Hﬂ1<(7
S Lgm ' N VNI TN AN TV S N
Therefore,
C
E [score§1k11|2in} < ENT
e Moreover,

N
2
2 T TrT
score?,,, < N wiz) s Znwix] Ziwiw] Zn X, 11L¢1( ) Zin X, 11L)H .

N H NIL? &

We have for any ¢ € [N], by Event,
1 1
z,Iazinwimjzgwkw,jzmxjnwl(Zw,jzmxjh)‘ < O(log* V)VI(1a,—e, + ﬁ)
Then,
- 1 2
HW Z mizI(;Zina:imiTZinkw,IZinXiT]lm/)l (Z'w,IZinXiT]lL) H2
C(log® V) 12 _ C(log®V
Clog'v)) 1 Z%:M&+iwggggj
N Vd VdL3
Then,
Clog®V
E[scoreglkn‘zin] S W
e Moreover,

N
ﬁHNLQZ.’I},;ZI(;ZmN N ZT wow] Zin X, nLqpl( w Zin X, 11L)H .
1=1

2
scorejyy . <

We have for any ¢ € [N], by Events

1
203 2N NiZjww] Zn X 1001 (7 0] Zin X ]1L)‘

L L
< C(log® V)VL| ZiN;" N Z 2, 5|2 < C(log® V)VL(e, N;" 111 + 2+ log® v\/;)

Then, by Events

1 2
HNL2 Zf” 20, Z N, NiZww] Zu X 11 (7wl ZuX] 1) |

C(log V)? . L TN
< Z\V5 . ) d d
=TN2LB H;"”(hl]\ae”L g T los V\/ d)Hg

01og14v C(logV)?
l]]- N v
SVILdLrd) T TNIR Hzm L-1-Yi€

2

We have

+NZ

C(log V)2 2
HZ:@ILL 1Nie, v 2 v

| < C(logV)? (N2 L? L)
© N2L3 2~  NZ2L3
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_ C(logV)?  C(logV)?
V3L NVI2

Then,

C 1Og20 \%4
2
E[scor631k13|zin} < W(L/\d)
* Lastly, we have
N

1 1 T L T T
|scoresip,,| < HWZ(%—V]I 120520 X] XiZiwid (Tw] Zin X, ]1L)H2

1=

N
1 I+ T 1,7 T ! T
S D LR

By using the derivations in the two previous items, we have
N

1 T L T T
HNL (a: - 1) 2,20 X] XiZgwd! (Fw] Zu X, 11L)H2

1
= Hﬁ Zwizz—:ﬁzmw ; Zka¢ ( ’IZinXiT]lL)H2

+ H NTE Zm 2} s Zin N N Zl wpw] Zin X[ 11L¢1( w] Zin X, 11L)H

N
1
()~ S (@ — —1v)2) ;2N N, ZT H
+16/O)l| 77 > (= G ZuN Nz
Clog" vV 1 - -
< —Z% Y 40 H— zi — —1y)2) s ZinNT Ni ZTw H
VLA(L A d) NI~z ¢:1< y vz "2
We have
E [Hf (@i - 1)) 2N N 2| [20]
NI : v v, 7 in 9
N
T T T T
< <ars [Z vima, — V205 ZaN] NiZL 2 NT NiZ 2,5 Zi|
1-3)L 2T T T (1-3)L* + T
§ NIz V ZlnDlag(ZinZin)Zinzu,5+ N2 V2 yéZmZ Zan Zy,6
(1-2)
_ 38
Nd(L A d) (38)

Moreover,

N
1 LT T T T 1 -
Hﬁ ]z—:lw<ka Zian ]]'L)wk Zian ILL(ZIT]‘ - VILV) H2

N
1 T T 1 T
= |w<o>|HNL;1wk ZuX]1u(2; - 1)

1 1
+| e v (08 2T 1) ol 2 X127
j=1
By Event, for all j € [N],

1
n (Lo 2,0, ) 0] 20X 1,7 < Cllog V)L
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Therefore,
Hliw-w (lez x71 )(sz X1 )2H L Clog’V)
Nszzl 72 T k “in5 AL k “inA5 AL 5 = \/VL .
Moreover,
1 U 1
T T T
N "
1 Y 1 1
T T T T
R e

N
1 - 1 -
+ el Zutv]| 5 ;(%‘ -y,

By using Event, we have

N og?
- Fhw Zuly|| & (@ - $10)T| < X
— Moreover,
1 T T 1 T 1 T|)?
|7 X 2] — prviDe, = 1)
j=1
1 & 1 1

_ T T T T
- w) Zin(Nszl(Xj - 1)L - 1) )

N

1 1 1 T
(ﬁ > (X - Wi Li(e; - V]lV)T) Zw,
j=1
Clog*V
<8 v 3
S NI (39)
Then, for N < VL
Clog'® Vv
2
Elscoresu. [2u] < pratag)

¢ On the other hand, we have

N
L1 1 T T T il T T
|scoresiy,| < ﬁ”ﬁ ;(w - )2 ZuX] XiZwed (fw] Zu X, JlL)H2

1oL /1 1
T T
IwEe(geixin)e -y,
Note that by Event and (39), we have

1SN /1 1 1 & 1
|7 2o (gl 20710 ) s = v, = 00N |5 2ot - v
j=1 j=1

N
1 1 1 1
|y (gl 2ax 1) gl X 1w, - 1)
1

N T~ R G
T WN vVNL ~— VN
Therefore by (38), we have
C
2
E [|score31k2| |Zin S m
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Therefore, we have

C
E[scores;|Zin] =0 and Variance(scores;|Zi,) < N

D LOWER BOUND

To prove a lower bound, we construct a Bayesian setting with the same likelihood distribution in our
setting. In particular, the ground truth permutation is chosen from the set of permutation matrices:

H = {P € {0,1}V*V | I is a permutation matrix}.

We describe our Bayesian setting as a game between Environment and Learner as follows:

* At the beginning, Environment samples P, ~ Unif(#), probability vectors without revealing
them to the learner.

* Learner observes L + 1 channel that generates words from the set V = {ej,es,- - ,ey}
sequentially fort = 1,2,--- , N with distributions:
— Atevery round, Environment randomly picks a channel ¢,
— Label: Channel 0 generates p; ~;;q Unif(V)
— Input: Given /; and p;, Channel ¢; generates X, ; = P.p:
— Noise distribution: Channel j € [L]\ {¢,} generate X ; ~ Unif()) independent of Channel
0.

* Let D := {(Xy, pi) }+<n be the dataset. We study the Bayes estimator with 0 — 1 loss given the
representation of the past: S = f(D, ¢1.n):

P = argmax P[P = P.|S, Z;,]. (40)
PcH

In the following we consider the empirical mean and covariance of embedded words as the given
data, i.e., S = {(p+, ¢, pt) }e< N, where

Wy = %ZinXtT]lL + %gt and X; == %ZmXJXtZiE + %Gt.
where {(g¢,G1)}i<n are iid. measurement noise with distributions g; ~ N(0, 11;) and
Gt,ij = Gt,ji with Gtﬂ'j ~ N(O, Lj”)) i.i.d. fori < j.
Theorem 4. The following lower bound holds:

R Q(N) 1 d cC &
PP P* Zin Zl_ 1)———=1|1 — _—
(P 7 Pr|Zu] ov(l) 1% < A(oiLlogV+a%LlogV)

We use an information-theoretic argument to prove Theorem 4. For the proof, let H(A) and H(A|C)
denote the entropy and conditional entropy of A given C; let [(A; B) = H(A) — H(A|B) and
I(A; B|C) = H(A|C) — H(A|B, C) denote the mutual information between random variables A
and B and the conditional mutual given C, respectively. We let Dk, denote the Kullback-Leibler
(KL) divergence. We start with an auxiliary statement for the proof.

Lemma 1. Let A, B, C, D be discrete random variables defined on the same probability space. The
following statements hold.:

* In general, H(A|B,C) < H(A|B). The equality is satisfied if and only if A 1L C|B.
* IfB L D|(AC), wehave I(A,B|C,D) < I(A, B|C).

o Let S = g(A,C) be a measurable function of (A,C). If B 1L A|(S,C,D), then
I(A; B|C,D) = I(S; B|C, D).

* Given, u, ' € RY, positive definite = € R¥? and supp(A) C R%, we have
1 _
DN (p+ A BN (0 + A, 5)) < S(n—p) 27 i - ).
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Proof. We have
P(A|B P(A,C|B

H(A|B) — H(A|B,C) =E | log M} —E [1og IP’(A(B’)g(t‘I)E
Since the mutual information is non-negative, the first item follows. Moreover, since I(A, C|B) = 0
if and only if A L C|B. For the second item, by using the first item,

I(A,B|C,D)=H(B|C,D) — H(B|A,C,D) < H(B|C) — H(B|A,C) = I(A, B|C).
For the third item, since S is a function of (A, C'), we have

I(A; B|C,D) =1((A,S); BIC,D) = H(B|C,D) — H(B|A, S,C, D)
= H(B|C,D) - H(B|S,C,D)=1(S; B|C, D).

} = I(A,C|B).

Let f denotes the Gaussian pdf with 0 and covariance X. For any € R?, since t — tlogt is
convex

Z‘IGSUDP (a)f(x —p—a)
> pla)fl@—p- a)) log ( (AP © )
aesupp(A) (Z‘EESHPP(A) pla)f(z — p' — ))
0)f(@—p—a)log LE—H=)
: aESUZPP(A)p( e mu=all Sfa—w—a)

Therefore, we have

DN (p+ A DN +A4,2) < > pla)DxnN(p+a, D)V (1 +a, X))
acsupp(A)
= DoV (1, DIV (1, X)),
where the last inequality follows the invariance of KL divergence in the second line to constant shifts.

The final bound follows the known formula for the KL divergence between Gaussian distributions.
O

The proof of Theorem 4 is given in the following:

Proof of Theorem 4. Since we assume Z;;, is known by the learner, we will fix it in the following
without explicitly conditioning thte terms on it. Note that we consider the Bayes decision rule in
(40) and use Fano’s inequality (Scarlett & Cevher, 2019) to lower bound its error probability:
I(P,;S) +1log2

P[P + P.|Zi,] > 1 —
[P # Pi|Zin] > og ]

(41)

We have

I(P.; S) = I(Pa; {(pt, Bt pt) i<n) = I(Pu; Pt }e<n) + T(Pu; { (16, Zt) o< [{Pt fr< vy )
(a)
= I(Pe; {(pe, o) LN H{Pe }e< )

*7 Nt»zt ‘{(ﬂ'uv u)}u<ta{pt}t§N)

\Mz

Given fixed Z;,, we observe that (ut,Et) A1 {(uu, w) fu<t | P, {p}i<n and (pu;, %) L
{Pu}uxt|Ps, Therefore, by Lemma 1,

2

I(P,; 5) SZ P.; (ne, ) {piehi<n) < Z Py; (pe, Ze) | pe)-

Moreover, we have P, 1 (ut, ) | X, 1, i, Where X, , is a function of (Py, p;). Therefore, by
Lemma 1,

N
I(P,;S) SZ (X, 65 (1, B) |pr)-
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We have

a

14
1 1
I(Xlt’t; (I«Lt7 2t)|pt’zin) = V ZDKL(P](CI% |PO < 72 Z Mt Et)” (pe, 2 ))
— §.k=1

where P?tht) denotes the distribution of (s;, 2,)| X, . = e, Py denotes Py = % Z,‘; 1 ]P’?m =)

and (a) follows the convexity of KL divergence in its second argument. For k # 7, by the last item
of Lemma 1, we have

42 T2 Cd  Cd&

d , C .
DKL(]P)( < z”zk _Zj||2 + %f”Zka —Zij HF S gz + g I .

M, Et)” (pt,3¢ ))

m\@

Therefore, we have

Cd C &2
I(P;8) < N( 57+ gf)

Moreover, we can write

I(P;S) <I(Py;D,l1.n) = I(Py; {Xt}t<N|{pt}t<Na£1 N)

where the first inequality follows data processing inequality, third and fourth inequalities follow the
first and second items in Lemma 1. We have

I(P*; X&,t|pt»£t) = H(Xft,t|pt7€t) - H(Xlt,t|pt7£t7p*) =logV.
log V' =0

Therefore, we have I(Py;.S) < N log V. Finally, we have

2
I(P*;S)§N<logV/\<C d+ ¢ d ))

L 5 L
The result follows from (41). O

E AUXILIARY STATEMENTS

E.1 A NICE EVENT CHARACTERIZATION

We characterize a “nice event” under which we use in the proof of Theorem 1 holds.
Lemma 2. We assume V3 > N >V > Land L < V° and d < V*° for some €1, €3 € (0,1).

For the following we define, m;; == (1 —1/V)d;; + % We define the following events:

(E.1) Letz, = Zine, and z, 5 = (zj, + 11=1024ig). We have

(EL1) £|ZinZ]||2 < 2 and maxy<y |2k 2 V [|Zirigll2 < 2

(E1.2) ﬁ”Zinlsz < 2and - ||Z—'—ZmILV||C>o < 10\%/

(E1.3) |z) sZinly| < 2logV\/; and |z} 5ZinZ Zinly| < Ck(%)
‘ZI(;Zindiag(ZTZm) < Cgk logV\/z

2] 5 Z X 11| < ) X[ 11 + O log v IX Ll

log V|| X, 11|21/ %

3
2 and

(E1.4) Foralli € [N, |z

(E1.5) Foralli € [N],

in
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(EL6) Foralli € [N, [2] s Zin 2 Zn X[ 11| < ¥ (€] X[ 11 + Cic log VX Lel)

(E1.7) For alsz'j € [N], [$1[X;Z] Zin X, 1, — my| < [$1.X X1 — myy| +
1XT 12 021X] 1212 log v
Cr T -5,
)
(EL8) Foralli € [N, | Ziu N NiZj 2, 5]l < Cic (€] N 1y + & 4 1ogf VIR Zrolz)

m

(E.2) We have

(E2.1) Foralli,j € [N], |11, X] X 1, — my;| < Cx 12V

VVAL’
(E2.2) Foralli€ [N], | X, 11|l <logLand | X, 1o > % 5
523) 1 S mila & - ] < O and |15 Y, 20 vl - | < ki
and ||+ Zi\il zi — +1lv|e < e+1)L
(E24) Y0 ey, — fl < ¥ g Z” 1 (Toma, — ) < 45

(E2.5) ||Si]|2 < %= and |tr(Sl) - L(E+a-9d)< %

5 3
(E2.6) ||Sal2 < S5V ang [te(Sy) — (1 — L)2L7L| < Kfé‘i&%v

—Cklog?V Cxk log? Vv
(E2.7) ﬁijéngQ 1yl) 2S5 — %oz lvl) = %Vsz 1y1y

For any K > 0, there exists a universal constant C'c > 0 depending only on K such that

P{(E1)] > 1— VLK and P[(B.2)] > 1— VLK

Proof. For (E.1):

* By Proposition 3, we have ||&Zi,Z] — 1142 < % and by Proposition 4, we have

max<v||zkll2 V ||Zuigll2 < 2 with probability at least 1 — CVd exp(—clog® V).

* By Proposition 4, #Hzm]lvﬂg < 2 and #HZ;ZmJIVHOO < 21?}‘/ with probability at least

1 — CVdexp(—clog® V).

ol

* By Propositions 4 and 5, we have #|zlézin]lvl < 210% and |215ZinZiIZin]lv| < C’K(%)

with probability at least 1 — C'Vd exp(—clog® V). Moreover

]ll 1) 1
ZHZZH szu : ZHZZ”Q Zzaztr1g>+ VZI(SZV 9

——
iy 2 € L[-Ck,Ck]

1 T
— Zindi
V ZV,(S lag(

where we used previous items to bound the last term. For i # k, by using Lemma 3, we have for
d
PG

Ell|zill” [(zi,26) ] < d P E[|z:]57] (2p)”
d(d+2)---(d+6p—2)

T < dfp24ppp

S d*P?ppp

Therefore,

Bzl (2,2} % < 4d7Y2 /5.

By Proposition 13, we have for2 < p < ¢,
2p = 3/2
I < Cd—l/? |:\/» Vpp i|
} - |4 + v

By using p = log V', we have the bound in the statement with probability 1 — —.

E H 205 Znding (2], Zin)
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* By Proposition 4 with probability at least 1 — %(

2,5 Zin X, 11| < |, Zi Zin X, 11| + 112102055 Zin X, 1|
X, 17|
<e! X1+ Cxlo yIXi Lells
&V
By union bound, the item follows.

* By the same argument,

%
1y Z, Zin X, 12| <13 X, 1, 4 Ck IOgVHXiT]lL”m/ Vi

-
=L+ Cr log V|| X; 11|21/ i

« By Proposition 5, with probability at least 1 — CNexp(—clog?V), we have
T
2} s ZinZ Zin X[ 1] < Y (€] X 11 + Ciclog VIX L) forall i € [N].

* By Proposition 4, with probability at least 1 — o=

1 1
1, X; 20 Zn X, 1 —myy = 1] X, X, 1 —my;

L L
X' X, '1z]2logV
+ Clogy XLl X Ll log v
L Vd
e For the last item, let n; := ez Z;,. We have
1
ZiwN;'N;Z} 2,5 =1, (|2, |3 + 611212, z5 — z,,—i— N ZkZ;c — Id)Zws
k:;fﬁu

By Proposition 11, we have

2
{H an Zka — Id)ZU(; p} < C {H an Zka — d)Zl,(g

/C?él/ k:;éu

.

C
< =DV L
Therefore, with probability 1 — v L we have
L N;'1
12 N," NiZiy205]12 < CK(”V +— +log V”\/glb)

For (E.2):

* By Proposition 7, we have the first item with probability 1 — N—K

* By Corollary 3, we have || X, 11|/ < logL. For the second part, we define n;, == e, X, 1.
We observe that

14
E[| X 1L]lo] =) Pl > 0] = (1—(1—%)% =L(1- %+0(L/V)).
k=1

By McDiarmid inequality, we have
L
P{IX Lllo = L(1 = 5> +o(L/V))| > VLlog V] < 2exp(~210g” V),
which gives the result.
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e Letn = Zfil x; . We have E[n] = £ 1y-and by Proposition 7 with probability 1 — x> we have
1.1 1 1.1 1 log2 V
= ]1 1= S| =[IgnlE- -5 - <cC
I — B == 5| = g - - 55 -5 <Oeir
Lastly, by Corollary 3, we have || 4n — L1y ||, < EXDE
* We have
N N
1 1 2 1 2N? 1
]]-m_m ( ]]-m_m I/ T Y7 *) — (1 - =
> Meime, = 5= (X Mamey = 1= 50— ) + - (1= )
1,j=1 7,7=1
N
2 1, 2N? 1
=(1—- = 1, — — (1 - =
2 1 2 2N? 1
- DS - o+ -3
- S - g, + - )
By the previous item, the statement follows
* The events for S1, Se and S5 follows Proposition 8.
O
Proposition 2. We consider the parameter regime in Lemma 2. Let ¢ =

SUDE, ky>1 |p*1)(0)p*2)(0)|. The intersection of (E.1) and (E.2) implies the following events:

(C.1) Foralli,j € [N,

2
1. X Z] Z: X1, —myy| < CK(I%T; + sl

(€.2) sup, jlai; — ¢'(0)% V |8y — ¢"(0)6(0)] < £ (mij + Cic'BY + Cpe e )

(C.3) Let Ay iy = Ay ir — ¢'(0)4Z, S, Z] for u € {1,2,3}. We have

- supy el Anirll2 < CKW(O)Q(N;LS + vare vAL;/\L\/E)'

. CkVV [ _1 1 1
- Supi,re[N]”AZW”Z < dvVNL (NL% + VL VAL2AL\/E)'

- We have As ;. = VQI:’Q Zinly HEZL such that

CK¢’(O)2(L+L 1 ) (1 1 1 )2.

sup |Ag | < vAareavd) T\NE T UNV AL ALV
p [Asirl NL VNVAL2ALVd) \NL VNVAL2ALVA

i,r€[N] - N

(C.4) Foralli,r € [N],

- We have
¢'(0)* 1 1.1 oz (2 1 !
A ir AT 1—- =)z )1 ‘ <
H 1, d (N+( V)V) d‘Q—CK‘b(O) (NdL3+VdL2VAL2AL\/&>
logV' 10g2V
+C 104 + .
x®'(0) <L2V3/2¢3 L2NWd>
- We have
- A (S A U
d VvV’ I2N ~ dVNL\NL> VVLVAL2ALVA
log V log® vV
C /04 .
+ Cr¢'(0) <NL /7Vd+N\/ﬁd)
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- We have Ag i — ¢'§3) Vsz Zm]lv]lTZT = ‘%SL“; zl,,ﬂvnaz; such that
Cr¢'(0)4 log? V
NVV
M(L N L;) N (L N L;)Q.
N VNV AL2ALVA L VNVAL2ALVA

Proof. We have the following arguments.

\As,ir| <

+

* By (E1.7) and (E2.1), we have (C.1).

« For (C.2), we assume (E2.1) and (C.1) hold. Let |1 Zin X, 11 |ow; + fw' Ziy X, 1. We
write

B [6/ (17 2 X 1w (1 2 X 1 l2wy)] — /(0]

wi'wy
~| S 1 zuxT gtz B e g
u,v=1

1
- ‘ Iz 1, X;2) Z, X, 1,02 (0)¢? (0)

Px
+ 0y HZZinXiTlLHz||ZZianT]lLH2T!j¢( 1(0)¢f +1)(0)’
w0 even
utv>2

logV log? V 1
+C +0(—
Vd K\/VAL) (z2)

S~

< —(mi; + Ck

Similarly,

B (6" (I 2 X] L ) (1 2 X L ;)] — (01

= Zn L X UL+ 2] 1205 ] s )00

u,v=1

1
= | X 2] 2 X 162 (0062 (0)

< 1 T u 1 T v E [w?wv] u+2) (v)
+ 30 I B X L Zu X L= e 00 (0)|
uf’vvi;even
u+v>2
o logV' logQV 1
< —(my; + CK +CK O(—=
— L(nlj-+ vﬁ’ \/7 L)-+ (LQ)

e For (C.3), we assume (E1.1), (E1.2) and (E2.5)-??. We define

Ao = RS ()2 1]1 1]1 T
Lir = (wj;(aij—wm (@ — 5 1v)(@; - 1))

X (% > (0% (x; — é]lv)(ﬂ?j - élv)T)
j=1
N
- (LlN;woF(wj - IV - 5 1))
N
% (v D = 602) s — 1v) (s = 51)T)
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N
1 1 1
(7 (aij — )(@j — 3 1v)(z; — VIV)T)

LN =
1 1 )T>

We have
- Cd)/ 0 2Sllpi Ol — ¢, 0 2 %
18l < SO = O 1 1 (012 suplevs — /0211531
i#]
1 1 1
< C¢'(0)? .
< C¢'(0) (NVL3 + V2I2y A L2 /\L\/g)

Therefore,
AL irll2 = | ZinA1 0 Z |2 < C¢'(O)2( 1 n 1 1 )
5 in = NdL3 VdL2V/\L2/\L\/a

Moreover, we define
1 & 1 1
(7 > (ew; — ¢'(0))(N] - Vﬂvlzfl)hfl(fﬂj - V]lv)T)

j=1
1 al / 2 T 1
(77 2¢O (@, - 1)1 (N] -+

Az,w =
S1v17 ) )

N
+ (L S # 02 (N - %hﬂ{_l)h_l(% _ %HV)T>

—1v)1; (N} — vl

We have

[Az2,irl2
1r2 3 1 - 12 1 T + 1

< 021813 | (577 Yo ten = ¢/ )@ = 1IN = 11 )T

T 1 1

(R 2ot = ¢ 0@y — I (N = v )T

n H (L i(a” — ¢'(0)%)(z; — V]]-V)]]-Lfl(NJT - ]lv]l )H
=1
x H (i i(aij — ¢'(0)%)(; — %IV)IL 1(N - %ILVRL 1)T)H2

c c 1
< NLﬁ+ VVL VAL2ALVd
1 1 1 )2

< c ( 1 n 1 1 )+02( L
~ VNVL\NL> VVLV AL2ALVd NL:> VVLV AL2ALVA
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Therefore,
cVV o1 1 1
Ao irlls = 1 ZinBoiyZi |2 < ( n )
182l =120 B2l < 4 R (N Y VULV A L2 A LV

Lastly, we define

Jj=1 j=1
+ (% iW(O)Q(w] %ﬂv))T(% i(a” — ¢/ (0)?)(z; — %h))
j=1 j=1
L . 1)\ 2 1 1 al 12 1
+ (7 2lew = #0P)a; — 51v) (5 Xl — 60 (as = 1v)
Jj=1 =1
We have
1 N P 1
s <602y 3ot = 0| |57 e - 40w - v
j=1
0 3w~ 1| Yot~ 60w~ 10,
Jj=1 j=1
X o 1 | X o )
+ || Yot =02 @ — 1) || || Yot = 0@ - 1)
=1 -
PR M=
C¢'(0)* /1 1 1 1 1 1 2
<Nt mreaa) Tt mv L)
Therefore,
Agir = @;”Ij; Zu1y 1527,

from which the last result follows.

e For (C.4), we assume (E1.1), (E1.2), (E2.3), and (E2.5)-(E2.7). We write
GOt 1 1 11

A== g -yl
= A+ 60 (Zw$i 20 = MOV - Do D),
We have
- CO - Dl - Dby,
1 (1 _ 1y 1
<A1 l2 +2¢7(0)*1 V”%F [tr(S1) — 72 (1\&+ 1-9)y)l

1 1 1 log V/ CK?log*V
< , 2 / 4
< €0 (5 + as VAL2A L\/E) +O80) (L2V3/2\/& "NV )
Moreover,
¢'(0)* Lol —
P S [
||A2,zr d ( V) I2N Id||2

—

Vd d

Z

< ||Agirll2 +2¢'(0)*1

55



Under review as a conference paper at ICLR 2026

CVV ;1 1 1 log V K31og®V
< (< )+ OO0 (s ).

dVNL\NL?  VVLV AL2ALVd NILVVd NVLVd
Lastly,

(0 1 T T
Az i — TWZin]]-V]]-VZin

rnaf(]l L al 1 2 1 1 T
= A?),ir + ¢ (0) (HN Z(iﬂj — V]].V)HQ — N)WZin]lv]lein.
j=1

By (E2.3), we have

CK?log’V 1
NW V2L2

TrT 1 Y 1 2 1 1 TrzT
Zin]]-V]]-VZin j (HNZ(QZJ — V]]-V)H )7Zin]lv]lvzin
j=1

2o NJ/V2L2

CK?log’V 1 T
< Z 1y, Z. .
- N\/V V22 V iy &in

By (C.3), the result follows.

E.2 GAUSSIAN MATRICES AND RELATED STATEMENTS

Lemma 3. Let z ~ N(0, I;). We have E[||z]|3*] = d(d +2) - - - (d + 2k — 2).

Proof. We observe that ||z||2 ~ x3. By using the moment formula for chi-squared distribution, we
have the result. O

Lemmad. Let z ~ N(0, 1) and S € R¥*? be a symmetric matrix. For u > 0,
P (|27 8z — tr(S)| > 2||S||pu + 2||S]2u?] <267
Proof. We note that z' Sz — tr(S) has the same distribution with Zle \i(S)(Z2 — 1), where
Z; ~iia N'(0,1). By using the Laurent-Massart lemma, we have the result. O
Proposition 3. Let S € RV XV be a symmetric positive semidefinite matrix. Let
M = Z;,,8Z].
For poly(d) >V > d, We have

tr(S S
P [HM — r(d )Ide > max{ |\/|C|7F log V, || S||2 log? V}} < exp(—clog® V).
Proof. Without loss of generality, we can assume that S is diagonal, i.e., S = diag(s1, -, sv).
We have
tr(S)
M — d = ;sz (zlziT Id)
We have

v R 1 s
E[( Y sz — J1) | = 50+ ISl

IN
[JfsH

Moreover, for p

1
E[l|zi2] — STallf] <Ell=l3"] < 2”
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By Proposition 13, we have 2 < p <

e [iv - 2] < o(vVavigallr

Forp = log? V, we have the result. O

d
2

+ (Vg )V 7 |S]2).

Proposition 4. Let S € RV*V be a square matrix. For w,v € S* ' and M = Z,SZ. , we have

tr(S) [[wll2]lv]l2
d

]P’H('UTM'UJ— vTu)’ > max{||sym(S)Hpt,Hsym(S)HthH

< 2exp(—ct?).
Proof. Consider g = v/dvec(Z), where g ~ N (0, I;y/). We have
1 1
v Mu = EgT(u'uT) ® Sg = ggTsym(uvT) ®sym(S)g

By using Proposition 10, we have

Elg "sym(uv ") ® sym(S)g] = tr(S)u " v.

Moreover,
dv
(97sym(uoT) @ sym(S)g — tr(S)uv) =4 Y- Nilg? — 1)
i=1
where g; ~ N(0,1). By using the subexponential concentration, we have the result. O

Proposition 5. For u,v € RY, we have

pl|o" 25202] Zuw - o (14 Y| = Clulalolaloe v (Y )]

< 10exp(—clog? V).
Proof. Without loss of generality, we assume that « and v have a unit norm. Let

.

v, = —o--——(Iyy —vv
+ 1-— (uTv)Q( v
We have
v' Z! 2,2 Zpou = (o' Z) 2,2 Zipv 4+ /1 — (uTv)2v' Z] 20,2 Zv,

Without loss of generality, we consider v = e; and v; = ey. For the second term, we write
zi = Zine; and let Z = {z;}Y_; and g = Vdvec(Z).

el Zy ZinZy, Zines = (| 2113 + l|2213) 2] 22+ 2 ZZ " 2,
= (113 + I22]3)=] 2 + 29 sym(z12]) @ Iy g,
We have
* By Lemma 4, and Proposition 4

5logV
Vd

5logV

Vd
<1 —6exp(—clog?V).

log V}
Vd

P([Ilz213 - 1] < and [[| 223 — 1| and |z 25| <

IN

* By Proposition 10, we have

= llsym(z125 ) @ Iy 2|2 < [|z1]l2| 222
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= llsym(z129 ) ® Iy _sf|p < VV||z1]l2]|z2]l2
- tr(sym(z12; ) @ Iv_2) = (V — 2)2{ z».

Therefore, by Lemma 4, we have

1 V-2 logV log? Vv
IF’HEgTsym(zlz;)@Iv,gg—( 7 )zier‘§2||z1H2||z2||2( 7 VV + y )}

<1 —2exp(—clog® V).

By union bound of the precious two items, we have

VoV

TT oy oTg vV _ _ 2
IE”Hel ZianZmZmeg’ < 210gV(d3/2 + = )} >1—8exp(—clog?V).  (42)
Next, we redefine the notation: Z = {z;})_,. We write
V-1 1 V-1
Tl —1———= = |zl =1+ 2] (227 - —— L)z - —— (=1} - 1)
By Proposition bla, we have
T(75T 2 VV 2
]P’{z1 (ZZ — Id>z1 <logV|z]l5 } <1—2exp(—clog”V)
By using the first item above, we have
V-1 Vv Vv
IP’HzirZinZ;zl -1- T’ > 610gV<§ + W)} <1—2exp(—clog® V). (43)
The result follows (42) and (43). O

E.3 MULTINOMIAL DISTRIBUTION AND RELATED STATEMENTS

Lemma 5. Let (ny,--- ,ny) € Mult(N; (py,--- ,pv)). Fort € RV,

1% N N
2o )] - (S
w=1 w=1
Then, if pw = 77, w € [V], we have

¢ E[[Toi ()| = NV = 1) (N = T+ ) TTy_y plis where J = 50

, _ 1 — (V=1 (N+V-2)
‘E[(N_V)”w}_ NV3 :

N(N—1)(N—2)
V3

U+
i
] _ N(Nfl) " 2N(N7‘}2(N72) " N(Nfl)(gZQ)(foi).

6N(N—1)(N-2) |, N(N—1)(N—2)(N—3)
V3 + VA

[(ZY, n2) } N2 4 (N+4)J‘\/7(N71) n (N+2)N(g;1)(N72)

Proof. Let x; sampled from {ey,--- ey} with (p1,---,py). We have n,, = va L€enTi. We

have
<t,azi>>} = (IE [exp (<t’$1>)}>N _ (wz]:pwetw>1v

v
E [exp ( Z twnw)} =E [exp (
w=1
The later statement can be derived by using z,, = ev and taking derivatives of both sides with
respect (21, -+, 2v). O

-

=1
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Proposition 6. Lern = (n1,--- ,ny) € Mult (L, %ILV) and S € RV*V be a symmetric matrix..
The following statements hold:

* We have

E[Diag(n)Sdiag(n)] = LE[z| Sxix x| | + %S,

E[Diag(n — %]lV)SDiag(n — %]lv)] = LE[x] Sziz12] | — %S.
* We have

E[nn'Sn] = %Slv + LE [z12] Sz1 ]
(P D)+ HEZ D=2 6 )0y
* We have
E[((n-§1v)"S(n- énv)ﬂ = é”diag(S) - %S]lv + %(H‘T,SILV)]IVHE
#tr((h/ - %hn;)sf
+ O (1 - L1vi])s(ay - $ava))s)

Proof. For the first item, we observe that

_ , L. L(L-1)
e;r E[Diag(n)Sdiag(n)]e; = E[n;n;|S;; = (V(Sij + T)SU,

from which the first equation follows. For the second equation,
L L

ej Eldiag(n — £1v)Sdiag(n — élv)]ei =E[(n; — 37)(ni = 17154

- (G- B

For the second item, we have

(Elnn'Sn]); = Z Sk E[ninjng]

ik
g ) (M o,
i#jFk i£k i£k
L 3L(L-1) L(L-1)(L-2)
i+ Ve )s:
L L(L—-1 2L(L —1 L(L—1)(L—-2
= V‘Sii + %tr(S) + (?) zk: Sir + (‘/)3()(%: Sjk)'

For the third item, we have (n —L1y) =4 2521(511 — +1y) where the equality holds in distri-
bution. For notational convenience, let

1
Yeu = (51,5 - VHV)TS(gl,u -

%nv).
Then,
E[((n-210) S(n - T1v)) ] =0 3 3 Bl
Lo 0!

By independence, only (¢, wu, ¢’ ,u") where each index occur even times contribute. The possible
cases are as follows:
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* All four indices equal (¢ = u = ¢’ = «’): There are L many terms here with contribution

1 . 1 1 2

Elveevee] = V’ dlag((Iv - V]lv]le/)S(Iv - V]lv]le/)) H2
1 .. 2 1 2
- V’ diag(S) — - STy + (ngsnv)anQ.

* Two distinct indices, both pairs diagonal ({ = w and ¢ = v’ and ¢ # {'): There are L(L — 1)
many terms here with contribution

1 2
Elveevee] = Elvee Elye o] = tlf((IV - V1v1$)5)

* Two distinct indices, paired off-diagonal: (¢ = ¢ and v = v and £ # w): There are 2L(L — 1)
many terms here with contribution

Ehrnd = tr( Bl - 5 10) (61 — 51v) 8612 — $v)(Es - 51v)TS))

1 1
= tr((IV — V]].vﬂa)S(Iv — V]].v]].$)5>

Proposition 7. Let V3 > L. There exists a universal C' > 0 such that the following holds:

« Letm;j = (1— $)li—j+ &. For K > 0and p > logV,

E H%]linXjT]lL — i pf < C<5SV + %)
]P’H%IIIXinT]lL —mij| 2 CK® \%QAVL} < VLK
e For K > 0andp > logV,
=[5t 5 067 - Dt - aapy” - - g
§C<M+ %(H \/sz/\L)>
p[”ﬁ ﬁ; (x] - %hn{)nLn{(XJ - énvﬂ)T — é(I— %1v1$)H2

ek (a5 ) < e

Proof. For i = j in the first item, we have

L k-1
1 1o o 2 (L—1) 2 1
Z]LLXiXi Ip=1+ Z Z ﬂﬁi,jzﬁwc =1+ Vv + Z Z Z ]léz‘,j:&:,k - V
1<j<k<L k=2 j5=1
Define
k-1 1
V= (L=, — ) and Fii=o(Yi, -, V).
j=1
Given that
Al 1 . L
" Lo =ik ~ Binomial(k — 1, ) = E[Vil"]> < C(Vpy/ 32 +p), p > logV.
j=1
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where we used Corollary 3. As for the quadratic variation

Q :iE[YQIF } =i1(|lxﬁl IIQ—L_DQ))
L - £ k k-1 k:1v i tk—1]2 VvV
VZH ]lV]lk 1)]lk 1||2

For p > log V, by using triangle inequality,

piz 1 1 3
EIQuI®)? < o Y B [I0XT - 1w i) L]
k=1
v 2
1 v
<Y (k= DE|[IXT 1] + S E [T~ Sl )1 g)
k=1 k=V+1
2 1 i 2L2
<Cp° ) k=Cp"—
|4 prt \%4

where we used Corollary 3. By Proposition 13, for p > log V, we have

e ]! <c(ig 7).

By using p = log V', we have

L
1 log? vV 1
Pl YoV > Cer? 2| < =
LM O AL
Hence, we have the i = j case. For the i # j case, we have
1_+ T 1
f]l 1 XX, 1 = LZZ]l&Lk =& Ty

(=1 k=1
We redefine the martingale difference sequence as

= 1
Yy = Z ]lfz‘,szj,tz - V
=1

Conditioned on X;, we have {Y7,--- ,Yz} areii.d. and
, 1 1
B[Vl X, = 0 and E[Y|X,) = - 1(X] - SAvi))Ll
By Proposition 13, for p > log V', we have
3 2
— Y. |P % < i + p: + pf .
£l Z A= st )

By using p = log V, we have

1 L|_ CK?log’V 1
IP’H—]ITX-X-T]l _7’>7}<7.
e A N Y A Il
For the second item, we define
1 1 1 T o1 1
Y, =—(X—=1,1))1,1 (X —=1,1]) — =TIy — =11/
K L(z VVL)LL(z VVL) V(VVVv)
and Qy = N E[Y;?]. We have
1 1
<NIE[H—XT——]1]I H — 1,111 (X — =
Q= vz X v e, 7 (X VV)L(lv

61
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1.1 1 1
:NE[U**)L(Xl *V]lv]lz)]lL]lz(Xifflv]lDT}

\% \%
1 1
VE[(| T - prabu],-0-5)
+ \/» vV L V)
1 T 1 1
x (Z(X1 - Vﬂvﬂz)hﬂ{(xf - S Wvif) - Iy - V]lv]l‘T,ﬂ
CN
= —1I
v vt QN
Therefore, we have ||Q |2 < C7N Moreover, by using the first item,
1 1 % % p2
Y, [H D] <1+ o(Z=+2)
BVl < E[| = (X7 - v ro(lo st
Therefore, by using Proposition 13, we have
[HNZY VHVIV H }

1 19 p% p2
< —_— P —
_C’(x/p\/longNV+(p\/logV)N (1+W+L>

By using p = log V, we have

Fll x> e v( i (0 S < e
O

Proposition 8. We consider S1, Sy and S5 defined in (16), (17) and (18) in the regime V3 > N >
Vand L < V¢, e € (0,1). Forany K > 0andV > Qg (1), the following holds:

1. We have
1,1 1.1 log? V e2 2
P‘tS——— _77‘ 2 9% ¥ I8 < -
[ r(S1) LQ(N+( V)V) ANV or [|S1]|2 > e | S R
2. We have
(S) - (1 1)2L— ‘>CKglog3V 15l >CK%10g2V_ _ 4
r -(1-= or _— —.
2 v’ 12N NVLV 22 NLV |~ VK
3. We have
_ 2 2 - 1

Proof. We define n; = [{j < N | x; = e;}|. We have

|4
1 1 9 n?
tr(Sy) = (1 — V)7L2N2 ;nz and ||S; |2 < 15;1113[ ToNZ

By using Proposition 7 and Corollary 3, we have the first item. For the second item, we write

(1-
52 = L2N2 Z ]lV]lL D1l 1(N V]lv]1 D7

2(1 - ¢)
+ L2N¥ Z(]lw;:wk )bym((N - 1]lV]lL 1)]1L 1]lL 1(Nk —%lv]lz_l)T)
i<k
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=: So1 + S22
We will analyze S5; and S35 separately. We start with S5;. We have
1,L-1
tI‘(S21)—(1—V) 12N
N
1. L-1 1 1 1
=(1-= T 1yl DI f-(01-=).
( V)LQNQ j:1‘|m( 7 % 14 Lfl) L 1”2 ( V)
=Y;
We have E[Y;?] < 2 and by the first item in Proposition 7
Cp?
Y;[P]r <
By < =
Therefore, by Proposition 13,
1 ,L—1P% C pN 1 p?
o1 LT < S o )
r(S21) — ( V) 2N — LN?2 Vv tp VV VL
By using p = log V, we have
1 ,L— Klog®V 1
IP’HtS —1——27’>07]<— 44
r( 21) ( V) I2N LN\/W ( )
Moreover, by Proposition 7, we have
1.L-11 Klog’V / 1 1 log? vV 1
IP[HS Y R E g S | ]1TH>07(— — )}<7
(45)
As for So5, we have
tI‘(SQQ)
2(1** e T T T
Nz SN (aymay, — )1, (N = 21017 )TN = $1y1] )1
k=2 j=1
21— ) L2 1 1
— L2N2V S (layay, — V)]lz (NS V]l"]l DN 1,
k=2 j=1
We define Fy;, := o(INy.;) and
1.2 X2 1 1
Yi = (1- V)W Z (1a)=a), — V)]lz—1(N]T - V]lvlz_l)TNJ;r]qu
j=1
We have
1
2 2
BV Fir] = (1 - oy D) VZH ST )13
Then,
N 1 )1 N k-1
_ 2 _ T
Q= 3 EDEIFi] = (1= S V;;H ST )1 B

N
1 34(L—1) 1 T 1 T 2
= (1 - V) TIANY V’;(N - k)”(Nk - V]lv]qu)]lLlez

Then, for p > log V,

2
P

E[lQn|5] < LsNav ZE{‘N’“ L1l F = LN3V ZE[W’“ Li-allp } = LN?VE o

By using Proposition 13, we show the following:
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* To bound E[\YMP]% for p > log V, we first write
1
E[[Yk[?| Ny, 2] ?
< &V

= LN? (z_f‘ i1<(N’c N VHVHL iz (N _%HV]IL V1 1>‘2)

=

Cp k—1 ]_ T ]_ T T 1 T p %
JrLNQ( ‘m«Nk *V]lv]lL—l)]lL—h(Nj *V]lv]lL_l)lL 1> )
j=1
Therefore,
1 C \/ﬁ\/E 1
Py <
EVP) < pim (Y +ok)
1 1 1 P13
Hﬁ«N’I_ V]IV]lL 1L, (N;—V]lv]lz—l)]lL—1> }
C_(ViVk » 1 T T L1 |P]F
e () B (| (N e N ) - 552

Wk 1
<LN2({/V ok )( ; vl)

NN (47)
* Then by using (46) and (47), we have for p > log V'
3ar2 3
1 p? p°N» 1 1 Cp2
(St < o (L Ly Ot
ISP < G v+ vivw \ o7 Y 1)) = wvaw
Therefore, by using p = logV,
CK#%log? V 1
P |[tr(Sa22)] > TNVIV < s (48)
To bound ||.Sa2||2, we define
= 1 1 1
Yi=) (loj=a\ — V)Sym((NJT_ Vﬂvﬂlfl)quﬂL(NJ—Vﬂvlilf)-
j=1
We have
[Yk2|]:k 1]
E[(N] - ]1 1 )Looa1] (N7 — Z1p1] )TH(NTfl]l 1] )1 m; ]
V_ k Vir—1)tL-11p-1\{ Vg VVLl J VVL—1L—12k—1
k—1 )
VF H‘ Ny — V]lV]lL Dl 1H (NJT_V]IV]IL Dz al] 1(N V]lv]l T‘]:lcfl}
2L = 1 2L § 1 1
< 72“(NJT V]leLL Dlp_ 1H Iy + — % Z(NJ.T _Vﬂvﬂz_l)h,l]lz_l(]\r;_ VML)T
j=1 j=1

Therefore, we have

N
Qn =Y E[Y?|Fi ]
k=1
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2NL
]lV]lL Dl 1H Iy
2L2N2 1 = 1 1
TV I SNy - WL L] (N - pivef )T
j=1
Then,
N-1 p_2
» 2 2NL 1 2\ 292
stauilt < 228 (3 o7 - bl anac )’
j=1
2L2N2 1 N-1 1 ) . %
E{H N — =1y1]_)1p,41] (N — =1y1] T]
1% N(L—1)j:1(ﬂ VVLl)LlLl(J vovic )2
2N2L2 1 1 P2
T
212N?2 1 Nl 2,2
E{H N — =1yl _)lp 1] (N/ 1,1 T}P
v N(L—1) (N VVLl)LlLl( VVL1>2

Il
-

J

CN?L? p? CL®N? /1 P P p?
< 1 — 4+ =1
=Ty (*x/va)+ (e NVJFN(JF\/V/\L))
CN2L2 p2
< 1 .
<y ()
To bound E[|| Y||5] , we observe that

* We have
B[ ((Laymar — #)sym (V] = $1v1E )1 017, (N —%Ilvlz_l)TDQ'wk,Nk}
=< EI(N,] - V]lv]lz—ﬂh—lH%Iv
+§(Nk Tlvl )l al] (N - $1vl] )"
Moreover,
E [[[(Lay=ay — $)sym (V] — A1 (N —%ﬂvﬂz—1)T)||p‘wk7NkF

1

—E [|(]1,Ej:mk - %)|p|mk]% E H<NJT]LL_1, (N] - V]lv]lz_l)]lL_1>’p\NkF

p D 1 1
C4/ 2 +9) (| BIOT = S Ly L)L fle + IV = 1] )1eally)

* By Proposition 13, we have

E[[|Yi|l5lwr, Ni]» < C’\/p\/logV\/ || Ny - ]1V]1 Dl-1l2
l
\%4
Lyl )lr—1llp

+C(pVlog V)k% (NkT -

Lyl]_y)lr—1ll2

1
+C(pViog VIkrp?|[(N)] —
Therefore, for p > log V'

pLk 1 1
EIIYAIE)% < 0y E BN — v 1))
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p5/2 T 1 T p1
Vi Ell(Ny — Zlvig )l-al3]?

\%4
+ CRFP*EIINY = 1y L)L)

1
5/2 2
§C< Jggf+%)(ﬁ+p\/?+5z)+cp3(\/§+p)

Therefore, for p = log V', we have

3/2 5
Pl < \/]3 p p
E[”S22H2] = C(NLV + LN\/W + L2N2)

1 Ck¥»

Therefore, we have

K3/2 log3/2V] _ 1

P| — 4
1522]l2 > C—%75 < VK (49)
By (44) , (45), (48), and (49), we have the second item. For the last item, we have
N
1 1 1 1 21
- ———1yl{ = ——=1y1{ H— i— =1 H——
STNveLR VTV Ty V( N;(”’J v, W
By Proposition 7,
1 1 2 1 CK?log?V 1
PllF X -l -5l A< v
N ;<m] v~ N NVV VK
The displayed equation implies the third item. O

Proposition 9. Let z, s = z, + 1,—10z¢rig. Given that (E.1) holds, the following statements hold:

1. We have fori #r,

! c
‘]E (Larmo, = 3020520 X Xi 2 20 X X, 22,6120 | < 7.
2. We have
T T 2 L L2
]E[HZIHXz X’iZinZV,5||2‘Zin} < C(E + ﬁ)
3. We have fori # r,
1 log?
‘ E [(ﬂmﬁwr _V)Z,LsZinXiTXiZiIZin]lv]l‘T,Z;ZinXTTXTZiIZWs|Zin] < %.

4. We have
V10g2V(£ LQ).

2
E (1) 20 20X XiZ2,5) 12| < C—2— (2 + =

5. For notational convenience, let
1

L
T T T T
v = Zin (X X; — *1‘/)2- Zin (X
zu,5 i % in ( % v

1y1])1,.
We have

L1
Efy(Za)) < 2108V

L L?
217. 1 < 2 L)
\/7 and IE[’y |Zm] Clog V( + )

d2
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Proof. For the first item, we have

1
E((lo—a, — )25 Zin X, XiZ, Zin X, X, Z;}2,,6|Zin]

%
1

=E I:(]l:l:i::l:u - V)Zlézinmiw;'rZizinxrwjzi—gzu,é Zin}
1 1

=7 E [z} sZmwiw Z), Znzix] Z;)2,,6|Zin] — szﬁzngzinzgzw
C

<

- Vd

For the second item, we write
Elz, s Zin X, X2, Zin X, XiZ;},2,,6|Zin]
L(L - L L2)

1)
#Zlézinzizzinz.—rz;a S C(E + 5

L
— VzI(;Zindiag(Z;Zm)Z;zy,g + =5 i)

For the third item, we have

1
E [(1pi=z, — V)zj,ézmxj X.Z) Zinly 1) Z,) Zin X, X, Z, 2, 5| Zin]

(e, e Zua] T2 AT 2 D s
= %E [zlgzinmixIZ;ZinlvIJZiﬁZinwiwIZiIzmIZin]

_ %z; 5 Zn 2 Zin Wy 1 Z) 20 Z ] 2, 5

< CIO%;V

For the fourth item, we have

n

E [z 2 X Xi 2 Zinlv 13 2] Z0n X X 2], zu,5|zm}

T T T T 7T T T
= L E[2]Znaiw] 23 Zulv 1] 2, Zinwie] Zi205|Zin]|

L(L-1
+ %zlazngzmﬂvmzizinzgzyﬁ
_ C(LV1og2V N L2Vlog2V)
d? d3

For the fifth item, we have

L
E |:ZVT7(SZin (XZTXZ — VIV) ZIIZIHXZT]]-lem}

2

_E [zlézirlxj X, Z] Zn X[ 11L|zin] (0 1eet020ie) Zin 23 Zin v
L2

—F [zlézinxj X, Z] Zn X[ Xi\zm} Ly — <5 (@ + Lim102uig) " ZinZi Zinly
L

= LZI(;ZinE [mzwjzlzzmwlwﬂzm} ]1\/ — WZISZinZiIZin]lV

_ CLlogV

VVd

For the second part, let ¢; == eiTXi]l . We have

vV
= XV:(CZ - é)zu 5ZiZ¢T(_ZV:(CJ - é)zﬁ))



Under review as a conference paper at ICLR 2026

\4

L L
= Z Z(Cz‘ - V)(Cj - V)ZI,(;ZZ‘ZZZJ‘
i=1 j=1
Let S = (sij)ije[v] such that s;; :== %(zlézizjzj + Zlézjz;zi).
* We have

or((2v - %nvna)s)‘ = |tx(8) - V]l 751y |

1

= V|2, sZin Elx12]{ Z;} Zinz1] — VZ,I(;ZinZJIZmILV
ClogVvV

< ="

Vd
¢ Moreover,
1 1
tr((Iy = 1viy)S(Iv — 1v1))S) = (52)**”51\/”2 (lTSILV) :

We have tr(S?) < % and

v v
1 1
T T T T T T T T T
e, Sly = 3 E z,42i2; Zj + 3 E 2,52j2; 2; = 2,,52;2; Zinly +2, 5ZinZ;,2;.
= i=1

Therefore,
CV21og®V

1 1
w((Iy = 1V 17)S(Iy — 11y S)| < ——

* Moreover, ||diag(S)||3 < %_

Therefore, by Proposition 6, we have
1 T L2

L
E [(zlézin (X7 Xi = 1) 20, Zin (X -
F MISCELLANEOUS
Proposition 10. Let A € R™*? and B € RV*V. Let M .= A ® B. We have

M|z = [[All2]| B2 and |[M||r = ||Allr||Bllr and tr(M) = tr(A)tr(B).

Proof. The Frobenius norm and trace are straightforward. For the £5 norm, let A =: Zle ou; viT
and B = Z _10;U;0; . We have

<

M = Z Zaiéj(uw; (a;0) ZZ@UJ (uw; @ ;) (v; @ 9;) "

d
i=1 j=1 i=1 j=1
For any (4, 5) # (¢, '), we have

(u; @) (up @ ay) = (v; © 9;) " (v @ Bj1) = 0.
Therefore,

|M||2 = max 0;6; = maxo; maxo;.
] 7 i
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Proposition 11. Let z ~ N(0,1;) and Py : R? — [0, 00) denotes a degree k polynomial which
takes nonnegative values. For p > 1, we have

E[|Pu(2)P]7 < (8(p— 1))

k
2

E[P(2)]-

=

Proof. By hypercontractivity, it is sufficient to prove that % < 8%. We have

E[|P(2))? < E[|Pu(2)] E[| Pe(2)°] < 2% E[|Py(2)] E[|Ps(2)?]?
which proves the result. O

Proposition 12. Let k € Nand w ~ N(0,1;). For L > 0 and u,v € S%~1, we have

k/2]) .
E {Hek (%wTu)Hek (\%uﬁvﬂ — % ; % (2]1) (L —1)% <u,v>k—2i

Proof. For a € R, we have

Le/2] k! o
Hen() = 3 g (@~ V'@ o)

Therefore, fora = 1/ V'L, we have

1 1
E |:H€k (ﬁwTu) Hek (ﬁw—rv)}
L w o
- l( 2 e —ay @ VT e (wTu))
=0 ’ :
L k! , ,
(X e - 1>1a’“‘2’Hek_m<wTv>)1
=0 ’ :
Lk/2]
k! 2 i (ko ‘ s
= ; (m) (a* = 1)%a** 2 (k= 20)! (u, v) "

|k/2] .
k! (22— [k 2 k—2i
T Ik ZO 2ill <21) (L =)™ (w,v)

F.1 ROSENTHAL-BURKHOLDER INEQUALITY AND COROLLARIES

We will rely on the following inequality:

Proposition 13 ((Peng et al., 2025, Theorem 2.1)). Let {M}.}Y_, be a d-dimensional symmetric
matrix valued martingale adapted to the filtration {Fk},i\/:o. Let Yy := My, — Mj,_1 be its corre-
sponding difference sequence and the quadratic variation is defined as

N
Qn = ZE[Ykﬂfk_l].

k=1

For any p > 2, suppose
1 1
pol 1
E[lQnlli|" < oo and sup E[|Yil5]" < oo.
ke[N]

Then it holds that

1

B[IM8)” < o(vVoViogd B[IQulE]” + (v Ieg )V sup B[I¥i18]").
ke[N]
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We have the following corollaries:
Corollary 3. The following statements holds for general L,V > 0:

1. For X ~ Binomial(L, i), we have

E[IX — kql?]7 < J¢h+p

2. Letc = (c1,-+ ,cy) ~ Multinomial(L, 3> 1v). For p > 1, we have
ya
2

Effle]lf] < va((é)p + (%L) +pp§>.

3. By following the notation in the second item,

. IfV>>L7wehavef0rL2626+1,

2e Eg=t [ \logL—2
P(llc|lo > log L] < (7 (7)
[lc)loe > log L] < gl 1 v

* If L >V, we have

L
P flelle > 5] < 2vetv.

Proof. The first two items are direct consequence of Proposition 13. For the third item, using
Te,>k < Cw(wal)',;I(cl“ka) and linearity of expectation

Plllelloo > k] < chw>k Z Efcw (Cw—l)'k'!'(cw—k—i—l)]

w=1
_L(L-1)--- (L - k+1)
B Ll k=1
For V' >> L, by choosing k = |log L], the result follows. For L >> V, by choosing k = L%J , the
result follows. O
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