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Abstract

Recently, pre-trained vision-language (VL)
models have achieved remarkable success in
various cross-modal tasks, including referring
expression comprehension (REC). These mod-
els are pre-trained on the large-scale image-text
pairs to learn the alignment between words in
textual descriptions and objects in the corre-
sponding images and then fine-tuned on down-
stream tasks. However, the performance of VL
models is hindered when dealing with implicit
text, which describes objects through compar-
isons between two or more objects rather than
explicitly mentioning them. This is because the
models struggle to align the implicit text with
the objects in the images. To address the chal-
lenge, we introduce CLEVR-Implicit, a dataset
consisting of synthetic images and correspond-
ing two types of implicit text for the REC task.
Additionally, to enhance the performance of VL
models on implicit text, we propose a method
called Transform Implicit text into Explicit text
(TIE), which enables VL models to process
with the implicit text. TIE consists of two
modules: (1) the prompt design module builds
prompts for implicit text by adding masked
tokens, and (2) the cloze procedure module
fine-tunes the prompts by utilizing masked lan-
guage modeling (MLM) to predict the explicit
words with the implicit prompts. Experimental
results on our dataset demonstrate a significant
improvement of 37.94% in the performance of
VL models on implicit text after employing our
TIE method.

1 Introduction

In recent years, pre-trained vision-language models
have demonstrated remarkable achievements in var-
ious vision-language downstream tasks (Lu et al.,
2019; Su et al., 2019; Kim et al., 2021; Yao et al.,
2021; Kamath et al., 2021; Liu et al., 2022), in-
cluding referring expression comprehension (REC).

∗Equal contribution.
†Corresponding author.

Figure 1: Examples from CLEVR-Implicit. There are
two types of implicit text: Same and Different.

REC involves identifying a specific object in an im-
age based on corresponding textual descriptions. A
common approach is to pre-train a vision-language
model on large-scale image-text pairs to learn the
alignment between words in textual descriptions
and objects in the images. Fine-tuning is then per-
formed to optimize model performance (Lu et al.,
2019; Su et al., 2019; Kamath et al., 2021).

Despite the state-of-the-art results demonstrated
by these methods, they still exhibit limitations. Pre-
trained models are good at processing explicit text,
which describes the appearance attributes of the
objects in the image, whether they are reference or
target objects. For example, consider the phrase
"The object left on the red cube.", models rely on
the explicit word "red cube" to locate the referred
object in the image. However, they encounter chal-
lenges when it comes to implicit reasoning, which
is processing the implicit text in REC. Implicit



reasoning occurs when the textual expression in-
directly describes an object through a comparison
between two or more objects, one type of implicit
text is formatted like "The left one of two same
color objects". The phrase "two same color ob-
jects" does not describe the appearance attributes
of any objects, only the relationships between them,
and there is no direct reference for the models to
infer the target. Consequently, models struggle to
align "two same color objects" with any objects
in the image. To evaluate the performance gap
between explicit and implicit text, we conducted
experiments using existing methods on both types
of text separately. Preliminary results indicate that
the performance on implicit text is approximately
42% lower compared to explicit text.

Besides, the implicit text also plays a significant
role in the domain of human-computer interaction.
However, existing referring expression datasets,
such as RefCOCO (Yu et al., 2016), RefCOCO+
(Yu et al., 2016), RefCOCOg (Mao et al., 2016),
and CLEVR-Ref+ (Liu et al., 2019), primarily con-
sist of explicit text. Unfortunately, there is currently
no dataset available that is specifically designed to
provide research data on implicit text.

To address the lack of research data and methods
for implicit text, we propose a synthetic dataset
called CLEVR-Implicit, specifically for implicit
reasoning in REC. Unlike existing datasets, the im-
plicit text we constructed is a subset of all types
of implicit text, since they describe synthetic im-
ages, and do not need to consider external knowl-
edge. Specifically, We focus on the more difficult
types (only containing relationships between ob-
jects without any description of their appearance
attributes). We evaluate the current pre-trained
REC models on our CLEVR-Implicit dataset with
these types of implicit text.

In real-world scenarios, most humans will first
extract explicit information from visual context
and text information when processing these types
of implicit text, and then reason the target object
from the extracted explicit information. Inspired
by the thinking mode of humans, we simulate the
process of humans reasoning about the implicit
text and introduce a method called TIE (Transform
the Implicit text into Explicit text), which enables
pre-trained models to process the implicit text by
extracting the explicit information. By employing
TIE, REC models facilitate alignment between ex-
plicit words and corresponding images on CLEVR-

Table 1: The attributes and example values of the objects
in CLEVR. We build the CLEVR-Implicit based on
these objects.

Attribute Example values
color red,blue,cyan,purple,gray,green
material metal,rubber
shape cube,cylinder,sphere
size large,small
spatial left,right,behind,front

Implicit. Experimental results demonstrate a sub-
stantial difference in the performance of REC mod-
els on our dataset before and after applying TIE.

We summarize our contributions as follows:

• We analyze the limitations of existing refer-
ring expression comprehension models on
the implicit text and construct the CLEVR-
Implicit dataset.

• We propose the TIE method to enable pre-
trained REC models to process the implicit
text by transforming the implicit text to ex-
plicit text.

• We evaluate the existing models on the
CLEVR-Implicit and analyze the differences
between the models before and after applying
TIE.

2 Related Works

2.1 Referring Expression Comprehension
Referring expression comprehension (REC) aims
to localize the region in an image that corresponds
to a given sentence description. In recent years,
there has been a significant increase in research
attention towards this task, driven by the increas-
ing applications of REC in the domain of human-
computer interaction. The related task of refer-
ring expression generation (REG) has been studied
for many years (Krahmer and Van Deemter, 2012;
Mitchell et al., 2013; Reiter and Dale, 1992) in the
natural language processing (NLP) domain.

Several real-world datasets, such as RefCOCO,
RefCOCO+, and RefCOCOg, have been proposed
based on the MSCOCO dataset (Vinyals et al.,
2016) for this task. CLEVR-Ref+ (Liu et al., 2019)
is a synthetic dataset that contains geometric ob-
jects. These datasets have been widely adopted as
benchmarks for evaluating the performance of re-
ferring expression models. MMI (Mao et al., 2016)



directly predicted the bounding box by ranking the
region proposals. SLR (Yu et al., 2017) utilized
a joint embedding model to predict the referred
object by learning the visual and language repre-
sentations in an embedding space. MattNet (Yu
et al., 2018) adapted the attention mechanism to
parse expressions into three modules and predict
the visual regions by a weighted combination of
module scores. VL-BERT (Su et al., 2019) adopted
a Transformer model and concatenates the visual
and language embeddings as inputs. MDETR (Ka-
math et al., 2021) constructed an end-to-end system
based on the DETR (Carion et al., 2020) detector
and a language model to learn the alignment be-
tween objects and phrases. VLTVG (Yang et al.,
2022) improves comprehension ability by utilizing
a visual-linguistic verification module to generate
discriminative feature representations.

2.2 Prompt Learning

Prompt learning, initially introduced in the field
of NLP, is used to reformulate downstream tasks
to the form of the pre-training task masked lan-
guage modeling (MLM) (Devlin et al., 2018). This
approach enables models to effectively utilize the
knowledge during the pre-training stage (Liu et al.,
2023). Concretely, prompt engineering reformu-
lates the downstream task into a "fill-in-the-blank"
cloze task with the same objective function as in the
MLM task. The effectiveness of prompt learning
heavily relies on the design of appropriate prompt
templates. Even slight variations in the prompt
template can yield significant differences in perfor-
mance. Therefore, the selection of suitable prompt
templates becomes crucial for achieving desirable
results.

Prompt learning has also been explored in the
multi-modal domain through various studies. CLIP
(Radford et al., 2021) pre-trained on large-scale
image-text pairs and designs manual prompts like
"The photo of [MASK]" to facilitate image classifi-
cation by predicting the masked token. DPT (Liu
et al., 2022) reformulated the visual question an-
swering (VQA) task as the MLM by converting the
input (question) to a declaration with the masked
token.

3 Methodology

This section begins by explaining the construction
process of the CLEVR-Implicit dataset. Subse-
quently, we introduce our proposed TIE method,

Table 2: The statistic data of CLEVR-Implicit.

Attribute num Same Different
1 3000 -
2 3000 1553
3 3000 3000
4 2905 3000

which involves converting the implicit text within
the CLEVR-Implicit dataset into explicit text. This
explicit text is then utilized in the referring expres-
sion comprehension task through the fine-tuning
process of pre-trained vision-language models.

3.1 Dataset Construction

3.1.1 CLEVR-Implicit Overview
CLEVR-Implicit Dataset uses a subset of the
CLEVR (Johnson et al., 2017) scenes (10K im-
ages for all, 60% for the train set and 40% for
the validation and test set). Table 1 provides an
overview of the attributes and values associated
with the objects in CLEVR. In order to enhance the
difficulty of the dataset, we filter and choose the
images that contain 3 or more objects. Given that
CLEVR-Ref+ provides scene graphs about the at-
tributes (such as color, material, shape, and size) of
objects, as well as the spatial relationships between
them within the image, we generate corresponding
referring expressions for each image. A total of
19K referring expressions are generated, averaging
1.9 referring expressions for each image. Finally,
the bounding box of the referred object is assigned
as the label for each referring expression in the
CLEVR-Implicit Dataset.

3.1.2 Implicit Text Generation
To generate implicit text that describes objects
through a comparison between two or more objects,
we utilize the scene graphs provided by CLEVR-
Ref+. A program is employed to extract the at-
tributes of all the objects present in the images.
This allows for the comparison and analysis of
their attributes, enabling the generation of implicit
text that captures the relationships between objects
without explicitly mentioning any specific object
in the image.

For an image, we compare the attributes of each
two objects and find each set of objects that sat-
isfies the requirement for generating implicit text.
In CLEVR-Implicit, we set up two types of im-
plicit text: "same" and "different". The "same"



Figure 2: The framework of our TIE method and subsequent REC process. The implicit text in CLEVR-Implicit is
converted to an implicit prompt which contains a masked token before the attribute. Then vision-language model
predicts the explicit words by Multi-step and Path-select prediction strategies in the MLM task. After TIE, the
output explicit text and the image are fed to referring expression model to predict the result.

type represents that the text refers to the object by
describing the same of certain attributes between
objects (e.g. "The left one of the only two objects
with the same color and material"), while the "dif-
ferent" type is the opposite of "same" (e.g., "The
left object that is different shape and size from the
other one). Table 2 provides statistics regarding the
distribution of "same" and "different" type samples
in the CLEVR-Implicit dataset.

It is worth mentioning that the "same" type of
referring expressions also exist in the CLEVR-
Ref+ dataset. The key difference in “same” type
text between CLEVR-Implicit and CLEVR-Ref+ is
whether the explicit words are hidden. The “same”
type of text in CLEVR-Ref+ is like “The objects
that have the same size as the red sphere”, which
contains the explicit word “red sphere”. The ex-
plicit context provides REC models with a refer-
ence object and helps them locate the target. Oppo-
sitely, the “same” type of implicit text in CLEVR-
Implicit is formatted like “The two objects with the
same size”, which hides explicit words. Without
explicit context and hard to find the reference ob-
ject, REC models are forced to compare every two
objects to identify what the "size" is and whether
they are the same. That illustrates that implicit text
in CLEVR-Implicit is more challenging.

We pay more attention to the reference to a sin-
gle object in the context of REC. During the gen-
eration process, we take precautions to avoid text
ambiguity, ensuring that the implicit text describes
only one object in the image. To achieve this, we

prioritize maximizing the number of attributes in-
volved in attribute comparisons. For example, if
the target is in a group of objects that share the
same color only, we must ensure no other group of
objects that can satisfy the same color and material.
In cases where such a group of objects exists, we
will change the target and modify the implicit text
to describe the corresponding number of attributes
until no additional attributes can be included. More
details of the implicit text generation are shown in
Appendix A.

The implicit text in CLEVR-Implicit follows
a standardized format based on several templates
and rules. Especially, it is common for the same
sentence to describe different target objects across
different images. By employing homogeneous text,
we purposefully direct the model’s focus toward the
image itself, thereby effectively testing the model’s
reasoning ability.

3.2 TIE Method

3.2.1 TIE Overview

To address the challenge of implicit text compre-
hension, we propose a method called Transform
Implicit text to Explicit text (TIE). The objective
of TIE is to incorporate explicit words into the
original implicit text, enabling the model to rea-
son more effectively. Our approach consists of
two key modules: (1) The prompt design module
builds prompts for implicit text by adding masked
tokens. By strategically designing the prompts, we
prepare the groundwork for the next module. (2)



The cloze procedure module uses a pre-trained
vision-language model to predict the explicit words
with the implicit prompts.

By leveraging these two modules, TIE enables
the integration of explicit words into the implicit
text and facilitates indirect reasoning on the im-
plicit text effectively.

3.2.2 Prompt Design Module
The prompt design module converts the implicit
text into a format suitable for the Masked Lan-
guage Modeling (MLM) task. One approach to
adding explicit words is by obtaining the specific
attribute values involved in the comparison of at-
tributes in the implicit text (e.g., "What is the color
in ’The left one of the only two objects with the
same color’?"). Consequently, the prompt design
module generates the prompt like "The left one
of the only two objects with the same [MASK]
color" for an implicit text sample. It’s important
to note that the conversion process differs between
the "same" and "different" types of implicit text. In
the "same" type, only one identical attribute value
needs to be predicted, while in the "different" type,
two different attribute values must be predicted.
Therefore, in the "different" type, two masked to-
kens are added before each attribute in the implicit
text. This process of converting the implicit text
can be seen as a translation task, where the source
text is the original implicit text, and the target text
is the input format required for the MLM task. To
accomplish this conversion process, we create an
implicit prompt dataset using the implicit text from
CLEVR-Implicit as the source text, and the target
text is a text with the masked token preceding each
attribute in the implicit text. Subsequently, we train
an encoder-decoder model (T5, Raffel et al., 2020)
on the implicit prompt dataset to add the appropri-
ate number of masked tokens corresponding to the
attributes for each sample in CLEVR-Implicit.

3.2.3 Cloze Procedure Module
The training objective of the cloze procedure mod-
ule aligns with the MLM task, a commonly em-
ployed pre-training task in various pre-trained mod-
els, so another cloze dataset is devised for the MLM
training stage. In this dataset, the input consists of
implicit text containing masked tokens and an im-
age description, while the target comprises explicit
text containing the ground-truth attribute values.
In this module, we fine-tune a pre-trained vision-
language model ViLT to predict a specific word

within the masked tokens. And we will introduce
three prediction strategies: Base, Multi-step, and
Path-select.

Base In the prediction stage, the prediction of
multiple attribute values in a sample is different
from the prediction of a single attribute value.
For implicit text containing multiple attributes, a
straightforward prediction strategy is to predict all
attribute values. However, this strategy tends to de-
crease the correlation among the predicted values,
resulting in potential discrepancies where multiple
predicted values may not refer to the same group of
objects. Consequently, incorrect prediction results
may arise.

Multi-step To address the aforementioned issue,
we propose an enhanced strategy named multi-step
prediction. Specifically, when predicting a sample
with multiple attributes, the model outputs only one
attribute value at a time. Subsequently, it incorpo-
rates the previous prediction as input to predict the
next attribute value. Compared with the method
of predicting all attribute values at one time, this
strategy enhances the correlation among multiple
attribute values. For instance, if the original text
is "The left one of the only two objects with the
same [MASK] color and [MASK] material," the
corresponding first-step output is adjusted to "The
left one of the only two objects with the same red
color and [MASK] material." And the second-step
output is "The left one of the only two objects with
the same red color and metal material."

Path-select We find that the Multi-step strategy
has a potential challenge where the accuracy of
predictions relies on the first attribute. If the first
attribute prediction is incorrect, it might trigger a
chain reaction leading to subsequent attributes be-
ing errors. To mitigate this issue, we search for
some objects that are not the targets as negative
samples. They are characterized by partially sat-
isfying the constraints of implicit text. Part of the
attributes that do not satisfy are marked [NONE].
For instance, for a target sample "The same red
color and rubber material" in cloze dataset, the cor-
responding negative sample might be "The same
blue color and [NONE] material".

During the prediction stage, when the model ob-
tains the optimal Softmax result for an attribute
and predicts [NONE] for the next attribute, it rec-
ognizes this as an incorrect predicted path. Sub-
sequently, the model reverts to the prediction of
the preceding attribute, considering the suboptimal



ViLT (Kim et al., 2021) Same Different Total
MLM val test val test val test
Base 80.54 81.97 25.73 23.35 61.99 60.48

Multi-step 92.55 91.42 87.05 85.47 91.45 91.50
Path-select 91.76 91.35 85.58 87.50 91.48 90.37

Table 3: The TIE experiment results on CLEVR-Implicit. We use three different prediction strategies to compare
the performance of ViLT.

Method Before TIE After TIE Ground-truth
val test val test val test

MDETR (Kamath et al., 2021) 53.57 53.89 91.51 92.19 96.01 95.66
VLTVG (Yang et al., 2022) 58.83 58.46 84.48 86.15 95.97 96.85

Table 4: Referring Expression Comprehension results performed by MDETR and VLTVG. Before TIE means that
the models are trained on the implicit text before the input transformation of the TIE method, and After TIE means
that the models are trained on the explicit text after TIE.

Softmax result, which guides the model toward
the correct prediction.

4 Experiments

4.1 Implemention Details
For the REC task on the CLEVR-Implicit dataset,
we employ two models: MDETR (Kamath et al.,
2021) and VLTVG (Yang et al., 2022). MDETR
utilizes weights pre-trained on various datasets
such as COCO (RefCOCO, RefCOCO+, Ref-
COCOg), Visual Genome (Krishna et al., 2017),
and Flickr30k (Plummer et al., 2015). and VLTVG
uses weights pre-trained on RefCOCOg. And we
fine-tune them on the CLEVR-Implicit dataset.
During the training stage, we use the settings of
learning rate 1e-4, learning rate of backbone 1e-4,
batch size 16 and weight decay 1e-5 to train for 60
epochs. In the input transformation experiment, we
utilize the T5-small model for the prompt design
module. As for the cloze procedure module, we
select ViLT (Kim et al., 2021). To ensure a fair
comparison, all different prediction methods are
configured with the AdamW optimizer, a learning
rate of 1e-4, a batch size of 32, and an image size
of 384x384 to train for 70 epochs.

4.2 Results of TIE
Table 3 presents the results of the TIE experiment.
The evaluation method is to assess whether the
predicted explicit words match the corresponding
ground-truth values. For samples containing multi-
ple attributes, it is necessary to ensure the accurate
prediction of all explicit words. otherwise, it is
considered incorrect. In the case of "different" type

samples, where attribute values differ between ob-
jects, the order of the two predicted values for a
single attribute can be reversed.

We present the results separately for training on
the "same" and "different" types of samples, and
the "Total" column represents the combined per-
formance on both types of implicit text. In the
Base strategy, we observe that "different" samples
are more challenging to understand compared to
"same" samples, resulting in a decrease in perfor-
mance of up to 54.81%. For "different" samples,
the model needs to output two values to predict a
single attribute, resulting in twice as many explicit
words to be predicted compared to "same" samples.
In contrast, the Multi-step strategy exhibits signifi-
cant improvements for both types of text. It shows
a 12.01% increase in performance for "same" sam-
ples and a remarkable 61.32% increase for "differ-
ent" samples. A reasonable explanation is that the
prediction of each explicit word takes into account
all previously predicted results. Multi-step strategy
mitigates cases where the initial predictions are cor-
rect, but subsequent predictions suffer from errors,
leading to more accurate overall predictions.

From the comparing results of the Path-select
and Multi-step strategies, we observe some differ-
ences when incorporating negative samples into
the training set. The Path-select results on the val-
idation set exhibit a slight decrease of 0.79% and
1.47% compared to Multi-step. We speculate that
this is because the majority of incorrect positions
in wrongly predicted samples tend to occur in the
second attribute or later, and the prediction of the
first attribute in these samples is generally accurate.



(a) same attributes (b) different attributes

Figure 3: 3(a) is the performance of three prediction strategies on "same" type samples in test set, and 3(b) is the
performance of three prediction strategies on "different" type samples in test set.

However, on the test set of "different" samples,
Path-select surpasses Multi-step by 2.03% in terms
of performance. Particularly, the performance of
Multi-step and Path-select in the "Total" column is
comparable, indicating that the addition of negative
samples can enhance the model’s robustness. And
negative samples enable the model to choose the
correct path when the first attribute prediction is
incorrect.

4.3 Results of Referring Expression
Table 4 presents the results of the referring expres-
sion experiment. We evaluate the performance of
MDETR and VLTVG, both before and after ap-
plying the TIE based on the Multi-step prediction
strategy. Additionally, we provide the performance
of the models trained on ground-truth explicit sam-
ples as a reference. The evaluation metric is Inter-
section over Union (IoU), with a threshold value
of 0.5. We observe that prior to TIE, the perfor-
mance of both models trained on implicit text is
relatively poor, indicating limited reasoning ability
when dealing with implicit text. However, after
applying TIE, there is a significant improvement in
performance for both models (53.57% vs. 91.51%
for MDETR and 58.83% vs. 84.48% for VLTVG).
However, compared with Ground-truth, there is a
certain gap in performance, because it is limited by
the impact of TIE performance.

4.4 Results of Contrast Experiment
Difficulty of CLEVR-Implicit In order to contex-
tualize the difficulty of CLEVR-Implicit, we eval-
uate the performance of REC models on CLEVR-
Implicit when the models are trained on CLEVR-

Method Train on CLEVR-Ref+
val test

MDETR 47.02 45.85
VLTVG 47.99 47.11

Table 5: The performances of REC models which
are trained on CLEVR-Ref+ and tested on CLEVR-
Implicit.

VLTVG on CLEVR-Ref+ val test
Before TIE 66.43 65.22
After TIE 68.05 66.46

Table 6: The performances of VLTVG respectively on
original CLEVR-Ref+ (Before TIE) and CLEVR-Ref+
after inference by TIE trained on CLEVR-Implicit.

Ref+. Table 5 shows that the results of MDETR and
VLTVG models are all lower than "Before TIE"
Column results in Table4. That indicates that the ex-
perience that the models learn from CLEVR-Ref+
cannot help them process the implicit text, because
the samples in CLEVR-Ref+ contain explicit infor-
mation to help the model locate the target, while
the samples in CLEVR-Implicit hide the informa-
tion. Therefore, we believe that it’s challenging to
process the implicit text in our CLEVR-Implicit
dataset.

Affect of TIE on explicit text Since the TIE
method converts implicit text into explicit text, in
addition to implicit text, we also need to analyze
whether the explicit text after applying TIE will
affect the performance of REC models. To ver-
ify this problem, we evaluate the performance of
VLTVG respectively on original CLEVR-Ref+ and



Figure 4: Examples from TIE and referring expression comprehension experiments. (a) an example of the
comparison from Base, Multi-step and Path-select prediction strategies. O, P and GT denote original implicit
text, generated prompt text and ground-truth explicit words. (b) Visualization of the predicted bounding box from
VLTVG before TIE and (c) after TIE. green and red rectangles denote ground-truth and predicted bounding box.

CLEVR-Ref+ after inference by TIE trained on
CLEVR-Implicit. Table 6 shows that TIE does
not affect performance (even better on VLTVG)
on other types of referring expressions besides the
implicit text, and TIE is robust in a broader class
of referring expressions.

Contrast between explicit and implicit As
shown in Table 7, we evaluate the performance
of MDETR and VLTVG models separately on pre-
dicted explicit text and implicit text when the mod-
els are trained on implicit text and ground-truth
explicit text respectively.

When both validation sets provide predicted ex-
plicit words (Column 1 vs Column 3), the perfor-
mance of the model trained on the implicit training
set is significantly decreased (MDETR: 31.48% vs
91.98%, VLTVG: 53.85% vs 85.90%) compared
with that on the explicit training set, which is evi-
dence that explicit words play a crucial role in the
models’ comprehension and reasoning processes.
The same situation occurs when exchanging im-
plicit and explicit states on train and validation sets
(Column 2 vs Column 3).

4.5 Performance on different number of
attributes

Figure 3 illustrates the performance of ViLT on
"same" and "different" samples with different num-
bers of attributes. In Figure 3(a), we observe that
the model achieves the highest performance when
predicting one-attribute samples, while the lowest
performance is observed when predicting three-

Method Train-i Train-ge Train-ge
Val-pe Val-i Val-pe

MDETR 31.48 46.25 91.98
VLTVG 53.85 48.34 85.90

Table 7: The contrast experiment for REC. The i suffix
denotes the set with implicit samples. The pe suffix
denotes that the explicit words in samples are predicted
by TIE. The ge denotes the explicit words in samples is
ground-truth.

attribute samples. Interestingly, the performance on
four-attribute samples is second only to that of one-
attribute samples. A reasonable conjecture is that a
set of objects is identical when all four properties
are the same in CLEVR images, so the model only
needs to find two objects that are identical. Figure
3(b) shows that predicting four-attribute "different"
samples has the most significant challenge on the
Base strategy. However, on the Multi-step strat-
egy, the performance on four-attribute "different"
samples surpasses that of three-attribute samples.
This indicates that the Multi-step prediction strat-
egy effectively mitigates the impact of an increased
number of predicted words, resulting in improved
performance.

4.6 Case Study

Figure 4 indicates an example of the comparison
of different prediction strategies in the TIE experi-
ment, and we visualize the ground-truth bounding
box and the bounding box predicted from VLTVG



Table 8: Examples about the application of implicit text
in daily life.

Real-world Implicit Text Examples
Two persons are doing the same movement.
His height is different from each other.
His pants and shoes are the same color.
The same brand of cosmetics on the table.
Take the drugs used for the same symptom.

before and after TIE in the REC experiment. In
Figure 4(a), with the attributes of the example
"shape" and "color", the Base strategy mistakenly
predicts "sphere" and "brown". We observe that
from the image there is a group of objects that is
both "sphere" and another group of objects that is
both "brown", but there are no such two objects that
satisfy "sphere" and "brown" simultaneously. This
indicates that the Base strategy performs poorly on
multi-attribute samples due to the weak correlation
between attributes, leading to the error that differ-
ent attributes refer to different groups of objects.
In contrast, the Multi-step and Path-select strate-
gies enhance the correlation between attributes and
make predictions step-by-step, leading to more ac-
curate predictions.

In Figure 4(b), by taking the implicit text as in-
put, VLTVG incorrectly predicts the referred object
as a brown cube. While VLTVG predicts the re-
ferred object accurately when taking the explicit
text after TIE as input. The comparison result indi-
cates that current models are being confused when
performing implicit reasoning based on the logical
relation conveyed by the implicit text. Only when
explicit words are explicitly included, the models
can align the explicit words with the corresponding
objects in the image for explicit reasoning.

5 Implicit Text in Real-world Scenarios

The implicit descriptions in real-world scenarios
are more complex and difficult because they not
only describe the targets implicitly through the ge-
ometrical attributes of color, material, etc., but also
contain more attributes as well as external factors.
Table 8 shows the implicit text examples in real-
world daily life. It is important that even though
our generated implicit text relies on the CLEVR
images and the provided annotations, our proposed
TIE method can still extend the scope beyond the
CLEVR domain to real-world scenarios. For exam-
ple, based on Figure 5 which is chosen from Visual

Figure 5: A real-world image from Visual Genome

Genome, consider the implicit text like “The left
one of two persons with the same posture and gen-
der”. Through the TIE method, the prompt can be
built before the “posture” and “gender” by prompt
design module, like “The left one of two persons
with the same [MASK] posture and [MASK] gen-
der”. The prompt guides the cloze procedure mod-
ule to predict the explicit words “walking” and
“woman” like “The left one of two persons with
the same walking posture and woman gender”. By
integrating TIE approach, current models can also
process the implicit text on the real-world scenar-
ios.

6 Conclusion

In this paper, we analyze the significance of im-
plicit reasoning, along with the lack of investigation
in this domain. To address this, we introduce the
CLEVR-Implicit dataset for implicit reasoning in
the REC task. This dataset utilizes synthesized im-
ages to generate two types of implicit text: "same"
and "different." Evaluating the performance of ex-
isting pre-trained models on CLEVR-Implicit, we
observe model confusion when attempting to align
implicit text with images. To overcome this chal-
lenge, we propose the Transform Implicit text to
Explicit text (TIE) method, which converts implicit
text into explicit text. Our experiments demon-
strate that the reasoning capability of the models
improves significantly through the alignment of
explicit words and images.



Limitations

The limitation of our work is that CLEVR-Implicit
is built on synthetic images, so it’s straightforward
to generate corresponding implicit text based on
the annotation of the synthetic images. Besides,
since the synthetic images contain only geomet-
ric objects, our implicit text can only be generated
within the scope of the object’s attributes. There-
fore, in future work, we will annotate more types
of implicit text based on real-world scenarios. This
will allow us to explore the mechanisms of model
understanding of implicit text.

Acknowledgements

This work was supported by the National Natural
Science Foundation of China (62076100), Funda-
mental Research Funds for the Central Universi-
ties, SCUT (x2rjD2230080), the Science and Tech-
nology Planning Project of Guangdong Province
(2020B0101100002), CAAI-Huawei MindSpore
Open Fund, CCF-Zhipu AI Large Model Fund.

References
Nicolas Carion, Francisco Massa, Gabriel Synnaeve,

Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-end object detection with
transformers. In European conference on computer
vision, pages 213–229. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Justin Johnson, Bharath Hariharan, Laurens Van
Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. 2017. Clevr: A diagnostic dataset
for compositional language and elementary visual
reasoning. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
2901–2910.

Aishwarya Kamath, Mannat Singh, Yann LeCun,
Gabriel Synnaeve, Ishan Misra, and Nicolas Car-
ion. 2021. Mdetr-modulated detection for end-to-end
multi-modal understanding. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 1780–1790.

Wonjae Kim, Bokyung Son, and Ildoo Kim. 2021. Vilt:
Vision-and-language transformer without convolu-
tion or region supervision. In International Con-
ference on Machine Learning, pages 5583–5594.
PMLR.

Emiel Krahmer and Kees Van Deemter. 2012. Computa-
tional generation of referring expressions: A survey.
Computational Linguistics, 38(1):173–218.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al.
2017. Visual genome: Connecting language and vi-
sion using crowdsourced dense image annotations.
International journal of computer vision, 123(1):32–
73.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1–35.

Runtao Liu, Chenxi Liu, Yutong Bai, and Alan L
Yuille. 2019. Clevr-ref+: Diagnosing visual reason-
ing with referring expressions. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4185–4194.

Yuhang Liu, Wei Wei, Daowan Peng, and Feida
Zhu. 2022. Declaration-based prompt tuning
for visual question answering. arXiv preprint
arXiv:2205.02456.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. Vilbert: Pretraining task-agnostic visiolinguis-
tic representations for vision-and-language tasks. Ad-
vances in neural information processing systems, 32.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana
Camburu, Alan L Yuille, and Kevin Murphy. 2016.
Generation and comprehension of unambiguous ob-
ject descriptions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 11–20.

Margaret Mitchell, Kees Van Deemter, and Ehud Reiter.
2013. Generating expressions that refer to visible
objects. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1174–1184.

Bryan A Plummer, Liwei Wang, Chris M Cervantes,
Juan C Caicedo, Julia Hockenmaier, and Svetlana
Lazebnik. 2015. Flickr30k entities: Collecting
region-to-phrase correspondences for richer image-
to-sentence models. In Proceedings of the IEEE
international conference on computer vision, pages
2641–2649.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. In International
Conference on Machine Learning, pages 8748–8763.
PMLR.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.



Ehud Reiter and Robert Dale. 1992. A fast algorithm
for the generation of referring expressions. In Pro-
ceedings of the 14th Conference on Computational
Linguistics - Volume 1, page 232–238. Association
for Computational Linguistics.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu,
Furu Wei, and Jifeng Dai. 2019. Vl-bert: Pre-training
of generic visual-linguistic representations. arXiv
preprint arXiv:1908.08530.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. 2016. Show and tell: Lessons learned
from the 2015 mscoco image captioning challenge.
IEEE transactions on pattern analysis and machine
intelligence, 39(4):652–663.

Li Yang, Yan Xu, Chunfeng Yuan, Wei Liu, Bing Li,
and Weiming Hu. 2022. Improving visual grounding
with visual-linguistic verification and iterative rea-
soning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
9499–9508.

Yuan Yao, Ao Zhang, Zhengyan Zhang, Zhiyuan Liu,
Tat-Seng Chua, and Maosong Sun. 2021. Cpt: Col-
orful prompt tuning for pre-trained vision-language
models. arXiv preprint arXiv:2109.11797.

Licheng Yu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu,
Mohit Bansal, and Tamara L Berg. 2018. Mattnet:
Modular attention network for referring expression
comprehension. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 1307–1315.

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C
Berg, and Tamara L Berg. 2016. Modeling context
in referring expressions. In European Conference on
Computer Vision, pages 69–85. Springer.

Licheng Yu, Hao Tan, Mohit Bansal, and Tamara L Berg.
2017. A joint speaker-listener-reinforcer model for
referring expressions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 7282–7290.

A More Details of Implicit Text
Generation

To clarify on our implicit referring expression
generation process, we’d like to elaborate on the
method used to create the CLEVR-Implicit dataset
from the existing CLEVR images and their asso-
ciated annotations. These annotations contain ob-
ject attributes, as well as spatial relationships be-
tween objects. For each image, we will traverse
all the objects in the image by comparing whether
the attribute values between two objects are the
same/different each time. For example, if an image
contains 4 objects, this leads to C(4,2)=6 object
pair comparisons (e.g., (1,2), (1,3), (1,4), (2,3),

(2,4), (3,4), the numbers are object ids). We will
generate the corresponding implicit text if a certain
pair satisfies the "same" or "different" condition.
Suppose the (2,3) combination objects’ shape and
color are both cube and blue, and guarantee that
no other pairs satisfy the condition “same shape
and color” to avoid the ambiguity in the REC task,
then we will generate the "same" type of implicit
text as “The two objects with the same shape and
color”. Due to the only one target of the REC task,
we must choose one of the (2,3) objects to be the
target. We employ a random selection for the target
based on the spatial relationship between 2 and 3.
If object 2 is left of object 3 and object 2 is selected,
the finally generated implicit text is “The left one
of the two objects with the same shape and color”.
The "different" types of text are generated in the
same way. This consistent pattern of implicit text
generation in the CLEVR-Implicit dataset ensures
both the concealment of explicit information and
the reference of target objects in the images.


