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Abstract

Large language models (LLMs) have demon-
strated remarkable potential across numerous ap-
plications and have shown an emergent ability to
tackle complex reasoning tasks, such as mathe-
matical computations. However, even for the sim-
plest arithmetic calculations, the intrinsic mecha-
nisms behind LLMs remains mysterious, making
it challenging to ensure reliability. In this work,
we delve into uncovering a specific mechanism by
which LLMs execute calculations. Through com-
prehensive experiments, we find that LLMs fre-
quently involve a small fraction (< 5%) of atten-
tion heads, which play a pivotal role in focusing
on operands and operators during calculation pro-
cesses. Subsequently, the information from these
operands is processed through multi-layer percep-
trons (MLPs), progressively leading to the final
solution. These pivotal heads/MLPs, though iden-
tified on a specific dataset, exhibit transferability
across different datasets and even distinct tasks.
This insight prompted us to investigate the po-
tential benefits of selectively fine-tuning these es-
sential heads/MLPs to boost the LLMs’ computa-
tional performance. We empirically find that such
precise tuning can yield notable enhancements
on mathematical prowess, without compromising
the performance on non-mathematical tasks. Our
work serves as a preliminary exploration into the
arithmetic calculation abilities inherent in LLMs,
laying a solid foundation to reveal more intricate
mathematical tasks.
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1. Introduction
Large language models (LLMs) have experienced rapid
advancements and shown impressive language understand-
ing capabilities (Devlin et al., 2019; Brown et al., 2020;
Chowdhery et al., 2022). Notably, LLMs exhibit emer-
gent abilities (Wei et al., 2022b) that enable them to solve
intricate reasoning tasks akin to humans, such as mathe-
matical computations (Frieder et al., 2023; Jie et al., 2022),
chain-of-thought reasoning (Wei et al., 2022c; Kojima et al.,
2022), few-shot prompting (Brown et al., 2020; Alayrac
et al., 2022), etc. Despite these impressive characteristics,
the complex inner processes governing LLMs’ functionality
have yet to be fully illuminated, due to the complex and
intricate non-linear interactions within densely-connected
layers. Comprehending these underlying mechanisms could
contribute to predicting how the LLMs behave beyond their
training data (Mu & Andreas, 2020), gaining insights into
the emergence of certain behaviors (Nanda & Lieberum,
2022; Barak et al., 2022; Wei et al., 2022a), as well as iden-
tifying and rectifying errors present in the specific models
(Hernandez et al., 2021; Vig et al., 2020).

In this work, we take the first attempt to interpret the inner
process of LLMs through the lens of mathematical compu-
tation problems, which are conducted on publicly available
LLMs (e.g., LLaMA2 series (Touvron et al., 2023b)). Un-
like typical language comprehension tasks, mathematical
computation tasks involve concise problem statements with
definitive correct answers, requiring a process of reason-
ing and calculation rather than direct copying to derive the
solutions. These characteristics enable us to gain insights
into the models’ reasoning capabilities without interference
from unrelated factors. Specifically, we focus on tasks in-
volving the arithmetic calculation with two operands, i.e.,
addition, subtraction, multiplication, and division, which are
fundamentals of mathematical computation. To this end, we
create datasets of various types of sentences that involve the
calculation logic, such as “The addition of 3 and 5 equals to
” in Figure 1. The LLMs could provide answers with high

confidence scores of over 80% on average.

To unveil how these models correctly complete the task
(e.g., “3 + 5 = 8”), we begin by identifying the task-
related internal components in LLMs. We do a hard in-
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Precise
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Input: “The addition of 3 and 5 equals to _”
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Figure 1: The pipeline involves three steps: 1) identify
the key components attributed to arithmetic calculations in
black-box LLMs, 2) analyze the working mechanism of the
key components towards human-understandable explana-
tions, 3) fine-tune the key components to precisely improve
the mathematical capability of LLMs.

tervention (Pearl, 2009) on the transformer attention heads
and multi-layer perceptrons (MLPs) to observe their effects
on the predicted logits1. Our findings reveal that only a
small percentage (< 5%) of the attention heads and the
MLPs after these heads significantly impact the model’s
performance. Namely, LLMs frequently involve these atten-
tion heads and the subsequent MLPs when completing the
calculations. Subsequently, we knock out these frequently-
involved heads/MLPs to validate their faithfulness. We find
that the model performance decreases sharply when those
pivotal heads/MLPs are knocked out, resulting in a decrease
of around 70% in accuracy.

To interpret the working mechanism of identified head-
s/MLPs towards human-understandable explanations, we
gain a deeper analysis of their operational “behaviors”.
Specifically, we investigate the attention patterns of the
crucial heads, and find that these attention heads exhibit a
strong focus on the tokens representing operands and opera-
tors within mathematical sentences, demonstrating a relative
insensitivity to other non-relevant tokens. For the analysis
of MLPs, we compare the correlations between the embed-
dings of MLPs’ input/output and the embeddings of number
tokens (i.e., operands and answers). It reveals that the MLPs,
guided by these number-attended heads, take operands as
input, and mirror the attributes of tokens corresponding to
correct answers more closely. These observations lead us to
hypothesize that LLMs may initially employ a set of heads
to pinpoint arithmetic operands from text, subsequently en-
gaging MLPs to work out the answers. Additionally, the
observed behaviors of these heads/MLPs exhibit a high de-
gree of transferability, analogous to adversarial examples

1Here, doing a hard intervention is equal to replacing the value
of attention heads and MLPs, while performing a soft intervention
means modifying the modules for calculating the attention and
MLP values (Pearl, 2009).

being transferable across models (Szegedy et al., 2014).
Namely, the key heads/MLPs identified on one dataset are
also effective for other datasets. For instance, their impact
is noticeable on the publicly available math datasets (e.g.,
SVAMP (Patel et al., 2021)), as well as varied data formats
involving multi-digit integers, rational numbers, etc. This
empirical observation underscores the crucial role of key
heads/MLPs in mathematical calculations.

In addition to uncovering the internal mechanisms, we have
devised an effective strategy that involves targeted fine-
tuning of the specific attention heads and MLPs closely
tied to mathematical computations, thereby enhancing the
model’s mathematical prowess. The experimental results
are compelling: with fine-tuning as few as 32 attention
heads (with a total of 1024 heads), we observe a remark-
able improvement in the model’s mathematical capabilities.
This precise tuning methodology not only matches but can
surpass the enhancements achieved through full-model fine-
tuning. Moreover, this fine-grained strategy of adjustment
has a distinct advantage—it leaves most of the model’s pa-
rameters unchanged, avoiding the performance trade-offs in
non-mathematical domains commonly observed with full-
model fine-tuning.

In summary, this work aims to delve into the inner mech-
anism of LLMs through mathematical calculation tasks,
along the pipeline of “identify-analyze-finetune” shown in
Figure 1. Our findings reveal a sparsity in the attention
heads of LLMs, with less than 5% of heads exhibiting close
correlations. These heads particularly attend to the operands
and operators, while the subsequent MLPs gradually de-
duce the correct answers. The discovered mechanism shows
strong cross-dataset transferability and inspires us to pre-
cisely finetune the calculation-related heads/MLPs for better
mathematical capability. We empirically find that precise
tuning brings in much less impact on non-mathematical
tasks when improving the targeted ability of LLMs.

2. Related Works
Interpretability Methods. Interpreting the inner mecha-
nism of large language models (LLMs) has become increas-
ingly urgent in recent years (Madsen et al., 2022; Rauker
et al., 2023), especially when LLMs are applied in high-
stakes decision-making domains such as healthcare, crim-
inal justice, and finance (Obermeyer et al., 2019; Rudin,
2019; Bender et al., 2021). Vig et al. (2020) adapted the
approach of causal mediation analysis (CMA) (Pearl, 2001)
for interpreting the deep language models, and it has been
applied for various tasks, such as subject-verb agreement
(Finlayson et al., 2021), natural language inference (Geiger
et al., 2021), retention of factual associations (Meng et al.,
2022; Geva et al., 2023). Furthermore, path patching ex-
tends the concept of CMA by measuring how a treatment
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effect is mediated by node-to-node connections between
individual neurons or features. Recent works have used
path patching to explain neural networks in terms of circuits
(Olah et al., 2023), identified for different capabilities in-
cluding indirect object identification (Wang et al., 2023a),
greater-than computation (Hanna et al., 2023), and mapping
answer text to answer labels (Lieberum et al., 2023).

Interpretability for Mathematical Tasks. Mathematical
ability has long been a subject of interest in natural language
processing (Kushman et al., 2014; Huang et al., 2016; Wang
et al., 2017; Thawani et al., 2021). Some studies have inves-
tigated the mathematical abilities of LLMs (Frieder et al.,
2023; Saxton et al., 2019; Nogueira et al., 2021; Qian et al.,
2023; Imani et al., 2023; Romera-Paredes et al., 2024), but
they mainly focus on explaining what these models can do
rather than how they do it. In contrast, some other studies
have dived deeper into the LLM structure without treating
LLM as an inscrutable black box. Stolfo et al. (2023) identi-
fied the key attention layers relating to arithmetic questions,
but lacking in-depth explanation and validation of the key
layers’ behaviors. Wu et al. (2023) scaled the methods from
causal abstraction to understand how Alpaca (7B) (Taori
et al., 2023) follows the instruction in comparing two num-
bers. (Hanna et al., 2023) provided a causal explanation
about how GPT2-small (0.1B) (Radford et al., 2019) im-
plements the “greater-than” task, but only reveal simple
phenomena limited by the small size of model and the lack
of diversity in the dataset.

Fine-tune LLMs for Mathematical Tasks. Numerous stud-
ies improve the mathematical reasoning ability of LLMs by
aggregating various sampled reasoning paths during either
fine-tuning or inference. Cobbe et al. (2021) train and devise
a reasoning path verifier to select the correct results during
inference. Wang et al. (2023b) propose to sample various
reasoning paths during inference and then derive the final
result by majority voting on the answers or through verifiers
(Li et al., 2023). Uesato et al. (2022) explore to use of rein-
forcement learning methods for improving the mathematical
reasoning abilities of LLMs. Several works apply the idea
of rejection sampling along with other techniques to filter
the diverse sampled reasoning paths for fine-tuning data
augmentation (Huang et al., 2022; Zelikman et al., 2022; Ni
et al., 2023). There also exist related works (Panigrahi et al.,
2023) that locate key parameters to update for better task-
specific ability. Panigrahi et al. (2023) locates a minuscule
subset of parameters from an already fine-tuned model onto
a pre-trained model without further tuning. The selection
process for this subset is via optimizing the task-related
objective function with L1 norm ensuring the sparsity of the
subset. In our work, we locate the task-related parameters
of pre-trained model via measuring the causal effect of each
component, then precisely fine-tune the key components for
mathematical tasks.

3. Preliminary
Large Language Models (LLMs). The LLMs utilized in
this work comprise LLaMA2-7B and LLaMA2-13B (Tou-
vron et al., 2023a). These are pre-trained language models
freely available from HuggingFace2. All of these models
are decoder-only transformers equipped with multi-head
attention (MHA) and a single MLP in one transformer layer.
For example, LLaMA2-7B consists of 32 transformer layers
and 32 attention heads in MHA for each layer.

Transformer Architecture. The input to the transformer is
a combination of position and token embeddings in RN×d,
where N is the number of tokens in the input and d is the
model dimension. Following the definitions in (Elhage et al.,
2021), the input embedding serves as the initial value for
the residual stream, which is read from and written to by all
attention heads and MLPs. Focusing on individual heads,
the j-th head in the i-th layer is parametrized by four ma-
trices: W i,j

Q , W i,j
K , W i,j

V ∈ Rd× d
H , and W i,j

O ∈ R
d
H ×d.

To simplify these parameters, we can express them as low-
rank matrices in Rd×d: W i,j

OV = W i,j
O W i,j

V and W i,j
QK =

W i,j
Q (W i,j

K )T . The QK matrix is used to compute the at-
tention pattern Ai,j ∈ RN×N for head (i, j), while the OV
matrix determines the information written into the residual
stream. At the end of the forward pass, a layer norm is ap-
plied before the unembed matrix WU projects the residual
stream into logits.

Task and Dataset. We focus on classic and widely encoun-
tered mathematical operations, e.g., addition, subtraction,
multiplication, division. Taking addition as an example,
the arithmetic logic of addition ({A} + {B} = {C}) might
naturally appear in sentences. Taking inspiration from the
sentence styles and forms present in mathematical bench-
marks of GSM8K (Cobbe et al., 2021) and SVAMP (Patel
et al., 2021), we create a dataset for the addition task con-
taining 10, 000 samples based on 36 templates with random
single-token names, objects, and numbers. To assess the
performance of LLMs on the calculation task, we measure
the prediction probability of the {C} token. The average
probability of correct predictions across the models was
82%. In this study, we select the samples that the language
models are able to predict correctly. We denote the sen-
tences generated by this procedure as reference data using
the notation of Xr. For the templates and sentences, please
refer to Figure 8 and Figure 10 in Appendix A.

Moreover, to meet the demand for perturbing component
activation, we create another dataset comprising counter-
factual sentences without the inclusion of calculation logic,
using the notation of Xc. The samples are generated follow-
ing two core principles: (1) maintaining the grammatical
structures derived from the Xr templates; (2) substituting

2https://huggingface.co/
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several crucial words responsible for the calculation logic
with irrelevant words. For example, the sentence from Xr

like “42 plus 34 is equal to ” is replaced to the counter-
factual one “42 nothing 34 is equal to ”. In this way, it
allows for a direct reflection of the model’s impact on the
arithmetic calculation tasks, rather than being influenced by
the sentence structure or syntax.

4. Method
Our goal is to interpret the LLMs in a way that is human-
understandable, thus enabling targeted modification of
models through precise SFT. This section delves into the
“identify-analyze-finetune” methodology. First, in Sec-
tion 4.1, we describe the process of identifying and vali-
dating key components within LLMs. Then in Section 4.2,
we examine the inherent patterns of these pivotal compo-
nents to decode their behavior and distinct features. Finally,
in Section 4.3, we introduce a strategy of precise SFT that
fine-tunes these influential components to enhance the profi-
ciency in calculation.

4.1. Key Components Identification.

The computation of the LLM can be reorganized as a di-
rected acyclic graph (DAG) (Wang et al., 2023a). In the
graph, each node is a computation component, including
attention heads, MLP layers, residual connections, and each
edge represents the data flow that the output of the previous
node will be transposed to the input of the later node. Please
refer to Appendix B for more details. To unravel the un-
derlying cause of the model’s predicted answer, we employ
the causal intervention technique known as path patching
(Goldowsky-Dill et al., 2023; Wang et al., 2023a). By per-
turbing targeted activation with counterfactual data Xc and
freezing others with reference data Xr, the comparison on
output logits is employed to measure the counterfactual ef-
fect. The whole process is illustrated in Algorithm 1. In this
work, we scan through all nodesN one by one, and measure
the changes in the output logit of ground-truth token {C},
recoding in EN . Notably, since the residual operations and
MLPs compute each token separately (Elhage et al., 2021),
patching the head output at the END position (i.e., the last
token in the input sentence) is enough to measure the effects
on the next token prediction.

Explanations for model behavior can easily be misleading
or non-rigorous (Bolukbasi et al., 2021; Wiegreffe & Pinter,
2019). To address this issue, we further assess the impor-
tance of the identified heads/MLPs, while also confirming
the insignificance of others. For this purpose, we employ
a knockout technique called mean ablation (Wang et al.,
2023a) to deactivate the individual heads/MLPs and observe
their impact on model performance. Specifically, we replace
their activation with average activation across counterfac-

Algorithm 1 Identifying Key Components

Input: Set Ω of reference and counterfactual sample
pairs (Xr, Xc), modelM with nodes N .
Output: Causal effects for N : EN .
for (X

(i)
r , X(i)

c ) in Ω do
Compute all activations Ar, Ac on (X

(i)
r , X(i)

c )
for n in N do

A′
r(n)← Ac(n); ▷ replace output in Ar by Ac

A′
r(k)← Ar(k),∀k ∈ [1, · · · , |N |], k ̸= n.

logito ←M(X
(i)
r , Ar) ▷ get original logits

logitp ←M(X
(i)
r , A′

r) ▷ get patched logits
s
(i)
n ← logitp−logito

logito
▷ causal effect

end for
end for
Return: sn =

∑|Ω|
i=1 s(i)n

|Ω| ▷ averaged effect w.r.t. samples

tual data Xc to remove the task-related information. By
observing changes in model performance, we can verify the
roles of these key heads/MLPs.

4.2. Pattern Analysis.

To make the identified heads/MLPs accessible to human
understanding, we conduct a deeper analysis of their op-
erational “behaviors”. For attention heads, we examine
the attention pattern Ai,j ∈ RN×N to comprehend which
tokens are prioritized. N is the number of input tokens.
Specifically, we begin by gathering the respective attention
patterns Ai,j on reference data Xr of the key heads. We
extract the last row of Ai,j for each sample, analyzing the
attention scores AEND

i,j ∈ R1×N between the Query token
at the END position and each Key token, and obtaining the
averaged scores w.r.t. samples. Generally, the type of token
with the highest attention score represents the characteristics
of the head, such as numbers, math symbols, etc.

For MLPs, we use the unembedding matrix as the probing to
measure the content of token, especially numerical tokens,
contained in MLPs’ inputs and outputs. Prior studies, such
as those reported in (Elhage et al., 2021), have illustrated
that the MLP layer initially receives its input from the resid-
ual stream (i.e., MLPin), subsequently adding its output
back into that stream (i.e., MLPout). Let WU represent
the unembedding matrix, and WU [∗] denote the unembed-
ding vector corresponding to a specific token. We calcu-
late the cosine similarity between MLPin, MLPout and
WU [{A}], WU [{B}], WU [{C}] to reflect the information the
MLP receives and generates. To isolate the specific con-
tribution of MLP to specific numerical tokens, we further
evaluate the subtraction of outputs and inputs of MLP, i.e.,
MLPout−MLPin

||MLPout−MLPin|| ·
WU [{A}]

||WU [{A}]|| . Research in (Geva et al.,
2022) presents that each MLP layer’s output token repre-
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sentation can be characterized as an additive update influ-
encing the evolving representation across vocabularies. Our
methodology is aligned with these works, while we mainly
focus on the token embeddings of right/wrong answers to
reveal the contribution of MLPs on the calculation tasks.

4.3. Precise Fine-tuning.

Supervised Fine-Tuning (SFT) is widely used for enhancing
a model’s mathematical capabilities. Building on this, pre-
cise SFT only updates those components closely associated
with mathematical abilities, while keeping the rest parame-
ters unchanged. Algorithm 2 illustrates the whole process.
For the i-th attention layer, the output matrix W i

O is split into

equal size blocks for each head
[
W i,1

O ,W i,2
O , · · ·W i,H

O

]
. As

Algorithm 2 Precise Fine-tuning

Require: Model M, input X , index of key heads Φ,
iterations I , learning rate η, Wθ = WQ/K/V/O

for (i, j) ∈ Φ do
W i,j

θ .requires grad = True
end for ▷ activate key heads
loop I times

L =M.forward(X)
L.backward()
for w ∈Wθ do

w = w − η ∗ w.grad
end for ▷ update target parameters

end loop

is verified in (Elhage et al., 2021), it is equivalent to running
heads independently, multiplying each by its own output
matrix, and adding them into the residual stream. For the
selected individual heads, precise SFT updates the param-
eters of four matrices: W i,j

Q , W i,j
K , W i,j

V ∈ Rd× d
H , and

W i,j
O ∈ R

d
H ×d. For the selected MLP layer, precise SFT

updates all parameters in this layer. Moreover, since we
adjust only a small fraction of the parameters, precise SFT
naturally benefits from shorter training times and minimal
impact on the model’s original capabilities.

5. Experiments
The experiments are organized as follows: (1) identify the
calculation-related key components via path patching and
validate their importance in implementing arithmetic cal-
culation via knockout in Section 5.1; (2) understand the
behavior of the newly identified components by examining
their attention patterns and embeddings in Section 5.2; (3)
improve the mathematical capability via precise supervised
fine-tuning on math benchmarks in Section 5.3. For simplic-
ity, we primarily report the results of LLaMA2-7B, while
the results of other models can be found in Appendix.

Figure 2: We conduct path patching experiments on
LLaMA2-7B across four mathematical tasks, by search-
ing for each head and MLP directly affecting the logit of the
right answer. For each head/MLP, a darker color indicates a
larger logit difference from the model before patching.

5.1. Identifying Calculation-related Components.

Location of key heads. In Figure 2, we visualize the ef-
fect of each head according to the serial numbers of the
heads and layers. This arrangement allows for a clear com-
parison of the causal impact of each head to the logit of
ground-truth token {C}. The red squares indicate heads that
have a significant positive impact on predicting the output
token, while the blue squares represent heads that have a
negative effect. From these results, we observe that: (i)
Only a small number of heads have a noteworthy influence
on the output. Specifically, when the heads such as 12.223

is patched, there is a substantial decrease of 14.0% on the
logit of token {C}, which highlights their positive contribu-
tion to the calculation tasks. We classify heads that exhibit
logit change exceeding −5% as “key heads”. The sparse
distribution of these key heads motivates us to explore their
specific functionalities and characteristics in Section 5.2. (ii)
The discovered key heads are mainly located in the middle
layers. For LLaMA2-7B, key heads emerge starting from
the 12th layer for all arithmetic calculations. Prior layers
exhibit heads that do not exert a direct effect on the output
logits. Key heads are primarily concentrated between layers
12 and 17. (More analysis of the key heads in other LLMs
can be found in Appendix C.)

Location of key MLPs. The last column in Figure 2 visual-
izes the effect of each MLP layer on the logit of ground-truth
token {C}. It is observed that MLPs before the identified
heads (0−16) have almost no impact on the outputs (approx-
imately ±0.0%). In contrast, after the 17-th layer, MLPs
exhibit a much larger effect (approximately ±10.0%). It
indicates that MLPs are engaged in the calculation. We hy-

3We apply the notation of i.j to refer to the j-th head of the
i-th attention layer.
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Figure 3: The influence on prediction accuracy after knock-
ing out top-k attention heads that are sorted by the effect
of each head on logits (“effect-rank”), and knocking out
randomly-sorted top-k heads (“random-rank”).

Transfer to other dataset (before knockout)

Ø Input: 281 + 135 =
Ø Next token: 1
Ø Top-5 prediction probability:

Ø Input: 281 + 135 =
Ø Next token: 4
Ø Top-5 prediction probability:

65.48%
17.08% 6.54% 5.25% 2.01%

“4” “3” “1” “2” “5”

37.70% 27.15%
7.09% 6.65% 5.78%

“1” “2” “9” “8” “3”

Ø Input: 4.2 plus 2.5 equals to 
Ø Next token: 1
Ø Top-5 prediction probability:

Ø Input: 4.2 plus 2.5 equals to 
Ø Next token: 6
Ø Top-5 prediction probability:

18.80% 17.93% 12.32% 11.58% 9.83%

“1” “6” “4” “5” “2”

Ø Input: The war lasted 5 years from 1723 to 172
Ø Next token: 3
Ø Top-5 prediction probability:

Ø Input: The war lasted 5 years from 1723 to 172
Ø Next token: 8
Ø Top-5 prediction probability:

87.65%

7.54% 3.79% 0.54% 0.22%

“8” “9” “7” “6” “5”

91.70%

2.07% 1.59% 0.95% 0.80%

“6” “7” “1” “4” “2”

Transfer to other dataset (after knockout)

19.69% 19.69% 12.71% 8.73% 8.67%

“3” “6” “8” “9” “7”

Ø Input: Danny has 12 bottle caps in his collection. He 
found 53 bottle caps at the park. How many bottle 
caps does he have now? The answer is 

Ø Next token: 5
Ø Top-5 prediction probability:

Ø Input: Danny has 12 bottle caps in his collection. He 
found 53 bottle caps at the park. How many bottle 
caps does he have now? The answer is 

Ø Next token: 6
Ø Top-5 prediction probability:

60.99%
7.54% 3.79% 0.54% 0.22%

“6” “1” “5” “4” “2”

76.51%
7.23% 6.59% 2.75% 1.60%

“5” “1” “6” “2” “3”

Figure 4: After knocking out the key heads, LLaMA2-7B
predicts incorrectly on the cases of SVAMP dataset and
other data formats of multi-digit integers, rational numbers.

pothesize that the calculation process is firstly implemented
through the key heads, then the subsequent MLPs gradually
work out the final results. We validate this in Section 5.2.

Validation of key components. To fully validate the faith-
fulness of the discovered key heads, we perform additional
checks by observing the performance drop when knocking
out these components. In Figure 3, all heads are sorted in
a certain order by the importance score shown in Fig. 2
and knocked out one by one. It shows that, as the heads are
gradually knocked out, the performance of the model drops
sharply in “effect-rank”, while keeping stable (relatively mi-
nor effect within 2%) in “random-rank”. We also exhibit the
transferability of the key heads with different data prompts
or formats as shown in Figure 4. The model becomes largely
confused to output incorrect numbers after knocking out the
identified key heads. On the dataset SVAMP, there is a rela-
tive performance drop (−22.9%/34.7%=−66.0%) after the
knockout, aligned with the result on our generated dataset.
The above results demonstrate that the discovered compo-

(a) Addition (b) Subtraction

(c) Multiplication (d) Division

Figure 5: The attention score distribution of key heads
across four calculation tasks. The key heads (e.g., 13.11,
14.2) attend to number operands and calculation operators.

nents play an important role in the language model’s ability
to complete the calculation task.

5.2. Understanding Calculation-related Component
Behaviors.

Key heads behavior. In order to better understand the
“behavior” of the heads that have a significant impact on cal-
culation, we begin by analyzing their attention patterns, and
check the attention scores between Query END token and
each Key token as illustrated in Sec. 4.2. Our findings reveal
that these heads exhibit a strong focus on tokens of operands
or operators. For example, heads 13.11 and 12.22 have high
attention scores on numbers including {A} and {B}, while
heads 14.2 and 11.8 attend more to symbols or text indicat-
ing operations like “+”, “-”, “plus”, “div”, etc. We randomly
select 1000 samples from reference data and plot the distri-
bution of averaged attention scores on key heads (arranged
in two groups) for four arithmetic calculations.

As illustrated in Figure 5, the operand heads and the oper-
ator heads are colored in red and green respectively, and
highlighted at the positions of operands and operators. It
is clear that these heads exhibit distinctly different distribu-
tions and show minimal attention to tokens outside of the
operands/operators. Moreover, we visualize the attention
patterns of the key heads (e.g., 13.11) on various types of
sentences in Figure 7. It reveals that the key heads also
primarily prioritize number operands (e.g., ‘1’ and ‘5’ in
the first case) even for unseen data formats. This observa-
tion provides an explanation for why the deactivation of the
key heads can influence the model’s perception on number
tokens and consequently affect its prediction when transfer-
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(a) Reception of {A} and {B} (b) Generation of {C}

3
4

6

1
7
8
6

(c) Steps of Calculation

Figure 6: We investigate the projection of each MLP layer input or output along the direction of number token {A}, {B},
and {C}, respectively. The x-axis represents the layer number, ranging from 0 to 31, while the y-axis represents the cosine
similarity between the embeddings of the MLP input or output and the number tokens.

ring to other datasets (shown in Figure 4). For more case
studies on the key heads, such as the attention pattern on
operators, please refer to Figure 16 in Appendix F.

(a) SVAMP (b) Multi-digit integer

(c) Diff. data format (d) Rational numbers

Figure 7: The transferability of attention patterns in key
heads on the unseen samples in Figure 4, which mainly
attend to the number operands.

Key MLPs behavior. In Figure 6(a), we conduct an ini-
tial investigation of the similarities between the MLPin

and tokens {A} and {B} over 1000 samples, to verify the
information of operands received from above analyzed atten-
tion heads. For the 0–12th layers, both ⟨MLPin, {A}⟩ and
⟨MLPin, {B}⟩ are close to zero. It indicates no operands
are captured during this stage, which corresponds to the
blank region (i.e., few key heads for computation task) be-
fore the 12th layer in Figure 2. For the 12–17th layers,
we observe a sharp increase in the similarities with both
operands ({A} and {B}). This surge corresponds to the
presence of key attention heads, e.g., 12.22/13.11 in layer
12/13, indicating that the operands are progressively being
collected and “written” into the MLPs of these layers for

subsequent computations. In layers 17–31, the similarities
⟨MLPin, {A}⟩ and ⟨MLPin, {B}⟩ gradually decrease, sig-
nifying the transition into a new stage that digests the input
information for generating the answers.

To understand how each MLP layer contributes to gen-
erating the correct answer {C}, we compute the sim-
ilarity between token {C} and the input/output of the
MLPs. We use ⟨MLPout − MLPin,WU [{C}]⟩ to re-
flect the direct contribution of the MLP to the correct
answer, and ⟨MLPout −MLPin,WU [Other]⟩ for other
candidate numbers (as shown in Figure 6(b)). Start-
ing from the 17th layer, where the MLPs begin pro-
cessing operand information, we observe a noticeable in-
crease in ⟨MLPout −MLPin,WU [{C}]⟩ and a decrease
in ⟨MLPout −MLPin,WU [Other]⟩. This trend indicates
that these MLPs are gradually carrying out the calculation
required for the correct answer. The above ascending and
descending trends can also be viewed in other LLMs as in
Figure 13 and Figure 14 in Appendix C.

Based on the above analyses, we further delve into the
detailed calculation process from layer 17 to 28. We investi-
gate a case of “4 + 3 = ” and analyze MLPout −MLPin

compared to all numeric tokens in Figure 6(c). At layers 17
and 19, the numbers ‘3’ and ‘4’ are at the top, indicating
that MLPs receive and store input {A} =‘4’ and {B} =‘3’,
respectively. After that, the numbers ‘6’ and ‘1’ appear top
at the subsequent layers 20 and 21. In summary, the LLM
predicts the next token as ‘7’ in a single inference. However,
within the LLM’s architecture, the answer ‘7’ is the result of
a collaborative process across multiple layers 22/23/25/27,
after the layers 17/19/20/21 generate ‘3’/‘4’/‘6’/‘1’, respec-
tively. The results demonstrate that the answer ‘7’ is not
deduced directly, and MLPs perform calculations in a “layer-
by-layer” manner, somewhat akin to the addition process
in computers (a comparison of these two processes are pre-
sented Appendix H). Additionally, we observe that numbers
close to the correct answer, such as ‘6’ and ‘8’, also appear
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Table 1: Overall performance. We evaluate the capabilities of LLaMA2-7B and LLaMA2-13B, transitioning from generic
tasks (e.g., MMLU and CSQA) to mathematical tasks (e.g., GSM8K, AddSub, SingleEq, and SVAMP). Supervised fine-
tuning across the entire parameter set (denoted as Full SFT) leads to enhanced performance in math-related tasks, albeit at
the expense of its capabilities in generic tasks. In contrast, selectively tuning only the parameters of 32 critical attention
heads (denoted as Precise SFT) yields comparable improvements while preserving the model’s proficiency in generic tasks,
with faster training speed (samples processed per second) and less tuned parameters.

Mathematical Tasks Generic Tasks

GSM8K AddSub SingleEq SVAMP MMLU CSQA

Models Train
Speed

Tuned
Params. Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆

LLaMA2-7B - - 14.6 - 30.5 - 65.4 - 34.7 - 46.0 - 59.8 -
+ Full SFT 15sam./sec. 6.7B 24.6 +10.0 53.7 +23.2 68.2 +2.8 50.3 +15.6 40.5 -5.5 54.0 -5.8
+ Precise SFT 50sam./sec. 0.07B 27.4 +12.8 50.6 +20.1 69.7 +4.3 55.8 +21.1 46.4 +0.4 59.6 -0.2

LLaMA2-13B - - 28.7 - 33.7 - 76.6 - 45.7 - 54.8 - 67.3 -
+ Full SFT 8sam./sec. 13.0B 44.6 +15.9 62.2 +28.5 79.8 +3.2 62.8 +17.1 50.2 -4.6 62.0 -5.3
+ Precise SFT 34sam./sec. 0.08B 46.3 +17.6 61.1 +27.4 82.2 +5.6 66.6 +20.9 55.0 +0.2 67.2 -0.1

at the top in layer 23. However, in subsequent layers, the
correct answer ‘7’ consistently remains top while ‘6’ and
‘8’ decline. It indicates that LLMs may do computations in
a coarse-to-fine manner, where the result is firstly regressed
to an embedding around that of the right answer, and then
converges to the final output based on the fine-grained infor-
mation introduced by subsequent MLPs.

Consolidating these findings, we can assert with some confi-
dence that LLMs initially leverage attention heads to focus
on operands ({A} and {B}) and the operator, relaying this
information to downstream MLPs. Over time, the MLPs pro-
gressively bolster {C} and diminish the effect of confused
answers, carrying out the calculation to final results.

5.3. Precise SFT on Calculation-related Components.

Experimental details. We evaluate precise SFT on
four mathematical datasets (GSM8K (Cobbe et al., 2021),
AddSub (Hosseini et al., 2014), SingleEq (Koncel-
Kedziorski et al., 2015), SVAMP (Patel et al., 2021)), and
another two datasets (MMLU (Hendrycks et al., 2020) and
CSQA (Saha et al., 2018)) to evaluate the generic ability.
During training, we optimize the key components only and
leave the other components unchanged. We gather all train-
ing data from four mathematical datasets, and perform SFT
updating on top 32 key heads. Following (Yu et al., 2023),
the gradient is rescaled by H

h , where H is the number of
all heads in each layer, h is the number of updated heads in
each layer. In practice, we train LLaMA2-7B and LLaMA2-
13B with a learning rate of 2× 10−5 and a batch size of 128
for 2 epochs. The warm up ratio and weight decay are set as
0.02 and 0.1 by default, respectively. All experiments are
conducted on 8 NVIDIA A100 80GB GPUs.

Table 2: Ablative experiments on the number of tunable
components. The default setting is shown in gray .

Precise SFT
Setting

Evaluation Metric

Train
Speed

Tuned
Params. GSM8K MMLU

top-8 heads 58sam./sec. 0.017B 25.4 45.1
top-16 heads 52sam./sec. 0.033B 26.5 45.8
top-32 heads 50sam./sec. 0.067B 27.4 46.4
top-48 heads 46sam./sec. 0.101B 27.4 46.4
top-64 heads 40sam./sec. 0.134B 27.3 45.5

top-32 heads
+ top-3 MLPs 31sam./sec. 0.473B 28.0 45.2

Precise SFT improves mathematical ability. Supervised
Fine-Tuning (SFT) is an effective approach for augmenting
the mathematical capabilities of models by fine-tuning all
parameters within LLMs. We term this all-parameter fine-
tuning as Full SFT for clarity, and adopt the same training
settings as Precise SFT. Table 1 presents the results of Full
SFT and Precise SFT on the LLaMA2-7B and LLaMA2-
13B models. Precise SFT effectively bolsters their mathe-
matical capabilities, yielding an averaged increase of 15%
on four distinct mathematical datasets. It matches or even
surpasses the improvements made by Full SFT. For example,
Precise SFT outperforms Full SFT by 5.5% on the SVAMP
dataset and 2.8% on GSM8K, underlining its superior abil-
ity to enhance the mathematical prowess of LLMs. Full SFT
suffers from the trade-off between mathematical and general
capabilities (about 5% drops on MMLU and CSQA), while
Precise SFT effectively maintains the model’s original per-
formance. A further advantage of Precise SFT is the drastic
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reduction in training time, attributed to the substantially
fewer parameter adjustments required (less than 1%). It re-
sults in a time reduction of at least threefold on LLaMA2-7B
and LLaMA2-13B. Overall, Precise SFT offers an effective
direction for boosting mathematical abilities for LLMs.

Ablative studies. The key issue with Precise SFT lies in
determining the quantity and specific set of components to
adjust. To demonstrate this, we experimented with varying
numbers of heads and MLPs, with the results laid out in
Table 2. We discovered that fine-tuning 32 heads yields
the best average improvement across different numbers of
involved heads. We also compared experiments with the
introduction of MLPs. We observed that as more MLPs
are added, the mathematical capability improves by 2.1%,
but the general performance will decrease by 1.5% (results
in Appendix G). Overall, the top-3 MLPs yielded the best
comprehensive results. However, even the introduction of
a single MLP can reduce computational efficiency by 15%.
How to more precisely fine-tune MLPs will be explored in
our future work.

More discussions. The above results underscore the poten-
tial of employing interpretability tools to analyze the inner
mechanism of LLMs and to enhance their specific capabil-
ities. However, there are several areas that require deeper
investigation: (i) Our primary experiments and discussions
center around the LLaMA2 series. The results presented
in Appendix C demonstrate the potential for generalization
across different LLMs, such as Mistral-7B (Jiang et al.,
2023). For more rigorous considerations, it’s necessary to
perform specific adaptations on a broader range of LLMs.
(ii) This work mainly focuses on interpreting the fundamen-
tal ability of “arithmetic calculation”, since it’s universally
shared across various levels of complexity for mathematical
problems. The results in Appendix E reveal that solving the
math word problems requires a synergy of multiple skills in-
cluding “text comprehension” and “arithmetic calculation”,
which is aligned with the findings in recent research (Ope-
dal et al., 2024). It’s imperative for continued research to
investigate more complex mathematical problems. (iii) The
potential of generalizing to more complex mathematical
tasks like exponentiation (e.g., “{A} to the power of {B}
equals ”) has been validated in Appendix D. An intriguing
research direction would be to investigate the shared and
distinct mechanisms across various mathematical tasks.

6. Conclusion
In this study, we have identified, analyzed, and fine-tuned
the internal components responsible for the mathematical
calculation capability of LLMs. The language models
frequently involve sparse heads to particularly attend to
operands and operators, and subsequent MLPs to work out
answers. We apply the precise tuning on the calculation-

related heads/MLPs for better mathematical capabilities,
with less impact on non-mathematical tasks compared with
tuning all parameters. These findings contribute to a better
understanding of the inner mechanism of LLMs.
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A. Appendix

A. Templates

Addition Subtraction
{A} + {B} = {C} {A} - {B} = {C}
{A} plus {B} equals to {C} {A} minus {B} equals to {C}
The addition of {A} and {B} is {C} The difference of {A} and {B} is {C}
The addition of {A} and {B} equals to {C} The difference of {A} and {B} equals to {C}
The addition of {A} and {B} equals to {C} The difference of {A} and {B} equals to {C}
Q: How much is {A} plus {B}? A: Q: How much is {A} minus {B}? A:
Q: What is {A} plus {B}? A: Q: What is {A} minus {B}? A:
Q: What is the result of {A} plus {B}? A: Q: What is the result of {A} minus {B}? A:
Q: What is the sum of {A} and {B}? A: Q: What is the difference of {A} and {B}? A:
Multiplication Division
{A} * {B} = {C} {A} / {B} = {C}
{A} times {B} equals to {C} {A} over {B} equals to {C}
The product of {A} and {B} is {C} The ratio of {A} and {B} is {C}
The product of {A} and {B} equals to {C} The ratio of {A} and {B} equals to {C}
The product of {A} and {B} equals to {C} The ratio of {A} and {B} equals to {C}
Q: How much is {A} times {B}? A: Q: How much is {A} over {B}? A:
Q: What is {A} times {B}? A: Q: What is {A} over {B}? A:
Q: What is the result of {A} times {B}? A: Q: What is the result of {A} over {B}? A:
Q: What is the product of {A} and {B}? A: Q: What is the ratio of {A} and {B}? A:

Figure 8: Templates used in this work follow the formations of “Equation”, “Statement”, “Question-Answer”.

Counterfactual dataReference data

Ø Input: 3 < 5 =
Ø Next word: 2
Ø Top-5 prediction probability:

Ø Input: 3 + 5 =
Ø Next word: 8
Ø Top-5 prediction probability:

52.93%
18.29% 5.49% 5.04% 4.55%

“8” “1” “3” “2” “9”

24.98% 20.07% 19.01% 15.39% 7.44%

“2” “0” “1” “3” “5”

Ø Input: 42 nothing 34 is equal to 7
Ø Next word: 8
Ø Top-5 prediction probability:

Ø Input: 42 plus 34 is equal to 7
Ø Next word: 6
Ø Top-5 prediction probability:

22.03% 21.69% 13.78% 10.57% 4.27%

“8” “6” “2” “0” “.”

Ø Input: Mary has 3 apples, then Mary gains 4 cups. What is 
the total number of tables that John has? The answer is

Ø Next word: 1
Ø Top-5 prediction probability:

Ø Input: Mary has 3 apples, then Mary gains 4 apples. What 
is the total number of apples that Mary has? The answer is

Ø Next word: 7
Ø Top-5 prediction probability:

24.95% 15.87% 13.57% 12.55% 8.11%

“1” “2” “4” “3” “5”

38.77%
19.19% 12.39% 8.00% 6.63%

“7” “1” “3” “4” “2”

96.34%
0.59% 0.55% 0.46% 0.44%

“6” “7” “5” “4” “8”

Figure 9: Examples of reference data (with addition logic) and counterfactual data (without addition logic). Given the input
sentence, the results of next word prediction are provided by LLaMA2-7B.

We have included a list of 36 templates used in this work as shown in Figure 8. All these templates share the same
calculation logic. we sample the <A> and <B> from {1, · · · , 9}, since LLaMA2 tokenizes each digit individually (e.g.,
‘42’ is tokenized to ‘4’ and ‘2’). Based on the above templates, we generate the sentences that the LLMs can predict the
addition result {C} correctly as the reference data Xr. We generate the counterfactual data Xc following the principles
depicted in Section 3, where we replace the words (e.g., “plus”, “minus”, “times”, “ratio”) with a randomly-selected term
from the set {“none”, “nothing”, · · · , “null”}, and replace the operations (e.g., “+”, “-”, “*”, “/”) with a randomly-selected
term from the set {“<”, “>”, · · · , “@”}. We show three cases in Figure 9 with the inspection into the top-5 prediction
probability of LLaMA2-7B. Moreover, in Figure 10, we also construct several different types of linguistic meanings
for the addition task: “time span” and “object accumulation”. For the templates 1-8 of “time span”, we sample from a
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curated list of common words. For example, we select <EVENT> from {“war”, “conflict”, · · · , “project”}4, <VERB> from
{“last”, “span”, · · · , “extend”}, <MONTH> from {“Jan.”, “Feb.”, · · · , “Dec.”}, and <YYY> from {100, · · · , 199}. For the
templates 9-12 of “object accumulation”, we sample <OBJECT> from {“apple”, “orange”, · · · , “pear”}, <VERB> from
{“get”, “obtain”, · · · , “acquire”}, and each <NAME> was randomly selected from a pool of 100 English first names.

1. The <EVENT> <VERB> {A} years from the year <YYY>{B} to the year <YYY>{C}
2. The <EVENT> <VERB> {A} years from <YYY>{B} to <YYY>{C}
3. The <EVENT> <VERB> {A} days from <MONTH> {B} to <MONTH> {C}
4. The <EVENT> will <VERB> {A} days from <MONTH> {B} to <MONTH> {C}
5. The <EVENT> <VERB> {A} hours from {B} pm to {C}
6. The <EVENT> will <VERB> {A} hours from {B} pm to {C}
7. The <EVENT> <VERB> {A} hours from {B} am to {C}
8. The <EVENT> will <VERB> {A} hours from {B} am to {C}
9. <NAME> has {A} <OBJECT>, then <NAME> <VERB> {B} <OBJECT>.
What’s the total number of <OBJECT> that <NAME> has? The answer is {C}
10. <NAME> <VERB> {A} <OBJECT>, and <NAME2> <VERB> {B} <OBJECT>.
What’s the total number of <OBJECT> that they <VERB>? The answer is {C}
11. <NAME> has {A} <OBJECT>, and <NAME2> has {B} <OBJECT>.
What’s the total number of <OBJECT> that they have? The answer is {C}
12. <NAME> <VERB> {A} <OBJECT> yesterday, and <NAME> <VERB> {B} <OBJECT> today.
What’s the total number of <OBJECT> that <NAME> <VERB>? The answer is {C}

Figure 10: Additional templates used in the addition task, involve different linguistic meanings like “time span” (1-8) and
“object accumulation” (9-12).

B. Evaluate the Effect of Attention Heads.

+ Head 0.0 Head 0.31

+ Head 1.0 Head 1.31
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Hard 
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Output 
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Figure 11: A case illustration of the method “path patching”. It measures the importance of forward paths (i.e., the red lines
that originate from Head 0.31 to Output) for the two-layer transformer in completing the task on reference data.

Path Patching. To discover the cause of the predicted answer, we employ the causal intervention technique known as
path patching (Goldowsky-Dill et al., 2023; Wang et al., 2023a). This approach is highly effective in analyzing the causal
relationship between two computation nodes (Sender −→ Receiver). This helps us determine whether Sender is the cause of
Receiver, and the connections between them are important for the model in implementing the task.

Specifically, the entire process of path patching is shown in Figure 11, where the node pair Sender −→ Receiver is set as Head

4We empirically find that the specific choice of words does not affect the results, as long as they meet similar semantics.

14



Interpreting and Improving Large Language Models in Arithmetic Calculation

0.31 −→ Output. Firstly, given reference data Xr and counterfactual data Xc, the activations of all heads are gathered for
preparation of the later perturbation. Then, we do a hard intervention on the Head 0.31 that is perturbated to its activation on
Xc, where the effect will be further propagated to the Ouput node along with a set of paths P . To ensure an independent
observation of the impact from the Head 0.31, P comprises the forward pathways through residual connections and MLPs
except for the other attention heads (e.g., Head 0.0, · · · , 0.30, 1.0, · · · , 1.31). Thus we do a hard intervention on the other
heads by freezing their activations on Xr. Finally, we obtain the final output logits to measure the impact of this perturbation.
If there is a significant change in final logits, then the patched paths: Sender −→ Receiver are essential for the model in
completing the task.

In this work, to identify the important heads contributing to the calculation task, we scan through all heads as the Sender
node denoted by h, and set the Receiver node as output logits, and measure the changes in the output logit of ground-truth
token {C}. Pathways h→ logits that are critical to the model’s computation should induce a large drop in the logit of token
{C} after patching. Notably, since the residual operations and MLPs compute each token separately (Elhage et al., 2021),
patching the head output at the END position (i.e., the position of the last token in the input sentence) is enough to measure
the effects on the next token prediction.

C. More Results of Other LLMs.

(a) LLaMA2-7B (c) Mistral-7B(b) LLaMA2-13B

Figure 12: Comparison of the results of path patching experiments on LLaMA2-7B, LLaMA2-13B, and Mistral-7B (Jiang
et al., 2023) across four mathematical tasks. For each head/MLP, a darker color indicates a larger logit difference from the
original model before patching.

Key Component Identification. In Figure 12, we further report the results of key components identification of other models
(e.g., LLaMA2-13B and Mistral-7B). For example, LLaMA2-13B comprises 40 layers and 40 attention heads per attention
layer. The three models of different size exhibit similar phenomena that the calculation-related key heads (e.g., 16.4, 18.31)
are distributed sparsely in the middle layers.

(a) LLaMA2-7B (c) Mistral-7B(b) LLaMA2-13B

Figure 13: We investigate the projection of each MLP layer input (MLPin) along the direction of number token {A}, {B},
respectively.

Key MLPs Behavior. In Figure 13, the similarities of MLP input and number operands {A}/{B} across all models
demonstrate ascending and descending trends. Specifically, the pivotal points for these trends, delineated as (start-
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(a) LLaMA2-7B (c) Mistral-7B(b) LLaMA2-13B

Figure 14: We investigate the projection of each MLP layer (MLPout-MLPin) along the direction of number token {C}
(i.e., right answer) and other tokens (i.e., wrong answer).

inflection-end), are as follows: (13-18-28) for LLaMA2-7B, (13-18-35) for LLaMA2-13B, and (13-20-28) for Mistral-7B.
In Figure 14, the similarities of MLPout-MLPin and right answer {C} show a pattern of initial stabilization followed by an
increase. The critical points for LLaMA2-7B/LLaMA2-13B/Mistral-7B are again (13-18-28), (13-18-35), and (13-20-28).
The inflection points in both Figure 13 and Figure 14 are nearly identical, indicating consistent trend shifts across the
models. It helps to verify that LLMs initially leverage attention heads then relaying information to downstream MLPs, to
progressively carry out the calculation to final results. Furthermore, the above findings appear to be general and robust
across different LLMs, not limited to a specific model.

D. Key Component Location across Calculation Tasks.
We investigate the location of key components for each calculation task individually, as shown in Figure 15. The discovered
key heads could be shared across four tasks, which are sparsely distributed in the middle layers. Specifically, when examining
subtraction and addition tasks, we could summarize two insightful symmetries between them. The identified key heads of
two tasks are almost the same, albeit with different magnitude of the effect. This phenomenon could reveal the symmetry of
key head “location” in addition and subtraction. Moreover, the tasks of multiplication and division exhibit a greater number
of key heads compared to the tasks of addition and subtraction. We assume it could be attributed to their more intricate
operations within multiplication and division.

(a) Addition (b) Subtraction (c) Multiplication (d) Division

Figure 15: We conduct path patching experiments on LLaMA2-7B across four mathematical tasks, by searching for each
head and MLP directly affecting the logit of the right answer. The last column denotes the path patching results of MLPs.
For each head/MLP, a darker color indicates a larger logit difference from the original model before patching.

Generalize to other calculation operations. We conduct the experiments of key head identification and validation following
Section 5.1. We generate the samples including the exponentiation operation as the reference data Xr. Then we generate the
counterfactual data Xc following the principles introduced in Section 4.1 to exclude the exponentiation logic.

The results reveal the potential of generalizing to more complex mathematical operations: (i) Five key heads are identified
based on the newly generated Xr and Xc. We find that the heads (11, 8) and (14, 2) mainly attend to the operators “∧”,
“power”, while the heads (12, 22), (13, 11), (15, 15) mainly attend to the input operands {A} and {B}. (ii) Knocking out the
key heads, identified by both templates, leads to significantly impacts (over 60%) on model performance.
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Table 3: Key head identification on the exponentiation task.

Templates Key Heads [e.g., (Layer, Head)] Knockout Accuracy
Xr: “{A} ∧ {B} = ”
Xc: “{A} < {B} = ” [(11, 8), (12, 22), (13, 11), (14, 2), (15, 15)] −66%

Xr: “{A} to the power of {B} equals ”
Xc: “{A} to the none of {B} equals ” [(11, 8), (12, 22), (13, 11), (14, 2), (15, 15)] −62%

E. Generalize to More Complex Scenarios.
We conduct experiments on the more complex scenario using the dataset GSM8K (Cobbe et al., 2021). At first, we create
new reference data Xr and counterfactual data Xc. Following the idea of methodology proposed in Section 4.1, we convert
the question in GSM8K to obfuscate the semantic elements that necessitate calculation, while ensuring that the alterations to
the text are minimal. An example is shown below:

• GSM8K Xr: “On a 16 GB (gigabyte) capacity USB drive, 50% is already busy. Calculate the number of gigabytes
still available.”

• GSM8K Xc: “On a 16 GB (gigabyte) capacity USB drive, 50% is already busy. Describe the location of gigabytes
still available.”

Then, we conduct the experiments of key head identification and validation following the experimental setting in Section
5.1. As a result, 60% of the key heads are overlapped with the key heads identified based on our original data. Moreover,
knocking out the newly-identified key heads leads to a 65% accuracy drop on GSM8K, confirming their importance even in
complex scenarios.

Table 4: Comparison of the key heads identified on our generated data in Figure 8 and the dataset GSM8K (Cobbe et al.,
2021).

Dataset Top-10 Key Heads [e.g., (Layer, Head)]
Knockout
Accuracy

Ours [(12, 22), (13, 11), (16, 0), (15, 26), (18, 26), (18, 24), (30,31), (14, 27), (22, 25), (11, 8)] −69%
GSM8K [(19, 6), (11, 8), (12, 22), (14, 31), (13, 11), (22, 25), (16, 0), (21, 17), (15, 26), (29, 5)] −65%

Furthermore, only knocking out the 6 overlapping heads brings in −56% and −52% on our generated data and GSM8K,
respectively. It shows these heads are both important in two scenarios. If knocking out the 4 non-overlapping heads identified
by GSM8K only, it has a negligible effect on our generated data (−2%) but apparently affects on GSM8K (−26%). It
reveals the significance of these 4 heads specific to more complex reasoning mathematical problems. We further investigate
the attention patterns of the 4 non-overlapping heads, and find that these heads mainly attend to text tokens. For example,
the head (29, 5) attends to “.”, and the head (19, 6) attends to “GB”. In contrast, the 6 overlapping heads mainly attend to the
number operands and operators. For example, the head (13, 11) attends to input operands “50”, and the head (11, 8) attends
to the operator “%”.

Recent research (Opedal et al., 2024) has shown that solving the math word problems requires a synergy of multiple skills
including ‘text comprehension’ and ‘arithmetic calculation’. This is aligned with the phenomena of “the 4 non-overlapping
heads attend to text tokens (i.e., ‘text comprehension’), while the 6 overlapping heads attend to number operands and
operators (i.e., ‘arithmetic calculation’)”. In this work, we focus on the skill of arithmetic calculation as it’s a fundamental
ability universally shared across various levels of complexity for mathematical problems. It’s imperative for continued
research to develop a more holistic understanding of the intricate reasoning capacities.

To further investigate whether the model’s deficiencies stem from a lack of mathematical abilities or a broader impairment
in language processing, we evaluate LLaMA2-7B with key heads kept normal and knocked out on MMLU-Humanities
benchmark (Hendrycks et al., 2020). The comparative performance was 42.9% for models with the key heads intact versus
42.6% for the knockout models. This negligible difference (−0.3%) suggests that the knockout of these heads does not
significantly impact general language abilities.
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F. More Attention Pattern Cases.
We show the attention patterns of the operator-attended heads (e.g., 14.2) in Figure 16 that could attend to the tokens of
“plus”, “minus”, “times”, and ”over”, across different sentences.

(a) Head 14.2 (b) Head 14.2 (c) Head 14.2 (d) Head 14.2

Figure 16: The attention patterns of the key head 14.2, which mainly attend to the operator-related tokens, e.g., “plus”,
“minus”, “times”, “over”.

G. Ablation Study of Precise SFT on MLPs.
We further investigate the influence of different number of tuned MLPs in Table 5. It reveals that the tuning more MLPs
could lead to a performance decrease on MMLU and more training time, while imrove the performance on math dataset
GSM8K.

Table 5: Ablative experiments on the number of tunable MLPs.

Precise SFT Setting Evaluation Metric

Train
Speed

Tunable
Params. GSM8K MMLU

top-32 heads 50sam./sec. 0.067B 27.4 46.4

top-32 heads + top-1 MLP 44sam./sec. 0.202B 27.5 46.0

top-32 heads + top-2 MLPs 38sam./sec. 0.338B 27.7 45.7

top-32 heads + top-3 MLPs 31sam./sec. 0.473B 28.0 45.2

top-32 heads + top-6 MLPs 26sam./sec. 0.879B 28.2 44.9

top-32 heads + all MLPs 19sam./sec. 4.396B 29.2 43.9

H. Calculation in Computer vs LLMs.

18



Interpreting and Improving Large Language Models in Arithmetic Calculation

Addition in Computer:

3 + 4 =

Carry Input:        

Addend: 3   → 011

Addend: 4 → 100

Result: 7

0

011

100

1

00

011

100

11

000

011

100

111

Step-1: 1 Step-2: 3 Step-3: 7

Addition in LLMs:

3 + 4 =

Carry Input:        

Addend: 3   → 011

Addend: 4 → 100

Result: 7

0

011

100

1

00

011

100

11

000

011

100

111

Step-1: 4 Step-2: 6 Step-3: 7

Figure 17: The addition calculation process in computer and in LLMs.
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