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Abstract

Cyclic peptides exhibit better binding affinity and proteolytic stability compared
to their linear counterparts. However, the development of cyclic peptide de-
sign models is hindered by the scarcity of data. To address this, we introduce
CPSea(Cyclic Peptide Sea), a dataset of 2.71 million cyclic peptide-receptor com-
plexes, curated through systematic mining of the AlphaFold Database (AFDB).
Our pipeline extracts compact domains from AFDB, identifies cyclization sites
using the β-carbon (Cβ) distance thresholds, and applies multi-stage filtering to
ensure structure fidelity and binding compatibility. Compared with experimental
data of cyclic peptides, CPSea shows similar distributions in metrics on structure
fidelity and wet-lab compatibility. To our knowledge, CPSea is the largest cyclic
peptide-receptor dataset to date, enabling end-to-end model training for the first
time. The dataset also showcases the feasibility of simulating inter-chain inter-
actions using intra-chain interactions, expanding available resources for machine-
learning models on protein-protein interactions. The dataset and relevant scripts
are accessible on GitHub (https://github.com/YZY010418/CPSea).

1 Introduction

Peptides are short chains of amino acids that play diverse roles in biological systems, often act-
ing as signaling messengers or binding agents. Their versatile and tunable properties make them
suitable for pharmaceutical applications. The potential of peptide therapeutics has been explored
extensively[1, 2]. However, linear peptides often suffer from limitations such as proteolytic instabil-
ity, short in vivo half-life, and poor membrane permeability, which collectively reduce their efficacy.
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Cyclic peptides, peptides with additional covalent links between non-adjacent residues, effectively
address these limitations. First, their rigid conformations mitigate excessive flexibility, reducing the
entropy penalty upon binding, thereby enhancing affinity. Second, additional constraints confine
possible conformations in a smaller state space, increasing binding specificity, and also protecting
cyclic peptides against enzymatic degradation. Third, the cyclic topology reduces the hydrodynamic
volume and shields polar groups, creating compact structures that traverse cellular membranes more
efficiently(Figure 1A). These advantages make cyclic peptides attractive alternatives to linear pep-
tides in drug development[3, 4].

Machine-learning based generative models are emerging as promising approaches for target-
conditioned peptide binder design[5, 6]. These models depend on large-scale, high-quality datasets,
and the development of models tailored for cyclic peptide is hindered by the limited data. While
cyclic peptide databases such as CycPeptMPDB[7] and CyclicPepedia[8] contain thousands of
cyclic peptide entries, there are few structure data of cyclic peptide-receptor complexes. To address
this, previous studies rely on expedient methods such as post-generation filtering[9] or hard-coded
modifications to linear peptide models[10, 6]. Despite their practicality, these approaches face chal-
lenges. Post-generation filtering often suffers from low acceptance rate. Hard-coded modifications
support limited cyclization types, typically focusing on backbone amide cyclization, while excluding
other important cyclization types such as isopeptide and disulfide bonds. Moreover, cyclic peptide
structure datasets might still be necessary for these models to generate reasonable cyclic geometries.

Here, we developed an approach to obtain cyclic peptide-protein complex structures from existing
protein structure databases by mimicking inter-chain surfaces from intra-protein interactions. By
systematic data mining on AlphaFold Database (AFDB), we curated CPSea (Cyclic Peptide Sea),
a dataset of cyclic peptide-protein complexes, consisting of 2.71 million complex structures. These
structures exhibit similar properties to experimental data, and possess high structural fidelity, physic-
ochemical plausibility, and synthetic accessibility. We leveraged CPSea to train three cyclic peptide
design models from scratch, which generate reasonable structures upon multiple metrics, showcas-
ing the application of the dataset on machine learning.

In summary, main contributions of this work include:

(1) We provided the first large scale cyclic peptide-protein complex dataset, CPSea, containing 2.71
million complexes and three linkage types (mainchain, disulfide, and isopeptide).

(2) We proposed a comprehensive set of metrics for peptide-protein complex quality evaluation,
focusing on structural fidelity and wet-lab compatibility, which can be employed to evaluate or
curate other structure datasets.

(3) We showcased the feasibility of mimicking inter-chain interactions by intra-chain interactions
of proteins, and of creating tailored peptide-protein complex structure datasets based on existing
single-chain protein databases.

2 Related Works

Peptide design. Initially, peptide binder design was based on physical approaches, relying on frag-
ment libraries and force fields to explore peptide conformations and binding modes[11]. Recent
advancements have shifted toward machine learning frameworks, including autoregressive models
(e.g., PepHAR[12]) and flow-matching / diffusion based models (e.g., PepFlow[13], PPFlow[14],
DiffPepBuilder[9], PepGLAD[15]). These models have demonstrated success in designing linear
peptides but face challenges when applying to cyclic peptides due to data limitation.

Cyclic peptide design. Early efforts on cyclic peptide design were also based on fragment li-
braries and force fields such as anchor extension[16], which restricted peptide geometries to the
input scaffold set. Recent works circumvent data scarcity through post-generation filtering (e.g.,
DiffPepBuilder[9]) or hard-coded constraints (e.g., AfCycDesign[10], RFpeptides[6]). However,
such methods exhibit low acceptance rates or limited cyclization types, and models may need fine-
tuning with cyclic peptide structures to generate proper conformations.

Datasets of peptide-protein complex. Existing peptide-protein interaction datasets primarily focus
on linear peptides. Resources including Propedia[17], PepBDB[18], PepBench[15], PepMerge[13],
PepBind[19], PepX[20] and PepPC-F[9] provide curated collections of linear peptide and their bind-
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Figure 1: Overall features and Cβ distance distribution of cyclic peptides. (A): Major advantages of
cyclic peptides compared to their linear counterparts. (B): Three common cyclization structures and
their Cβ distance distribution.

ing partners mainly from protein data bank (PDB). For cyclic peptides, CPSet[21] stands out as the
biggest dataset, but lacks the data scale and diversity required for model training.

3 Our Dataset: CPSea

3.1 Data Generation

We started our pipeline by pre-processing AFDB to extract coherent domains with high prediction
confidence. We first clustered AFDB entries with a 50% sequence identity threshold, generating a
non-redundant database of 8.45 million structures. Structure quality was checked by the predicted
Local Distance Difference Test (pLDDT) score[22]. Chains with chain-level mean pLDDT < 69.9 or
fewer than 89.9% of residue-level pLDDT ≥ 70 were discarded. For each valid chain, we extracted
residues with pLDDT ≥ 50 and constructed a symmetrized Predicted Aligned Error matrix (PAE
matrix) using the minimum of the PAE and its transpose. To avoid sequence-adjacency shortcuts, we
masked the near-diagonal band by adding a large penalty. Next, we used agglomerative hierarchical
clustering on the PAE matrix with a threshold of 15 Å to identify compact domains. For identified
clusters, we split them into contiguous sequence segments and retained segments with more than 10
consecutive residues. Finally, 8.64 million domains were identified (Figure 2).

To detect possible sites for peptide cyclization, we leveraged the distances between Cβ atoms (Cβ

distances). Cβ atoms are the first heavy atoms in side chains (except for glycine), providing a
geometric anchor for assessing spatial proximity between residues. By surveying experimentally de-
termined protein structures in PDB, we collected structures with disulfide bonds, mainchain amide
bonds, and sidechain isopeptide bonds. We observed that these linkages typically constrain corre-
sponding residue pairs to have a Cβ distance of 3-8 Å (Figure 1B). This empirical distribution was

3



Figure 2: Data generation pipeline.

used to define potential cyclization sites. It should be noted that this approach is inherently scalable:
by tuning the Cβ distance thresholds, our method can accommodate diverse cyclization chemistries,
enabling data generation and model development tailored to other different linkage types.

For each AFDB domain, we generated a Cβ distance matrix, where each entry represented the Cβ

distance between two residues. Since glycine lacks a side chain and therefore does not have a Cβ

atom, we computed a virtual Cβ position based on backbone atom positions (N, Cα, and C)[23].
Potential cyclic peptides were identified based on the matrix, and a multi-stage filtering protocol
was applied to them, as described below (Figure 2):

Length and breakpoint. We selected peptides whose lengths were in the range of 5-16. Peptides
with non-contiguous residue indices were excluded to ensure backbone continuity.

Structure quality. We discarded peptides with a residue-level pLDDT minimum < 70 to ensure
structure reliability.

Disulfide conflict. To avoid interference of disulfide bonds inside peptides or between peptides and
their receptors, we removed candidates with potential non-terminal disulfide bonds. First, we defined
receptors as residues whose minimum Cβ distances to candidate peptides were within 20 Å. Next, we
collected all cysteine residues either within peptides (excluding terminal residues for cyclization) or
in receptors. If any cysteine pair from these residues had a Cβ distance < 4.5 Å (typical Cβ distance
for disulfide bonds[9]), and at least one cysteine was in the peptide, the candidate was discarded.

Secondary Structures. We focused on α-helix and β-sheet ratios. While these elements are essen-
tial for protein folding, cyclic peptides are typically short and structurally constrained, making it less
possible to maintain extended α-helices or β-sheets under the unbound state. Moreover, some sec-
ondary structures rely on a larger environment to be maintained, such as β-sheets in β-barrels, which
are hard to preserve without interactions with their neighbors. After manually examining complex
structures with different secondary structure percentages, we empirically excluded candidates with
>34% β-sheet or >67% α-helix, as these likely represent artifacts of parent protein structures rather
than intrinsic features of cyclic peptides themselves.

Hydrophobicity. We excluded peptides with >45% hydrophobic residues, because highly hydropho-
bic peptides are prone to have non-specific hydrophobic interactions in aqueous solutions leading to
aggregation or precipitation.

Binding interface. We used buried surface area (BSA) to roughly evaluate the binding status be-
tween cyclic peptides and their neighbors. BSA is defined as the solvent accessible surface area
(SASA) difference between peptides in the bound state and in the unbound state. We applied the fol-
lowing criteria for filtering: (1) Absolute BSA. We retained complex with BSA ≥ 400 Å2 , ensuring
sufficient interfacial contact that reflects binding strength[24]. (2) Relative BSA. We discarded pep-
tides whose relative BSA (rBSA) = BSA/SASAunbound > 85%, to preclude peptides that are buried
in the core of a protein, which is unlikely to be the binding mode of cyclic peptides to their receptors.
(3) Relative terminal BSA. We strictly constrained terminal residues to have a rBSA < 1%, to avoid
disruptions on the binding interface during subsequent terminal mutation and cyclization.

Receptor connectivity. We found that some complexes have a "sandwich" structure, where one
cyclic peptide interacts with two receptors with separate interfaces. Though these data could be
valuable in some applications, we do not want to discuss them in this work. We checked the connec-
tivity of receptor graphs and retained fully connected ones.

Out of 8.64 million AFDB domains, 2.82 million initial cyclic peptides were identified through
this filtering process. We then employed OpenMM and PDBFixer to mutate and cyclize terminal
residues, and minimized the structure under a modified CharMM36 force field. Since there were
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Figure 3: Profiles of CPSea. Distribution on characteristics of CPSea are summarized, and some
examples of CPSea complex structures are given.

breakpoints in receptor pockets, we froze these pockets by setting the mass of heavy atoms to zero,
and deleted forces corresponding to covalent bonds between heavy atoms. In this way, we restricted
heavy atoms to be static, yet allowed hydrogen coordinates to be optimized because the initial hydro-
gen geometry generated by PDBFixer was always not ideal. After minimization, we applied a filter
of minimized energy < 0 to exclude distorted structures, and a chirality filter to ensure all residues
in complex structures were of L chirality. Finally, a dataset of 2.71 million cyclic peptide-receptor
complex structures was created, which was named CPSea (Figure 3).

3.2 Data evaluation

3.2.1 Metrics

We evaluated the quality of our dataset in three aspects.

(1) Structure fidelity. To evaluate whether our synthetic data align with real-world data, we first
introduced Ramachandran plots, a widely used method in structural biology that encompasses the
ϕ and ψ dihedral angles of peptide mainchains. Due to steric effect of sidechains, natural proteins
adopt certain regions of the ϕ-ψ plane, known as the favored and allowed regions. Structures are
considered plausible if > 95% residues are in the allowed region and > 90% residues are in the
favored region[25, 26].

We then considered the proportion of interaction types at binding interfaces. We identified inter-
actions by PLIP, which categorizes interactions into types like hydrophobic interactions, hydrogen
bonds, salt bridges, etc. The proportion of each interaction type is defined as the number of certain
type of interaction over all detected interactions. A similar distribution to native cyclic peptide-
protein complexes indicates natural interaction modes.
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Finally, we evaluated the self-consistency between sequences and structures of cyclic peptides by
calculating RMSD between structures in CPSea and structures predicted by HighFold2 based on
sequences (which is termed scRMSD). Because it is difficult to predict structures of isopeptide
cyclic peptides (Appendix A.2), we only evaluated mainchain and disulfide peptides. We randomly
selected 10,000 structures from each type, and reported the average scRMSD. Because receptors
in CPSea are discontinuous regions, it is tricky to involve them in the prediction, and only cyclic
peptides were refolded in this evaluation.

(2) Wet-lab compatibility. We envisioned that one major requirement of peptide design models
is that generated peptides should be friendly to downstream wet-lab manipulation (synthesis, bio-
chemical assays, in vivo experiments, etc.), which is also a prerequisite for clinical applications. We
first calculated GRAVY (GRand AVerage of hydropathY)[27] of each cyclic peptide, a frequently
used indicator in chemical protein synthesis. Peptides with positive GRAVY are considered at risk
of exhibiting unfavored properties such as low yield in solid-phase synthesis, bad chromatography
behaviors, and proneness to aggregation. We then borrowed two indicators in pharmacology: logP
and rTPSA. logP indicates the partition coefficient between octanol and water, related to solubility
and membrane permeability. rTPSA is defined as the topological polar surface area (TPSA) divided
by the number of heavy atoms, roughly representing the relative abundance of polar structures.

(3) Diversity and novelty. Finally, we evaluated the redundancy and novelty of CPSea based on
FoldSeek. We clustered CPSea using easycluster-multimer, and reported the diversity as the number
of clusters divided by the number of complexes. For novelty, we did FoldSeek multimersearch on
CPSea against PDB. For each CPSea complex, we selected the highest qTm value (Tm normalized
by query) of cyclic peptides, and calculated their average across all complexes. Since higher Tm
indicates higher similarity, we defined novelty as 1-(average highest qTm).

3.2.2 Results

To compare in silico generated complexes in CPSea with realistic structures, we employed CPSet as
a reference for native parameter distributions. The evaluation results are listed below and in Table 1.

(1) For structure fidelity, the Ramachandran analysis showed that cyclic peptides in CPSea exhibit
reasonable mainchain conformations, with 98.1% of torsions falling within allowed regions, compa-
rable to CPSet’s 99.2%. More specifically, 90.1% of torsions occupy favored regions (vs. 94.8% for
CPSet), indicating our computational approach effectively preserves natural backbone geometries.

The binding interface analysis revealed slight distribution differences in interaction types. CPSea
exhibits 51.8% hydrophobic interactions (vs. 42.0% in CPSet), 38.3% hydrogen bonds (vs. 46.3%
in CPSet) and 7.9% salt bridges (vs. 9.0% in CPSet). The shift toward hydrophobic interactions may
reflect inherent difference between inter- and intra- protein interactions, but the variance is within an
acceptable range, indicating CPSea complexes exhibit plausible binding modes that basically align
with experimentally validated structures.

Before evaluating the self-consistency of CPSea, we first benchmarked HighFold2 with 63 exper-
imental cyclic peptide structures from PDB[28], and found an average scRMSD of 2.27 Å. For
randomly picked 10,000 mainchain and 10,000 disulfide peptides, the average scRMSD are 2.97 Å
and 3.10 Å, relatively higher than those of experimentally determined cyclic peptides, but remain
within an acceptable range. One possible reason might be the absence of the receptor context during
structure prediction. In summary, these results showed CPSea aligns with experimental data in terms
of both structures and interfaces.

(2) For wet-lab compatibility, our analysis showed CPSea peptides have an average GRAVY score
of -0.74, safely below zero, indicating favorable properties for solid-phase synthesis and low aggre-
gation risk. The average logP value of CPSea peptides (-7.9) was lower than that of CPSet (-5.5),
indicating lower hydrophobicity for peptides themselves. The rTPSA metric (5.92) is comparable to
experimentally validated structures in CPSet (5.24), further confirmed the appropriately polar nature
of CPSea peptides. These results suggest peptides in our dataset are with favorable characteristics
for experimental synthesis and potential therapeutic development.

(3) For diversity and novelty, FoldSeek generated 617,458 clusters out of 2,714,414 complexes,
corresponding to a diversity of 0.227. We looked into the size distribution of clusters, and found
that most clusters are of small size, with 77.3% clusters ≤ 2, and 94.7% clusters ≤ 10. The largest
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Table 1: Metrics comparison between CPSea and CPSet

Ramachandran Interaction Types Hydrophobicity

Favored Allowed Hydrophobic H-bond Salt Bridge logP rTPSA

CPSea 90.1% 98.1% 51.8% 38.3% 7.9% -7.9 5.92
CPSet 94.8% 99.2% 42.0% 46.3% 9.0% -5.5 5.24

cluster consists of 7,925 members, which is only 0.29% of the whole dataset, indicating the cluster
distribution is generally balanced. After searching against PDB, the average value of the highest
qTm for each structure in CPSea is 0.397, so that the novelty is 0.603, showing that CPSea provides
new structures on top of PDB.

4 Application on Model development

4.1 Creation of specialized subsets

The large scale of CPSea enables us to further divide the dataset into tailored subsets for varied
scenarios, where these subsets are still large enough for training specialized models from scratch.
We envision three requirements for cyclic peptide design, and created three subsets from CPSea
(Figure 4).

(1) To design binders with high affinity. Obtaining protein-binding proteins is one of the tasks
where de novo protein design has shown great potential. Higher affinity is one of the major re-
quirements for protein binders. We employ AutoDock Vina and Rosetta dG for affinity evaluation,
and picked complexes that satisfied both Vina score < -6 and Rosetta dG < -25, creating a subset
consisting of 545 thousand complexes (20.1% of the CPSea), named CPBind.

(2) To design cyclic peptides with high membrane permeability. An interesting feature of cyclic
peptides is that they exhibit better potential to translocate through membranes, therefore have the
potential of oral availability and targeting intra-cellular targets. A representative indicator for mem-
brane permeability is logP, where peptides with logP > -6 are considered possible to show membrane
permeability [7]. We applied this simple threshold on CPSea, and identified 799 thousand cyclic pep-
tides.

(3) To design cyclic peptides with good wet-lab compatibility. As discussed above, one require-
ment for cyclic peptide design is that generated candidates should be facile to synthesize and main-
tain mono-disperse state in solution. We used a GRAVY < 0 filter on CPSea, and found that most
peptides (84%) satisfy this filter. We noted that the above selection for membrane permeability
prefers peptides that is less hydrophilic, which is antagonistic to wet-lab compatibility. After taking
the intersection of the two subsets, a collection of 553 thousand cyclic peptides (20.4% of the CPSea)
with both membrane permeability and synthesis compatibility was created, named CPTrans.

We then checked whether we can curate a subset that combines all desired features and keeps a
scale applicable to model training at the same time. We first took the overlap of CPBind and CP-
Trans, generating a subset of 136 thousand complexes. We further checked the physical fidelity by
Ramachandran plots, where we seleceted peptides with a Ramachandran accepted ratio higher than
95% and favored ratio higher than 90%. Passing through this filter, a subset of 71,867 complexes is
created, which is in a scale comparable to datasets that were used in training linear peptide design
models. The subset is named CPCore.

4.2 Model frameworks

After establishing specialized subsets out of CPSea, we proceeded to validate their utility for training
cyclic peptide design models. We roughly regarded cyclic peptides as special linear peptides whose
terminal residues are close to each other, and selected three representative frameworks that had been
employed in linear peptide design. DiffPepBuilder is a SE(3)-equivariant diffusion model trained
on PepPC-F, exhibiting good performance in regeneration of known peptide binders and designing
novel ligands with improved affinities [9]. PepFlow is a model based on conditioned flow matching
(CFM) trained on PepMerge, extending CFM to modalities including peptide backbone, sidechain
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Figure 4: Creation of subsets from CPSea. (A): An overview of the three subsets. (B): Thresholds
for curating CPBind. (C): Thresholds for curating CPTrans.

angles and amino acid types. Full-atom peptide design can be accomplished by predicting the joint
distribution of flows for these modalities [13]. PepGLAD is trained on PepBench and PepBDB,
addressing challenges of full-atom geometry and variable binding geometry by using geometric
latent space diffusion [15].

4.3 Settings

Based on FoldSeek clustering results, there are 30,819 clusters for 71,867 CPCore complexes. We
randomly picked 616 clusters (approximately 2%) as valid set and utilized the remaining data as
training set. The same data split was applied to all three models.

We employed large non-redundant dataset (LNR) as the test set [29]. After selecting an LNR sub-
set based on ligand length and pocket topology (Appendix B.2), we used MMseqs2 to cluster the
remaining 57 target proteins with CPCore, and excluded one target protein that has a sequence iden-
tity higher than 40% with CPCore. We generated 100 peptides for each of the remaining 56 targets
with the same length as input peptides. The binding epitopes were designated based on original
binding interfaces in LNR.

4.4 Metrics

Success rate. For generated candidates, we checked Cβ distances of terminal residues, and defined
a design "cyclization success" if the distance is between 3-8 Å. For each successful design, we
performed the same cyclization and minimization protocol used in our data generation process. We
calculated the Rosetta dG for each cyclized complex, based on which we defined "energy success"
as Rosetta dG < 0. We also checked the chirality after minimization and defined "chirality success"
as peptides consisting entirely of L amino acids. A peptide that meets all success standards was
defined as "final success". Only final success peptides were analyzed by the following metrics.

Structure fidelity. We employed the same metrics used in dataset evaluation, including Ramachan-
dran plots, interface interaction type distributions and sequence-structure self-consistency based on
HighFold2 predictions.

Wet-lab compatibility and membrane permeability. We used the same indicators that were em-
ployed in subset creation, including GRAVY and logP. According to the cutoffs mentioned above
(GRAVY < 0, logP > -6), we reported the ratio of peptides that satisfy the corresponding criteria.
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Table 2: Evaluation of models trained on CPSea

Success Affinity

Models Cyclization Chirality Energy Final Rosetta Vina

DiffPepBuilder 92.2% 73.9% 74.8% 51.0% -23.3 -5.9
PepFlow 93.8% 78.2% 65.0% 47.7% -20.8 -6.7

PepGLAD 81.2% 79.6% 70.7% 45.8% -23.1 -6.3

Interactions Ramachandran

Models Hydrophobic H-bond Salt Bridge Allowed Favored

DiffPepBuilder 44.1% 40.8% 8.3% 87.0% 65.0%
PepFlow 30.8% 63.0% 4.8% 83.6% 59.1%

PepGLAD 42.8% 46.5% 7.8% 73.0% 40.6%

Self-consistency (scRMSD) Wet-lab Compatibility Diversity and Novelty

Models Mainchain Disulfide GRAVY logP Diversity Novelty

DiffPepBuilder 2.23 2.16 83.5% 92.9% 0.344 0.124
PepFlow 2.26 2.55 61.4% 46.5% 0.578 0.138

PepGLAD 2.53 2.50 78.9% 66.0% 0.598 0.120

Binding affinity. We calculated AutoDock Vina scores and Rosetta dG for each complex. For each
target, the peptide with the highest affinity score was selected, and the average values of these best
scores were reported.

Diversity and novelty. We evaluated the diversity and novelty of the model outputs by the same
method used in dataset evaluation based on FoldSeek.

4.5 Results

The evaluation results have been summarized in Table 2.

Success rates. All three models exhibited a final success rate at about 50%. For cyclization, DiffPep-
Builder and PepFlow achieved > 90% success, indicating the potential of generating cyclic peptides.
PepGLAD had a lower success rate of 81.2%, because the sidechain idealization process hinders ter-
minal residue sidechains to get close, yet this is essential for proper chirality. For chirality, although
DiffPepBuilder and PepFlow are based on SE(3) equivariant networks, and PepGLAD idealizes
sidechains after generation, there were still about 20%-25% outputs with wrong chirality. This is
mainly because cyclization residues were not specially defined in the vocabulary, and bonds be-
tween their sidechains might not form properly during generation. As a result, there were always
clashes between terminal residues, leading to high energy states and chirality shifts during minimiza-
tion. These results indicate that an enlarged vocabulary might be necessary for cyclic peptide design
models with better performance.

Binding affinity. Although the final success ratios were limited, three models trained on CPSea
were still able to design reasonable binding interfaces, with the average Rosetta dG values between
-20 and -25 and Vina scores between -5 and -7.

Structure fidelity. For Ramachandran plot, PepGLAD struggled to recapture backbone angles, with
an allowed ratio of 73.0% and a favored ratio of 40.6%, which is likely because it directly models
atom positions rather than sampling torsion angles. For the other two models, the allowed and fa-
vored ratios were still lower than the requirements for experimental structures, leaving a space for im-
proving the ability to model backbone dihedral angles. For interaction type distribution, PepGLAD
and DiffPepBuilder showed similar distribution to native complexes in CPSet, and PepFlow exhib-
ited a preference for hydrogen bonds. For scRMSD, all three models showed an scRMSD smaller
than that of CPSea, with DiffPepBuilder achieved scRMSD at around 2.2 Å. This may be because
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models designed cyclic peptides against receptors that have native binders in PDB, and generated
peptides were similar to native binders. HighFold2 may be familiar with these interfaces and ex-
hibit a better performance on them. This is consistent with the low novelty for model outputs, as
discussed below.

Wet-lab compatibility Among three models, DiffPepBuilder showed highest proportion of gener-
ated peptides that satisfy GRAVY and logP thresholds, indicating a good ability to learn and sample
sequence features.

Diversity and novelty. PepGLAD showed the highest structural diversity among three models,
which was also higher than the diversity of the training data, indicating the model learned different
types of binding structures. For novelty, all three models showed significantly lower novelty com-
pared to that of CPSea. As mentioned before, this is likely because models designed cyclic peptide
binders against receptors that have complex structures in PDB, so that the binding interfaces were
similar to their native binders. One evidence is that the PDB structure with the highest qTm to a
generated cyclic peptide always showed high qTm to the corresponding receptor as well. This is
not the case for CPSea, where the interfaces are actually intra-chain interactions from single-chain
proteins, so that there are no similar complex structures in PDB.

5 Conclusion and limitations

Cyclic peptides are emerging as promising therapeutic candidates due to their advantages in terms
of specificity, membrane permeability, etc. However, machine learning approaches to cyclic peptide
design have been constrained by data scarcity. To address this challenge, we established CPSea, a
dataset of 2.71 million cyclic peptide-receptor complexes derived from the AFDB. A rigorous multi-
stage filtering protocol ensures structure fidelity and biophysical plausibility. The dataset provides
the foundation for end-to-end training of cyclic peptide design models.

One major assumption of our work is that intra-chain interactions can be employed to mimic inter-
chain interactions. We note that a similar idea was implemented to construct a domain-domain
interaction (DDI) dataset from AFDB as a supplement for PPI datasets, which was used to develop
RoseTTAFold2-PPI recently [30]. With the recognition of the feasibility of this approach, the train-
ing data for binder design models will be more sufficient through this new data source.

Nevertheless, we acknowledge several limitations in our work:

(1) CPSea captures classical types of cyclization, but has limited coverage of other linkages such as
lasso peptides, stapled peptides, and click chemistry derived structures[31, 32]. Nonetheless, as our
method is scalable, new types of linkages can be involved in the dataset through similar approaches.

(2) Derived from AlphaFold predictions, CPSea may inherit potential deviation in modeling flexible
regions and rare interaction modes. Despite filtering via pLDDT scores and other structural met-
rics, the extracted binding interfaces may not faithfully capture the physicochemical and geometric
features of naturally evolved protein-peptide interaction surfaces.

(3) Due to the large scale of CPSea, we only exhibited model training using a small subset of CPSea.
While our experiments demonstrated the utility of our dataset for model training, potential perfor-
mance improvements from utilizing the whole dataset remains to be further explored.

Despite these limitations, CPSea constitutes a significant advance, offering the largest publicly avail-
able dataset of cyclic peptide-protein complexes to date. By releasing this resource to the community,
we hope to accelerate progress in AI-driven cyclic peptide binder design.

Data availability

The datasets and codes for dataset curation, evaluation, model training and evaluation are available
at Kaggle, Zenodo and GitHub.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 3 and 4 demonstrate the main claims in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5 discusses several aspects on limitations of current work and future
work directions.
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• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We do not include any theoretical results in this work.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed codes and parameters used in data generation, data evaluation and
experiments are provided in appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provided data and code in the appendix. The dataset is public on Kaggle.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided details on model training and evaluation in appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report proper error bars based on standard derivations for statistical re-
sults.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide detailed information on computation settings in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impacts mainly in Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not see such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: These creators have been properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: We provide these introductions and documents in the supporting information.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: We do not conducting crowdsourcing experiments and research with human
subjects in this work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not involve these topics in this work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method and ideas in our work does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details in data generation and evaluation

A.1 Statistical analysis on Cβ distance distribution

To investigate the Cβ distance distribution of three cyclization types, we collected structures contain-
ing corresponding linkages from Protein Data Bank (PDB) by keyword searching. It should be noted
that we used inter-chain isopeptides for estimating Cβ distance distribution of intra-chain isopeptide
bonds, which are theoretically equivalent.

For each structure, we extracted ’SSBOND’ lines for disulfides, or ’LINK’ lines for mainchain
cyclization and isopeptides, and checked the following validation criteria:

(1) Connection residues. For disulfides, the reasonable residue is CYS; for isopeptides, reasonable
residues are (LYS, GLU, GLN, ASP, ASN); for mainchain cyclization, reasonable residues are 20
canonical amino acids.

(2) Connection atoms. We checked if the connection atoms are ’C’ and ’N’ for mainchain cycliza-
tion.

Then, we calculated the Cβ distances between connected residues. For glycines, we added a virtual
Cβ atom based on coordinations of mainchain atoms for the calculation. The same procedure was
also applied in other cases where glycines are involved in Cβ distance calculation:
def add_cb ( input_array ):

N,CA ,C,O = input_array
b = CA - N
c = C - CA
a = np.cross(b,c)
CB = np. around ( -0.58273431* a + 0.56802827* b - 0.54067466* c + CA ,3)
return CB #np. array ([N,CA ,C,CB ,O])

A total of 1,823 disulfide bonds, 263 isopeptide bonds, and 173 mainchain cyclization bonds were
identified, and the distribution of Cβ distance was estimated by Kernel Density Estimation (KDE).
For isopeptides, we found that most cyclization residue pairs are Lys and Asp/Asn. Therefore, we set
connection residues as Lys-Asp/Asn for all cyclic peptides with isopeptide structures during dataset
curation and model generation.

A.2 Filters and metrics

In this section, we describe technical details for filtering and evaluation processes that have not been
fully discussed in the main paper, and provide additional examples to illustrate dataset curation in a
clearer way.

Pre-processing on AFDB. To emphasize the long-distance interactions that define domains, we
masked the near-diagonal area of the PAE matrix by adding 35 Å to its values. For the agglomera-
tive hierarchical clustering process, PAE values were used as precomputed distances, and average-
linkage clustering with a merge threshold of 15 Å was conducted.

Receptor definition. A Cβ contact matrix was first calculated where element [i, j] is the Cβ distance
between residue i and j. For each residue between potential cyclization sites, we identified matrix
elements in the contact matrix with distances less than 20 Å, and excluded residues within 5 residues
upstream and downstream of potential cyclization sites. The identified residues were defined as the
receptor residues of the cyclic peptide.

Secondary structure. The secondary structure was calculated by DSSP based on atom coordinates.
Figure 5A shows a frequently observed type of structure discarded in the secondary structure filter,
where two strands of a β-barrel was identified as cyclic peptide, and the rest of the barrel was
identified as receptor. However, a β-barrel with two strands missing is structurally unstable and
unlikely to exist independently as an epitope, making the proposed interface implausible.

Hydrophobic ratio. Hydrophobic residues were defined as (Val, Ile, Leu, Met, Phe, Trp, Cys).
Hydrophobic ratio was calculated as the proportion of hydrophobic residues in cyclic peptides.

BSA. The SASA of cyclic peptide in its unbound and bound states were calculated using FreeSASA.
Figure 5B shows a representative structure that was filtered out by rBSA threshold, where cyclic
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Figure 5: Representative discarded structures. (A): A structure that is filtered out in secondary
structure filter. (B): A structure that is filtered out in rBSA filter. (C): A structure that is filtered out
in receptor connectivity filter. Cyclic peptides are in wheat color, and receptors are in pale blue.

peptide was surrounded by neighboring residues. Such a binding mode is implausible in nature, as
peptides typically cannot penetrate into the interior of receptor proteins.

Connectivity. A Cβ contact matrix of receptor residues was extracted from the global contact matrix,
and was binarized based on a connectivity threshold of 10 Å. An undirected graph was constructed
where nodes represent residues and edges indicate connectivity, the graph connectivity was checked
with NetworkX, and disconnected receptors were discarded. An example of discarded "sandwich"
structures is shown in Figure 5C, which is not the scenario we would like to discuss in this work.

Cyclization and minimize. Initial cyclic peptides were divided into three linkage types based on Cβ

distances. For terminal residues, their atoms except (N, Cα, C, O, Cβ) were removed and they were
renamed to residues necessary for the cyclization. In this way, PDBFixer would add missing atoms
for the new residue. Afterwards, certain atoms were removed for adding cyclization bonds, and
corresponding bonds were added by concatenating CONECT lines in the PDB string. The structure
was minimized under CHARMM36 via OpenMM subsequently.

Ramachandran plot. The ψ and ϕ angles of cyclic peptides were calculated by Biopython. The
allowed and favored regions were referred to PyRama. The allowed and favored ratios were calcu-
lated for each cyclic peptides as the proportions of ψ-ϕ angle pairs that are in allowed and favored
regions. The average allowed and favored ratios were reported.

Interaction types. Interactions between cyclic peptides and receptors were detected by PLIP. The
distribution of interaction types was calculated as the number of a certain type of interactions divided
by all detected interactions. The average proportions were reported.

Self-consistency. Designability is an important metric for structure design models. A structure is
defined as designable if there exists a sequence that folds into it. Since our dataset provides both
sequence and structure information, and models trained on CPSea are all sequence-structure co-
design models, we consider the self-consistency between sequence and structure to be an appropriate
metric for evaluating our dataset and the outputs of the models, because structures in self-consistent
sequence-structure pairs are inherently designable.

To benchmark the ability of HighFold2, we tested the model with 63 cyclic peptides in PDB, as
listed below:

1BH4, 1R1F, 2ATG, 2K7G, 2KUX, 2LWS, 2LYE, 2M78, 2MN1, 2N07, 2NDN, 5KWZ, 6PIN,
6U7R, 7L53, 7M3U, 1DF6, 1VB8, 2B38, 2KCH, 2KVX, 2LWT, 2LYF, 2M79, 2MSO, 2NB5, 2PO8,
5KX1, 6PIO, 6U7S, 7L54, 7RN3, 1HVZ, 1ZA8, 2ERI, 2KNM, 2LAM, 2LWU, 2LZI, 2M9O, 2MT8,
2NDL, 5H1H, 5WOV, 6PIP, 7F32, 7L55, 7S55, 1JBL, 1ZNU, 2GJ0, 2KUK, 2LUR, 2LWV, 2M77,
2MH1, 2MW0, 2NDM, 5H1I, 5WOW, 6U7Q, 7K7X, 7LHC

For three types of cyclic peptide in our dataset, we only evaluated mainchain and disulfide linkages,
because refolding cyclic isopeptides turned out to be tricky. We tried AlphaFold3 and Boltz, which
accept bond constraints as input features, to refold 100 cyclic isopeptides in CPSea. However, both
models fail to form the intended isopeptide bond. For AlphaFold3, the average NZ-CG distance
was 12.3 Å (min: 2.8 Å; max: 39.9 Å), far exceeding the typical distance for amide bonds (< 1.4
Å). Interestingly, in 33/100 predictions, the mainchain N-C distance between head and tail showed
a distance < 1.4 Å. This proximity might reflect some mode collapse, where formation of amide
bonds occurs when two residues get close. Boltz also failed to form isopeptide bonds despite added
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Table 3: Training settings.

Models Initial Learning Rate Batch Size

DiffPepBuilder 1e-5 32
PepFlow 5e-4 12

PepGLAD 1e-4 variable

constraints, with an average NZ-CG distance of 11.0 Å (min: 3.7 Å, max: 29.2 Å). Still, 12/100 pre-
dictions similarly showed headtail N-C distance < 1.4 Å. These results indicate that current structure
prediction models are still insufficient for cyclic isopeptides.

Wet-lab compatibility. GRAVY, logP and TPSA were calculated by RDKit. rTPSA was defined as
the ratio of TPSA to the number of heavy atoms.

Vina score. We employed the score_only mode of Autodock Vina 1.1.2 to evaluate the affinity
without re-docking the complexes. Vinardo was utilized as the score function.

Rosetta dG. We employed the Ddg filter in Rosetta Scripts, in which repacking unbound and bound
state before energy calculations were disallowed. Following the convention described in the Rosetta
documentation, we termed this metric as dG. "ref2015" was used as the score function.

Diversity and novelty. We employed FoldSeek for multimer clustering and searching. The com-
mand lines were as follows:

foldseek easy - multimercluster data output_dir /clu output_dir --
multimer -tm - threshold 0.65 --chain -tm - threshold 0.5 --interface -
lddt - threshold 0.65 --alignment -type 2 --cov -mode 0 --min -seq -id 0

--threads 32

foldseek easy - multimersearch data pdb output_dir /out output_dir --
alignment -type 2 --tmscore - threshold 0.0 --max -seqs 1000 --format -
output query ,target , complexqtmscore , complexttmscore ,lddt --threads

48

Diversity was simply defined as the number of clusters divided by the number of complexes. For
novelty, we calculated the average qTm, where we only involved the ligand chain (L chain), and
excluded data when query and target structures were from the same PDB entry.

B Details in model training and generation

B.1 Training.

We kept most parameters the same as their release versions. Some parameters was summarized
in Table 3. For PepFlow, a plateau scheduler was applied with a learning rate decay rate of 0.8
and patience of 10. For PepGLAD, a dynamic batch wrapper was applied so that the batch size is
variable. All models were trained on a single NVIDIA A800 GPU for approximately 5 days.

B.2 Generation.

Test set. We selected a subset of LNR as test set based on length of the ligand peptide and the
binding topology. Some complexes were not suitable for cyclic peptides, because a cyclic topology
was suspected to potentially lead to clashes or unstable structures. (Figure 6)

We used MMseqs2 to calculate sequence identity between LNR and CPCore, the command was as
follows:

mmseqs cluster database output_dir / clusters output_dir --min -seq -id
0.4 -c 0.95 --cov -mode 1

PDB 2BIN in LNR was the only structure that clusters with complexes in CPCore, and was removed
from the test set.
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Figure 6: Representative LNR complexes that are not suitable for cyclic peptides. (A) and (B): PDB
1JRR and 1SSC. The ligand peptide is a long β-sheet, which is unlikely to be able to form by cyclic
peptides of the same length. (C): PDB 4APH. The ligand peptide is in the compact middle of the
protein core. Changing to cyclic topology will likely result in shape mismatch and clash.

Table 4: Data quality of CPSea derived from AFDB and PDB

Ramachandran Interaction Types

Favored Allowed Hydrophobic H-bond Salt Bridge

CPSea 90.1% 98.1% 51.8% 38.3% 7.9%
CPSea_PDB 87.0% 97.0% 48.9% 39.8% 9.4%

Wet-lab Compatibility Diversity and Novelty

GRAVY logP rTPSA Diversity Novelty

CPSea -0.74 -7.9 5.92 0.227 0.603
CPSea_PDB -0.95 -8.2 5.93 0.475 0.639

Affinity Self-consistency(scRMSD)

Rosetta dG Vina Score Mainchain Disulfide

CPSea -26.8 ± 12.3 -5.1 ± 1.5 2.97 3.10
CPSea_PDB -31.1 ± 13.1 -5.1 ± 1.5 2.98 3.07

Pocket designation. For each complex in LNR dataset, receptor residues within a Cβ-Cβ distance
< 10 Å from any residues in peptides were defined as the binding pocket.

Post generation process. The process was similar to the curation and evaluation process of CPSea.
Briefly, generated peptides whose terminal Cβ distances were not in between 3-8 Å were excluded,
and cyclization types were designated based on Cβ distances. Terminal residues were mutated,
covalent bonds were added. These peptides were then minimized based on a modified Charmm36
forcefield, checked by energy and chirality filters, and evaluated.

C Curating dataset from PDB

As discussed in main paper, our pipeline can also be applied to other protein structure databases
including PDB. To exemplify this scalability and examine whether using AFDB as data source will
introduce biases compared to using experimental structures as data source, we implemented a similar
pipeline on PDB.

Briefly, we clustered PDB entries with a 70% sequence identity threshold, and cleaned the structures
using Rosetta. The resulting 38,650 entries were processed using a similar cyclic-peptide extraction
pipeline as described in the main paper, with the pLDDT filter removed and a amino acid composi-
tion filter added (excluding structures with non-canonical modifications or missing atoms). Finally, a
dataset of 12,419 cyclic peptide-protein complexes was curated. The dataset is named CPSea_PDB,
and is uploaded to Kaggle and Zenodo.
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We further explored whether complexes extracted from AFDB and PDB exhibit differences. We
employed the same dataset evaluation metrics as described in our manuscript, with results listed in
Table 4. Data derived from PDB or AFDB show highly similar results in these analyses, confirm-
ing that AFDB is a valid enlarged structural data source that mimics experimental structures for
downstream data mining.
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