HyperLoader: Integrating Hypernetwork-Based LoRA and Adapter
Layers into Multi-Task Transformers for Sequence Labelling

Anonymous ACL submission

Abstract

We present HyperLoader, a simple approach
that combines different parameter-efficient fine-
tuning methods in a multi-task setting. To
achieve this goal, our model uses a hypernet-
work to generate the weights of these modules
based on the task, the transformer layer, and
its position within this layer. Our method com-
bines the benefits of multi-task learning by cap-
turing the structure of all tasks while reducing
the task interference problem by encapsulating
the task-specific knowledge in the generated
weights and the benefits of combining different
parameter-efficient methods to outperform full-
fine tuning. We provide empirical evidence that
HyperLoader outperforms previous approaches
in most datasets and obtains the best average
performance across tasks in high-resource and
low-resource scenarios.

1 Introduction

Parameter-efficient fine-tuning techniques emerge
as an alternative to conventional fine-tuning, where
only a small number of parameters is updated to
a downstream task (Houlsby et al., 2019; Stick-
land and Murray, 2019; Karimi Mahabadi et al.,
2021a). These methods aim to achieve comparable
performance to full fine-tuning by updating as few
parameters as possible. However, a less studied re-
search direction related to these methods is whether
one can perform better than full fine-tuning with
fewer parameters (Mao et al., 2022).

Although these methods considerably reduce the
number of parameters to achieve good performance
on different tasks, a specialized model for each task
remains necessary. Multi-task learning reduces the
computational cost by training a single model while
enabling information sharing by capturing the com-
mon structure underlying all tasks. Recently, re-
searchers have developed approaches combining
parameter-efficient fine-tuning techniques in multi-
task settings (Stickland and Murray, 2019; Pfeiffer

et al., 2020, 2021; Riicklé et al., 2021). Never-
theless, this approach can lead to underfitting in
high-resource tasks and overfitting in low-resource
tasks (Lee et al., 2017). Another potential issue
is task interference, where an improvement in the
performance of one task reduces the performance
of other tasks (Wang et al., 2019).

An alternative to reduce the negative effects
of multi-task learning is to use hypernetworks
(Ha et al., 2017) to generate separate weights for
each task (Karimi Mahabadi et al., 2021b; Ivison
and Peters, 2022). However, combining different
parameter-efficient methods in a multi-task setting
using hypernetworks is an unexplored research
area. To address this limitation, we propose Hy-
perLoader, a simple method that employs a neural
network to generate the weights for a combination
of two parameter-efficient fine-tuning techniques:
adapters (Houlsby et al., 2019) and LoRA (Hu et al.,
2021) based on the task, the transformer layer of
the model and the position of the method within
this layer. We use the encoder-decoder TS5 model
(Raffel et al., 2020) for all experiments to take
advantage of modelling the tasks as sequence-to-
sequence tasks. We test our model in seven datasets
from two Sequence Labelling tasks. The first task
is Named Entity Recognition, a valuable tool in
various real-world scenarios in the era of large lan-
guage models such as healthcare and medical re-
search (Raza et al., 2022; Hu et al., 2024), Finance
and Business Intelligence (Zhou et al., 2023), and
analyzing legal texts (Trias et al., 2021). The sec-
ond task is slot-filling, a crucial step to enable dia-
logue systems to accurately understand and fulfil
user requests by extracting and organizing essential
information from user inputs (Cheng et al., 2023a,b;
Firdaus et al., 2023).

Our model achieves the best average perfor-
mance using the complete training and validation
data for each task, as well as in a low-resource
configuration with only 10% and 20% of the train-

ing and validation data available. We empirically
demonstrate that the improvement is not only due
to adding more trainable parameters but also by
combining different parameter-efficient methods
in a multi-task setting using hypernetworks, which
adequately supports Sequence Labelling tasks in
high- and low-resource scenarios.
Our main contributions are the following:

* We propose a multi-task learning approach
that combines different parameter-efficient
fine-tuning methods based on hypernetworks
conditioned on the task, the layer in the trans-
former model, and the position of the method
within this layer.

* We provide empirical results on different Se-
quence Labelling datasets demonstrating the
effectiveness of our model compared to single-
task and multi-task approaches using the en-
tire datasets and in low-resource scenarios.

2 Related Work

Parameter-efficient fine-tuning techniques are an
alternative to full fine-tuning by updating a small
number of parameters per task, yielding similar per-
formance to full fine-tuning. One of the most pop-
ular approaches in this area is the adapter (Houlsby
et al., 2019), a small trainable bottleneck layer
added in each transformer block of a model. It
consists of down and up projections and has shown
similar performance to full-fine-tuning. Other pop-
ular parameter-efficient fine-tuning approaches are
Prefix-tuning (Li and Liang, 2021) and LoRA (Hu
et al., 2021). Prefix-tuning prepends a fixed-length,
learnable sequence of prefix tokens to the input
embeddings while the original model parameters
remain unchanged. This approach optimizes a con-
tinuous prompt, effectively guiding the model’s
behaviour for specific tasks with minimal compu-
tational overhead. LoRA adds trainable low-rank
matrices and combines their outputs with the origi-
nal matrices in the self-attention layer of the trans-
former; the main difference with the previous ap-
proaches is that it does not employ any activation
function.

A less-studied area is how to achieve better per-
formance than full-fine tuning using as few param-
eters as possible. The UniPELT framework (Mao
et al., 2022) addresses this limitation. This frame-
work incorporates several parameter-efficient fine-
tuning methods as sub-modules and learns how to
activate them dynamically depending on the input

or task setup using a gating mechanism, which
assigns more weight to the sub-modules that in-
crease the performance of a given task. They con-
sidered three different methods: Adapters, LoRA,
and prefix-tuning, and they used the BERT base
model for all their experiments.

Although promising, this approach still needs
a specialized model for each task. The use of hy-
pernetworks to generate the weights of parameter-
efficient methods in a multi-task learning approach
is a promising research area. By using this type
of network, the model can capture the common
structure underlying all target tasks and encapsu-
late the specific task knowledge by generating dif-
ferent weights based on the task, reducing the neg-
ative effects of this setting such as underfitting and
overfitting in high-resource and low-resource tasks,
respectively or task interference.

The HyperFormer++ model (Karimi Mahabadi
et al., 2021b) is the main foundation of our model.
It uses task-conditioned hypernetworks to generate
the weights of adapter layers and layer normaliza-
tions in a multi-task setting. The hypernetwork is
trained to create adapter parameters specific to each
task and layer, based on the embeddings of task and
layer IDs. This hypernetwork is trained simultane-
ously for all tasks, allowing it to share knowledge
across different tasks. At the same time, it reduces
negative interference by producing distinct adapter
layers for each task. The TS model is used as the
backbone model for all the experiments.

Another hypernetwork-based multi-task ap-
proach is Hyperdecoders (Ivison and Peters, 2022).
This framework generates input-conditioned
adapter layers for the decoder in an encoder-
decoder model. This approach offers more flex-
ibility by generating unique parameters for every
input instead of using a learnt task embedding and
allows making use of the similarities between sam-
ples across datasets.

Our HyperLoader model combines the benefits
of both worlds. It uses different parameter-efficient
fine-tuning techniques and task-conditional hyper-
networks to generate its weights conditioned on the
task, the transformer layer of the model, and the
position of the parameter-efficient method within
this layer. Our results show a performance im-
provement in all tasks and, on average, using the
full training and validation data and simulating a
low-resource setting.

Transformer
layer (4

H >

Adapter|
T — ¢ layer
acaptoy [———
T Layer norm < | hLN
Feed forward Feedforwardup | Uf[1 ||
T projection L Ay
LTI Non linearity
+
Feed fo(war_d I DL A ||
i down projection Ap
Adapter

f

Feed forward

Layer norm

L1
Figure 1: Diagram of the HyperLoader model. The

Adapter hypernetworks h!y ~and hl ~produce the
weights D! and U for task-specific adapter modules.
The LoRA hypernetworks Al » a, and hL m A, gener-
ate the A and B matrices for task-specific LoORA mod-
ules. Finally, the hypernetwork h!, ; creates the condi-
tional layer normalization parameters /3, and 7.

3 Methodology

Multi-task hypernetwork-based approaches using
parameter-efficient methods are a low-cost alterna-
tive for different NLP tasks that achieve compara-
ble results to full-fine-tuning. Nevertheless, explor-
ing approaches to obtain better results than updat-
ing all weights during fine-tuning is an unexplored
research area. We introduce the HyperLoader
model to address this gap. Our approach incor-
porates hypernetwork-based LoRA and Adapter
layers into a multi-task transformer model, based
on the HyperFormer++ model (Karimi Mahabadi
et al., 2021b).

Our method enables the hypernetwork to gen-
erate the weights of the adapter layers and LoRA
matrices based on the task, the transformer model’s
layer, and the position of the adapter and LoRA
matrix within this layer. Figure 1 shows the dia-
gram of our proposed approach. We generate an
input embedding I based on the task 7, the layer
[; and the position of the Adapter and the LoRA
matrices p;. The embedding I, is the input to a
set of hypernetworks (h v, hi‘U, hfL‘D, R or Ap
R » 4,) to generate the weights for the adapter
layers, the LoORA matrices and the layer normaliza-
tion. Therefore, we only update the hypernetwork
parameters, the input embedding projector R and
the layer normalizations in fy(-) during training,
while the rest of parameters 6 remain fixed.

In this section, we describe our approach. First,

we provide preliminary information by defining
multi-task learning, which is the foundation of our
work. Second, we describe the main components
of our proposed HyperLoader model. Finally, we
describe the format for converting Sequence La-
belling into a sequence-to-sequence task.

3.1 Preliminaries: Multi-task Learning

Our proposed model generates the weights of
adapter layers and LoRA matrices based on the
task, the transformer layer of the model, and the
position of the adapter and the LoRA matrix in
this layer in a multi-task setting. Given a set of
tasks {DTTTzl} where 7' is the total number of tasks,
D, = {(2%,y2)}Y7, is the training data of the
7-th task with N, instances and fy(-) is a pre-
trained model parameterized by 6, the multi-task
fine-tuning minimizes the loss shown in equation 1
on the training set, where [is the cross-entropy loss
and w; is the sampling weight for the 7-th task.

T
LOAD-Y—) =Y > wil(fo(zy),yr) (D
=1 (ai,yl)eDr
3.2 HyperLoader: Task Conditional Adapter
Layers

Adapters (Houlsby et al., 2019) are small sub-
modules inserted within layers of a pre-trained
transformer-based model before the skip connec-
tions. In the HyperLoader model, the conditional
adapter A' for layer [consists of a down-projection
DlT € R"*? into a lower dimension dpottienecks a
GeLU non-linearity, and an up-projection U. €
R?*" that projects back into the original hidden
layer dimension. The output of the adapter is de-
fined in equation 2, where z is the input hidden
state, LN is the task conditional layer normaliza-
tion and the adapter weights (DL, UL) are gener-
ated by a hypernetwork. We use a reduction factor
r = 32 for the down-projection in all the experi-
ments.

AL(2) = LN} (U (GeLU(DL(@)) +2 @)

3.3 HyperLoader: Task Conditional Layer
Normalization

The task conditional layer normalization, defined
in equation 3, involves element-wise multiplication
denoted by ©. Here, pi; and o, represent the mean
and standard deviation of the training data for the
7-th task, while 7/ and . are weights generated
by a hypernetwork.

INN@h) = b o T g g 3)
3.4 HyperLoader: Task Conditional LoRA
Matrices

Low-Rank Adaptation (LoRA) (Hu et al., 2021)
is a parameter-efficient fine-tuning technique that
injects trainable rank decomposition matrices into
each layer of the Transformer architecture. For a
pre-trained weight matrix Wy € R?**, this method
constrains its update by representing it with a low-
rank decomposition Wy+AW = Wy+ BA, where
B € R¥™" and A € R™*. The forward pass
using LoRA is denoted in equation 4. Where z is
the input hidden state, W is frozen and does not
receive gradient updates and matrices A and B are
generated by a hypernetwork. Based on previous
work (Hu et al., 2021; Mao et al., 2022), we only
add Low-Rank matrices to the query and value
matrices in the attention layers of the transformer.
We use a low-dimensional rank r» = 8.

h=Wox + AWz = Wyox + BAz)

3.5 HyperLoader: Task Conditional
Hypernetworks

A hypernetwork (Ha et al., 2017) is a neural net-
work that generates the parameters for another neu-
ral network. It captures shared information across
tasks, while the generated task-specific adapters
and layer normalization allow the model to adapt
to each task individually, reducing negative inter-
ference in a multi-task setting. The input for these
networks is a task embedding 2, and its concatena-
tion with a layer id embedding Z = {/;}%_; and an
adapter position embedding P = {p; }?:1. In the
encoder-decoder model, we consider six positions
for the parameter-efficient modules: the adapter
layers and the LoRA matrices. We consider two
options for the position of the adapter layers in each
transformer block: after the self-attention layer or
after the feed-forward layer. For LoRA matrices,
we consider four positions: the A and B matrices
in the self-attention layer and the A and B matrices
in the cross-attention layer in the decoder of the
model.

Using this configuration, the hypernetwork is
able to generate different weights based on the task,
position of the adapter, LORA matrices and layer
of the transformer network. The final input embed-
ding I for the hypernetwork is computed using
a projector network h'I as shown in equation 5,

where z., [; and p; are learnable parameters via
back-propagation. We set the dimension of the
task feature embedding z; to d,, = 512. For the
layer and position embeddings, we use a dimension
dy, = 64. Finally, for the final input embedding,
we set a dimension of d;. = 64.

We use five hypernetworks for the HyperLoader
model. For the Adapters, we consider two hypernet-
works: one for the down projection and one for the
up projection. Since we are using a reduction factor
r = 32 and the hidden dimension of the model is
d = 768, the down sample size is | 768/32] = 24,
the dimensions of the output matrices of the down
and up projections are 768 x 24 and 24 x 768, re-
spectively. We use two hypernetworks to generate
the weights of the LoRA Matrices. One for the
low-rank matrix A and one for the low-rank matrix
B. We use a low-dimensional rank r = 8 for the
Query and Value matrices in the self-attention and
the cross-attention; therefore, the output matrices A
and B dimensions are 768 x 8 and 8 x 768, respec-
tively. Finally, we use one hypernetwork for the
task-conditioned layer normalization that generates
vector weights of 768 dimensions.

I = hy(zr,li, ps) (5)

3.6 SentT’ Format

Converting Sequence Labelling into a sequence-
to-sequence task is essential to using an encoder-
decoder model. We use the SentT’ (Farina et al.,
2023) format for the input and output sequences
to achieve this goal. This format is obtained by
turning a labelled sequence S into a sequence of to-
kens x; ...z of size L using white-space splitting
and then interleaving these tokens with the spacial
sentinel tokens used to pre-train TS5 to obtain the
input string S;,, = spx1sl...xrsr. We use the
simplified Beginning, Inside and Outside (sBI1O)
format to represent the output strings, where given
a set T of labels to annotate a text span, t € 1'is
used to represent any token that starts a labelled
span, a single tag I for each token that continues a
labelled span and O to tag tokens that do not belong
to labelled spans. Analogous to the input sequence,
we interleave the tokenized output string with the
sentinel tokens to obtain the output sequence using
the SentT’ format Sy, = sot151...trsy. Table 1
illustrates how to convert the text "play the song
little robin redbreast" from the SNIPS dataset into
the SentT” format.

Encoded input using the SentT’ format

<extra_id_0> play |<extra_id_1> the | <extra_id_2> song <extra_id_3> little <extra_id_4> robin <extra_id_5> redbreast <extra_id_6>
Encoded output using the SentT’ format
<extra_id_0> O <extra_id_1> O <extra_id_2> <extra_id_3> <extra_id_4> <extra_id_5> <extra_id_6>

Table 1: Example of an input/output instance transformed into the SentT’ format. The text is tokenized with
white-space splitting and then interleaved with sentinel tokens used for TS5 pre-training to obtain the input string.
The output uses the sBIO format: a label ¢ € T is used to represent any token that starts a labelled span, a single tag
I for tokens that continue a labelled span and O to tag tokens outside labelled spans.

4 Experiments

This section describes our experiments for Se-
quence Labelling using the HyperLoader model.

4.1 Corpora

We use seven publicly available corpora for Se-
quence Labelling tasks (slot-filling and Named En-
tity Recognition) to cover different domains and
distributions and gather robust empirical evidence.

For slot-filling, we use four different dialogue-
oriented datasets. First, the ATIS dataset (Hemphill
et al., 1990) consists of manual transcripts of audio
recordings about people asking for flight informa-
tion on automated airline travel inquiry systems.
Second, the SNIPS dataset (Coucke et al., 2018)
comprises users’ intent queries distributed in seven
domains: search creative work, get weather con-
ditions, restaurant reservations, play music, add
elements to a playlist, and search screening events.
The third and fourth datasets are the English por-
tions of two multilingual task-oriented dialogue
datasets: The mTOP dataset (Li et al., 2021) con-
sists of eleven domains: alarm, calling, event, mes-
saging, music, news, people, recipes, remainders,
timer and weather conditions. Finally, the mTOD
dataset (Schuster et al., 2019) contains nine la-
bels across three domains: alarm, reminders and
weather conditions.

For Named Entity Recognition, we use the MIT
Corpora (Movie, MovieTrivia and Restaurant)!.
In the case of Movie and MovieTrivia datasets,
both are composed of 12 labels, and the latter con-
tains more complex queries. Finally, the Restaurant
dataset contains 8 labels such as restaurant names,
ratings, dishes and opening times. We show the
complete list of labels for each dataset in Appendix
A. Based on the label’s name, we obtained the
label overlap across the datasets. Movie and Movi-
eTrivia have the highest number of overlaps with
four labels: genre, year, plot, director, and actor.
These datasets also share the labels "genre" and

'Downloaded from https://groups.csail.mit.edu/
sls/

"year" with the SNIPS dataset. The mTOD, mTOP
and restaurant datasets share the label "location".
Movie and Restaurant datasets share the label "rat-
ing". Finally, Restaurant and SNIPS datasets share
two labels: "restaurant_name" and "cuisine". Nine
different labels are shared across the datasets, rep-
resenting 3.78% of the total of labels.

We used the original partitions for the mTOP
and mTOD datasets, in the case of the ATIS and
SNIPS datasets, we used the data partitions used
originally by (Goo et al., 2018)?, finally, we manu-
ally create a validation subset by sampling ten per
cent of each original training partition for each MIT
Corpus following previous methodologies (Raman
et al., 2022; Farina et al., 2023). Table 2 shows the
statistics for the corpora we used in this work. It is
important to mention that although there are some
duplicates in the datasets, we do not remove these
instances.

Corpora Train Val Test Labels
ATIS 4,478 500 893 83
SNIPS 13,084 700 700 39
MovieTrivia 7,034 782 1,953 12
Movie 8,797 978 2,443 12
Restaurant 6,894 766 1,521 8
mTOP 15,667 2,235 4,386 75
mTOD 30,521 4,181 8,621 9

Table 2: Statistics per partition of the used datasets.

4.2 Experimental Details and Evaluation

We conduct experiments to compare our model
with other parameter-efficient fine-tuning methods.
Our first goal is to assess the advantages of com-
bining different parameter-efficient techniques in a
multi-task setting versus a single-task setting. The
second goal is to evaluate our model against other
hypernetwork-based approaches in a multi-task en-
vironment.

We compare our approaches with the UniPELT
framework (Mao et al., 2022), HyperFormer model
(Karimi Mahabadi et al., 2021b) and Hyperde-

Downloaded from https://github.com/MiuLab/
SlotGated-SLU/tree/master/data

https://groups.csail.mit.edu/sls/
https://groups.csail.mit.edu/sls/
https://github.com/MiuLab/SlotGated-SLU/tree/master/data
https://github.com/MiuLab/SlotGated-SLU/tree/master/data

coder model (Ivison and Peters, 2022) described
in section 2. We also compare our approach using
Adapters and LoRA with TS5 as the backbone model
in a single-task setting. We found that the prefix-
tuning and the gating mechanism proposed in the
UniPELT framework decrease the performance us-
ing T5. Therefore, we only use Adapters and
LoRA without a gating mechanism for our baseline
comparison for the combination of UniPELT and
T5. For all the implementations, we use the Hug-
gingFace’s Transformers (Wolf et al., 2020) and
AdapterHub (Poth et al., 2023) libraries.

We use the batch sizes, learning rates and epochs
reported in the original paper of each baseline to
run the experiments in our work. For our proposed
HyperLoader model, we used the same codebase®
(under the Apache License, Version 2.0) and al-
most the same experimental details described by
(Karimi Mahabadi et al., 2021b), that is, we em-
ploy the T5 base model, a batch size of 32, a con-
stant learning rate of 3 x 1074, 2!8 steps in all
experiments, save a checkpoint every 1,000 steps,
and sample tasks with conventional temperature-
based with temperature 7' = 10 proportional to

1/T N
pr' -, where pr = =7 TNT
of training samples ﬁ)lr the 7-th task. The only
difference in our work is that we choose the best
model based on the loss value instead of the average
evaluation metric performance. We performed the
experiments on 4 Nvidia A100 SXM 40G GPUs.

We use the micro-averaged F1-score as the eval-
uation metric for all experiments following the
CoNLL convention (Tjong Kim Sang and De Meul-
der, 2003), where an entity is considered correct
only if the entity is predicted exactly as it appears
in the gold data. We use the SeqEval framework
(Nakayama, 2018) to compute the scores in all the
experiments.

and N, is the number

5 Results

This section presents the results of the experiments
we performed in this work described in section 4.2.

5.1 Full Dataset Performance

Table 3a shows the performance of our proposed
approach and the baselines using the 100% of train-
ing and evaluation data. The UniPELT frame-
work, Adapters and LoRA follow a single-task
fine-tuning approach, therefore, the trainable pa-
rameters correspond to each dataset considered.

3https://github.com/rabeehk/hyperformer

For UniPELT, we report the results using BERT as
in the original paper and T5 to compare the per-
formance depending on the model’s architecture.
Initial experiments show that the use of the Prefix-
tuning method and the gating mechanism decreases
the performance of the encoder-decoder model; for
this reason, we do not use these elements when
applying UniPELT to T5.

Based on the results in Table 3a, it is possi-
ble to observe that our proposed HyperLoader
model outperforms the baselines in three of the
seven datasets and obtains the highest average
with 0.8811, followed by the HyperFormer model
(0.8795), UniPELT with T5 (0.8740), T5 with
Adapters (0.8735), TS with LoRA (0.8717), the
Hyperdecoder model (0.8709) and UniPELT with
BERT (0.8537). In terms of single-task and multi-
task settings, it is possible to observe that the com-
bination of UNIiPELT with T5 outperforms the
other models in two datasets (Movie with 0.8839,
and ATIS with 0.9611); this result demonstrates
that the use of hypernetworks improves the sharing
information capacity of the models while reduc-
ing the negative transfer between tasks. Finally,
when comparing the multi-task approaches based
on hypernetworks, HyperLoader obtained a bet-
ter average result than the HyperFormer model,
which is the primary foundation of our work. In
addition, since Hyperdecoder has more trainable
parameters, the results indicate that the superior
performance of our model is not only due to having
more trainable parameters than the HyperFormer
approach but also due to the combination of dif-
ferent parameter-efficient methods in a multi-task
setting.

5.2 Low-resource Setting Results

We evaluate the performance of our proposed
model and the baselines in a low-resource setting
to measure its robustness with a data scarcity con-
straint, a common scenario in NLP (Hedderich
et al., 2021). For this purpose, we down-sampled
the training and validation partitions of all datasets
to 10% and 20% of their original size and evalu-
ated them in the full test subset. Table 3b shows
the results of these experiments.

The first part of Table 3b contains the perfor-
mance of the HyperLoader model and the baselines
when only 10% of the training and validation data
is used. It is evident that the combination of the
UniPELT framework and the BERT model experi-
ences the most significant performance decrease,

https://github.com/rabeehk/hyperformer

Adapters LoRA UniPELT UniPELT HyperFormer HyperLoader Hyperdecoder
Dataset T5[222M/3.5M] & T5[222M/0.84M] & BERT[110M/1.8M] & T5[220M/4.5M] & T5[228M/5M] T5[229M/6M] T5[239M/16M]
MovieTriva 0.7184 0.7183 0.6873 0.7210 0.7295 0.7140 0.7072
Movie 0.8793 0.8709 0.8500 0.8839 0.8788 0.8745 0.8700
Restaurant 0.8069 0.8186 0.7689 0.8039 0.8136 0.7965 0.7891
ATIS 0.9581 0.9549 0.9446 0.9611 0.9595 0.9599 0.9519
SNIPS 0.9573 0.9506 0.9238 0.9478 0.9462 0.9592 0.9377
mTOP 0.8299 0.8254 0.8432 0.8374 0.8638 0.8983 0.8752
mTOD 0.9647 0.9633 0.9580 0.9627 0.9648 0.9652 0.9649
Average | 0.8735 0.8717 0.8537 0.8768 0.8795 0.8811 0.8709

(a) Full dataset performance

Adapters LoRA UniPELT UniPELT HyperFormer HyperLoader Hyperdecoder

Dataset T5[222M/3.5M] & T5[222M/0.84M] & BERT[110M/1.8M] & T5[220M/4.5M] & T5[228M/5M] T5[229M/6M] T5[239M/16M]
10% of Training and validation data
MovieTriva 0.6633 0.6695 0.5152 0.6717 0.6589 0.6695 0.6597
Movie 0.8281 0.8134 0.7809 0.8244 0.8311 0.8368 0.8202
Restaurant 0.7292 0.7171 0.5907 0.7049 0.7389 0.7499 0.7216
ATIS 0.9129 0.8329 0.5901 0.8919 0.9162 0.9172 0.9193
SNIPS 0.8647 0.8460 0.7398 0.8991 0.8943 0.8970 0.8727
mTOP 0.7559 0.6886 0.6048 0.7467 0.7976 0.8114 0.7760
mTOD 0.9459 0.9453 0.9351 0.9436 0.9467 0.9500 0.9436
Average | 0.8143 0.7875 0.6795 0.8117 0.8262 0.8331 0.8162
20% of Training and validation data

MovieTriva 0.6896 0.6934 0.6105 0.7036 0.6729 0.6863 0.6767
Movie 0.8492 0.8276 0.8047 0.8444 0.8407 0.8546 0.8377
Restaurant 0.7699 0.7522 0.7114 0.7562 0.7517 0.7601 0.7401
ATIS 0.9295 0.9222 0.8048 0.9281 0.9382 0.9401 0.9311
SNIPS 0.9250 0.9096 0.8474 0.9235 0.9252 0.9238 0.9044
mTOP 0.7798 0.7597 0.7052 0.7863 0.8399 0.8474 0.8140
mTOD 0.9424 0.9543 0.9433 0.9522 0.9543 0.9541 0.9529
Average | 0.8408 0.8313 0.7753 0.8420 0.8461 0.8523 0.8367

(b) Low-resource setting results
Table 3: Performance of the HyperLoader model and baselines is shown for 100% (a), 10%, and 20% (b) of the
training and evaluation data. Each method includes the model used and the total/trainable parameters in brackets. &
denotes a single-task fine-tuning approach, so trainable parameters are specific to each dataset. Bold fonts highlight
the best result for each dataset and on average. Micro-averaged F1-score is reported.

from an average of 0.8537 to 0.6795. In contrast,
the T5-based approaches show a smaller perfor-
mance decrease in both single-task and multi-task
settings. These results suggest that an encoder-
decoder model is more capable of handling low-
resource settings in both single-task and multi-
task configurations. For the multi-task approaches,
our HyperLoader model outperforms the Hyper-
Former and Hyperdecoder approaches in six out
of seven datasets and on the average performance
with a score of 0.8331, followed by HyperFormer
(0.8262) and Hyperdecoder (0.8161).

The second part of Table 3b shows the results
when 20% of the training and evaluation data is
used. Using this amount of data our HyperLoader
model outperforms the baselines in three of seven
datasets and on the average performance. It is also
noticeable that the combination of UniPELT and
TS5 using a single-task fine-tuning approach outper-
forms the other models only in the MovieTrivia
dataset, with a micro-averaged F1-score of 0.7036
followed by HyperLoader with 0.6863, Hyperde-
coder with 0.6767, HyperFormer with 0.6729 and
finally UniPELT using BERT with 0.6105. These
results suggest that combining various parameter-
efficient methods in a multi-task setting and gen-
erating their weights based on the task, trans-

former layer, and the position where the parameter-
efficient method is applied (Adapter layer or LoORA
matrix) is effective for Sequence Labelling tasks,
leading to good performance with a parameter-
efficient approach. Figure 2 shows the relation-
ship between average performance and the percent-
age of trainable parameters per model. The sym-
bol & denotes a single fine-tuning approach. Our
approach consistently outperforms other methods
across 10%, 20%, and 100% of the training and val-
idation data. This evidence shows that combining
various parameter-efficient fine-tuning techniques
in a multi-task setting is effective for low-resource
scenarios. The performance boost is not just due to
adding more parameters, as seen with the hyperde-
coder model and the combination of UniPELT with
BERT, which have a higher percentage of train-
able parameters. Therefore, the combination of
parameter-efficient methods and weight generation
is a potent alternative for Sequence Labelling tasks.

5.3 Ablation Experiments

We conducted ablation experiments to assess the
effect of varying the number of trainable parame-
ters in our model. Table 4 presents the results in
descending order of performance. The first row (in
blue) corresponds to the final version of our model,

Average performance.

Figure 2: Average performance-percentage of trainable
parameters plot using different portions of the datasets.
& indicates a single-task fine-tuning approach.

as described in section 3. The fifth row (in grey)
corresponds to the HyperFormer model, which is
the main foundation of our work.

The initial experiments (denoted by +) involved
increasing the number of trainable parameters for
generating LoRA’s weight matrices. In the case of
using four hypernetworks, the first one generates
the Low-rank A matrix for Query (Q) and Value
(V) in the self-attention module, and the second
generates the Low-rank B matrix for Q and V in
the self-attention module. Analogously, the third
and fourth hypernetworks generate the A and B ma-
trices in the cross-attention module of the decoder.
In the case of 8 hypernetworks, each generates
the weight of only one component: one for the A
and one for the B matrices in the Query; another
two hypernetworks for the A and B matrices in
the Value of the self-attention. The remaining four
hypernetworks are analogous to the former but in
the cross-attention component of the decoder. Fi-
nally, the last experiment involves increasing the
reduction factor (r = 16) of the LoRA matrices in
the final version of the HyperLoader model. These
results indicate that our model achieves a strong
balance between performance and the percentage
of trainable parameters (2.9543%), with only a
0.6694% increase compared to the HyperFormer
model (2.3849%). It also shows that using only
2 hypernetworks for the LoRA matrices enables
the model to generate better weights based on the
task, the parameter-efficient method and its posi-
tion within the Transformer layer of the model.

The second experiment involved removing (de-
noted by —) the Adapters from the model and ad-
justing only the task-conditioned LoRA matrices

Variant Total/trainable params Avg score
HyperLoader 229M/6M 0.8811
+ 4 LoRA HNs 228M/8M 0.0808
+ 8 LoRA HNs 234M/11M 0.800
+ 2 LoRA HNs, r=16 229M/6M 0.8804
HyperFormer 228M/5M 0.8795
- Adapters 225M/1.8M 0.8794

Table 4: Average performance of the ablation experi-
ments. We denote hypernetworks as HNs.

during training. This version showed the lowest av-
erage performance, though the difference from the
HyperFormer model was minimal (0.0001). This
suggests that while a single parameter-efficient
technique can effectively address different tasks,
combining such methods provides better results in
a multi-task setting and shows that further research
into this area is necessary.

6 Conclusions

We proposed a method that combines parameter-
efficient methods in a multi-task setting. Using
a hypernetwork, we generate the weights of the
adapter layers and LoRA matrices conditioned on
the task, the transformer layer of the model, and
the position of these modules within this layer. Our
method outperforms previous work in single-task
and multi-task fine-tuning that combines differ-
ent parameter-efficient methods and hypernetwork-
based approaches using the full training and vali-
dation splits of each dataset and in a low-resource
configuration using only 10% and 20% of those
partitions to train the model. We provide empiri-
cal evidence that the improvement in performance
is not only because of augmenting the trainable
parameters since the hyperdecoder model has the
largest number of trainable weights. Therefore, the
combination of parameter-efficient methods and
weight generation is a strong alternative to solving
Sequence Labelling tasks in a multi-task setting.

7 Limitations and Future work

Our model excels in multi-task settings with a
parameter-efficient fine-tuning approach that miti-
gates negative transfer, underfitting, and overfitting.
However, it still requires access to all datasets dur-
ing training and needs complete retraining when
a new task is added. Curriculum learning (Ben-
gio et al., 2009; Wang et al., 2021; Soviany et al.,
2022; Piergiovanni et al., 2023) could address this
limitation by enhancing learning efficiency, poten-
tially leading to faster convergence and improved
performance.

References

Yoshua Bengio, Jérome Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th Annual International Confer-
ence on Machine Learning, ICML ’09, page 41-48,
New York, NY, USA. Association for Computing
Machinery.

Xuxin Cheng, Zhihong Zhu, Bowen Cao, Qichen
Ye, and Yuexian Zou. 2023a. MRRL: Modifying
the reference via reinforcement learning for non-
autoregressive joint multiple intent detection and slot
filling. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pages 10495—
10505, Singapore. Association for Computational
Linguistics.

Xuxin Cheng, Zhihong Zhu, Wanshi Xu, Yaowei Li,
Hongxiang Li, and Yuexian Zou. 2023b. Acceler-
ating multiple intent detection and slot filling via
targeted knowledge distillation. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 8900-8910, Singapore. Association for
Computational Linguistics.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

Marco Farina, Duccio Pappadopulo, Anant Gupta,
Leslie Huang, Ozan Irsoy, and Thamar Solorio. 2023.
Distillation of encoder-decoder transformers for se-
quence labelling. In Findings of the Association for
Computational Linguistics: EACL 2023, pages 2539-
2549,

Mauajama Firdaus, Asif Ekbal, and Erik Cambria. 2023.
Multitask learning for multilingual intent detection
and slot filling in dialogue systems. Information
Fusion, 91:299-315.

Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li Huo,
Tsung-Chieh Chen, Keng-Wei Hsu, and Yun-Nung
Chen. 2018. Slot-gated modeling for joint slot filling
and intent prediction. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 753-757, New Orleans, Louisiana. Association
for Computational Linguistics.

David Ha, Andrew M. Dai, and Quoc V. Le. 2017.
Hypernetworks. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.

Michael A. Hedderich, Lukas Lange, Heike Adel, Jan-
nik Strotgen, and Dietrich Klakow. 2021. A survey
on recent approaches for natural language process-
ing in low-resource scenarios. In Proceedings of

the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2545-2568,
Online. Association for Computational Linguistics.

Charles T. Hemphill, John J. Godfrey, and George R.
Doddington. 1990. The ATIS spoken language sys-
tems pilot corpus. In Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27,1990.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790-2799.
PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Yan Hu, Qingyu Chen, Jingcheng Du, Xueqing Peng,
Vipina Kuttichi Keloth, Xu Zuo, Yujia Zhou, Zehan
Li, Xiaoqian Jiang, Zhiyong Lu, Kirk Roberts, and
Hua Xu. 2024. Improving large language models for
clinical named entity recognition via prompt engi-
neering. Journal of the American Medical Informat-
ics Association, page ocad259.

Hamish Ivison and Matthew Peters. 2022. Hyperde-
coders: Instance-specific decoders for multi-task
NLP. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 17151730,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021a. Compacter: Efficient low-rank
hypercomplex adapter layers. In Advances in Neural
Information Processing Systems, volume 34, pages
1022-1035. Curran Associates, Inc.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021b. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 565-576, Online. Association
for Computational Linguistics.

Jason Lee, Kyunghyun Cho, and Thomas Hofmann.
2017. Fully character-level neural machine transla-
tion without explicit segmentation. Transactions of
the Association for Computational Linguistics, 5:365—
378.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit
Gupta, Sonal Gupta, and Yashar Mehdad. 2021.
MTOP: A comprehensive multilingual task-oriented

https://doi.org/10.1145/1553374.1553380
https://doi.org/10.18653/v1/2023.findings-emnlp.704
https://doi.org/10.18653/v1/2023.findings-emnlp.704
https://doi.org/10.18653/v1/2023.findings-emnlp.704
https://doi.org/10.18653/v1/2023.findings-emnlp.704
https://doi.org/10.18653/v1/2023.findings-emnlp.704
https://doi.org/10.18653/v1/2023.findings-emnlp.704
https://doi.org/10.18653/v1/2023.findings-emnlp.704
https://doi.org/10.18653/v1/2023.findings-emnlp.597
https://doi.org/10.18653/v1/2023.findings-emnlp.597
https://doi.org/10.18653/v1/2023.findings-emnlp.597
https://doi.org/10.18653/v1/2023.findings-emnlp.597
https://doi.org/10.18653/v1/2023.findings-emnlp.597
https://doi.org/10.18653/v1/N18-2118
https://doi.org/10.18653/v1/N18-2118
https://doi.org/10.18653/v1/N18-2118
https://openreview.net/forum?id=rkpACe1lx
https://doi.org/10.18653/v1/2021.naacl-main.201
https://doi.org/10.18653/v1/2021.naacl-main.201
https://doi.org/10.18653/v1/2021.naacl-main.201
https://doi.org/10.18653/v1/2021.naacl-main.201
https://doi.org/10.18653/v1/2021.naacl-main.201
https://aclanthology.org/H90-1021
https://aclanthology.org/H90-1021
https://aclanthology.org/H90-1021
https://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.1093/jamia/ocad259
https://doi.org/10.1093/jamia/ocad259
https://doi.org/10.1093/jamia/ocad259
https://doi.org/10.1093/jamia/ocad259
https://doi.org/10.1093/jamia/ocad259
https://doi.org/10.18653/v1/2022.findings-emnlp.124
https://doi.org/10.18653/v1/2022.findings-emnlp.124
https://doi.org/10.18653/v1/2022.findings-emnlp.124
https://doi.org/10.18653/v1/2022.findings-emnlp.124
https://doi.org/10.18653/v1/2022.findings-emnlp.124
https://proceedings.neurips.cc/paper_files/paper/2021/file/081be9fdff07f3bc808f935906ef70c0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/081be9fdff07f3bc808f935906ef70c0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/081be9fdff07f3bc808f935906ef70c0-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.1162/tacl_a_00067
https://doi.org/10.1162/tacl_a_00067
https://doi.org/10.1162/tacl_a_00067
https://doi.org/10.18653/v1/2021.eacl-main.257
https://doi.org/10.18653/v1/2021.eacl-main.257

semantic parsing benchmark. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 2950-2962, Online. Association for Computa-
tional Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
hairi, Hao Ma, Jiawei Han, Scott Yih, and Madian
Khabsa. 2022. UniPELT: A unified framework for
parameter-efficient language model tuning. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 6253—6264, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Hiroki Nakayama. 2018. seqeval: A python framework
for sequence labeling evaluation. Software available
from https://github.com/chakki-works/seqeval.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487-503, Online. Association for Computational Lin-
guistics.

Jonas Pfeiffer, Ivan Vuli¢, Iryna Gurevych, and Se-
bastian Ruder. 2020. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654—7673, Online. Association for Computa-
tional Linguistics.

AlJ Piergiovanni, Weicheng Kuo, Wei Li, and Anelia
Angelova. 2023. Dynamic pre-training of vision-
language models. In Workshop on Multimodal Rep-
resentation Learning. ICLR 2023.

Clifton Poth, Hannah Sterz, Indraneil Paul, Sukannya
Purkayastha, Leon Engldnder, Timo Imhof, Ivan
Vulié, Sebastian Ruder, Iryna Gurevych, and Jonas
Pfeiffer. 2023. Adapters: A unified library for
parameter-efficient and modular transfer learning. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 149—-160, Singapore. Associa-
tion for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text

transformer. Journal of machine learning research,
21(140):1-67.

10

Karthik Raman, Iftekhar Naim, Jiecao Chen, Kazuma
Hashimoto, Kiran Yalasangi, and Krishna Srinivasan.
2022. Transforming sequence tagging into a seq2seq
task. In Proceedings of the 2022 Conference on Em-
pirical Methods in Natural Language Processing,
pages 11856-11874.

Shaina Raza, Deepak John Reji, Femi Shajan, and
Syed Raza Bashir. 2022. Large-scale application
of named entity recognition to biomedicine and epi-
demiology. PLOS Digital Health, 1(12):¢0000152.

Andreas Riicklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2021. AdapterDrop: On the efficiency
of adapters in transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 79307946, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Sebastian Schuster, Sonal Gupta, Rushin Shah, and
Mike Lewis. 2019. Cross-lingual transfer learning
for multilingual task oriented dialog. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3795-3805, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and
Nicu Sebe. 2022. Curriculum learning: A survey. In-
ternational Journal of Computer Vision, 130(6):1526—
1565.

Asa Cooper Stickland and Iain Murray. 2019. BERT
and PALs: Projected attention layers for efficient
adaptation in multi-task learning. In Proceedings of
the 36th International Conference on Machine Learn-

ing, volume 97 of Proceedings of Machine Learning
Research, pages 5986-5995. PMLR.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142—
147.

Fernando Trias, Hongming Wang, Sylvain Jaume, and
Stratos Idreos. 2021. Named entity recognition in
historic legal text: A transformer and state machine
ensemble method. In Proceedings of the Natural
Legal Language Processing Workshop 2021, pages
172-179, Punta Cana, Dominican Republic. Associa-
tion for Computational Linguistics.

Xin Wang, Yudong Chen, and Wenwu Zhu. 2021.
A survey on curriculum learning. [EEE transac-
tions on pattern analysis and machine intelligence,
44(9):4555-4576.

Zirui Wang, Zihang Dai, Barnabas Poczos, and Jaime
Carbonell. 2019. Characterizing and avoiding nega-
tive transfer. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR).

https://doi.org/10.18653/v1/2021.eacl-main.257
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/2022.acl-long.433
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://aclanthology.org/2023.emnlp-demo.13
https://aclanthology.org/2023.emnlp-demo.13
https://aclanthology.org/2023.emnlp-demo.13
https://doi.org/10.18653/v1/2021.emnlp-main.626
https://doi.org/10.18653/v1/2021.emnlp-main.626
https://doi.org/10.18653/v1/2021.emnlp-main.626
https://doi.org/10.18653/v1/N19-1380
https://doi.org/10.18653/v1/N19-1380
https://doi.org/10.18653/v1/N19-1380
https://proceedings.mlr.press/v97/stickland19a.html
https://proceedings.mlr.press/v97/stickland19a.html
https://proceedings.mlr.press/v97/stickland19a.html
https://proceedings.mlr.press/v97/stickland19a.html
https://proceedings.mlr.press/v97/stickland19a.html
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://doi.org/10.18653/v1/2021.nllp-1.18
https://doi.org/10.18653/v1/2021.nllp-1.18
https://doi.org/10.18653/v1/2021.nllp-1.18
https://doi.org/10.18653/v1/2021.nllp-1.18
https://doi.org/10.18653/v1/2021.nllp-1.18

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Wenxuan Zhou, Sheng Zhang, Yu Gu, Muhao Chen,
and Hoifung Poon. 2023. Universalner: Targeted dis-
tillation from large language models for open named
entity recognition. In The Twelfth International Con-
ference on Learning Representations.

A Corpora labels

Table 5 shows each Sequence Labelling dataset’s
complete list of labels used to train and evaluate the
HyperLoader model. Based on the labels’ names,
we calculate label overlap between the datasets.
Nine different labels are shared across the datasets,
representing 3.78% of the total labels.

11

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

ATIS labels

fromloc.airport_name
connect
return_date.month_name
depart_date.day_number
meal
depart_time.period_mod
depart_date.year
fromloc.state_name
arrive_date.today_relative
day_number
arrive_date.day_name
period_of_day
toloc.state_code
fromloc.city_name
arrive_time.time
return_date.day_name
days_code
depart_time.period_of_day
fare_amount

flight

airline_code

arrive_time.start_time
flight_days

mod

compartment
depart_date.month_name
flight_mod
fare_basis_code
toloc.city_name
arrive_date.date_relative
stoploc.city_name
arrive_time.period_of_day
return_time.period_mod
depart_time.time_relative
return_date.day_number
meal_code

time
arrive_time.period_mod
transport_type
toloc.country_name
fromloc.state_code
return_time.period_of_day

flight_number
restriction_code
arrive_date.month_name
depart_time.start_time
time_relative
airport_name
today_relative

economy
toloc.airport_code
state_code

state_name

day_name
toloc.airport_name
depart_time.time

or

toloc.state_name
arrive_time.time_relative
round_trip
arrive_time.end_time
depart_date.today_relative
stoploc.airport_name

cost_relative
depart_date.date_relative
city_name

airline_name
return_date.today_relative
stoploc.airport_code
airport_code
booking_class
fromloc.airport_code
month_name
aircraft_code
stoploc.state_code
return_date.date_relative
depart_date.day_name
class_type
arrive_date.day_number
flight_stop
meal_description
depart_time.end_time
flight_time

mTOP labels

school

todo

recipes_source

life_event

news_reference
recipes_cooking_method
recipes_excluded_ingredient
news_type
recipes_unit_measurement
music_provider_name
music_rewind_time
music_album_modifier
period

recipes_cuisine
music_track_title

major

gender

recipes_type
music_playlist_modifier

contact_related
recipes_unit_nutrition
date_time
contact_method
similarity

timer_name
method_recipes
content_exact
user_attendee_event
recipes_dish
music_type
category_event
music_artist_name
phone_number
recipes_included_ingredient
contact_added

age
recipes_type_nutrition
title_event

recipes_diet
person_reminded
news_topic
recipes_time_preparation
name_app
contact_removed
type_relation
ordinal
music_playlist_title
location
alarm_name
education_degree
music_radio_id
music_genre
attribute_event
recipes_rating
recipient
attendee_event
type_content

news_source
attendee
music_album_title
type_contact
recipes_qualifier_nutrition
employer

group

news_category

sender

amount
weather_temperature_unit
recipes_meal
method_timer
weather_attribute
method_retrieval_reminder
contact

job

recipes_attribute

SNIPS labels
object_location_type poi state genre
object_name album playlist movie_type
movie_name artist restaurant_name restaurant_type
spatial_relation timerange object_part_of_series_type current_location
served_dish city object_select music_item
country cuisine geographic_poi sort
condition_temperature object_type party_size_description service

track
playlist_owner

entity_name
condition_description

party_size_number
rating_unit

rating_value
location_name

year facility best_rating
Movie labels
genre rating year plot
ratings_average director song title
trailer review actor character
MovieTrivia labels
award relationship quote genre
character_name director plot year
soundtrack origin actor opinion
mTOD labels
demonstrative_reference datetime weather negation
alarm news timer reminder
location
Restaurant labels
restaurant_name cuisine rating price
dish hours amenity location

Table 5: List of labels for each used Sequence labelling dataset to evaluate our proposed approach.

12

	Introduction
	Related Work
	Methodology
	Preliminaries: Multi-task Learning
	HyperLoader: Task Conditional Adapter Layers
	HyperLoader: Task Conditional Layer Normalization
	HyperLoader: Task Conditional LoRA Matrices
	HyperLoader: Task Conditional Hypernetworks
	SentT' Format

	Experiments
	Corpora
	Experimental Details and Evaluation

	Results
	Full Dataset Performance
	Low-resource Setting Results
	Ablation Experiments

	Conclusions
	Limitations and Future work
	Corpora labels

