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ABSTRACT

Deep neural networks trained on nonstationary data must balance stability (i.e.,
retaining prior knowledge) and plasticity (i.e., adapting to new tasks). Standard
reinitialization methods, which reinitialize weights toward their original values,
are widely used but difficult to tune: conservative reinitializations fail to restore
plasticity, while aggressive ones erase useful knowledge. We propose FIRE, a
principled reinitialization method that explicitly balances the stability–plasticity
tradeoff. FIRE quantifies stability through Squared Frobenius Error (SFE), mea-
suring proximity to past weights, and plasticity through Deviation from Isometry
(DfI), reflecting weight isotropy. The reinitialization point is obtained by solving
a constrained optimization problem, minimizing SFE subject to DfI being zero,
which is efficiently approximated by Newton–Schulz iteration. FIRE is evalu-
ated on continual visual learning (CIFAR-10 with ResNet-18), language modeling
(OpenWebText with GPT-0.1B), and reinforcement learning (HumanoidBench
with SAC and Atari games with DQN). Across all domains, FIRE consistently
outperforms both naive training without intervention and standard reinitialization
methods, demonstrating effective balancing of the stability–plasticity tradeoff.

1 INTRODUCTION

High Plasticity

(Better adaptability)

High Stability

(Faster convergence)

FIRE (Ours) Full Parameter Reset

Figure 1: Illustration of FIRE. Solving
a constrained optimization problem, FIRE
places weights at the intersection of high-
stability and high-plasticity manifolds.

Deep neural networks are typically trained under a fixed,
stationary data distribution (Brown et al., 2020; Podell
et al., 2024). However, many real-world applications
require models to adapt continually as new data and
shifting distributions emerge. In computer vision, au-
tonomous driving systems must recognize unseen traffic
signs, road layouts, or weather conditions that were
absent during training (Verwimp et al., 2023). Large lan-
guage models, trained once and deployed with a fixed
knowledge cutoff date, quickly become outdated unless
continually updated (Ke et al., 2023). Likewise, robots
deployed in dynamic physical environments must adjust
their perception and control policies as the environment
changes (Wołczyk et al., 2021). In all of these domains,
a central challenge is reliable adaptation to nonstationary
data while preserving prior knowledge.

This challenge is often framed as a balance between two competing properties: stability, the retention
of learned knowledge, and plasticity, the ability to incorporate new information (Mermillod et al.,
2013). Different research communities emphasize these properties to varying degrees. Conventional
continual learning assumes limited access to past data, prioritizing stability to mitigate catastrophic
forgetting (Kirkpatrick et al., 2017; Rebuffi et al., 2017; Rusu et al., 2016). In contrast, most
foundation models and robotic agents are trained on expanding datasets where past data remain
accessible (Achiam et al., 2023; Team et al., 2025), making plasticity loss a central challenge (Lyle
et al., 2023; Berariu et al., 2021). In this regime, stability is less about preserving past knowledge and
more about accelerating adaptation to new tasks by leveraging prior representations. Motivated by
these real world scenarios, we study the stability-plasticity tradeoff under the assumption of access to
past data during continual learning.
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Existing approaches to mitigating plasticity loss fall broadly into two categories: regularization-
based and reinitialization-based. Regularization-based methods constrain parameters or features near
their initialization (Kumar et al., 2025b; Lyle et al., 2022), or enforce weight orthogonality (Chung
et al., 2024). While these methods can preserve a favorable geometry for future learning, overly
strong constraints slow convergence, and overly weak ones fail to prevent plasticity degradation.
Reinitialization-based methods instead reset weights to earlier checkpoints when new data arrive (Ash
& Adams, 2020; Nikishin et al., 2022; Lee et al., 2024a; Shin et al., 2024). Their advantage lies in
avoiding interference with current optimization, often yielding faster adaptation with lower overhead.
However, they also suffer from a tuning dilemma: aggressive resets erase useful knowledge, while
conservative ones provide little plasticity gain.

We aim to resolve this dilemma by treating reinitialization as a principled constrained optimization
problem. Our approach relies on two complementary measures that capture the core dimensions of
the stability–plasticity tradeoff. First, we define stability using the Squared Frobenius Error (SFE)
between current and past weights, which measures the sum of squared differences across all weight
entries. A smaller SFE indicates greater similarity, meaning the model remains closer to its previous
representations. For plasticity, prior work has linked plasticity loss to sharp loss curvature (Lyle et al.,
2023), dormant neurons (Sokar et al., 2023), and low rank features (Kumar et al., 2021a), but these
metrics depend on incoming data and are non differentiable, limiting their use for optimization. We
instead propose the Deviation from Isometry (DfI) (Pennington et al., 2017; Xiao et al., 2018), which
measures how close weight matrices are to orthonormal. We show that reducing DfI simultaneously
decreases curvature, prevents neuron dormancy, increases feature rank, and remains differentiable,
making it a practical measure of plasticity to optimize. A formal proof is provided in Section 3.

We propose FIRE (Frobenius–Isometry REinitialization), which minimizes the SFE subject to the
DfI being 0. As illustrated in Figure 1, FIRE avoids the pitfalls of either overly conservative or
aggressive reinitialization by projecting weights onto the isotropy manifold while remaining close
to their previous subspace. While directly solving this constrained optimization is costly, it can be
implemented efficiently with the Newton–Schulz iteration, adding less than 1% to training time.

We evaluate FIRE on continual learning benchmarks in vision, language, and reinforcement learning,
assuming access to past data. For vision, we split CIFAR-10, CIFAR-100, and Tiny-ImageNet into
chunks under random or class-incremental protocols using ResNet He et al. (2016) and Vision Trans-
former Dosovitskiy et al. (2020). For language, we use a warm-start setup where GPT-0.1B Karpathy
(2023) is pretrained on WikiText-103 and then continually trained on a mixture of OpenWebText
and WikiText-103. For reinforcement learning, we test continuous control with SAC Haarnoja et al.
(2018) on HumanoidBench Sferrazza et al. (2024) and discrete control with DQN Mnih et al. (2015)
on Atari Bellemare et al. (2013). For vision and language tasks, reinitialization is applied whenever
new data arrive, while in reinforcement learning it is applied once at the midpoint of training. Across
all domains, FIRE consistently outperforms naive training and standard reinitialization, showing its
effectiveness as a unified solution to the stability plasticity tradeoff.

2 RELATED WORK

2.1 STABILITY-PLASTICITY TRADEOFF

The stability–plasticity tradeoff (Mermillod et al., 2013; Kim & Han, 2023) is a fundamental challenge
in continual learning. Stability refers to the ability of a model to preserve previously acquired
knowledge and avoid catastrophic forgetting when exposed to new data. Plasticity refers to the
ability of a model to adapt flexibly and effectively to novel tasks. These two properties often conflict
with each other since strong stability can make the model rigid and resistant to new learning while
excessive plasticity can lead to the loss of past knowledge.

Research in continual learning has therefore focused on methods that balance these competing
requirements such as constraining parameter updates through regularization (Kirkpatrick et al., 2017),
revisiting earlier data through replay (Rebuffi et al., 2017; Rolnick et al., 2019; Lopez-Paz & Ranzato,
2017; Chaudhry et al., 2018; Aljundi et al., 2019), or designing architectures that separate parameters
across tasks (Rusu et al., 2016; Mallya & Lazebnik, 2018; Mallya et al., 2018; Yoon et al., 2017;
Wortsman et al., 2020). Their aim is to develop models that can maintain previously learned skills
while remaining adaptive to new experiences.
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2.2 LOSS OF PLASTICITY

Deep learning has traditionally been studied under stationary datasets (Glorot & Bengio, 2010; He
et al., 2015), yet real-world applications often involve non-stationary streams (Shen et al., 2024;
Kumar et al., 2025a). Training in such environments leads to a loss of plasticity (Lyle et al., 2023;
Dohare et al., 2024; Kumar et al., 2025b), where models fail to adapt to new distributions. Prior
work has identified potential indicators of this phenomenon, including dormant neurons (Sokar et al.,
2023; Xu et al., 2023), shifts in pre-activations (Lyle et al., 2024), feature rank collapse (Kumar et al.,
2021a), and diverging weight magnitudes (Lyle et al., 2024).

Loss of plasticity hinders not only the ability to fit the training data, but also the ability to generalize
to unseen data. Models trained incrementally often generalize worse than those trained from scratch
(Ash & Adams, 2020; Berariu et al., 2021; Lyle et al., 2025), due to factors such as diminished
gradient norms (Ash & Adams, 2020), weak feature changes (Lyle et al., 2025), and the compounding
effects of small pretraining datasets or noisy labels (Lee et al., 2024a).

To counteract plasticity loss, reinitialization-based strategies such as S&P (Ash & Adams, 2020),
DASH (Shin et al., 2024) reinitialize weights into an intermediate checkpoint, weight regularizers
constrain parameters to initialization or specific subspaces (Kumar et al., 2025b; Elsayed et al., 2024;
Lewandowski et al., 2024a), and spectral or rank-based approaches explicitly maintain representation
quality (Kumar et al., 2021a;b; He et al., 2024). Another approach proposed reinitializing at the
neuronal level, based on the utility of each neuron (Sokar et al., 2023; Dohare et al., 2024; Elsayed
& Mahmood, 2024). Recent work further leverages the fact that linear networks do not suffer from
plasticity loss (Dohare et al., 2024; Lewandowski et al., 2024b; Park et al., 2025).

3 METHOD

In this section we explain how we frame the stability-plasticity tradeoff as a constrained optimization
problem. To do this we first need two metrics: one for stability and one for plasticity loss. With
these two pieces in place the optimization problem naturally emerges, and from this formulation we
introduce our method FIRE, which provides an efficient approximation to the solution.

3.1 MEASURE FOR STABILITY

To measure stability, we propose a simple yet effective metric, the Squared Frobenius Error (SFE).
SFE provides a natural way to quantify the preservation of learned information by comparing an
original weight matrix W with its modified counterpart W̃ . Formally,

SFE(W, W̃ ) = ∥W − W̃∥2F , (1)

which captures the element-wise squared deviation between the two weight configurations. However,
it remains unclear whether SFE can be used as a metric that can meaningfully capture similarity
of feature representations. To clarify this point, we establish a theoretical link between SFE and
the normalized feature covariance, a metric widely used in prior work to measure representation
similarity (Lyle et al., 2025; Yang et al., 2022). In particular, we show that SFE provides an upper
bound on the discrepancy between the normalized feature covariances of two distinct neural networks’
output features (Theorem 1).

Theorem 1 (SFE bounds output feature covariance between two deep neural networks). Let Θ =

{W 1, . . . ,WL} and Θ̃ = {W̃ 1, . . . , W̃L} be the parameters of two depth-L feedforward networks
with elementwise activations σℓ (Lipschitz constants Lσℓ

).

For an input batch Z ∈ Rn×d0 , we denote the layer outputs recursively by H 0
Θ(Z) = Z and

H ℓ
Θ(Z) = σℓ(H

ℓ−1
Θ (Z)W ℓ). Let Bℓ = max{∥W ℓ∥2, ∥W̃ ℓ∥2} be the maximum spectral norm

of the weights in layer ℓ and Bℓ
Π =

∏ℓ
k=1 Bk the product across all layers. We further define

mℓ = min{∥H ℓ
Θ(Z)∥F , ∥H ℓ

Θ̃
(Z)∥F } > 0. The normalized feature covariances of the two networks

are given by C ℓ
Θ(Z) = H ℓ

Θ(Z)H ℓ
Θ(Z)⊤/∥H ℓ

Θ(Z)∥2F , C ℓ
Θ̃
(Z) = H ℓ

Θ̃
(Z)H ℓ

Θ̃
(Z)⊤/∥H ℓ

Θ̃
(Z)∥2F .
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Then the difference between the output feature covariances of the two networks is bounded as follows:

∥C ℓ
Θ(Z)− C ℓ

Θ̃
(Z)∥2F ≤

16 ∥Z∥2F
m2

ℓ

( ℓ∏
k=1

Lσk

)2
B2

Π

(
ℓ∑

j=1

1
B2

j

)
SFE(Θ, Θ̃).

In particular, if each activation is 1-Lipschitz (Lσk
≤ 1) and each spectral norm is bounded

(Bj ≤ S), then

∥C ℓ
Θ(Z)− C ℓ

Θ̃
(Z)∥F ≤

4 ∥Z∥F
mℓ

√
ℓ Sℓ−1

√
SFE(Θ, Θ̃).

Theorem 1 shows that the discrepancy between normalized feature covariances is bounded by four
factors: the input norm (∥Z∥2F ), the Lipschitz constants of activation functions (Lσℓ

), the spectral
norms of the weight matrices (BΠ and Bj), and SFE. In practice, inputs are typically normalized and
have a fixed upper bound, and commonly used activation functions have small Lipschitz constants
(e.g., 1 for ReLU and tanh). Thus, the contributions from ∥Z∥2F and Lσℓ

can be ignored. The
remaining dominant factors are the spectral norms of the weight matrices (BΠ and Bj) and SFE.
This has two implications. First, for any fixed architecture and weight scale, minimizing SFE
monotonically tightens the upper bound, and thus is an effective way to preserve feature similarity
between two networks. Second, the slope of the bound with respect to SFE is proportional to the
spectral norms: larger spectral norms make the worst-case discrepancy more sensitive to changes in
SFE. In such regimes, reducing SFE becomes even more important for stability, since even a small
increase in SFE can, in principle, lead to a substantial change in the resulting feature representations.

3.2 MEASURE FOR PLASTICITY LOSS

In this work, we view plasticity loss as the situation where weights learned from previous data fail to
serve as a favorable initialization point for new data. This perspective is particularly useful when
designing reinitialization strategies that partially reinitialize weights before the arrival of new data.
Prior analyses of plasticity loss suggest that one of its main causes is the increasing sharpness of
the loss landscape curvature with respect to new data during training on the current task, which
destabilizes optimization (Lyle et al., 2023). In addition, an increase in dormant neurons (Sokar
et al., 2023) and a collapse in effective rank (Kumar et al., 2021a) have also been known to indicate
plasticity loss.

However, as these measures are data-dependent and non-differentiable, they are inappropriate for the
optimization objective. Instead, we propose Deviation from Isometry (DfI) (Pennington et al., 2017;
Xiao et al., 2018), an optimizable metric that closely connected to previous plasticity measure.

DfI(W ) = ∥W⊤W − I∥2F . (2)
Our theoretical analysis reveals that minimizing DfI results in a smoother loss landscape curvature
(Theorem 2), a smaller number of dormant neurons (Theorem 4), and a higher effective rank
(Theorem 3). This supports the use of DfI as a suitable measure for plasticity measure. In addition,
minimizing DfI also makes the weights close to isotropy, which is known as a key property of
favorable neural network initializations, termed as dynamical isometry (Xiao et al., 2018).
Theorem 2 (Hessian spectral norm bounded by layerwise DfIs). We assume that

• the inputs are whitened, so that the empirical covariance ΣZ = 1
nZ

⊤Z is approximately
the identity: ΣZ := 1

nZ
⊤Z ≈ I

• for every sample i and relevant parameter vector u, the Hessian norm satisfies |∇2
uℓi(u)|2 ≤

β, while the gradient norm is bounded by |∇uℓi(u)|2 ≤ γ.

• finally, we focus on a fixed ReLU activation pattern at the point of interest, so that the
network is piecewise linear in that region. In particular, each diagonal gating matrix arising
from the ReLU has operator norm ≤ 1.

Let νk = 1 +
√

DfI(Wk), then the Hessian spectral norm can be bounded as follows:∥∥∇2
θL(W1:L)

∥∥
2
≤ β

L∑
k=1

∏
j ̸=k

νj + 2γ
∑

1≤k<ℓ≤L

∏
j /∈{k,ℓ}

νj .
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Theorem 3 (DfI controls effective rank). Let Z ∈ Rn×a and W ∈ Ra×b be an input and weight
matrix, respectively, Φ = ZW be a feature matrix. Let ΣZ = 1

nZ
⊤Z be the empirical covariance

of the inputs and let W = QS be the right polar decomposition of W , where Q ∈ Ra×b has
orthonormal columns. Then η1 ≥ · · · ≥ ηd > 0 denote the positive eigenvalues of Q⊤ΣZQ, with
d = rank(Q⊤ΣZQ), and srankδ(Φ) be defined from the nonzero singular values {σi(Φ)}di=1 by

srankδ(Φ) = min
{
k : (

∑k
i=1 σi(Φ)/

∑d
i=1 σi(Φ)) ≥ 1− δ

}
.

Then ε =
√
DfI(W ) < 1 gives a lower bound on the srank as left inequality below. If additionally

ΣZ = I , the bound simplifies to the right inequality below.

srankδ(Φ) ≥


(1− δ) d

δ
√

1+ε
1−ε

√
η1

ηd
+ (1− δ)

 , srankδ(Φ) ≥

 (1− δ) d

δ
√

1+ε
1−ε + (1− δ)

 . (3)

Theorem 4 (Minimizing DfI increases neuron activity score). Let W ∈ Ra×b and let σ be
positive-homogeneous (σ(αt) = ασ(t) for α ≥ 0). Assume the input vector z ∼ N (0, Ia)
(isotropic Gaussian). For neuron j with column wj of W , define activity score of neuron j as
sj =

Ez [|σ(⟨z,wj⟩)|]
1
b

∑b
k=1 Ez [|σ(⟨z,wk⟩)|]

. If ε :=
√
DfI(W ) < 1, then for all j,√
1− ε

1 + ε
≤ sj ≤

√
1 + ε

1− ε
.

Sokar et al. (2023) classified neurons with sj < τ as dormant neurons. Hence, reducing the number
of dormant neurons requires increasing the activity scores sj . Theorem 4 states that minimizing DfI

increases the lower bound
√

1−ϵ
1+ϵ < sj . Note that minimizing DfI also decreases the corresponding

upper bound. This is particularly meaningful because the neuron activity score sj is a relative measure,
defined as an activation normalized by the mean activation within the same layer. Consequently,
it is impossible to increase all sj simultaneously, since they are normalized by their average. To
reduce dormant neurons, it is therefore critical to reduce the discrepancy in activations across neurons
rather than uniformly scaling them. Theorem 4 supports this perspective: minimizing DfI tightens
both the lower and upper bounds on sj , thereby limiting the score discrepancy between neurons and
effectively reduces dormant neurons.

We provided detailed proofs in Appendix A. Theorem 2, 3, 4 demonstrates that reducing DfI is
directly associated with maintaining a smoother loss landscape, a high effective rank, and large
number of active units.

3.3 BALANCING BETWEEN STABILITY AND PLASTICITY

To achieve low DfI while minimizing the loss of information, we formulate the problem as a
constrained optimization. Specifically, we minimize the SFE between the original weights W and
their orthogonalized counterpart W̃ , subject to the orthogonality constraint W̃⊤W̃ = I , which is
equivalent to requiring DfI(W̃ ) = ∥ W̃⊤W̃ − I ∥2F = 0.

min
W̃
∥W − W̃∥2F s.t. W̃⊤W̃ = I. (4)

This formulation is mathematically equivalent to the well-studied Orthogonal Procrustes Problem
(Schönemann, 1966), whose solution can be expressed in closed form via the polar decomposition:

W̃ ⋆ = W
(
W⊤W

)− 1
2 . (5)

While the optimization itself is classical, our contribution lies in leveraging this operation as a
principled mechanism to balance stability and plasticity in neural networks. In particular, we
reinterpret equation 5 as a projection that simultaneously drives the spectrum of W toward isotropy
(low DfI) while maintaining stability (low SFE). We provide a derivation of Equation 5 in the
Appendix A.
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3.4 APPROXIMATING THE SOLUTION

Directly computing W̃ ⋆ exactly can be expensive, we efficiently approximate it using the Newton–
Schulz iteration, making the approach scalable to large networks.

Our method, FIRE, orthogonalizes neural network
weights after training on the current dataset but be-
fore learning on new data, using the Newton–Schulz
iteration (Shown in Algorithm 1.) to efficiently approx-
imate the above solution. Specifically, given a weight
matrix W ∈ Rm×n, we apply the Newton–Schulz up-
date defined as Xk+1 = aXk+bXk(X

⊤
k Xk) with con-

stants a = 1.5 and b = −0.5, where X0 = W/∥W∥F .
This iterative process progressively drives the singular
values of W toward 1, thereby enforcing approximate
orthonormality.

Algorithm 1: Newton–Schulz Iteration
(Pytorch-like)
# X: a two-dimensional matrix
# N: number of iteration
a, b = (1.5, -0.5)
X = X / X.norm()
for in range(N):

A = X.T @ X
X = a * X + b * (X @ A)

return X

In convolutional layers, the update is applied kernel-wise along the spatial dimensions, ensuring that
each convolutional filter is orthogonalized independently.

4 EXPERIMENTS

To demonstrate the effectiveness of FIRE, we evaluated it on three settings: continual visual learning,
continual pretraining of LLMs, and reinforcement learning.

4.1 CONTINUAL VISUAL LEARNING

In continual visual learning experiments, we evaluated FIRE on various dataset–architecture pairs:
the CIFAR-10 dataset with ResNet-18, the CIFAR-100 dataset with ViT-Tiny, and the Tiny ImageNet
dataset with VGG-16.

To evaluate both the ability of FIRE to recover plasticity and its capacity to restore performance after
a reset, we compare against two representative reset-based baselines: S&P (Ash & Adams, 2020),
and DASH (Shin et al., 2024). Also, to evaluate the impact of regularization on the convergence
speed, we adopt Parseval regularization (Chung et al., 2024), which constrains the weights to remain
close to orthogonal, as a baseline. We also used L2init (Kumar et al., 2025b) as a baseline, which is a
representative regularization-based method. Node-resetting methods such as Continual Backprop
(CBP) (Dohare et al., 2024), Self-Normalized Resets (SNR) (Farias & Jozefiak, 2024), and Recycling
Dormant Neurons (ReDo) (Sokar et al., 2023) are employed as baselines. In addition, we use the
Muon optimizer (Jordan et al.) as a baseline, as it also employs the Newton–Schulz iteration. While
FIRE minimizes the Deviation from Isometry (DfI) when resetting, Parseval regularization enforces
the same constraint continuously throughout training. Thus, both FIRE and Parseval regularization
share the same underlying optimization objective. Detailed experiment settings for continual visual
learning are provided in Appendix E.1.

Following Ash & Adams (2020) and Lee et al. (2024a), we evaluate our approach in the warm-start
setting, where the model is first trained on a subset of the dataset and then on the full dataset. Since
plasticity loss is most severe when the subset ratio is small (Lee et al., 2024a), we warm-start with
only 10% of the data before continuing on the entire dataset. As shown in Figure 2 (a), FIRE provides
consistent performance gains across all three benchmarks. In particular, on CIFAR-10 with ResNet-18
and Tiny ImageNet with VGG-16, FIRE outperforms all baselines, demonstrating a strong ability
to recover plasticity. On CIFAR-100 with ViT-Tiny, the improvement is less pronounced. However
FIRE still outperforms all other baselines except DASH, and competitive to S&P. In this setting,
DASH, which employs a data-dependent shrinking strategy, proves especially effective, suggesting
that guidance from data can be beneficial when reinitializing transformer architectures. Notably,
Parseval regularization and L2init converges more slowly than FIRE, particularly on CIFAR-10
with ResNet-18 and Tiny ImageNet with VGG-16. This suggests that continuously enforcing the
constraint during training can hinder convergence, leading to longer training and incurring additional
computational cost.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a)

(b)

(c)

Figure 2: Continual visual learning results. Warm-start setting (a): training begins with only 10%
of the data before continuing on the full dataset. Continual setting (b): the dataset is revealed in ten
stages, expanding from 10% to 100% in 10% increments. Class-incremental setting (c): new classes
are introduced over 20 phases, with an equal number of classes added at each phase.

To examine whether these findings hold in a setting where data are continuously added, which is a
more realistic and natural setting, we evaluate FIRE in the continual setting (Lee et al., 2024a). Here,
training is divided into ten stages, starting with 10% of the dataset and adding an additional 10% at
each stage. In this way, data gradually expand from 10% to the full 100%. As shown in Figure 2 (b),
FIRE delivers consistent gains across all datasets. The improvements are particularly pronounced on
CIFAR-10 with ResNet-18 and Tiny ImageNet with VGG-16, while on CIFAR-100 with ViT-Tiny it
achieves performance comparable to the best alternatives. In contrast, full reset and DASH suffer
a sharp drop immediately after each reset, and although S&P avoids such drops, its performance
remains suboptimal compared to FIRE. In contrast, FIRE incurs only a slight or negligible drop,
suggesting that it successfully balances stability and plasticity, thereby achieving high performance
with minimal drop in performance.

To assess the effectiveness of FIRE under large distribution shifts, we conducted experiments in a
class-incremental learning scenario, which is widely used setup in the continual learning literature
(Rebuffi et al., 2017; Dohare et al., 2024; Lewandowski et al., 2024b). New classes were gradually
introduced at regular intervals. The training process was divided into 20 phases, with an equal number
of classes added in each phase. Since CIFAR-10 does not contain a sufficient number of classes for
this setting, we exclude it in this experiment. Figure 2 (c) reports the results in the class-incremental
setting. Consistent with our earlier findings, FIRE shows strong performance without exhibiting
a performance drop after resets by effectively balancing stability and plasticity, and full reset and
DASH show sharp drop after reset while S&P show suboptimal performance.

Node-resetting methods such as CBP, SNR, and ReDo show poor overall performance. This is
consistent with Lee et al. (2024a), which found that methods aiming to improve plasticity by
maintaining trainability provide only limited gains in generalization. The Muon optimizer also
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Figure 3: Continual pretraining of GPT-0.1B. Models are first pretrained on WikiText-103 and
then continually trained on a new dataset consisting of a mixture of OpenWebText and WikiText-103.
From left to right, results correspond to models initialized from the best checkpoint during pretraining,
from 30k pretraining iterations, and from 60k pretraining iterations.

performs poorly overall, suggesting that periodically reinitializing weights using the Newton–Schulz
iteration (FIRE) is substantially more effective than applying this iteration to the gradients (Muon).

4.2 CONTINUAL PRETRAINING OF LLMS

Setup. We also tested FIRE in the continual pretraining of LLMs. We first pretrained a GPT-0.1B
model on WikiText-103 and then trained on a combination of OpenWebText and WikiText-103. For
the second phase, we used the best, 30k, and 60k checkpoints from initial pretraining to examine how
plasticity loss worsens beyond the best checkpoint and how effectively FIRE mitigates this degradation
at different stages. We present the detailed settings for the LLM experiments in Appendix E.2.

Results. As shown in Figure 3, the gap between the base model and full reset narrows as pretraining
progresses, since the base model’s validation loss increases with longer training. This aligns with
prior findings that plasticity loss becomes more severe as pretraining duration grows (Ash & Adams,
2020). While S&P improves performance by moving parameters toward intermediate trade-off points
between stability and plasticity, it remains suboptimal compared to FIRE, which achieves a more
principled balance. Notably, FIRE was applied without any tuning, using a fixed 5 iterations, whereas
S&P was carefully tuned over varying reinitialization degrees. Moreover, while the performance
of the base model deteriorates with longer pretraining, FIRE maintains strong performance even
when initialized from the 60k checkpoint. This demonstrates that FIRE can effectively balance the
stability–plasticity trade-off even under severe plasticity loss.

In addition, unlike in continual visual learning (Section 4.1), full reset performs poorly in this setting.
The main reason is the lack of stability inherent to full reset. Consequently, the full resetted model
cannot outperform the base model, even though the base model itself already suffers from plasticity
loss. In other words, the instability introduced by erasing all past information outweighs the potential
benefit of restoring plasticity. These findings indicate that full parameter resetting is not an effective
strategy for mitigating plasticity loss in continual pretraining of LLMs. Instead of providing a
stable improvement, it wastes useful prior knowledge and leads to extreme inefficiency, making it an
impractical choice in this setting.

4.3 REINFORCEMENT LEARNING

Setup. Finally, we evaluated FIRE in reinforcement learning. We evaluated the effectiveness of FIRE
in a high Replay Ratio (RR) setting (Nikishin et al., 2022; Sokar et al., 2023), where loss of plasticity
is severe and acts as a critical bottleneck for sample efficiency. For a comprehensive evaluation, we
consider both continuous and discrete control environments. For discrete control, we focus on three
Atari 2600 (Bellemare et al., 2013) games (Asterix, BeamRider, and DemonAttack), which have been
reported to suffer from severe plasticity loss (Sokar et al., 2023). We use standard nature CNN with
DQN algorithm (Mnih et al., 2015). For continuous control, we choose three primary tasks from
HumanoidBench (Mnih et al., 2015): balance, walk, and run. We use SimBa (Lee et al., 2024b) with
SAC algorithm (Haarnoja et al., 2018) as our baseline, whose replay ratio has failed to scale beyond
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Figure 4: Reinforcement learning results. Discrete control with DQN on three Atari environments
that suffer from severe plasticity loss (a) and continuous control with SAC on three HumanoidBench
tasks (b). The black dashed line indicates the point at which reinitialization is applied.

1 without resets (Lee et al., 2025). We considered three baselines: full reset, Shrink and Perturb
(S&P) (Ash & Adams, 2020; D’Oro et al., 2022), and Plasticity Injection (Nikishin et al., 2023). To
eliminate performance differences caused by randomness before reinitialization, we reinitialized the
network using the same checkpoint and replay buffer.

Results. As shown in Figure 4, FIRE achieves superior or competitive performance across environ-
ments compared to S&P, Plasticity Injection, and full reset. In DQN, FIRE consistently outperforms
S&P, surpasses full reset in Asterix, and remains competitive in other environments. Although S&P
provides a slight improvement in convergence speed, it is still suboptimal relative to both full reset
and FIRE. In continuous control tasks, S&P performs competitively, but it falls short of FIRE in all
Atari environments. Plasticity Injection, which introduces additional parameters to balance stability
and plasticity, shows poor performance across discrete and control tasks. These results suggest
that manually tuning hyperparameters to balance stability and plasticity is less effective in visual
reinforcement learning—where plasticity loss is particularly severe—than our principled approach,
FIRE, which explicitly balances the two.

4.4 ABLATION STUDY

To better understand the underlying factor of FIRE’s strong performance, we conducted an ablation
study. To verify whether FIRE indeed effectively balances stability and plasticity, we evaluated the
stability metric (SFE) and the plasticity metric (DfI), and compared FIRE against reinitialization
baselines. In addition, we measured the loss landscape curvature with respect to upcoming data
immediately after a reset, to examine whether our theoretical findings are also reflected in practice.

As shown in Figure 5 (b), FIRE achieves the lowest DfI while maintaining the lowest SFE, which
suggests that FIRE successfully balances stability and plasticity in practice. Moreover, FIRE produces
a smoother loss landscape compared to S&P, while still preserving a lower SFE. This indicates that
our theoretical insights on DfI and loss curvature are indeed manifested in practice. Although DASH
is particularly effective in smoothing the loss landscape, it also exhibits the highest SFE, which may
contribute to an erasure of useful learned knowledge, thereby leading to instability after reset.

In addition, we evaluated FIRE with various hyperparameters in the warm-start setting to assess its
sensitivity. The only hyperparameter in FIRE is the number of iterations for the Newton–Schulz
iteration. As the number of iterations increases, we obtain a more accurate estimate of the solution to
the constrained optimization problem discussed in Section 3.3. Therefore, our interest is to identify
the minimum number of iterations that provides a sufficiently accurate estimate of the solution to yield

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(a)

(b)

Figure 5: Ablation study results. Final performance of FIRE with varying numbers of iterations
for Netwon-Schulz algorithm (a). Comparison of FIRE and baselines in terms of loss curvature
(maximum eigenvalue of the Hessian), plasticity (DfI), and stability (normalized SFE) (b).

performance benefits. As shown in Figure 5 (a), FIRE is highly robust to the number of iterations and
already provides strong performance gains even with as few as five iterations.

5 CONCLUSION

In this work, we addressed stability–plasticity trade-off, which is the long-standing problem in
continual learning, by introducing FIRE. By approaching stability-plasticity tradeoff as a constrained
optimization problem, FIRE enables a principled reinitialization without heavy hyperparameter
tuning. Across continual visual learning, reinforcement learning, and language learning bench-
marks, FIRE achieved superior or competitive performance, underscoring the importance of effective
stability–plasticity management for advancing continual learning.

The main limitation of our work is the assumption of access to past data. Since our focus is on
balancing stability and plasticity when such access is available, we did not evaluate FIRE under
restricted data scenarios. Future work should, therefore, examine FIRE under restricted access to past
data. In addition, we only used relatively small models for continual pretraining of LLMs. Evaluating
FIRE on the larger models and applying FIRE not only pretraining, but also continual fine-tuning of
LLMs can be a promising direction for future works.

REPRODUCIBILITY STATEMENT

We provide hyperparameter configurations and implementation details of our experiments in Ap-
pendix E. The core algorithmic part of our method is described in Algorithm 1. The proofs and
assumption of theoretical works provided in this paper are described in Appendix A.
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A PROOF OF THEOREMS

Proof of Theorem 1

Proof. Unless explicitly subscripted, ∥ · ∥ denotes the Frobenius norm ∥ · ∥F , and ∥ · ∥2 denotes the
spectral (operator) norm. We also recall

SFE(Θ, Θ̃) :=

L∑
j=1

∥W j − W̃ j∥2F .

We will use two elementary facts.

For any F, F̃ with m := min{∥F∥, ∥F̃∥} > 0,∥∥∥∥∥ F

∥F∥
− F̃

∥F̃∥

∥∥∥∥∥ ≤ 2

m
∥F − F̃∥.

If arbitrary two matrix U and V satisfies ∥U∥ = ∥V ∥ = 1 then

∥UU⊤ − V V ⊤∥ ≤ 2 ∥U − V ∥.

Combining these two facts with U := F/∥F∥ and V := F̃ /∥F̃∥ yields∥∥∥∥∥FF⊤

∥F∥2
− F̃ F̃⊤

∥F̃∥2

∥∥∥∥∥ ≤ 4

m
∥F − F̃∥. (6)

Applying equation 6 with F = H ℓ
Θ(Z) and F̃ = H ℓ

Θ̃
(Z), and mℓ := min{∥H ℓ

Θ(Z)∥, ∥H ℓ
Θ̃
(Z)∥}

gives

∥C ℓ
Θ(Z)− C ℓ

Θ̃
(Z)∥ ≤ 4

mℓ
∥H ℓ

Θ(Z)−H ℓ
Θ̃
(Z)∥. (7)

Introduce the hybrid outputs H ℓ
(≤j)(Z): the first j layers use Θ and the remaining j + 1, . . . , ℓ layers

use Θ̃. Note that H ℓ
(≤ℓ)(Z) = H ℓ

Θ(Z) and H ℓ
(≤0)(Z) = H ℓ

Θ̃
(Z). Then

H ℓ
Θ(Z)−H ℓ

Θ̃
(Z) =

ℓ∑
j=1

(
H ℓ

(≤j)(Z)−H ℓ
(≤j−1)(Z)

)
,

so by the triangle inequality,

∥H ℓ
Θ(Z)−H ℓ

Θ̃
(Z)∥ ≤

ℓ∑
j=1

∥H ℓ
(≤j)(Z)−H ℓ

(≤j−1)(Z)∥. (8)

Each summand differs in only the j-th layer weights. Let Xj−1 := H j−1
Θ (Z) denote the shared input

fed to layer j in both hybrids. Consider the backend subnetwork

T (Θ̃)
j→ℓ(Y ) := σℓ

(
· · ·σj+1(Y W̃ j+1) · · · W̃ ℓ

)
.

For arbitrary Y1 and Y2, its input-Lipschitz constant is∥∥T (Θ̃)
j→ℓ(Y1)− T (Θ̃)

j→ℓ(Y2)
∥∥ ≤ ( ℓ∏

k=j+1

Lσk
∥W̃ k∥2

)
∥Y1 − Y2∥. (9)

Hence

∥H ℓ
(≤j)(Z)−H ℓ

(≤j−1)(Z)∥ ≤
( ℓ∏

k=j+1

Lσk
∥W̃ k∥2

)
Lσj ∥Xj−1∥ ∥W j − W̃ j∥. (10)
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Meanwhile,

∥Xj−1∥ = ∥H j−1
Θ (Z)∥ ≤ ∥Z∥

j−1∏
k=1

Lσk
∥W k∥2. (11)

Combining equation 8, equation 10, and equation 11 yields

∥H ℓ
Θ(Z)−H ℓ

Θ̃
(Z)∥ ≤ ∥Z∥

( ℓ∏
k=1

Lσk

) ℓ∑
j=1

(∏
k ̸=j

Bk

)
∥W j − W̃ j∥.

By Cauchy–Schwarz,

ℓ∑
j=1

(∏
k ̸=j

Bk

)
∥W j − W̃ j∥ ≤ Bℓ

Π

(
ℓ∑

j=1

1

B2
j

)1/2√
SFE(Θ, Θ̃).

Therefore,

∥H ℓ
Θ(Z)−H ℓ

Θ̃
(Z)∥ ≤ ∥Z∥

( ℓ∏
k=1

Lσk

)
Bℓ

Π

(
ℓ∑

j=1

1

B2
j

)1/2√
SFE(Θ, Θ̃). (12)

Substitute equation 12 into equation 7:

∥C ℓ
Θ(Z)− C ℓ

Θ̃
(Z)∥ ≤ 4 ∥Z∥

mℓ

( ℓ∏
k=1

Lσk

)
Bℓ

Π

(
ℓ∑

j=1

1

B2
j

)1/2√
SFE(Θ, Θ̃).

Squaring both sides gives

∥C ℓ
Θ − C ℓ

Θ̃
∥2 ≤ 16 ∥Z∥2

m2
ℓ

( ℓ∏
k=1

Lσk

)2
(Bℓ

Π)
2

(
ℓ∑

j=1

1

B2
j

)
SFE(Θ, Θ̃).

If Lσk
≤ 1 and Bj ≤ S for all j, then (Bℓ

Π)
2
∑ℓ

j=1 B
−2
j ≤ ℓ S2ℓ−2. Therefore

∥C ℓ
Θ − C ℓ

Θ̃
∥ ≤ 4 ∥Z∥

mℓ

√
ℓ Sℓ−1

√
SFE(Θ, Θ̃).

Network, Loss, and Notation. Let Z ∈ Rn×d0 be the input matrix and Wk ∈ Rdk−1×dk (k =
1, . . . , L) be the weight matrices. Define

Ak = Hk−1Wk ∈ Rn×dk , Hk = ρ(Ak) (ρ = ReLU), U := AL ∈ Rn×dL ,

with H0 := Z. The empirical risk is

L(W1:L) =
1

n

n∑
i=1

ℓi(ui), ui ∈ RdL .

Let θ = vec(W1, . . . ,WL) ∈ Rp and Hθ := ∇2
θL ∈ Rp×p. We use ∥ · ∥2 for spectral norm and

∥ · ∥F for the Frobenius norm.

We denote the maximum eigen values as λmax

16
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Deviation From Isometry (DfI). For a matrix W , DfI(W ) := ∥W⊤W − I∥2F . For each layer, set

νk := 1 +
√
DfI(Wk), αk :=

√
νk.

First, let us examine the lemmas required for the proof of Theorem 2.
Lemma 1 (DfI controls the spectral norm). For each layer k, ∥Wk∥22 ≤ νk and ∥Wk∥2 ≤ αk.

Proof. ∥W∥22 = λmax(W
⊤W ) ≤ λmax(W

⊤W − I)+1 ≤ ∥W⊤W − I∥2+1 ≤ ∥W⊤W − I∥F +

1 = 1 +
√
DfI(W ).

Lemma 2 (Covariance/spectral growth through layers). Let ΣHk
= 1

nH
⊤
k Hk. Then

λmax(ΣHk
) ≤ λmax(ΣHk−1

) ∥Wk∥22 ≤ λmax(ΣHk−1
) νk.

Consequently, with ΣH0
= ΣZ ,

λmax(ΣHk
) ≤ λmax(ΣZ)

k∏
j=1

νj .

In particular, under ΣZ ≈ I we have λmax(ΣHk
) ≤

∏k
j=1 νj .

Proof. ReLU is 1-Lipschitz (applied elementwise), hence ∥Hk∥2 ≤ ∥Ak∥2 ≤ ∥Hk−1∥2∥Wk∥2.
Therefore 1

n∥Hk∥22 ≤ 1
n∥Hk−1∥22∥Wk∥22, i.e., λmax(ΣHk

) ≤ λmax(ΣHk−1
)∥Wk∥22. Apply

Lemma 1.

Lemma 3 (Block-Jacobian bound). Let J ∈ R(ndL)×p be the Jacobian of vec(U) w.r.t. θ, and
J = [J1 J2 · · · JL] the block-columns corresponding to vec(Wk). Then

1

n
∥Jk∥22 ≤

( k−1∏
j=1

νj

)( L∏
j=k+1

νj

)
=
∏
j ̸=k

νj .

Consequently,
1

n
∥J∥22 ≤

L∑
k=1

1

n
∥Jk∥22 ≤

L∑
k=1

∏
j ̸=k

νj .

Proof. Consider a perturbation ∆Wk. Without loss of generality, we may assume ∥∆Wk∥F = 1,
since the operator norm is defined by the supremum over unit perturbations. With fixed ReLU gates
(op. norm ≤ 1), the output perturbation over all n samples satisfies

∆U = Hk−1 ∆Wk Bk+1:L, Bk+1:L := DkWk+1Dk+1 · · ·DL−1︸ ︷︷ ︸
diag gates, ∥·∥2≤1

WL.

Thus ∥∆U∥F ≤ ∥Hk−1∥2 ∥∆Wk∥F ∥Bk+1:L∥2, so the operator norm of the linear map ∆Wk 7→
∆U is at most ∥Hk−1∥2∥Bk+1:L∥2. Hence ∥Jk∥2 ≤ ∥Hk−1∥2∥Bk+1:L∥2 and

1

n
∥Jk∥22 ≤

1

n
∥Hk−1∥22 ∥Bk+1:L∥22 = λmax(ΣHk−1

) ∥Bk+1:L∥22.

Using Lemma 2, λmax(ΣHk−1
) ≤

∏k−1
j=1 νj . Also ∥Bk+1:L∥2 ≤

∏L
j=k+1 ∥Wj∥2 ≤

∏L
j=k+1 αj ,

thus ∥Bk+1:L∥22 ≤
∏L

j=k+1 νj . Multiplying the two bounds yields the claim. Finally, since J is a
horizontal concatenation of blocks, ∥J∥22 ≤

∑
k ∥Jk∥22.

Lemma 4 (Gauss–Newton part). For each sample, ∇2
θℓi = J⊤

i (∇2
uℓi)Ji +Ri with some remainder

Ri. By (A2), ∥∇2
uℓi∥2 ≤ β, hence∥∥∥∥∥ 1n

n∑
i=1

J⊤
i (∇2

uℓi)Ji

∥∥∥∥∥
2

≤ β

n
∥J∥22 ≤ β

L∑
k=1

∏
j ̸=k

νj ,

where the last inequality uses Lemma 3.
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Lemma 5 (Remainder term). Let R := 1
n

∑n
i=1 Ri. Under (A2) and (A3),

∥R∥2 ≤ 2γ
∑

1≤k<ℓ≤L

∏
j /∈{k,ℓ}

νj .

Proof. Fix the ReLU gates locally (piecewise linear region) and
∑

k ∥∆Wk∥F = 1, since the
operator norm is defined by the supremum over unit perturbations. Then the network output U is
multilinear in {Wk}Lk=1. For k < ℓ, the mixed second derivative block maps (∆Wk,∆Wℓ) to

Hk−1 ∆Wk Ck+1:ℓ−1 ∆Wℓ Bℓ+1:L,

where Ck+1:ℓ−1 is the product of intermediate gated weights, and Bℓ+1:L the tail product as in
Lemma 3. By submultiplicativity,

∥Hk−1∆WkCk+1:ℓ−1∆WℓBℓ+1:L∥F ≤ ∥Hk−1∥2 ∥∆Wk∥F ∥Ck+1:ℓ−1∥2 ∥∆Wℓ∥F ∥Bℓ+1:L∥2.
Using Lemma 2 and Lemma 1,

∥Hk−1∥2 ≤
√
n

k−1∏
j=1

αj , ∥Ck+1:ℓ−1∥2 ≤
ℓ−1∏

j=k+1

αj , ∥Bℓ+1:L∥2 ≤
L∏

j=ℓ+1

αj .

Therefore, after dividing by n (from the prefactor 1/n in L) and summing the symmetric contribution
(ℓ, k), the bilinear remainder contributes at most
2

n

∑
k<ℓ

∥Hk−1∥2∥Ck+1:ℓ−1∥2∥Bℓ+1:L∥2 ∥∆Wk∥F ∥∆Wℓ∥F ≤ 2
∑
k<ℓ

( ∏
j /∈{k,ℓ}

α2
j

)
∥∆Wk∥F ∥∆Wℓ∥F .

Finally, by 2ab ≤ a2 + b2 and
∑

k ∥∆Wk∥2F = 1 (unit parameter direction), the operator norm
of the second-derivative map is bounded by

∑
k<ℓ

∏
j /∈{k,ℓ} νj . Multiplying by ∥∇uℓi∥2 ≤ γ and

averaging over i gives the claim.

Proof of Theorem 2

Proof. Combine Lemma 4 and Lemma 5 and use ∥A+B∥2 ≤ ∥A∥2 + ∥B∥2.

Corollary 1 (Near-interpolation or small-gradient regime). If the training gradients at the outputs
are small so that γ ≈ 0, then∥∥∇2

θL(W1:L)
∥∥
2

≲ β

L∑
k=1

∏
j ̸=k

(
1 +

√
DfI(Wj)

)
.

Next, we present the lemma required for the proof of Theorem 3.

Lemma 6 (A basic spectral lemma from DfI). Let ε =
√

DfI(W ). Then

∥W⊤W − I∥2 ≤ ∥W⊤W − I∥F = ε,

hence every eigenvalue µ of W⊤W = S2 satisfies 1− ε ≤ µ ≤ 1 + ε. Equivalently,
√
1− ε I ⪯ S ⪯

√
1 + ε I.

Proof. By the definition of ε, we have

∥W⊤W − I∥2 ≤ ∥W⊤W − I∥F = ε.

Therefore, all eigenvalues µ of W⊤W lie within the interval

1− ε ≤ µ ≤ 1 + ε.

Since W⊤W = S2 with S ⪰ 0, this is equivalent to the spectral bound
√
1− ε I ⪯ S ⪯

√
1 + ε I.

Using this Lemma, we provide proof of Theorem 3 below:
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Proof of Theorem 3

Proof. Let Z ∈ Rn×a be the input matrix and W ∈ Ra×b a weight matrix. The resulting feature
matrix is Φ = ZW ∈ Rn×b and the empirical covariances are

ΣZ = 1
nZ

⊤Z ∈ Ra×a, ΣΦ = 1
nΦ

⊤Φ = W⊤ΣZW ∈ Rb×b.

Let W = QS denote the right polar decomposition of W , where Q ∈ Ra×b has orthonormal columns
(Q⊤Q = Ib) and S = (W⊤W )1/2 ∈ Rb×b is positive definite. Then

ΣΦ = W⊤ΣZW = S (Q⊤ΣZQ)S.

Write M := Q⊤ΣZQ ⪰ 0, and let its positive eigenvalues be η1 ≥ · · · ≥ ηd > 0, where
d = rank(M) ≤ min{b, rank(ΣZ)}. Let σ1(Φ) ≥ · · · ≥ σd(Φ) > 0 denote the nonzero singular
values of Φ.

For any x ∈ Rb with ∥x∥ = 1,

x⊤ΣΦx = x⊤SMSx = (Sx)⊤M(Sx).

Let y = Sx. Then x⊤ΣΦx = y⊤My and, by Lemma 6,

∥y∥22 = ∥Sx∥22 ∈ [ 1− ε, 1 + ε ].

Therefore
(1− ε)λ+

min(M) ≤ x⊤ΣΦx ≤ (1 + ε)λmax(M),

where λ+
min(M) = ηd denotes the smallest positive eigenvalue of M (the lower bound is interpreted

on the subspace where My ̸= 0). Taking the maximum over unit x yields

λmax(ΣΦ) ≤ (1 + ε) η1,

and taking the minimum Rayleigh quotient over the orthogonal complement of ker(ΣΦ) yields

λ+
min(ΣΦ) ≥ (1− ε) ηd.

Since σmax(Φ)
2 = nλmax(ΣΦ) and

(
σ+
min(Φ)

)2
= nλ+

min(ΣΦ), below inequality holds with
d = rank(M).

√
n
√
1− ε

√
ηd ≤ σ+

min(Φ) ≤ σmax(Φ) ≤
√
n
√
1 + ε

√
η1.

Here σ+
min(Φ) denotes the smallest positive singular value of Φ (defined only when d ≥ 1).

Therefore, if d ≥ 1, then

ρΦ :=
σmax(Φ)

σ+
min(Φ)

≤
√

1 + ε

1− ε
·
√

η1
ηd

. (13)

Consider the worst-case allocation of the nonzero singular values that maximizes the cumulative ratio∑k
i=1 σi/

∑d
i=1 σi given a fixed condition number bound ρΦ: the top k singular values all equal

σmax and the remaining d− k equal σ+
min. Then∑k

i=1 σi(Φ)∑d
i=1 σi(Φ)

≤ k σmax

k σmax + (d− k)σ+
min

=
k ρΦ

k ρΦ + (d− k)
. (14)

To achieve a coverage level of 1− δ with k singular values, it is necessary that

k ρΦ
k ρΦ + (d− k)

≥ 1− δ =⇒ k ≥ (1− δ) d

δ ρΦ + (1− δ)
.

Taking the ceiling and substituting the bound on ρΦ from (13), establishes the left inequality in (3)

When ΣZ = I , we have M = Q⊤IQ = I , so η1 = · · · = ηb = 1 and d = b. Then,
√
n
√
1− ε ≤ σi(Φ) ≤

√
n
√
1 + ε (∀i),
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Which leads to
ρΦ ≤

√
1+ε
1−ε

Substituting ρΦ in first inequality of (3) leads to the right inequality (3). Without whitening, the
achievable flattening is limited by the compressed input spectrum M = Q⊤ΣZQ.

Next, we present the proof for Theorem 4.

Proof of Theorem 4

Proof. By isotropy and positive homogeneity, there exists a constant cσ > 0 such that
Ez[|σ(⟨z, wj⟩)|] = cσ∥wj∥ for all j. Hence sj = ∥wj∥/

(
1
b

∑
k ∥wk∥

)
. Let uj = ∥wj∥2 =

[W⊤W ]jj . Since

DfI(W ) = ∥W⊤W − I∥2F =

b∑
j=1

(uj − 1)2 + 2
∑
i<j

⟨wi, wj⟩2 ≥
b∑

j=1

(uj − 1)2,

we obtain |uj − 1| ≤
√∑

k(uk − 1)2 ≤ ϵ, i.e., 1− ϵ ≤ ∥wj∥2 ≤ 1 + ϵ for all j. The same bounds
imply

√
1− ϵ ≤ r̄ := 1

b

∑
k ∥wk∥ ≤

√
1 + ϵ. Therefore

√
1− ϵ√
1 + ϵ

≤ sj =
∥wj∥
r̄
≤
√
1 + ϵ√
1− ϵ

.

Corollary 2 (Absence of τ -dormant neurons). Fix τ ∈ (0, 1). If DfI(W ) ≤
(
1−τ2

1+τ2

)2
, then sj ≥ τ

for all j.

Note that Sokar et al. (2023) measured neurons with a dormancy score of 0.025 or lower as dormant.
In this threshold, based on our theoretical analysis, DfI(W ) < 0.9975 can eliminate dormant neurons
from the network.

Derivation of Equation 5

Here we provide derivation of Equation 5.

First expand the norm:

∥W − W̃∥2F = ∥W∥2F + ∥W̃∥2F − 2 tr(W̃⊤W ).

From the constraint W̃⊤W̃ = I , we have ∥W̃∥2F = tr(I) = n, so

min
W̃⊤W̃=I

∥W − W̃∥2F ⇐⇒ max
W̃⊤W̃=I

tr(W̃⊤W ).

Let S := W⊤W ≻ 0, and define Q := WS−1/2. Then

Q⊤Q = S−1/2W⊤WS−1/2 = S−1/2SS−1/2 = I,

so Q is feasible, and
W = QS1/2

is the (column) polar decomposition of W .

Now take any feasible W̃ and set
Z := W̃⊤Q.

Then
tr(W̃⊤W ) = tr(W̃⊤QS1/2) = tr(ZS1/2).
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Because W̃ and Q have orthonormal columns, one can show Z⊤Z ≤ I , so all singular values σi(Z)
satisfy 0 ≤ σi(Z) ≤ 1. By von Neumann’s trace inequality,

tr(ZS1/2) ≤
n∑

i=1

σi(Z)σi(S
1/2) ≤

n∑
i=1

σi(S
1/2) = tr(Q⊤W ),

with equality when Z = I , i.e., when W̃ = Q.

Therefore the solution is:
W̃ ⋆ = Q = W (W⊤W )−

1
2 .
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B ADDITIONAL RESULTS

B.1 COMPUTATIONAL EFFICIENCY

To prove computational efficiency of FIRE, we provide wall-clock time and GPU memory usage in
Table 1.

Table 1: Wall-Clock Time and GPU memory footprint of FIRE and baseline methods

Method Wall-Clock Time GPU Memory
Shrink Perturb 0.002 sec 27 MB

FIRE 0.06 sec 55 MB

DASH 69 sec 2834 MB

As shown in the table, FIRE introduces negligible computational cost and memory usage similar to
Shrink Perturb, while significantly efficient compard to DASH.

The result is averaged across 10 trials, on VGG16 architecture with TinyImageNet dataset. We used
a machine consists of TITAN RTX 24GB GPU and AMD Ryzen 7 5800X 8-Core Processor, with
64GB RAM.

B.2 NUMBER OF ITERATIONS FOR NEWTON-SCHULZ ITERATION

In this section, we provide a more detailed analysis which illustrates how SFE and DfI evolve across
FIRE iterations.

Figure 6: Effect of number of FIRE iterations. Test accuracy of FIRE with single iteration and
10 iterations (left). Change of SFE during FIRE iterations (middle). Change of DfI during FIRE
iterations (right).

As shown in Figure 6 (right), DfI decreases substantially after only a single iteration. This suggests
that using a small number of iterations (< 5) is sufficient to bring performance benefits. However, as
shown in Figure 6 (middle), SFE reaches its peak at the first iteration and then decreases as the number
of iterations increases, indicating that using only a few iterations (< 5) can introduce instability and
ultimately lead to performance degradation.

We validate this result in continual visual learning (VGG-16 with Tiny-ImageNet). Figure 6 (left)
shows comparison between FIRE with 10 iterations and with single iteration. The result shows that
even with single iteration still can achieve comparable performance with 10 iterations, but show
significant drop after reinitalization, which supports aforementioned findings.

B.3 COEFFICIENTS FOR NEWTON-SCHULZ ITERATION

Our orthogonalization strategy builds on the Newton–Schulz (NS) iteration, which has also been
adopted in recent works such as Muon. However, the exact recurrence used in Muon differs from
ours. Muon employs a tuned quintic polynomial of the form

φ(x) = ax+ bx3 + cx5,
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with optimized coefficients such as (a, b, c) = (3.4445,−4.7750, 2.0315), chosen to accelerate
convergence so that only a few iterations are needed in practice. However, this sacrifices accuracy
for speed, since the singular values do not converge to 1, but oscillate near it. Since our interest
is accuracy rather than speed, we adopt the standard coefficients (a, b, c) = (2,−1.5, 0.5), which
correspond to a well-known rectangular variant of NS:

Xk+1 = 2Xk − 1.5Xk(X
⊤
k Xk) + 0.5Xk(X

⊤
k Xk)

2.

Although this more slowly increases small singular values than Muon’s tuned version, it accurately
converges to orthogonal matrix.

Empirically, we did not observed significant difference in performance when we tested both coeffi-
cients in the warm-start setting (results are shown in Figure 7).

Figure 7: Effect of Newton Schulz iteration coefficients on FIRE. FIRE and FIRE with Muon’s
coefficients are evaluated on warm-start setting under CIFAR-10 with ResNet-18 (left), CIFAR-100
with ViT-Tiny (middle), and Tiny ImageNet with VGG-16 (right).

B.4 TRAIN ACCURACY

(a)

(b)

(c)

Figure 8: Train accuracy of continual visual learning experiment. Warm-start setting (a), Continual
setting (b), and Class-incremental setting (c).
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C IMPLEMENTATION DETAILS OF FIRE

Here we describe how FIRE is applied in practice to different modules of the network.

Linear layers. For fully-connected weights W ∈ Rdout×din , we first normalize and then apply NS
iteration to approximate an orthogonal matrix. Since orthogonalization alone changes the scale of the
outputs, we multiply the result by

scale =
√

dout
din

.

This factor is motivated by the Modular Duality framework (Bernstein & Newhouse, 2025), which
shows that taking the ratio of output to input dimension is sufficient to preserve stable signal variance.
In short, the orthogonalization ensures the weights are well-conditioned, and the scaling factor
restores the right magnitude.

Convolutional layers. For convolutional filters W ∈ RCout×Cin×kh×kw , we apply the same proce-
dure slice by slice over the spatial indices. Here the scaling factor additionally accounts for the size
of the kernel:

scale =

√
Cout/Cin

khkw
.

Intuitively, the larger the kernel, the more input values contribute to each output, so we divide by the
kernel area to prevent the output variance from exploding.

Note that for each spatial location (i, j), the slice W [:, :, i, j] ∈ RCout×Cin is orthogonalized indepen-
dently by applying the Newton–Schulz iteration.

Attention modules. In Vision Transformers (ViTs), we restrict orthogonalization to the query
(Q) and key (K) projections. Empirically, applying it to the feedforward MLP layers or the output
projections does not provide clear benefits and may even reduce performance. Because the dot-
product QK⊤ is the part most sensitive to poor conditioning, orthogonalizing Q and K helps improve
the stability of similarity scores while leaving the value (V ), output (O), and MLP weights unchanged.
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D BASELINE METHODS

Shrink & Perturb. Shrink & Perturb (S&P) is a Reset-based method that shrinks weight parameters
and injects noise (Ash & Adams, 2020). This method has proven particularly beneficial for warm-start
training. Following the setup in prior work Lee et al. (2024a), we control both the noise level and the
shrinkage strength using a single hyperparameter. Formally, letting θ denote the learnable parameters,
θ0 the initial parameters, and λ the S&P coefficient, the update rule is: θ ← (1− λ)θ + λθ0.

DASH. Direction-Aware SHrinking (DASH) (Shin et al., 2024) is a Reinitialization-based method
that selectively shrinks network weights according to their directional alignment with the loss
gradient, measured by cosine similarity. This method suppresses parameters that contribute to noise
memorization while preserving weights that encode task-relevant features. This method enhances
training efficiency and preserves model plasticity, leading to improved generalization under stationary
data distributions. In our experiments, we applied DASH when new data was added.

Parseval Regularization. Parseval Reg. introduces a regularization term that enforces the weight
matrices of neural network layers to remain approximately orthogonal (Chung et al., 2024). Formally,
letting W denote a weight matrix, I identity matrix, and ∥ · ∥F the Frobenius norm. The loss term is
λ∥WW⊤ − sI∥2F , where s > 0 is a scaling factor and λ is the regularization strength. It penalizes
the deviation of WW⊤ from a scaled identity matrix, encouraging the rows of each weight matrix W
to be orthogonal and have controlled norms. This constraint keeps the singular values of W close
to a constant, preventing gradient explosion or vanishing and leading to more stable and efficient
optimization. We used s = 1 in all experiments and only swept λ.

Continual Backpropagation. Continual Backpropagation (CBP) selectively reinitializes low-utility
hidden units using a contribution-utility measure (Dohare et al., 2024). Contribution-utility scores
are computed as an exponential moving average of the unit’s activation magnitude multiplied by
the summed magnitude of its outgoing weights. Units with persistently low contribution utility are
considered uninformative and are periodically reset. CBP is controlled by two hyperparameters: the
maturity threshold m, which protects units from reinitialization for at least m update steps to allow
stable utility estimation, and the replacement rate ρ, which determines the expected fraction of units
to reset at each update step via fractional accumulation.

Recycling Dormant neurons. Recycling Dormant neurons (ReDo) (Sokar et al., 2023) is another
unit-reinitialization method that assigns a neuron score to each hidden unit in every layer, and resets
units whose scores fall below the hyperparameter τ . The neuron score s is computed as the ratio
between a unit’s average activation magnitude and the average activation magnitude of all units in
the same layer, formally defined as sℓi =

Ex∈D|hℓ
i(x)|

1

Hℓ

∑
k∈h Ex∈D|hℓ

k(x)|
, where hℓ

i(x) denotes the activation of

neuron i in layer ℓ for input x ∈ D, and Hℓ is the number of neurons in layer ℓ.

L2 Init. L2 Init (Kumar et al., 2025b), as known as Regen (Regenerative regularization), is a weight
regularization method designed to mitigate plasticity loss by leveraging the property that the initial
network exhibits the highest plasticity. L2 Init regularizes the weights to stay close to the initial
weights by adding a term λ∥W −W0∥2F to the loss function, where λ is the regularization strength,
W is the current weight matrix and W0 is initial weight matrix.

Self-Normalized Resets. Self-Normalized Resets (SNR) (Farias & Jozefiak, 2024) is a reset-based
method that detects inactive neurons by monitoring their firing statistics and statistically testing
whether a neuron’s activity is consistent with its past behavior. For each neuron, SNR maintains an
empirical distribution of inter-firing times (the number of consecutive updates with zero activation).
If the computed probability falls below a threshold 1 − τ , the neuron is classified as inactive and
reset. This procedure adaptively replaces neurons whose activity has effectively vanished, mitigating
plasticity loss without relying on a fixed, hand-tuned inactivity window.

Muon. Muon (Jordan et al.) is an optimizer that augments SGD with momentum by orthogonalizing
its update matrices. Concretely, Muon first forms the usual SGD-momentum update G for each
weight matrix and then applies a small fixed number of Newton–Schulz iterations to approximate
the closest semi-orthogonal matrix Ortho(G), effectively replacing G by a matrix with singular
values near one while staying close in Frobenius norm. Following the reference implementation, in
our experiments we apply Muon only to the middle weight matrices of hidden layers, while scalar
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and vector parameters, as well as input and output layers, are optimized with AdamW. We set the
momentum to 0.95 as recommended by the authors.

Plasticity Injection. Plasticity injection (Nikishin et al., 2023) restores neural network’s plasticity by
adding a fresh, randomly initialized copy of the prediction head while leaving current predictions
unchanged at the moment of the change. The original prediction head is frozen, and two identical
new heads are created, one that is allowed to learn and one that always stays fixed. At the start, the
learned and fixed new heads cancel each other out, so the overall output of the agent stays exactly the
same. As training continues, the learnable new head adapts to new data, giving the agent renewed
flexibility, while the original and the fixed new head act as a stable reference. For DQN, we applied
plasticity injection to MLP layers, and for SAC, we applied it to whole critic network which is known
to suffer from severe plasticity loss (Ma et al., 2023).
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E DETAILED EXPERIMENT SETTINGS

E.1 CONTINUAL VISUAL LEARNING

For continual visual learning, we report the results with 3 seeds.

Table 2: Detailed settings in continual visual learning.

Parameter Value
Optimizer Adam (Kingma & Ba, 2014)
Learning Rate 1e−3
Learning Rate Scheduler Warmup
Gradient norm clipping 0.5
Batch Size 256
Epochs per Chunk 100
Data Augmentation False

In this section, we describe the detailed settings for conducting continual visual learning. We note
that most of the hyperparameters we used were adopted from Lee et al. (2024a).

For the Warmup scheduler, the learning rate is increased linearly from 0 to the target learning rate
during the first 10% of training on each dataset. In other words, in the case of Table 2, the learning
rate is gradually raised from 0 to 1e−3 over the first 10 epochs of each data chunk.

In the warm-start scenario described in Section 4.1, we trained for 1000 epochs before new data
arrived and for 100 epochs after its arrival, in order to balance the total number of gradient updates
before and after the introduction of new data.

E.2 CONTINUAL PRETRAINING OF LLMS

For continual pretraining of LLMs, we report the results with 3 seeds.

Table 3: Detailed settings in continual pretraining of LLMs.

Parameter Value
Optimizer AdamW (Loshchilov & Hutter, 2017)
Weight Decay 1e−1
Learning Rate 6e−4
Minimum Learning Rate 6e−5
Learning Rate Scheduler Warmup + Linearly Decaying
Gradient norm clipping 1.0
Batch Size 480

We used implementation and hyperparameters of nanoGPT from Karpathy (2023).

During first phase, the learning rate linearly increases from 0 to the target learning rate (6e−4) during
2,000 steps, then annealed to minimum learning rate (6e−5) until the end of the phase. In the second
phase, the learning rate linearly increases from 0 to the target learning rate (6e−4) during 10% of
training iterations of second phase. Then, it decreases linearly to minimum learning rate (6e−5) until
the end of the phase.

E.3 REINFORCEMENT LEARNING

For reinforcement learning, we report the results with 5 seeds.

For S&P method, we apply S&P to the encoder and Reset to the fully connected layers (D’Oro et al.,
2022) for discrete control, and S&P with λ = 0.8 to whole parameters for continuous control tasks.
We perform a single intervention (Full Reset, S&P, FIRE) at the midpoint of learning. We followed
the hyperparameter configurations used in prior work (Sokar et al., 2023).
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Table 4: Hyperparameters used in the ALE environment with DQN algorithm.

Parameter Value
Optimizer Adam (Kingma & Ba, 2014)
Optimizer: ϵ 1.5e− 4
Optimizer: Learning rate 6.25e− 5

Minimum ϵ for training 0.01
Evaluation ϵ 0.001
Discount factor γ 0.99
Replay buffer size 106

Minibatch size 32
Initial collect steps 20000
Training iterations 10
Training environment steps per iteration 250K
Updates per environment step (Replay Ratio) 1
Target network update period 2000
Loss function Huber Loss (Huber, 1992)

For continuous tasks, the hyperparameter setting is followed by Lee et al. (2024b).

Table 5: Hyperparameters used in HumanoidBench environments with SimBa.

Parameter Value
Optimizer AdamW (Loshchilov & Hutter, 2017)
Optimizer: Learning rate 1e− 4
Optimizer: Weight decay 0.01

Actor hidden dim 128
Actor num blocks 1
Critic hidden dim 512
Critic num blocks 2
Discount factor γ 0.99
Clipped Double-Q (Fujimoto et al., 2018) True
Replay buffer size 106

Minibatch size 256
Initial collect steps 5000
Updates per environment step (Replay Ratio) 2
Soft target update factor τ 0.005

E.4 HYPERPARAMETER SEARCH SPACE

Table 6 presents the hyperparameter search space, and Tables 7-10 present their optimal values.
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Table 6: Hyperparameter search space for all experiments.

Experiment Method Hyperparameters Search Space
Warm-Starting S&P λ 0.2, 0.4, 0.6, 0.8

DASH α 0.1, 0.3
λ 0.05, 0.1, 0.3

Parseval Reg. λ 1e−3, 1e−4, 1e−5
CBP ρ 1e−4, 1e−5

m 100, 1000
ReDo τ 0.01, 0.05, 0.1, 0.5
L2 Init λ 1e−3, 1e−4, 1e−5
SNR τ 0.01, 0.02, 0.04, 0.08

Continual Learning S&P λ 0.2, 0.4, 0.6, 0.8
DASH α 0.1, 0.3

λ 0.05, 0.1, 0.3
Parseval Reg. λ 1e−3, 1e−4, 1e−5
CBP ρ 1e−4, 1e−5

m 100, 1000
ReDo τ 0.01, 0.05, 0.1, 0.5
L2 Init λ 1e−3, 1e−4, 1e−5
SNR τ 0.01, 0.02, 0.04, 0.08

Class-Incremental Learning S&P λ 0.2, 0.4, 0.6, 0.8
DASH α 0.1, 0.3

λ 0.05, 0.1, 0.3
Parseval Reg. λ 1e−3, 1e−4, 1e−5
CBP ρ 1e−4, 1e−5

m 100, 1000
ReDo τ 0.01, 0.05, 0.1, 0.5
L2 Init λ 1e−3, 1e−4, 1e−5
SNR τ 0.01, 0.02, 0.04, 0.08

Continual pretraining of GPT-0.1B S&P λ 0.2, 0.5, 0.8
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Table 7: Hyperparameters for Warm-Start setting.

Dataset Method Value
CIFAR-10 S&P λ = 0.8
(ResNet-18) DASH α = 0.3, λ = 0.05

Parseval Reg. λ = 1e−3
CBP τ = 1e−4,m = 1000
ReDo τ = 0.5
L2 Init λ = 1e−3
SNR τ = 0.01
FIRE iter = 10

CIFAR-100 S&P λ = 0.8
(ViT-Tiny) DASH α = 0.1, λ = 0.05

Parseval Reg. λ = 1e−5
CBP τ = 1e−4,m = 100
ReDo τ = 0.5
L2 Init λ = 1e−3
SNR τ = 0.01
FIRE iter = 10

Tiny ImageNet S&P λ = 0.8
(VGG-16) DASH α = 0.1, λ = 0.05

Parseval Reg. λ = 1e−3
CBP τ = 1e−4,m = 1000
ReDo τ = 0.5
L2 Init λ = 1e−3
SNR τ = 0.08
FIRE iter = 10
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Table 8: Hyperparameters for Continual Setting.

Dataset Method Value
CIFAR-10 S&P λ = 0.8
(ResNet-18) DASH α = 0.3, λ = 0.05

Parseval Reg. λ = 1e−3
CBP τ = 1e−5,m = 1000
ReDo τ = 0.05
L2 Init λ = 1e−5
SNR τ = 0.08
FIRE iter = 10

CIFAR-100 S&P λ = 0.8
(ViT-Tiny) DASH α = 0.1, λ = 0.05

Parseval Reg. λ = 1e−5
CBP τ = 1e−5,m = 1000
ReDo τ = 0.01
L2 Init λ = 1e−4
SNR τ = 0.04
FIRE iter = 10

Tiny ImageNet S&P λ = 0.8
(VGG-16) DASH α = 0.1, λ = 0.1

Parseval Reg. λ = 1e−4
CBP τ = 1e−5,m = 1000
ReDo τ = 0.01
L2 Init λ = 1e−5
SNR τ = 0.01
FIRE iter = 10

Table 9: Hyperparameters for Class-Incremental Setting.

Dataset Method Value
CIFAR-100 S&P λ = 0.8
(ViT-Tiny) DASH α = 0.3, λ = 0.3

Parseval Reg. λ = 1e−5
CBP τ = 1e−5,m = 1000
ReDo τ = 0.01
L2 Init λ = 1e−5
SNR τ = 0.08
FIRE iter = 10

Tiny ImageNet S&P λ = 0.8
(VGG-16) DASH α = 0.3, λ = 0.1

Parseval Reg. λ = 1e−3
CBP τ = 1e−4,m = 1000
ReDo τ = 0.05
L2 Init λ = 1e−4
SNR τ = 0.02
FIRE iter = 10
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Table 10: Hyperparameters for Continual pretraining of LLMs.

Method CKPT Value
S&P Best λ = 0.5

30k λ = 0.8
60k λ = 0.5

FIRE Best iter = 5
30k iter = 5
60k iter = 5
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