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Abstract

The Strong Lottery Ticket Hypothesis (SLTH) demonstrated that a high-performing
model can be obtained just by pruning a randomly initialized dense neural network
by optimizing a pruning mask, known as a supermask. Supermask accuracy has
recently been enhanced by incorporating sign flipping or weight scaling. Fur-
thermore, it has been demonstrated that supermask training can be extended to
sparse random networks. This work proposes the Trichromatic Strong Lottery Hy-
pothesis (T-SLTH), a generalization of the SLTH that (1) connects supermasks to
quantization-aware training, (2) consolidates all existing supermasks into a single
design framework based on three additive primary supermasks, and (3) contains
novel supermask types that support arbitrary connectivity. In addition to sparsity
and quantization, the partial randomness of supermask-based models provides
specialized digital hardware accelerators with a unique opportunity for neural com-
pression. The models offered by the T-SLTH set the SoTA for supermask-based
models in accuracy-size tradeoff: a ResNet-50 scoring 78.43% on CIFAR-100 can
be compressed 38× to 2.51 MB, or even 144× down to 0.66 MB while retaining
74.52% accuracy, and 25× to 4.1 MB while scoring 75.28% on ImageNet.

1 Introduction

Deep neural networks (DNNs) have long been known to be overparametrized, as large portions of their
weights can be pruned after training without affecting their accuracy [5, 17]. The sparsity introduced
by pruning has been a popular approach for specialized neural engine designers, which have exploited
it to compress model size via entropy coding [18, 19] and to reduce the computational cost via
sparse computation [18, 24]. Another popular strategy for compressing neural size and reducing
computation has been quantization. The traditional FP32 format used for GPU training is known to
be unnecessarily large, encouraging efforts to transition to an FP8 format [34] and implementations
with even more aggressive quantization [12, 19, 46, 49] down to binarization [30, 36, 48].

Recently, a series of specialized hardware accelerators have exploited the Strong Lottery Ticket
Hypothesis (SLTH) [41] for an additional compression vector: randomness. The SLTH demonstrated
that inference can be performed just by overlaying a binary pruning mask—a supermask—over a
randomly initialized neural network, which uncovers a subnetwork that has “won the initialization
lottery”. Since the random initialization pattern can be simply reconstructed from seed using a random
number generator (RNG), it is only necessary to store the sparse supermask [7, 22]. This approach has
encouraged multiple hardware implementations [7, 38, 22], applications [10, 35, 47], training method
improvements [1, 6, 8, 9, 11, 14, 26, 44, 45, 51], and enhancements of the supermasks with, e.g.,
quantization [37, 47], sign flipping [6, 27, 25], additional randomness [9, 16], or recurrence [32, 47].

This paper shows that some of these improvements have inadvertently eliminated the exploitable
randomness and become a particular case of quantization-aware training (QAT). Through this analysis,
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this work conjectures the Trichromatic Strong Lottery Ticket Hypothesis (T-SLTH), a generalization
of the SLTH that questions the central role given to connectivity by previous work and clarifies the
relation between the SLTH and standard QAT. Following, we propose a novel supermask construction
method based on three additive primary supermasks that are combined to produce four secondary
supermasks. This framework consolidates the existing supermask types and includes three novel types
that support dense and random connectivity, thus extending supermasks to arbitrary connectivity.
Furthermore, existing work on recurrent supermasks is applied to complete 14 types of SLTH
models, offering hardware designers a flexible design space that makes supermask-based training and
compression compatible with the needs of a broader range of computation designs and substrates.

2 Background

2.1 Supermask-Based Training
The Connectivity Supermask (C) proposed by the original work on the SLTH finds the “winning”
subnetworks—strong lottery tickets (SLTs)—by training a binary supermask [41, 50] using the
Edge-Popup algorithm [41], based on backpropagation. Each weight is assigned a score, updated
with the gradients corresponding to the weight. The supermask is built after every update by including
the top-k% positions with the largest score magnitudes. Sparsity may be enforced per layer [41],
globally [51], or following a distribution [13, 16]. Alternatively, a fixed score threshold may be set
instead of a target sparsity [8, 27]. Supermasks are applied during inference to uncover a subnetwork
but not during the backpropagation stage, when straight-through estimation [4] is used. This process
is equivalent to quantizing score magnitudes into binary values (i.e., {0, 1}).
The Signed Supermask (SSup) [27] enhanced SLT accuracy and sparsity by copying the sign of
each learned score to their corresponding element in the C supermask. Effectively, this is equivalent
to quantizing the scores into balanced ternary values (i.e., {−1, 0,+1}). A similar approach has been
employed where only the signs are learned, and the sparsity is set by unlearned pruning [6, 25].
The Multicoated Supermask (MSup) [37] showed that when Edge-Popup finishes pruning edges
in the C supermask, there is no further way of reducing loss, even though gradients still carry valuable
optimization information. MSup solved this by obtaining from the same scores a set of N supermasks
(N coats) of different sparsity (by defining a list of N top-k%) and bundling them into a supermask
of unsigned scalars. As a result, SLT accuracy and sparsity were enhanced. This process can be
interpreted as quantizing score magnitudes into unsigned scalars (i.e., [0..N ]).2

The Folded Supermask (F) [32] demonstrated that transforming the feed-forward DNN architecture
into a recurrent neural network (RNN) enhances the accuracy and size of SLTs. This transformation
is performed via folding [29], a neuro-inspired method that transforms repeated computational blocks
into iterative computational blocks via weight-sharing (i.e., the reverse operation of RNN unrolling).
Supermask sections corresponding to folded blocks are then iterated accordingly.

2.2 Supermask-Based Compression
Storing SLT random weights is unnecessary since they can be generated on the fly from the random
seed [22]. Since these models are typically trained without biases and with non-affine BatchNorm,
the only model data to be read from off-chip memory—the operations with the most significant power
and time overheads [23]—is the supermask, which in the case of the C supermask it is just 1 bit per
weight. This makes it possible to train models small enough to fit entirely in on-chip memory [31].

Furthermore, the sparsity of supermasks can be exploited for lossless entropy coding, e.g., using
zero run-length encoding [22]. This approach was extended to the multi-coat quantization of MSup
by using a nested representation: coat mn only encodes data corresponding to non-pruned edges
in coat mn−1. This representation can also be used for SSup (i.e., store only signs of non-pruned
weights). Alternatively, integer supermasks may be compressed with Huffman coding [38].

Supermask sparsity can also be exploited to compress computation in specialized digital hardware.
Zero-masking can be employed as data-gating for power reduction in a dense architecture [22].
Alternatively, sparsity can be exploited in a sparse architecture to skip entire portions of computa-
tion [18, 24]. In the case of scalar supermasks, multiplication may be decomposed into a series of
binary shifts, replacing power-hungry multiplication hardware with simple shift-adders [38].

2The notation [a..b] denotes the interval of all integers between a and b, both included.
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Pruning is also being explored in the field of emerging silicon photonic neural accelerators [3].
However, due to analog noise and fabrication uncertainties, simulating sparsity as zeroes is ineffective
in analog substrates. Banerjee et al. [3] found that physically eliminating the hardware corresponding
to pruned edges enhanced accuracy, power, and robustness. Nonetheless, since a network topology
determined at fabrication time completely sacrifices the device’s versatility, a method for training
supermasks with a dense or a pruned device’s arbitrary connectivity would be of interest.

3 The Trichromatic Strong Lottery Ticket Hypothesis (T-SLTH)
After a reinterpretation of the SLTH, this section proposes a novel supermask construction method.

3.1 A Reinterpretation of the SLTH
Here, a new supermask type is proposed by combining SSup and MSup:
The Signed-Multicoated Supermask (SMSup) integrates the enhancements of SSup and MSup
by first computing the MSup and then applying the score signs in the same manner as SSup. This
supermask quantizes scores into signed integers (i.e., [−N..0..+N ], where N is the number of coats),
thus optimizing weight connectivity, signs, and magnitudes (through scalars). Therefore, it raises an
important question: does it leave any randomness in the model after training? And if not, what is the
difference between the SLTH and standard weight quantization?

Indeed, SMSup leaves no randomness, meaning it is equivalent to weight quantization-aware training
(QAT). Table 1 collects the randomness left in weight connectivity, signs, and magnitudes by each
supermask type, tallying the total as a degree of randomness R from 0 to 3, where R=0 corresponds
to a fully learned model (i.e., equivalent to quantization), and R=3 corresponds to a completely
random model. However, the proposed SMSup is not the only supermask with R=0: depending on the
type of weight initialization, some of the existing supermasks are equivalent to weight quantization.

Weights are generally initialized from a continuous distribution, such as Kaiming normal (KN) weight
initialization [20], which samples from the normal distribution N (0, σ2) with average 0 and standard
deviation σ. However, in the case of supermask-based models, higher accuracy has been reported
when using the Signed Kaiming Constant (SK) weight initialization method [32, 41], which samples
uniformly from {−σ,+σ}. Since σ can be viewed as a common scaling factor and thus be absorbed
by the BatchNorm layer [22], SK can be seen as binary weight initialization (i.e., {−1,+1}). Since
SK reduces the randomness of the initial weights to only their signs, SSup leaves no randomness: it is
equivalent to balanced ternary (i.e., {−1, 0,+1}) weight quantization, where Edge-Popup’s scores
are equivalent to the latent weights of standard QAT, and the strong lottery ticket (SLT) uncovered by
the supermask is equivalent to QAT’s effective weights. The same is true for SMSup.

Under this equivalence view, supermask-based training can be reinterpreted as partially random
weight quantization, a particular type of QAT that targets part of the numerical properties of each
effective weight (i.e., a subset of connectivity, sign, and magnitude) and leaves the rest with a fixed
partial randomness pattern. This view considers pruning as a special case of quantization, placing no
particular emphasis on subnetworks. Then, it should be possible to train supermasks where the part
left random is the connectivity, i.e., to obtain SLTs with random or dense connectivity. Based on this,
the SLTH can be expanded into the Trichromatic Strong Lottery Ticket Hypothesis:

The Trichromatic Strong Lottery Ticket Hypothesis (T-SLTH). A randomly initialized
neural network of arbitrary sparsity contains enough representational power such that—after
only training its weight connectivity, signs, magnitudes, or any combination of them—it
achieves competitive test accuracy.

This generalization of the SLTH questions the central role that previous work has given to network
topology: the SLTH is possible with or without subnetworks. Appendix B collects comparisons with
other Lottery Ticket Hypotheses.

3.2 Trichromatic Supermasks: A Framework Based on Three Additive Primary Supermasks
While SSup expanded the C supermask’s learned connectivity with learned signs, MSup expanded
it with learned magnitudes, and the proposed SMSup learns all connectivity, signs, and magnitudes.
This work explores the T-SLTH by detaching these three elements into a framework based on three
additive primary supermasks, illustrated in Figure 1:
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Table 1: Randomness of each
trichromatic supermask.

Supermask
Combination

W.
Init.

Randomness RCX SIGN MAG

C KN
✗ ✓

✓ 2
SK ✗ 1

S KN
✓ ✗

✓ 2
SK ✗ 1

M KN
✓ ✓ ✗

2
SK 2

CS
(SSup)

KN
✗ ✗

✓ 1
SK ✗ 0

CM
(MSup)

KN
✗ ✓ ✗

1
SK 1

SM KN
✓ ✗ ✗

1
SK 1

CSM
(SMSup)

KN
✗ ✗ ✗

0
SK 0

CX: Connectivity; MAG: Magnitude.
R: Degrees of randomness.
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Figure 1: T-SLTH
Venn diagrams.

C
∈ {0,1}

S
∈ {−1,+1}

M
∈ [1. . 𝑁]

CSM (SMSup)
∈ [−𝑁. . 0. . +𝑁]

CS (SSup)
∈ {−1,0, +1}

CM (MSup)
∈ [0. . 𝑁]

SM
∈ [−𝑁. . +𝑁]

Figure 2: Trichromatic supermasks formed
by combining three primary supermasks.

• The C supermask learns connectivity by quantizing score magnitudes to {0, 1} according
to a threshold or target sparsity, leaving weight magnitudes and signs untouched.

• The S supermask learns signs by quantizing scores to their sign {−1,+1}, leaving magni-
tudes and connectivity untouched.

• The M supermask learns magnitudes by quantizing scores to unsigned integer scalars
[1..N ], leaving signs and connectivity untouched.

Then, SSup can be seen as a secondary CS supermask resulting of the superposition of the C and S
supermasks (i.e., C ∩S); MSup as a CM supermask (i.e., C ∩M ); and SMSup as a CSM supermask
resulting of the superposition of the three (i.e., C ∩ S ∩M ). The novel S and M supermasks can
be trained in isolation, leaving the arbitrary initial connectivity—whether dense, randomly pruned,
or a specific pattern—untouched. Additionally, a third novel supermask can be defined by their
superposition: the SM supermask. This reinterpretation of the supermasks is illustrated in Figure 2.

The construction of a trichromatic supermask T , specified in Appendix C, is trivial: T = C⊙M⊙S,
where C is the original supermask in [41], M is just a special case of MSup where the first coat is
dense, S just contains score signs, and ⊙ indicates the Hadamard product. Since random connectivity
can be reconstructed from the seed in the same manner as random weights and reduces the number of
edges from the beginning, it greatly reduces model size when using the nested representation (see
sec. 2.2). The case of dense connectivity is also very compressible, as dense coats can be omitted.

Table 1 collects the randomness analysis of the new three supermasks of arbitrary connectivity. This
framework, which defines a total of 7 supermasks, is boosted with folding (F) to complete a design
space totaling 14 possible SLTH models, summarized in Appendix C, Table 4.

4 Experiments and Results
Following previous work [32, 37, 41], this section evaluates the discussed models using
ResNet-50 [21] and image classification datasets. All supermasks are trained using the original
Edge-Popup [41] with a non-annealed global top-k% for comparison clarity. The top-k% list of M
supermasks is determined using the Linear method in [37]. Following [32], folding is performed
only in the last two stages of the model, using unshared BatchNorm parameters. Experiments on
CIFAR-100 [28] show a 3-run average of top-1 test accuracy, with a shaded standard deviation,
whereas ImageNet [42] results show single-run top-1 validation accuracy. The model size calculation
considers an on-chip RNG for re-generating random weights and connectivity from the original seed.
Supermasks are compressed using the nested representation, but entropy coding is not considered for
ablation, as the compression ratio is very implementation-dependent. Learned BatchNorm parameters
are counted as FP32. Training settings are detailed in Appendix A.

4.1 Supermasks With Learned, Dense, and Random Connectivity
This section examines all the discussed supermask types by testing them for a double range of sparsity:
learned connectivity and random connectivity are set on the same axis, separated by the point of dense
connectivity. The seven defined supermasks are compared for the KN and SK weight initialization
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(b) SK initialization
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(c) Folded, SK initialization

Figure 3: Comparison using ResNet-50 and CIFAR-100 of all supermasks types with connectivity
(CX) that is learned (left semiaxis), dense (0%), or random (right semiaxis).
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Figure 4: Accuracy-model size tradeoff compared on a 70% sparse ResNet-50. When N=1, CM and
CSM are equivalent to C and CS, respectively. CX: Connectivity; F: folded.

methods in Figure 3a and Figure 3b, respectively. As commonly reported by previous work, SK
initialization results in higher classification accuracy for all models.

The results on the learned connectivity semiaxis show that adding S and M supermasks to the C
supermask (i.e., CS and CM) have a similar effect of boosting accuracy and extending the effective
sparsity range. From the view of the T-SLTH, this is natural since S and M supermasks do not require
learned connectivity. Indeed, at the point of dense connectivity, they only suffer a slight drop in
accuracy, demonstrating that learned connectivity only makes a minor contribution to their efficacy.

The results on the random pruning side confirm the proposed T-SLTH: high accuracy can be achieved
by only learning part of the network elements and leaving the rest randomly initialized, and this
is not limited to the learned connectivity and random weights of the SLTH. Although the accuracy
with random connectivity is lower than with learned connectivity, it does not necessarily mean that
there is some intrinsic advantage in finding subnetworks: while the randomness of weights uses the
more sophisticated method of Kaiming initialization [20], the random pruning at initialization (RPaI)
implemented here is naively random.

Figure 3c shows the same comparison using folded supermasks with SK initialization, demonstrating
an additional accuracy boost across the entire connectivity spectrum. Remarkably, F-CSs of 10–70%
sparsity reach almost the same accuracy as the learned FP32 weight baseline, and F-SM of up to 60%
random sparsity matches the accuracy of the best performing original supermask (F-C).

4.2 Accuracy-Size Tradeoff

Figure 4a and Figure 4b compare the accuracy-size tradeoff of all the supermask types using 70%
sparse ResNet-50 on CIFAR-100 and ImageNet, respectively. Results are connected by number of
coats (N ), following the convention that C is a special case of MSup (CM) where N=1 [37].

In the case of CIFAR-100, F-SM reaches 78.43% accuracy, close to the 78.74% of the dense baseline,
in only 2.51 MB, a 38× compression rate that sets the SoTA for supermask models in this dataset.
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Even with 70% random connectivity, F-CSM reaches 74.52% in just 0.66 MB, a 144× reduction that
guarantees fitting in on-chip memory even on modest implementations.

Although in the simpler task the gains provided by the CS and CM supermasks do not compound
predictably when combined into CSM, on ImageNet the accuracy grows monotonically with the
number of primary supermasks and coats. Signing a 7-coated CM boosts its 74.43% accuracy to
75.32%, setting the SoTA for an SLTH-based ResNet-50 on this dataset. Even for the folded version,
which is known to suffer from lower accuracy on ImageNet [32], the compound benefits of each
primary supermask raise its accuracy from 67.14% to 75.28%, almost matching its feedforward coun-
terpart despite being 1.49× smaller. Compared to the 76.89% accuracy of the standard ResNet-50,
the 7-coated CSM and F-CSM reduce the model size by 16.8× and 25.0×, respectively, while only
suffering an accuracy drop of 1.5 percentage points. Although extending supermasks to arbitrary
connectivity succeeds in producing smaller models (>1 MB), it fails to improve the accuracy-size
tradeoff, thus acting as a lower-size extension of the tradeoff set by learned connectivity.

4.3 Comparison With Other Quantization-Aware Training (QAT) Methods

Table 2: QAT methods compared on ImageNet.

Method Model
Top-1

Acc.
(%)

W/A
(bits)

Spar
sity
(%)

INT
Size

(MB)

Nested
Size

(MB)

EP (C) [41]∗ RN50 68.6 1/32 70 3.1 3.1
Hiddenite (C) [22]∗ RN50 70.09 1/BFP8 70 3.1 3.1
WD (F-CS) [38]∗ RN50 71.54 2/FP8 70 4.2 2.8
PaB (≈S) [6]∗ RN50 63.58 2/32 30 6.4 5.4
LCQ [46] RN50 75.1 2/2 0 6.4 6.4
LCQ [46] RN50 76.3 3/3 0 9.6 > 6.4
LSQ [12] RN50 76.7 4/4 0 12.8 > 6.4
Dense Baseline [21] RN50 76.89 32/32 0 102.2 —

F-C∗ RN50 67.14 1/32 70 2.2 2.2
F-CS∗ RN50 71.33 2/32 70 4.2 2.8
F-CSM (N=7)∗ RN50 75.28 4/32 70 8.3 4.1
SM (N=7)∗ RN50 68.12 4/32 70 9.6 2.9

ReAct [30] RN18 69.4 1/1 0 1.4 1.4
DDQ [49] MNV2 71.8 4/4 0 1.8 —
MNV2 [43] MNV2 71.66 8/16 0 3.4 —
HFN (F-C) [32]∗ WRN50 73.08 1/32 70 5.3 5.3
EP (C) [41]∗ WRN50 73.3 1/32 70 8.6 8.6
MPT (C) [11]∗ WRN50 74.03 1/32 80 8.6 8.6
CM (N=7) [37]∗ RN101 76.5 3/32 70 16.7 9
LSQ [12] RN101 77.5 3/3 0 16.7 —
W/A: Weights/Activations; ∗: Supermask-based
RNx: ResNet-x; WRNx: Wide-RNx; MNV2: MobileNetV2

Table 2 compares on ImageNet the
T-SLTH models with other QAT meth-
ods, including some supermask-based
methods. When comparing on the
same ResNet-50, T-SLTH models of-
fer a better size-accuracy tradeoff than
standard QAT methods, which do
not induce sparsity: F-CSM (N=7)
reaches 75.28% accuracy in just
4.1 MB, where a similarly performing
75.1% accurate counterpart trained us-
ing LCQ [46] occupies 6.4 MB. This
superior tradeoff is possible due to the
nested representation offered by super-
mask sparsity, as a plain INT encoding
would result in a poorer tradeoff.

A comparison with deeper or wider
supermask-based models suggests
that T-SLTH models will scale to
higher accuracy while keeping a su-
perior tradeoff. However, comparing
with smaller models, such as a DDQ-
quantized MobileNetV2 [49], reveals
a need for further improvement in the
ultra-small size range.

Although non-supermask QAT meth-
ods also quantize activations, which
could explain their lower tradeoff, the robustness of supermasks to quantized activations has been
demonstrated by implementations that quantize them to BFP8 [22], FP8 [38], or even binarize
them [11]. A similar table with comparisons on CIFAR-100 is collected in Appendix D.

5 Discussion and Conclusion
Although the models resulting from the Strong LTH are not as accurate as the sparse models
with trained weights produced by the weak LTH [15], this work aims to demonstrate that the
competitive accuracy and high compressibility of partially-random SLTH models makes them a
practical choice for efficient hardware implementations. Furthermore, by connecting the SLTH and
standard weight quantization, this work hopes to stimulate the application of more sophisticated
quantization techniques to partially random supermask-based training. Finally, by making it possible
to train supermasks of arbitrary connectivity, this work plans to extend SLTH acceleration, already
established in digital hardware, to analog substrates with a dense topology or one pruned at fabrication
time without loss of computation versatility.
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A Training Settings
Table 3: Training settings for each dataset.

Setting CIFAR-100 ImageNet
Epochs 200 200
Train/Valid. split 90%/10% —
Label smoothing 0 0.1
Score init. Kaiming Uniform
Optimizer SGD
Momentum 0.9 0.875
Weight decay 5E−4 3.05E−5
Batch size 128 256
LR schedule Cosine Annealing
Start LR 0.1 0.256
Warmup 0 5

LR: learning rate.

B Comparison With Other Lottery Ticket Hypotheses
• The (Weak) Lottery Ticket Hypothesis (LTH) [15].

A randomly initialized, dense neural network contains a subnetwork (a winning ticket) that is
initialized such that—when trained in isolation—it can match the test accuracy of the original
network after training for at most the same number of iterations.

Unlike the proposed T-SLTH, the LTH iterates pruning and training, resulting in a model with higher
accuracy, but no compressible randomness.

• The Dual (Weak) Lottery Ticket Hypothesis (DLTH) [2].
A randomly selected subnetwork from a randomly initialized dense network can be transformed
into a trainable condition, where the transformed subnetwork can be trained in isolation and
achieve better at least comparable performance to LTH and other strong baselines.

Although similar to the proposed T-SLTH in that it extends the LTH to arbitrary initial connectivity,
the DLTH is also weak (i.e., trains weights).

• The Strong Lottery Ticket Hypothesis (SLTH) [33, 41].
A randomly initialized, dense neural network contains a subnetwork (a strong ticket) that is
initialized such that—without any weight training—it achieves competitive test accuracy.

The original Strong LTH only considers dense parent networks and is focused on the concept of
subnetworks (i.e., pruning), whereas the proposed T-SLTH considers parent networks of arbitrary
connectivity and 7 ways of uncovering tickets, including 3 that do not perform pruning.

• The Multi-Prize (Strong) Lottery Ticket Hypothesis (M-SLTH) [11].
A sufficiently over-parameterized neural network with random weights contains several
subnetworks (winning tickets) that (a) have comparable accuracy to a dense target network
with learned weights (prize 1), (b) do not require any further training to achieve prize 1 (prize
2), and (c) is robust to extreme forms of quantization (i.e., binary weights and/or activation)
(prize 3).

Although the M-SLTH covers quantization robustness, it is not considered a method for uncovering
tickets. Furthermore, its paper only discusses binarization. The T-SLTH shows that quantization itself
of different types can uncover strong tickets.

• The Disguised (Strong) Lottery Ticket Hypothesis (D-SLTH) [6].
A randomly initialized, dense neural network contains a sparse subnetwork (a disguised strong
ticket) that is initialized such that—after unmasking it with some simple transformations—it
achieves competitive test accuracy.

Like the S supermask proposed in this work, the D-SLTH first prunes the parent network and then
trains a sign-flipping mask. It can be considered a special case of the proposed T-SLTH, but since it
uses untrained (nor random) pruning, the resulting tickets are less compressible.
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C Trichromatic Supermask Construction

After optionally folding the neural structure into a recurrent architecture following [32], the random
weight tensor W (l)

rand in each layer l of the model is initialized with a given with initialization method
(e.g., KN or SK). Here, arbitrary connectivity may be implemented using RPaI or a given connectivity
pattern (e.g., the one corresponding to a particular hardware topology). Then, a score tensor Z(l) and
a trichromatic supermask T (l) are defined for each W

(l)
rand, with the same dimensionality. During

inference, forward weights are calculated as

W (l) = W
(l)
rand ⊙ T (l), (1)

where T (l) is the trichromatic supermask. During the backward pass, STE [4] is used instead
of applying the supermask, and the gradient of each weight wuv ∈ W

(l)
rand is used to update its

corresponding score zuv ∈ Z(l), analogously to Edge-Popup [41]. The trichromatic supermask is
then reconstructed after each score update as

T (l) = C(l) ⊙M (l) ⊙ S(l), (2)

where C(l), M (l), and S(l) are the three primary supermasks, and ⊙ is the Hadamard product
operator. The construction settings are formed by c, m, and s, booleans that determine if the
corresponding primary supermask is used or not, and K, a set of N supermask densities (top-k%).

The C supermask is generated as

C(l)(Z(l),K) =

{
H(Z(l), k0) c

1 ¬c , (3)

in which k0 ∈ K is the first defined top-k%, and H is the original supermask generating function,
defined as

H(Z(l), k) =


h(z

(l)
1,1, k) · · · h(z

(l)
U,1, k)

...
. . .

...
h(z

(l)
1,V , k) · · · h(z

(l)
UV , k)

 , (4)

where h(zuv, k) is a step function that prunes weight wuv ∈ W
(l)
rand based its corresponding score

zuv ∈ Z(l) and a threshold score zt calculated from sparsity k:

h(zuv, k) =

{
1 |zuv| ≥ zt
0 |zuv| < zt

. (5)

Similar to [37], the M supermask is generated by iterating H over K:

M (l)(Z(l),K) =

{
1+

∑N−1
n=i H(Z(l), kn) m

1 ¬m
, (6)

where the first density kn ∈ K used in M is set to be the second one (k1) if the first one (k0) is used
in C by defining

i =

{
0 c

1 ¬c . (7)

Lastly, the S supermask is generated as

S(l)(Z(l)) =

{
SGN(Z(l)) s

1 ¬s , (8)

where SGN(Z(l)) applies an element-wise modified sign step function defined as

sgn(zuv) =

{
−1 zuv < 0

+1 zuv ≥ 0
. (9)

The three primary supermasks can be combined in different ways to generate 7 possible supermask
types, which, combined with the optional folding, totals 14 possible models, collected in Table 4.
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Table 4: Models supported by the proposed design framework.

Model Randomness RecurrentCX SIGN MAG

C [41] ✗ ✓ ▲ ✗
CS [27] ✗ ✗ ▲ ✗
CM [37] ✗ ✓ ✗ ✗
CSM ✗ ✗ ✗ ✗

S [25, 6] ▲ ✗ ▲ ✗
M ▲ ✓ ✗ ✗
SM ▲ ✗ ✗ ✗

F-C [32] ✗ ✓ ▲ ✓
F-CS ✗ ✗ ▲ ✓
F-CM [47] ✗ ✓ ✗ ✓
F-CSM ✗ ✗ ✗ ✓

F-S ▲ ✗ ▲ ✓
F-M ▲ ✓ ✗ ✓
F-SM ▲ ✗ ✗ ✓

▲: depends on initialization.

C.1 Trichromatic Supermask Compression

The memory size in bits of a trichromatic supermask T (l) using the nested representation is given by

|T (l)| = (|C(l)|+ |M (l)|+ |S(l)|) · kr, (10)

where kr is the density after random pruning at initialization, and |1| = 0 (the case where a primary
supermask is not used), as it makes no contribution in Eq. (2). The size of each primary supermask
(when included) is described below.

Since C(l) includes one bit per weight, its size is given by

|C(l)| = |W (l)
rand|, (11)

where |W (l)
rand| is the number of weights in layer l.

In M (l), binary coat mn can be nested under coat mn−1, i.e., coat mn only encodes the elements
that were not pruned in mn−1. When used with C(l), the first coat can be nested under it. Thus, the
size is given by

|M (l)| =

{
|W (l)

rand| · (
∑N−2

n=1 kn) c

|W (l)
rand| · (1 +

∑N−2
n=1 kn) ¬c

. (12)

S(l) includes one bit per weight (the sign bit), but when C(l) or M (l) are present, it can be nested
under them, signing only the non-pruned elements:

|S(l)| =

{
|W (l)

rand| · k0 c|m
|W (l)

rand| ¬(c|m)
. (13)

In Eq. (10), all supermasks are nested under the random pruning pattern, which is regenerated from
seed and thus provides the most compression. It shall be noted that these binary representations are
sparse even after nesting—since kn are set quasi-logarithmic [37] and S(l) is expected to keep a
normal distribution—meaning that they can be further compressed using one of the many available
lossless entropy coding methods (e.g., run-length encoding or Huffman coding).
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D Comparisons on CIFAR-100

Table 5: QAT methods compared on CIFAR-100.

Method Model
Top-1

Acc.
(%)

W/A
(bits)

Spar
sity
(%)

INT
Size

(MB)

Nested
Size

(MB)

WD (F-CS) [38]∗ RN50 80.29 2/FP8 90 3.80 2.51
ERNet (C) [16]∗ RN50 67.67 1/32 99.5 2.96 2.96
Hiddenite (C) [22]∗ RN50 70.15 1/BFP8 70 2.96 2.96
Dense baseline [21] RN50 78.74 32/32 0 94.82 —

S∗ RN50 74.85 1/32 70 2.96 0.88
M (N=7)∗ RN50 72.08 3/32 70 8.88 1.91
SM (N=7)∗ RN50 75.01 4/32 70 11.84 2.61
C∗ RN50 76.97 1/32 70 2.96 2.96
CS∗ RN50 77.14 2/32 70 5.92 3.84
CM (N=7)∗ RN50 76.45 3/32 70 8.88 4.87
CSM (N=7)∗ RN50 76.81 4/32 70 11.84 5.56

F-S∗ RN50 74.52 1/32 70 1.95 0.66
F-M (N=7)∗ RN50 72.21 3/32 70 7.80 1.34
F-SM (N=7)∗ RN50 76.33 4/32 70 7.80 1.76
F-C∗ RN50 77.15 1/32 70 1.95 1.95
F-CS∗ RN50 78.43 2/32 70 3.80 2.51
F-CM (N=7)∗ RN50 78.08 4/32 70 7.80 3.18
F-CSM (N=7)∗ RN50 76.92 4/32 70 7.80 3.60

F-S∗ RN50 77.25 1/32 0 1.95 1.95
F-M (N=7)∗ RN50 77.03 3/32 0 7.80 3.18
F-SM (N=7)∗ RN50 76.21 4/32 0 7.80 3.60

ERNet (C) [16]∗ RN101 71.16 1/32 50 5.56 5.56
HFN (F-C) [32]∗ RN200 78.90 1/32 70 3.02 3.02
PaB (≈S) [6]∗ WRN28 77.81 2/32 70 4.78 4.78
C [32]∗ WRN50 78.59 1/32 70 8.37 8.37
HFN (F-C) [32]∗ WRN50 79.16 1/32 70 5.11 5.11

W/A: Weights/Activations; ∗: Supermask-based
RNx: ResNet-x; WRNx: Wide-RNx

E Limitations

Although the claims presented in this work are supported with experimental evidence, no theoretical
support is provided. Furthermore, experiments were only carried out on ResNet-50 and only on
image classification datasets. Future work shall extend to the T-SLTH the work on the SLTH that
offered theoretical proofs [33, 39, 40] and demonstrated its scalability to other models [32, 37, 38, 47]
and tasks [47].

The benefits of the proposed models are only available to specialized hardware. When processed
on standard hardware (e.g., CPU or GPU), SLTH models offer no computational cost benefit.
Furthermore, this work presents no hardware design nor experimental results on specialized hardware.
Nonetheless, it references publications describing similar hardware implementations [7, 22, 38].

The benefits of the proposed models are mainly focused on inference. In fact, Edge-Popup is slightly
more computationally expensive than standard backpropagation. Although it is unclear how to exploit
the simplicity of supermask-based training to reduce its training cost, some work on the SLTH has
demonstrated that supermasks can be learned using low-precision gradients [6].

For clarity, this work does not employ any of the improvements that have been proposed for
Edge-Popup [1, 6, 8, 9, 11, 14, 26, 44, 45, 51], nor modern augmentation-regularization strate-
gies, nor distillation or pre-trained models. Future work apply these methods to this work for better
results. Additionally, this work does not consider the weak LTH [15]—i.e., the trainability of the
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found tickets—as it focuses on the compressibility opportunity offered by partial randomness, which
is not present in trained weak winning tickets.

F Societal Impact Statement

This work presents a framework for designing neural networks for efficient hardware acceleration. It
has the potential to help reduce the high computational cost associated with AI applications, which are
now quickly becoming ubiquitous, and its associated climatic impact. To the best of our knowledge,
this work has no potential negative societal impacts.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper claims to (1) connect the SLTH to weight quantization, (2) con-
solidate existing supermasks in a single framework, and (3) extend the SLTH to arbitrary
connectivity. Section 3 describes claims (1) and (2). Claim (3) is demonstrated in section 4
demonstrate the T-SLTH for learned, dense, and random conectivity.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 4 mentions that there are more advanced SLTH training methods that
we do not use. The results discussion mentions that the proposed method is still not the
SoTA for the smallest of models, while the conclusion section mentions that weak SLTH
models are more accurate. Appendix E covers some additional limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not present theoretical results, although it does present a
hypothesis, for which experimental evidence is presented.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The presented method is based on three existing methods for which the code is
publicly available ([27, 37, 31]). We present how to combine them, as well as the training
settings. Datasets are also well-known and publicly available.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Although we have not released our code, it is built from three pieces of publicly
available code, as described in the previous question. Datasets used are publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Training details are detailed in section 4 and appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
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Answer: [Yes]
Justification: As explained in section 4, we perform 3 repetitions in the case of CIFAR-100
experiments, for which averages and standard deviations are provided, and a single repetition
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: The experiments in this paper use a well-known model (ResNet-50) with
common datasets, requiring no special kind of computer resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: Appendix F includes a societal impact statement.
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All used assets are referenced and credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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