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ABSTRACT

Implicit graph neural networks (IGNNs), which exhibit strong expressive power
with a single layer, have recently demonstrated remarkable performance in cap-
turing long-range dependencies (LRD) in underlying graphs while effectively
mitigating the over-smoothing problem. However, IGNNs rely on computationally
expensive fixed-point iterations, which lead to significant speed and scalability
limitations, hindering their application to large-scale graphs. To achieve fast fixed-
point solving for IGNNs, we propose a novel graph neural solver, IGNN-Solver,
which leverages the generalized Anderson Acceleration method, parameterized by
a small GNN, and learns iterative updates as a graph-dependent temporal process.
Extensive experiments demonstrate that the IGNN-Solver significantly accelerates
inference, achieving a 1.5× to 8× speedup without sacrificing accuracy. More-
over, this advantage becomes increasingly pronounced as the graph scale grows,
facilitating its large-scale deployment in real-world applications.

1 INTRODUCTION

Implicit graph neural networks (IGNNs) [20; 33; 7] have emerged as a significant advancement in
graph learning frameworks. Unlike traditional graph neural networks (GNNs) that stack multiple
explicit layers, IGNNs utilize a single implicit layer formulated as a fixed-point equation. The solution
to this fixed-point equation, known as the equilibrium, is equivalent to the output obtained by iterating
an explicit layer infinitely. This allows an implicit layer to access infinite hops of neighbors, providing
IGNNs with global receptive fields within just one layer [12]. As a result, IGNNs effectively address
the long-standing issue of over-smoothing in conventional explicit GNNs and capture of long-range
dependencies in graph-structured data [30; 1; 56].

However, existing IGNNs suffer from slow speeds and have difficulty scaling to large-scale graphs [34;
18; 52; 39]. This is primarily because IGNNs derive features by solving for fixed points, demanding
substantial computational resources. For example, even on the Citeseer dataset [26] classification
task with a small-scale graph, IGNNs require more than 20 forward iterative computations to nearly
converge to a fixed point [20]. The computational overhead of solving fixed points is amplified by
the task scale, resulting in notably slow inference speeds compared to explicit GNNs. This substantial
drawback poses challenges for IGNNs in generalizing to large-scale graphs in practical scenarios.

In response to this challenge, we propose a novel graph neural solver for IGNNs, termed IGNN-Solver.
It takes the IGNN layer as input, which includes the graph information matrix and layer parameters,
and outputs the solution to the corresponding fixed-point equation. Unlike conventional solvers
relying on root-finding algorithms like Broyden’s method [2], which compute output features through
iterative forward passes in a potentially large GNN, IGNN-Solver offers a distinct advantage by
predicting the next iteration step via a tiny graph network. The proposed IGNN-Solver remarkably
accelerates the model’s inference speed without compromising accuracy and with only a slight
increase in training overhead. This advantage becomes increasingly pronounced as the scale of the
graph grows, making it particularly beneficial for deploying IGNNs in large-scale graph tasks.

Our IGNN-Solver comprises two components. First, we introduce a learnable initializer that estimates
an optimal initial point for the optimization process. Second, we propose a generalized version of
Anderson Acceleration (AA) [2], employing a tiny graph network to model the iterative updates as
a sequence of graph-dependent steps. Compared to the solvers proposed for conventional Implicit
Neural Networks (INNs) [4; 5; 6], we introduce novel improvements: learning solver parameters
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through a GNN-based method. This approach circumvents the potential loss of graph information,
thereby improving the model’s performance. Moreover, IGNN-Solver has significantly fewer parame-
ters compared to IGNN, and its training is independent of the IGNN’s inference. Consequently, the
training of IGNN-Solver proceeds rapidly without sacrificing generalization.

In our experiments, we apply IGNN-Solver to 9 real-world datasets from diverse domains and
scales, including 4 large-scale datasets: Amazon-all [51], Reddit [21], ogbn-arxiv [22] and ogbn-
products [22]. Our results demonstrate that the IGNN-Solver achieves higher accuracy with reduced
inference time, showing a 1.5× to 8× speedup, and incurs minimal additional training overhead,
constituting only 1% of the IGNN training time.

Our main contributions are summarized as follows:

• We introduce IGNN-Solver, a method designed to predict the next fixed-point iteration of
the IGNN layer via a tiny graph network. This innovative approach mitigates the need for
extensive iterations, common in conventional IGNNs, thereby substantially accelerating
inference while preserving accuracy and minimizing parameter consumption.

• Compared to conventional solvers proposed for INNs, we have made a novel improvement
in our solver by introducing a tiny GNN to learn the parameters. This not only prevents
the potential loss of graph information, but also maintains the simplicity and lightweight
characteristics of neural solvers.

• We validate our approach through extensive experiments on 9 real-world datasets, including
3 large-scale. Our results demonstrate that IGNN-Solver incurs minimal computational
overhead (approximately 1% of the total) and achieves up to a 8-fold increase in inference
speed without compromising accuracy.

2 RELATED WORK

The typical GNN [26] and its variants [42; 21] have been widely used for graph data modeling in
various tasks. Different GNNs have been proposed to utilize attention mechanism [42], neighbors
sampling [21], pseudo-coordinates [38] and graph fusion [45]. However, due to issues such as over-
smoothing, depth, and bottlenecks, these models typically involve finite aggregation layers [30; 1; 56].
To address it, recent works [20; 33; 7] have developed Implicit Graph Neural Networks, encouraging
these models to capture long-range dependencies on graphs. Here, we highlight the contributions
of our proposed IGNN-Solver through a detailed comparison with Implicit Graph Neural Networks
(IGNNs) and Deep Equilibrium Models (DEQs), both of which are closely related to our approach.

Implicit Graph Neural Networks. Instead of stacking a series of operators hierarchically, implicit
GNNs define their outputs as solutions to nonlinear dynamical systems, which is initially introduced
by [20] to tackle challenges associated with learning long-range dependencies in graphs. [34]
proposes a new implicit graph model enabling mini-batch training without sacrificing the ability to
capture long-range dependencies. Subsequently, [43] introduces a novel approach based on implicit
layer to model multi-scale structures on graphs. Additionally, [7] theoretically investigates the
well-posedness of the IGNN model from a monotone operator viewpoint.

Although the aforementioned IGNN works well by alleviating the problem of over-smoothing of
features by allowing meaningful fixed points to propagate implicitly, the inherent slow inference
speed of implicit networks poses a major obstacle to its scalability. The main reason is that the solver
of the fixed-point network is inefficient (e.g., the Picard solver used by IGNN [20] and Anderson
acceleration solver used by MIGNN [7].), makes the overhead of the fixed-point solver magnified
by the task scales. In comparison, our proposed IGNN-Solver accelerates the iteration process of
IGNNs, which addresses the most limiting drawback compared to traditional feedforward models.

Another class of IGNNs based on Neural ODEs [13] has emerged to address issues like depth and
bottlenecks. For example, [3] models continuous residual layers using GCNs. [40] proposes methods
for modeling static and dynamic graphs with GCNs, along with a hybrid approach where latent states
evolve continuously between RNN steps in dynamic graphs. [49] tackles the problem of continuous
message passing. [10] introduces a graph neural diffusion network based on the discretization of
diffusion PDEs on graphs. [41] enhances graph neural diffusion with a source term and connects the
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model to random walk formulation on graphs. However, they essentially view deep learning on graphs
as a continuous diffusion process, which differs from IGNNs based on fixed-point networks, thus
requiring manually tuning the termination time and step size of the diffusion equation. In contrast,
our IGNN-Solver uses implicit formulations instead of explicit diffusion discretization, which admits
an equilibrium corresponding to infinite diffusion steps and expands the receptive field.

Fixed-point Solvers for Deep Equilibrium Models. Traditional deep learning models use multi-
layered networks, while DEQs [4] find a fixed-point of a single layer, representing the network’s
equilibrium state. Viewed as infinitely deep networks, DEQs use root-finding for forward propagation
and implicit differentiation for backward propagation. Therefore, DEQs capture complex patterns
with constant memory and computational costs [31]. Monotone operator theory has been used to
guarantee the convergence of DEQs [46] and to improve the stability of implicit networks [6].

However, it is well-known that DEQs, as typical implicit models, suffer from slow training and infer-
ence speeds [32; 34], which is highly disadvantageous for large-scale scenarios like GraphGPT [58].
To alleviate this issue, recent efforts have explored certain improved solver methods for DEQs,
further optimizing root-finding problems and making these models easier to solve: [23] discusses the
amortization of the cost of the iterative solver that would otherwise make implicit models slow. [18]
proposes a novel gradient estimate for implicit models, named phantom gradient, which significantly
accelerates the backward passes in training implicit models. [6] discusses the superiority of learnable
solvers over generic solvers in implicit models using a tiny neural network and significantly enhances
the efficiency of such models through custom neural solvers.

In contrast, IGNN has a similar network representation to DEQ, both defining the output as the
solution of the equation to obtain network outputs. But the difference lies in the fact that IGNN’s
equilibrium equations encode graph structure while DEQ does not, which will undoubtedly deepen
its weakness of slow inference speed and make IGNN’s solution slower. Insight on it, our proposed
IGNN-Solver leverages graph information to guide solver acceleration, achieving fast and meaningful
implicit graph network propagation, especially in the case of graph data being large-scale.

3 PRELIMINARIES

Explicit GNNs. Let G = {A,X} represents an undirected graph, where A ∈ Rn×n is the
adjacency matrix indicating the relationships between the nodes in V = {v1,v2, . . . ,vn}, and n is
the number of nodes. The node feature matrix X = [x1,x2, . . . ,xn] ∈ Rn×d contains the features
of the nodes, with d representing the feature dimension. Conventional (explicit) GNNs [26; 42]
feature a learnable aggregation process centered on the message-passing operation within the graph
[19]. This process iteratively propagates information from each node to its neighboring nodes. The
formal general structure for each layer l is defined as follows:

H [l+1] = fθ(A,H [l]), H [0] = X, (1)

where H [l] represents the hidden node representation, fθ denotes the parameters in l-th layer. A com-
monly used GNN is Graph Convolutional Network (GCN) [26], defined as H [l+1] = σ(ÂH [l]W [l]),
where W [l] denotes the weight matrix of the l-th layer, σ(·) denotes the activation function,
Â = D̃−1/2(A + I)D̃−1/2 represents the symmetric normalized graph matrix. Here, D̃ is a
diagonal matrix with D̃ii = 1 +

∑
j Aij . GNNs leverage the above message-passing operation

in Eq. 1 to learn useful information. Still, they often involve a limited number of l layers due to
over-smoothing [1], making it challenging for GNNs to capture the long-range dependency on graphs.

Implicit GNNs. Similar to traditional explicit GNNs, implicit GNNs [20; 33; 7; 12] also involve
an aggregation process, with the distinction that the depth of layers (iteration step k) is infinite.
The aggregation process in IGNNs is typically defined as Z [k+1] = σ(ÂZ [k]W + bΩ(X)), k =
1, 2, . . . ,∞, where bΩ represents affine transformation parameterized by Ω, and the weight matrices
W and Ω are globally shared at each iteration step. The IGNN model fθ is formally described by

Z⋆ = fθ(Z
⋆, Â,X), (2)

where the representation, given as the “internal state” Z⋆, is obtained as the fixed-point solution of the
equilibrium equation 2. Consequently, the final representation theoretically encompasses information
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Figure 1: The overall architecture of the IGNN-Solver compared with the generic Anderson solver at
each iteration.

from all neighbors in the graph. In practice, IGNNs capture long-range dependencies within the
graph, offering better performance compared to GNNs with finite iterations [20; 33]. Another notable
advantage of this framework is its memory efficiency, as it only needs to retain the current state Z
without requiring additional intermediate representations.

For training parameters θ = {W ,Ω} during the back-propagation process of neural networks,
IGNNs compute the Jacobian∇ZL by solving the following equilibrium equation

∇ZL = D ⊙ (W⊤∇ZLÂ⊤ +∇XL), (3)

where D = ϕ′(WXÂ+ bΩ(U)) and ϕ′(·) refers to the element-wise derivative of the map ϕ. Once
∇ZL is obtained, we can use the chain rule and the implicit function theorem [28] to easily compute
∇WL and∇ΩL.

In summary, IGNNs usually require numerous iterations to obtain equilibrium, resulting in significant
overhead during training and inference. Therefore, it is crucial to find a faster and more efficient
method for solving the fixed-point equation of IGNNs.

4 IMPLICIT GRAPH NEURAL NETWORKS SOLVER

Although traditional fixed-point solvers for IGNNs (as discussed in Section 1 and 2) demonstrate
functionality, they are characterized by relatively slow performance, necessitate manual parameter
tuning, and are not well-suited for graph-based applications. To address these limitations, we have
designed a lightweight, learnable, and content-aware fixed-point solver for IGNN, which integrates
a tiny graph neural network, combining the speed advantages of the solver with the information
benefits of graph learning. It encodes the relationship between past residuals and the parameters α[k]

and β, allowing for more efficient adjustments of the parameters α and β to improve the learning
capabilities of the IGNN-Solver, as illustrated in Figure 1.

Due to the characteristics of the implicit model—where its representation capability is independent
of the forward computation (i.e., the solver has no knowledge of the original task, such as predicting
the node’s class, and vice versa)—, we can train this neural solver in a lightweight and unsupervised
manner. After the IGNN-Solver is learned, we can utilize it to solve the fixed-point equation of the
IGNN layer, thereby further updating the model. The whole training strategy with IGNN-Solver can
be found in Appendix B.1 and B.2.
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Algorithm 1 IGNN-Solver Iterations and Training

Input: frozen IGNN model fθ, initializer hϕ, tiny-GNN predictor sξ, sparse subgraph Âs, storage
G ∈ R(m+1)×d′

.
1: Compute the initial value of fixed point by Z [0] = hϕ(X) ∈ Rd′

2: Define gθ(Z) = fθ(Z)−Z and set G[0] = gθ(Z
[0])

3: for k = 0, . . . ,K do
4: 1) Set mk = min{m, k} and G[k] = G [0 : (mk + 1)] ∈ R(mk+1)×d′

5: 2) Predict α[k], β[k] = sξ(G
[k], Âs), where α[k] ∈ R(mk+1), 1⊤α[k] = 1 and β[k] ∈ R1

6: 3) Update Z [k+1] = β̂[k] · 1⊤G[k] +
∑mk

i=0 α̂
[k]
i Z [k−mk+i] ▷ (Anderson step)

7: 4) Update G = concat
(
G[1 :], [gθ(Z

[k+1])]
)

8: end for
9: if it is inference stage then

10: return Z [k+1]

11: else
12: return (Z [k+1],G[k], α[k], β[k])k=0,...,K and Z [0]

13: Compute Ltotal and back-propagate it to update IGNN-Solver {sξ, hϕ}
14: end if

4.1 GENERAL FORMULATION

For a given IGNN layer fθ, input features X ∈ Rn×d and graph Â ∈ Rn×n, we assume that the
equation Z = fθ(Z, Â,X) = σ(ÂZW + bΩ(X)) has an exact solution at its fixed point. This
solution can be obtained using classic solvers (such as Broyden’s method) and running multiple
iterations to achieve high precision.

The overall structure of the IGNN-Solver is shown in Algorithm 1. Specifically, it learns the
parameters α that control the weights among past m steps approximate solution, and β that control
the weights between past residuals and approximate solution, through a solver sξ to accelerate the
approximate solution of the next update step. To train the IGNN-Solver, we minimize the joint loss
function Ltotal by back-propagating through this K-step temporal process, which is discussed in
Section 4.2. It’s worth noting that the original IGNN is frozen (i.e., model parameters θ are fixed),
and only the IGNN-Solver parameters ξ are trained here, so we do not need the ground-truth label y
that corresponds to input x. This implies that IGNN-Solver can also be fine-tuned during inference
after deployment.

4.1.1 INITIALIZER.

To accelerate the convergence of predicted values, we propose constructing an initializer Z [0] =

hϕ(X) : Rd → Rd′
for a rapid and reasonable input-based initial estimate value, rather than simply

setting the initial values to 0 or random, where ϕ are parameters of the initializer. We set the
intermediate dimension d′ to be significantly smaller than the feature dimension d to reduce the
training overhead of the initializer.

4.1.2 IMPROVED ANDERSON ITERATIONS WITH TINY-GNN.

In the original Anderson Acceleration (AA) solver, the parameter β is predetermined and fixed [2],
whereas the parameters α[k]s are determined by solving numerous linear equations using the least
squares method. Although this method operates adequately, its efficiency and adaptability in optimiz-
ing IGNN models are limited. Therefore, we propose introducing a tiny and learnable graph neural
network, as

α, β = sξ(G, Â) , where sξ : (R(mk+1)×d′
× Rn)→ (R(mk+1) × R1), (4)

to predict the two parameters instead of setting them as the least squares solution on the past
residuals G. However, directly using the original graph for modeling would result in an oversized
network [53; 59], deviating from the initial goal of using a tiny network for prediction. On the other
hand, because of the curse of dimensionality, directly mapping the data from high to extremely low
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dimensions is not appropriate [27]. Therefore, in response to the challenges posed by large-scale
graphs, we took into account both Graph Sparsification and Storage Compression in the design of the
solver, as detailed below:

Graph Sparsification. Firstly, the number of edges in graph Â is usually large in practice, as
it is affected by the scale of the input (for example, in the ogbn-products dataset, the number of
edges in the graph is close to 62M). To maintain the lightweight nature of tiny-GNN and reduce the
computational cost of prediction, we propose introducing graph sparsification [24; 36; 55] for a more
light graph:

Âs = ς(Â, β), (5)

where Âs represents the sparse subgraph of Â, obtained via a graph sparsification operator ς , with
the parameter β controls the sparsity of Âs. We choose the RPI-Graph approach [53] in this paper,
which is a plug-and-play graph sparsification method based on the principle of relevant information.
It is worth noting that this subgraph is used only in tiny-GNN predictor sξ, and not in IGNN model
fθ.

Storage Compression. Besides, considering that n (the number of nodes) is relatively large (for
example, n is approximately 169K in the ogbn-arxiv dataset), it is not appropriate to map sξ from a
high-dimensional space to a very low-dimensional one in equation 4 directly [45; 57; 44] owing to the
curse of dimensionality [27]. Therefore, to maintain sξ fast and compact, we recommend compress
G

[k]
i to form a smaller yet still representative version Ḡ

[k]
i . Specifically, We map it from R(mk+1)×d′

to an appropriate space R(mk+1)×p by multiple layer perception (MLP). Then, the nearest mk + 1
sets of fixed points are merged into one feature matrix:

Ḡ[k] =
k

||
i=k−mk

Ḡ
[k]
i , (6)

where ||ki=k−mk
represents the concatenation operation that stack the compressed storage matrix

Ḡ
[k]
i ∈ R(mk+1)×p in the k-th iteration.

Once this smaller but still representative storage matrix Ḡ obtained by above, we treat it as a p-channel
matrix and employ a tiny graph neural network layer

α[k], β[k] = sξ(Ḡ
[k], Âs), (7)

to predict the relative weights α[k] assigned to past mk + 1 residual, as well as the AA mixing
coefficient β[k] at the k-th iteration.

In this way, sξ shall autonomously learn and adjust these parameters α[k] and β[k] based on the
previous solver steps and receiving gradients from subsequent iterations. We provide a comparison of
different choices for sξ in Appendix D, demonstrating that IGNN-Solver improves the convergence
path. We also introduce how to train it (see below).

4.2 TRAINING THE IGNN-SOLVER

Unlike the neural ODE solver, the fixed-point trajectory of the IGNN is not unique. Therefore,
trajectory fitting is not applicable to the IGNN-solver training. Instead, the goal is simply to bring
everything as close as possible to Z⋆. Formally, given an IGNN-Solver {sξ, hϕ} that returns
(Z [k+1],G[k], α[k], β[k])k=0,...,K and Z [0], we introduce three objectives functions for its training.
The complete training algorithm can be referred to in Algorithm 1.

Initializer Loss Functions. To train the initializer, we minimize the distance between the initial
guess and the fixed-point by

Linit = ∥hϕ(X)−Z⋆∥2 , (8)

for facilitating the subsequent iteration process. Since the initializer directly predicts based on the
input X without going through iteration, we separate this loss from other components.

6
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Reconstruction Loss Functions. The training of the solver does not require reference to label
information or any trajectory fitting. Apart from the loss Linit necessary for training the initializer
above, we introduce reconstruction loss

L[k]
rec = ∥Z [k] −Z⋆∥2, (9)

where the reconstruction loss L[k]
rec aims to make all intermediate predictions Z [k] converge to the

accurate fixed point Z⋆ as closely as possible.

Auxiliary Loss Functions. Although we utilize α[k] and β[k] to improve the generic solver, we
have empirically found that using an auxiliary loss to guide the solver’s prediction of α is beneficial
sometimes, especially in the early stages of training. Therefore, in practice, we suggest considering
this loss and gradually diminishing it as training progresses (i.e., decay the weight of this loss to 0).

Lα =

K∑
k=0

∥G[k]α[k]∥2, (10)

The final form of the joint loss function is as follows:

Ltotal = λ1L[k]
rec + λ2Linit + λ3Lα, (11)

where λ1, λ2 and λ3 control the weights of three loss functions mentioned above and elaborate more
in Appendix C.3.

5 EXPERIMENTS

In this section, we compare the speed/accuracy Pareto curve rather than a single point on the curve of
IGNN-Solver with IGNNs and several state-of-the-art (SOTA) GNNs on various graph classification
tasks at both node and graph levels. We aim to show that 1) IGNN-Solver can achieve nearly a
1.5× to 8× inference acceleration without sacrificing accuracy, and 2) IGNN-Solver are extremely
compact and add little overhead to training.

Specifically, we compare our approach against 12 representative baselines and 2 variants: IGNN
w. AA (using original AA to accelerate IGNN), and IGNN w. NN (using a standard NN solver to
replace our proposed graph neural solver for parameter learning) on 9 different-field and real-world
node classification tasks, including 4 citation datasets: Citeseer, ACM, CoraFull, ogbn-arxiv, 3
social interaction datasets: BlogCatalog, Flickr, Reddit, and 2 product network datasets Amazon-all,
ogbn-products. More details about the datasets are given in Appendix C.1. Notably, to demonstrate
the scalability of the proposed model to larger datasets, we use 4 large-scale datasets: Amazon-
all, Reddit, ogbn-arxiv and ogbn-products, two of which are from the Open Graph Benchmark
(OGB) [22]1.

Additionally, in Section 5.2, we demonstrate that the training overhead on IGNN-Solver is minimized
relative to the total time overhead on IGNN. In Section 5.3, we provide additional evidence regarding
the convergence and generalizability of the IGNN-Solver. In Section 5.4, we conduct an ablation study
to validate the stability of the IGNN-Solver and the effectiveness of its components. Experimental
setups, descriptions and additional results are detailed in Appendices B, C and D.

5.1 PERFORMANCE AND EFFICIENCY COMPARISON

In order to demonstrate the superiority of the IGNN-Solver over IGNNs in terms of both performance
and efficiency, we specifically analyze the movement of the speed/accuracy Pareto curve across
various datasets rather than concentrating on a single point on the curve, which is depicted in Figure 2
and 6 (see Appendix D.1). All experiments are conducted five times, and the best results are reported.
The training procedure details and hyperparameters used in each task are provided in Appendix C.

From Figure 2 (results on large-scale datasets: Amazon-all, Reddit, ogbn-arxiv and ogbn-products),
we can observe that: 1) Regarding comprehensive performance and efficiency, IGNN-Solver generally

1The code to reproduce the results in this section has been uploaded as supplementary material.
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Figure 2: Comparison of inference time with IGNN-Solvers on 4 large-scale datasets. More results
on Citeseer, ACM, CoraFull, BlogCatalog, and Flickr can be found in Figure 6, Appendix D.1. All
speed/accuracy curves within the plot are benchmarked on the same GPU with the same experimental
setting, averaged over 5 independent runs.

Table 1: Node classification accuracy results on 4 large-scale real-world datasets (more results
on small-scale datasets including Citeseer, ACM, CoraFull, BlogCatalog, Flickr can be found in
Table 3, Appendix D.1), with experiments conducted over five trials. The mean accuracy ± standard
deviation (%) is reported. The best and the runner-up results are highlighted in boldface and underline,
respectively.

Type
*Models Amazon-all Reddit ogbn-arxiv ogbn-products
*Nodes 334, 863 232, 965 169, 343 2, 449, 029
*Edges 14, 202, 057 11, 606, 919 1, 166, 243 61, 859, 140

Explicit

GCN [26] 79.12± 1.11 89.65± 0.14 71.56± 0.25 71.91± 0.27
GAT [42] 76.02± 2.09 90.08± 0.44 71.10± 0.24 72.33± 0.32
SGC [47] 75.56± 1.75 91.44± 0.41 64.66± 1.02 70.48± 0.19
APPNP [17] 79.80± 1.22 91.68± 0.24 71.28± 0.29 74.46± 0.64
JKNet [50] 81.19± 1.09 91.71± 0.31 71.08± 0.35 73.70± 0.58
AM-GCN [45] 81.85± 1.46 90.20± 0.34 68.83± 0.67 73.19± 0.49
DEMO-Net [48] 84.08± 1.29 89.53± 0.29 68.40± 0.24 73.88± 0.62
GCNII [11] 83.60± 2.40 89.87± 0.38 67.66± 0.20 72.88± 0.18
ACM-GCN [35] 83.04± 2.61 90.37± 0.42 68.32± 0.18 71.68± 0.41

Implicit

IGNN [20] 83.90± 0.51 92.30± 1.55 70.49± 0.75 74.63± 0.24
EIGNN [33] 84.32± 0.57 92.00± 0.24 70.59± 0.31 74.58± 0.26
MIGNN [7] 83.68± 0.82 91.98± 0.42 71.95± 0.44 74.62± 0.32
IGNN w. AA 83.44± 0.19 92.37± 0.35 71.73± 0.41 74.61± 0.28
IGNN w. NN 84.13± 1.04 92.42± 0.41 70.78± 0.37 74.69± 0.31
IGNN-Solver 84.50± 0.70 93.91± 0.31 72.53± 0.41 74.90± 0.20

outperforms all other methods, especially in large datasets with a greater graph radius, where this
advantage is often more pronounced. This is attributed to the IGNN-Solver’s significant improvement
in the convergence path and the enhancement of the fixed-point equation’s initial point through
the initializer; 2) The rapid inference advantage of the IGNN-Solver. For instance, in the large-
scale dataset Amazon-all, our IGNN-Solver achieves 8× faster inference speed than IGNN while
maintaining the same performance, and there is consistently at least 1.5× acceleration, and a similar
pattern has been observed as well on other datasets. Please see more results on other small-scale
datasets in Figure 6 of Appendix D.1.

Furthermore, we present the node classification performance results for each method on large-scale
datasets(including Amazon-all, Reddit, ogbn-arxiv and ogbn-products) in Table 1 and other small-
scale datasets in Table 3 (see Appendix D.1). All experiments are conducted five times, and the
average results along with the standard deviation are reported. The training procedure details and
hyperparameters used in each task are provided in Appendix C. It can be observed that among all
methods, implicit GNNs with infinite depth are often superior to shallow explicit GNNs in most
cases. Besides, IGNN-Solver consistently shows higher accuracy percentages across most datasets
compared to other SOTA explicit GNNs like DEMO-Net [48], GCNII [11], ACM-GCN [35] etc,
which indicates their superior performance.
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Figure 3: Relative parameter size and training time of IGNN-Solver on small dataset Citeseer and
large one Amazon-all, with similar patterns observed in other datasets.

5.2 MODEL SIZE IN TRAINING

To investigate the proportion of training overhead attributed to the solver throughout the entire training
process, we depict in Figure 3 the percentage of training computations on IGNN-Solver relative
to the total time overhead on IGNN. Our approach is not only effective but also incurs minimal
training overhead for the solver: the solver module is relatively small, and requires only about 1% of
the original training time required by the IGNN model. Besides, this proportion will be lower for
large-scale data. For instance, on the Amazon dataset, IGNN necessitates a total runtime of 3 hours,
whereas the solver only requires approximately 1.6 minutes, indicating that our solver maintains its
lightweight nature across any-scale datasets.

5.3 MORE EFFICIENCY STUDY
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Figure 4: The convergence curve of
IGNN-Solver and IGNN on ogbn-arxiv.
The former improves the convergence
rate.

We provide additional evidence on the convergence and
generalizability of the neural solvers in Figure 4, where
we compare the convergence of a pre-trained IGNN model
under 1) canonical iteration in IGNN [20]; and 2) IGNN-
Solver with K = 6.

From Figure 4, we first note that the IGNN-Solver trained
with K unrolling steps can generalize beyond K, and both
solvers eventually reach a stable state, demonstrating good
convergence. Secondly, thanks to the fixed-point solution
of the graph neural parameterization, we observe that our
IGNN-Solver continuously enhances the convergence of
the canonical iterators while being more computationally
efficient (i.e., each step of the neural solver is cheaper
than the standard iterator step). This explains the observed
improvement in inference efficiency of at least 1.5× in
Section 5.1.

5.4 ABLATION STUDY
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Figure 5: Ablation studies for IGNN-
Solver.

Here, we analyze the effect of different loss components
of the IGNN-Solver. For the main convergence loss Lconv
of fixed-point iterations in equation 11, we designed two
contrasting schemes concerning its weight λ[k]

1 s: setting
them to a constant value (i.e., λ[k]

1 = λ1 for all k), or
setting all values except the K-th term to zero (i.e., λ[k]

1 =
λ1 if k = K else 0). The results of IGNN-Solver and its
variants on Citeseer are shown in Figure 5. The patterns
observed in other datasets and solvers exhibit similarities.

It is observed that the two variant solvers still perform well,
yet our suggested monotonically increasing scheme (i.e.,
emphasizing the later steps to a greater extent) exhibits the
best performance. Additionally, removing the initializer or
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the alpha loss Lα will correspondingly affect performance, with the former having a more detrimental
impact on the solver. Nonetheless, the performance of all these ablation settings remains significantly
superior to methods without a solver, indicating the advantages of employing a custom learnable
solver for the IGNN model.

6 CONCLUSION

This paper introduces IGNN-Solver, a novel graph neural solver tailored for achieving fast fixed-point
solving in IGNNs. By leveraging the generalized Anderson Acceleration method and parameterizing
it with a tiny GNN, IGNN-Solver learns iterative updates as a graph-dependent temporal process.
Our extensive experiments demonstrate the significant acceleration in inference achieved by IGNN-
Solvers, with a speedup ranging from 1.5× to 8×, all while maintaining accuracy. Notably, this
acceleration is particularly pronounced as the scale of the graph increases. These findings underscore
the potential of IGNN-Solver for large-scale end-to-end deployment in real-world applications.

Limitations. In contrast to previous works on IGNNs [20; 33; 7], the theoretical guarantee of
fixed-point existence and stability in IGNN-Solver remains uncertain, notwithstanding favorable
empirical findings in Figure D.2. This is because we make no specific constraint on the formulation
of IGNNs, a departure from the approach adopted in previous IGNN-related studies.
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Supplementary Material
IGNN-Solver: A Graph Neural Solver for Implicit Graph Neural Networks

A ANDERSON ACCELERATION SOLVER FOR DEEP EQUILIBRIUMS (DEQS)

Algorithm 2 Anderson Acceleration Solver

Input: fixed-point function fθ : Rn → Rn, max storage size m, residual control parameter β
1: Set initial point value Z [0] ∈ Rn ▷ Set 0 or random value normally
2: for k = 0, . . ., K − 1 do
3: 1) Set mk = min{m, k} ▷ Storage of the most recent steps
4: 2) Solve α[k] = argminα∈Rmk+1

∥∥G[k]α
∥∥
2

, s.t. 1⊤α[k] = 1 ▷ Compute weights

5: 3) Z [k+1] = β
∑mk

i=0 α
[k]
i fθ(Z

[k−mk+i]) + (1− β)
∑mk

i=0 α
[k]
i Z [k−mk+i] ▷ AA update

6: end for

Given an implicit network layer fθ and an input X , DEQs aim to find the fixed point Z∗ in the
system that represents the equilibrium state of the network output by solving a root-finding problem:

gθ (Z
⋆,X) := fθ (Z

⋆,X)−Z⋆ = 0. (12)

In practical solving of DEQs, it is often necessary to utilize fixed-point solvers during the training
process, such as the classical Broyden method [9] or Anderson Acceleration (AA) [2], which can
directly seek the equilibrium point Z⋆ through quasi-Newton methods. This approach demonstrates
super-linear convergence properties.

We briefly introduce AA-solver here, as our approach relies on it. Algorithm 2 is a pseudocode
example illustrating it, where G[k] = [gθ(z

[k−mk]) . . . gθ(z
[k])] is the past residuals. It can be

observed that the basic idea of Anderson Acceleration (AA) is to accelerate the generation of the
next approximate solution by utilizing the information stored from the history m iteration steps,
constructing a normalized linear combination with weights α[k]. It computes the weights greedily
to minimize the linear combination of past AA update steps. This approach is typically particularly
effective for iteratively slow-converging processes, such as solving implicit functions.

Subsequently, during the backward process, the implicit function theorem [28] can be employed to
implicitly differentiate through the equilibrium point and generate gradients with respect to the model
parameters θ by solving linear equations based on the Jacobian matrix. Since the computation process
relies only on the final output and does not require storing any intermediate activation values [4], the
memory consumption during the training process remains constant, which is also a key reason why
DEQs are attractive.

B TRAINING STRATEGIES FOR IGNN USING IGNN-SOLVER.

B.1 IGNN TRAINING WITH FROZEN IGNN-SOLVER

During the training processing of the IGNN model, we assume that both the initializer hϕ and the
neural solver sξ of IGNN-Solver have approached the desired state via the training method outlined
in Section 4.1, and they will no longer be updated in the subsequent model training. For a given
IGNN layer fθ, as well as the input graph A and feature matrix X , we define:

gθ(Z
⋆, Â,X) := fθ(Z

⋆, Â,X)−Z⋆ = 0, (13)

and utilize the IGNN-Solver proposed in Section 4.1 to solve equation 13, obtaining the fixed
point Z⋆. Furthermore, the fixed point Z⋆ is passed through a linear layer to obtain an embedding
H = Linear(Z⋆). Then we jointly with downstream tasks, compute the Binary Cross Entropy (BCE)
loss [15] to back-propagate and update the parameters of fθ in a supervised way. The complete
process is illustrated in Algorithm 3.
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Algorithm 3 IGNN model training

Input: graph matrix Â, feature matrix X , fixed IGNN-Solver sξ and initializer hϕ

1: Initialize Z [0] = hϕ(X) and randomly initialize fθ
2: while Stopping condition is not met do
3: Z⋆ ← Solve fθ(Z

⋆, Â,X)−Z⋆ = 0 ▷ via frozen sξ, Â and initial value Z [0]

4: H ← Linear(Z⋆)
5: Ltask ← BCE(H,Y ) ▷ computing the label loss
6: Back-propagate Ltask to update fθ
7: end while
8: return fθ

B.2 ADVANCED IGNN TRAINING STRATEGY WITH IGNN-SOLVER

Given the fact that model parameter θ gradually updates only with the model training iterations (i.e.,
we assume ∥θt+1 − θt∥ is only related to θt at training step t), we propose training the lightweight
IGNN-Solver sξ, hϕ and the large model fθ in an alternating way. Specifically, we adopt the following
procedure:

(i) Warm up and train the IGNN model and its solver (IGNN-Solver) for some steps.

(ii) Fix the IGNN-Solver sξ, hϕ and solving the fixed points of fθ in IGNN via Algorithm 3 for
T1 steps.

(iii) Fix the current model parameters θ and start fine-tuning the IGNN-Solver sξ, hϕ via Algo-
rithm 1 over some T2 steps.

(iv) Repeat steps (ii) and (iii) until reaching the maximum training steps for the IGNN model.

Here T1 is approximately 4% to 10% of T2, adjusted as needed. The sum of all T2 values is referred
to as epochmax. It is reassuring that the additional cost of fine-tuning the IGNN-Solver (step (iii))
is sufficiently offset by the substantial benefits of accelerated solving (step (ii)). Moreover, we are
surprised to find that the proposed IGNN-Solver does not exhibit a decline in expressive capability
for excessively small or large T1 values. This indicates that, thanks to its robust stability, accidentally
setting T1 high does not significantly affect the normal training of the IGNN. Conversely, if T1 is set
slightly lower, the model still demonstrates good generalization capabilities. Thus, the IGNN-Solver
shows low sensitivity to T1.

C EXPERIMENTAL DETAILS

The experiments are conducted on 9 public datasets of different scales, including 5 widely adopted
benchmark datasets Citeseer, ACM, CoraFull, BlogCatalog, Flickr, and 4 large-scale benchmark
datasets Amazon-all, Reddit, ogbn-arxiv and ogbn-products. We endeavor to conduct inference testing
under almost identical hyperparameter conditions as previous work [7; 33; 20; 45; 26; 42; 47; 17; 50],
including performance and efficiency comparisons. All the Experiments are conducted independently
five times (i.e., using 5 random seeds) on a machine with Intel(R) Xeon(R) Gold 6138 CPU @
2.00GHz with a single 3090 GPU. A detailed description of all tasks and additional details are
provided below.

C.1 DATASETS

• Citeseer [26]: This dataset is a citation network of research papers, which are divided into
six categories. The citation network takes 3,327 scientific papers as nodes and 4,732 citation
links as edges. The feature of each node in the dataset is a word vector to describe whether
the paper has the corresponding words or not.

• ACM [54]: It is a citation network dataset, where nodes represent papers and node features
are constructed by the keywords. Papers are divided into 3 categories according to their
types of conferences.
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Table 2: Hyper-paramaters setting on training. *In addition, we decay the loss weight λ1 from 0 to
the setting value on a linear schedule over all IGNN-Solver training steps.

Scale Datasets nhid dropout lr K epochmax training test λ1* λ2 λ3

Small

Citeseer 128 0.5 0.002 10 100 360 1000 0.1 5 1e-4
ACM 128 0.5 0.001 10 100 180 1000 0.3 5 1e-4
CoraFull 512 0.5 0.002 15 300 4200 1000 0.3 5 1e-4
BlogCatalog 512 0.5 0.001 10 100 360 1000 0.5 5 1e-4
Flickr 512 0.5 0.002 15 200 540 1000 0.1 5 1e-5

Large

Amazon-all 128 0.5 0.005 20 1000 16970 28285 0.3 5 1e-5
Reddit 512 0.5 0.005 15 2000 139,779 46,593 0.5 5 1e-5
ogbn-arxiv 128 0.5 0.001 20 2000 90,941 48,603 0.5 5 1e-5
ogbn-pruducts 128 0.5 0.001 20 2000 196,615 2,213,091 0.5 5 1e-5

• CoraFull [8]: Similar to the Citeseer dataset, CoraFull is a well-known citation network
labeled based on the paper topic, which contains 19,793 scientific publications. CoraFull is
classified into one of 70 categories, where nodes represent papers and the edges represent
citations.

• BlogCatalog [37]: This dataset is a social relationship network. The graph is composed of
bloggers and their social relationships (such as friends). Node attributes are constructed by
keywords in the user profile. The labels represent bloggers’ interests. All nodes are divided
into six categories.

• Flickr [48]: It is a graphic social network where nodes represent users and edges correspond
to the friendships among users. All the nodes are divided into 9 classes according to the
interest groups of users.

• Amazon-all [51]: The widely-used benchmark dataset Amazon-all encompasses the Ama-
zon product co-purchasing network dataset. This dataset represents products as nodes and
co-purchases as edges. It includes 58 product types, each with over 5,000 products, selected
from a total pool of 75,149 product types.

• Reddit [16]: The Reddit dataset is a social network where nodes represent posts, and edges
indicate that the same user commented on two connected posts. Each node contains 602
dimensional features.

• ogbn-arxiv [22]: The ogbn-arxiv dataset is a citation network between all Computer Science
(CS) arXiv papers. Each node is an arXiv paper, and each directed edge indicates that one
paper cites another. Each paper comes with a 128-dimensional feature vector obtained by
averaging the embeddings of words in its title and abstract. The task is to predict the 40
subject areas of arXiv CS papers.

• ogbn-products [22]: The ogbn-products dataset contains an undirected and unweighted
graph, representing an Amazon product co-purchasing network. Nodes represent products
sold on Amazon, and edges between two products indicate that the products are purchased
together. The task is to predict the category of a product in a multi-class classification setup,
where the 47 top-level categories are used for target labels.

C.2 BASELINES

We compare IGNN-Solver with 12 state-of-the-art methods, including 3 implicit IGNNs, i.e., MIGNN
[7], EIGNN [33], IGNN [20], and 9 explicit/traditional GNNs, i.e., AM-GCN [45], GCN [26], GAT
[42], SGC [47], APPNP [17], JKNet [50], DEMO-Net [48], GCNII [11], ACM-GCN [35]. The
specific parameter settings are as follows:

For the configuration of hidden layers, for the sake of fairness, we set the same hidden layers for
all baselines. For example, in the Flickr dataset, the dimension of the hidden layers is uniformly
set to 512 for all methods (including ours, see in Table 2). In addition, for EIGNN, the arbitrary
gamma is set to 0.8, which is consistent with the original paper. For AM-GCN, the number of nearest
neighbors in KNN graph is set from 5, 6, 7. For GCN, the hidden layer setup is same as others.
For GAT, three attention headers are used for each layer. For SGC, the power of self-loops in the
graph adjacency matrix is set to 3. For APPNP, we set the number of iterations to 3 and teleport
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probability α to 0.5. For JKNet, we set layers to 1 in small datasets and set to 8 in large ones. For
DEMO-Net, the regularization parameter is set as 5e − 4, the learning rate is set as 5e − 3, and
the hash dimension is set as 256. For GCNII, we set αℓ = 0.1 and L2 regularization to 5e − 4,
consistent with the original paper. For ACM-GCN, we set layers to 1 in small datasets and set to
4 in large ones. For our IGNN-Solver and its variants, we employ the same settings as the basic
IGNN model. Furthermore, we adjust these parameters affecting the convergence and performance
of IGNN through a combined approach of hierarchical grid search and manual tuning. The Adam
optimizer [25] is used for optimization.

C.3 HYPER-PARAMETERS SETTING IN IGNN-SOLVER

We present in Table 2 all the hyper-parameters preset by IGNN-Solver across all datasets, where
K represents the threshold of maximum iteration in IGNN-Solver, epochmax means the maximum
training steps in IGNN. It is worth noting that we set the value of λ1 in a linearly increasing manner
to penalize the intermediate estimation error when the training step K is large. Similarly, we set the
value of λ3 in a linearly decreasing manner to prevent overfitting α during later training epochs.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

time (s)

A
C

C

 GN
 NN
 AA
 IGNN

0.00 0.02 0.04 0.06 0.08 0.10

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

A
C

C

time (s)

 GN
 NN
 AA
 IGNN

0 1 2 3 4 5 6

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86
A

C
C

time (s)

 GN
 NN
 AA
 IGNN

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

 GN
 NN
 AA
 IGNN

A
C

C

time (s)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

A
C

C

time (s)

 GN
 NN
 AA
 IGNN

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

A
C

C

time (s)

 GN
 NN
 AA
 IGNN

(a) Citeseer
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(b) ACM
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(c) CoraFull
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(d) BlogCatalog
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(e) Flickr

Figure 6: Comparison of inference time with IGNN-Solvers on 5 small-scale datasets. All
speed/accuracy curves within the same plot are benchmarked on the same GPU with the same
experimental setting, averaged over 5 independent runs.

Table 3: Node Classification accuracy results on 5 small-scale real-world datasets, with experiments
conducted over five trials. The mean accuracy ± standard deviation (%) is reported. The best and the
runner-up results are highlighted in boldface and underline, respectively.

Type
*Models Citeseer ACM CoraFull BlogCatalog Flickr
*Nodes 3, 327 3, 025 19, 793 5, 196 7, 575
*Edges 4, 732 13, 128 65, 311 171, 743 239, 738

Explicit

GCN [26] 64.80± 4.15 83.78± 3.95 35.98± 9.44 71.30± 1.12 76.98± 1.83
GAT [42] 71.24± 2.88 80.60± 5.12 50.24± 1.87 76.24± 2.76 72.64± 3.23
SGC [47] 70.32± 2.75 85.40± 1.23 46.56± 4.43 69.76± 1.11 71.88± 3.47
APPNP [17] 61.56± 8.92 84.16± 4.25 21.24± 4.76 61.34± 9.39 73.42± 3.80
JKNet [50] 63.78± 8.76 64.96± 5.47 23.04± 6.01 72.62± 6.83 75.68± 1.15
AM-GCN [45] 73.10± 1.62 89.56± 0.30 53.40± 1.59 73.86± 1.10 76.86± 2.02
DEMO-Net [48] 68.34± 2.94 84.38± 2.19 61.74± 3.65 74.26± 2.70 75.60± 3.95
GCNII [11] 71.98± 0.80 85.36± 1.05 57.64± 3.34 74.94± 3.81 79.92± 2.14
ACM-GCN [35] 72.38± 1.46 88.98± 0.41 59.88± 1.59 78.18± 1.75 74.82± 3.78

Implicit

IGNN [20] 72.96± 1.83 90.88± 0.95 65.52± 0.51 75.68± 0.55 75.80± 0.29
EIGNN [33] 72.38± 1.36 88.36± 1.03 61.80± 0.60 75.34± 0.38 75.66± 0.94
MIGNN [7] 73.79± 0.94 89.59± 1.61 62.94± 0.46 76.68± 1.49 74.96± 0.49
IGNN w. AA 75.28± 0.38 91.34± 0.46 65.88± 0.34 76.82± 0.34 75.84± 0.27
IGNN w. NN 74.78± 0.42 91.08± 0.56 65.62± 0.16 76.88± 0.74 78.55± 0.49
IGNN-Solver 75.60± 0.22 91.20± 1.15 66.08± 1.23 77.64± 0.54 80.14± 0.23

D MORE RESULTS AND ADDITIONAL EXPERIMENTS

D.1 MORE PERFORMANCE AND EFFICIENCY COMPARISON ON OTHER SMALL-SCALE TASKS

We further test IGNN-Solver for a few small-scale graph node classification tasks, including Citeseer,
ACM, CoraFull, BlogCatalog and Flickr. We employ the training procedure details in Appendix C
and hyperparameters used outlined in Appendix B, and report the mean accuracy ± standard deviation
in Table 3 and Figure 6. Generally, learning LRD is not crucial for these tasks, as the diameter of the
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graphs is quite small [7]. However, as seen in Table 3, even for these small-scale node classification
tasks, the IGNN-Solver can still surpass IGNN and even outperforms many explicit GNNs and other
enhanced implicit ones. As shown in Figure 6, even in small-scale tasks, the solver still improves
upon the convergence path of IGNN. These results and which in Section 5.1 confirm the expressive
power of the IGNN-Solver using learnable graph neural, even exceeding that of many explicit and
improved implicit GNNs.

D.2 OTHER OPTIONS FOR GRAPH NEURAL LAYERS IN IGNN-SOLVER.
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(a) The relative error curve during warm-up.
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(b) The relative error curve during inference.

Figure 7: The proposed IGNN-Solver (GN) improves the convergence path, which is attributed to its
lightweight nature and capability to leverage rich graph information.

We provide additional evidence on the convergence and generalization of IGNN-Solver, where we
tried other options besides our proposed graph neural (GN) layers, including neural network (NN),
temporal convolutional network (TCN) [29] and gated recurrent unit (GRU) [14]. We present the
relative residual curves on the Citeseer dataset during the warm-up stage and the final inference
stage. As illustrated in Figure 7, TCN and GRU, despite having more parameters and more complex
structures, actually perform worse than NN. Note that IGNN-Solver (GN) improves the convergence
path of all other solvers and exhibits the fastest rate of decrease, proving to be the most suitable solver
for IGNN, which is attributed to its capability to leverage rich graph information effectively.

D.3 TRAINING DYNAMICS OF IGNNS WITH IGNN-SOLVER
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Figure 8: Training time and inference time(s)
per epoch of IGNN and IGNN-Solver on
Amazon-all datasets.

In this section, we present the time cost trends of
IGNN and IGNN-Solver during training and infer-
ence on the Amazon dataset. From Figure 8, it is
evident that IGNN starts relatively fast overall at the
beginning of training. However, as the training of
IGNN progresses, the model becomes increasingly
complex, leading to a sharp rise in the time cost for
fixed-point computation. After 100 epochs, this cost
remains persistently high and fluctuates continuously.
This issue arises because the IGNN reaches the max-
imum number of iterations without achieving the pre-
set minimum error.

On the contrary, our IGNN-Solver demonstrates sig-
nificantly lower training and inference time consump-
tion compared to the former and maintains a stable
state throughout the process. This is attributed to
the solver’s consistent memory consumption and its
rapid fixed-point computation capability, which drives the unique advantage of IGNN-Solver.
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