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Abstract

We present HyperLoader, a simple approach001
that combines different parameter-efficient fine-002
tuning methods in a multi-task setting. To003
achieve this goal, our model uses a hypernet-004
work to generate the weights of these modules005
based on the task, the transformer layer, and006
its position within this layer. Our method com-007
bines the benefits of multi-task learning by cap-008
turing the structure of all tasks while reducing009
the task interference problem by encapsulating010
the task-specific knowledge in the generated011
weights and the benefits of combining different012
parameter-efficient methods to outperform full-013
fine tuning. We provide empirical evidence that014
HyperLoader outperforms previous approaches015
in most datasets and obtains the best average016
performance across tasks in high-resource and017
low-resource scenarios.018

1 Introduction019

Parameter-efficient fine-tuning techniques emerge020

as an alternative to conventional fine-tuning, where021

only a small number of parameters is updated to022

a downstream task (Houlsby et al., 2019; Stick-023

land and Murray, 2019; Karimi Mahabadi et al.,024

2021a). These methods aim to achieve comparable025

performance to full fine-tuning by updating as few026

parameters as possible. However, a less studied re-027

search direction related to these methods is whether028

one can perform better than full fine-tuning with029

fewer parameters (Mao et al., 2022).030

Although these methods considerably reduce the031

number of parameters to achieve good performance032

on different tasks, a specialized model for each task033

remains necessary. Multi-task learning reduces the034

computational cost by training a single model while035

enabling information sharing by capturing the com-036

mon structure underlying all tasks. Recently, re-037

searchers have developed approaches combining038

parameter-efficient fine-tuning techniques in multi-039

task settings (Stickland and Murray, 2019; Pfeiffer040

et al., 2020, 2021; Rücklé et al., 2021). Never- 041

theless, this approach can lead to underfitting in 042

high-resource tasks and overfitting in low-resource 043

tasks (Lee et al., 2017). Another potential issue 044

is task interference, where an improvement in the 045

performance of one task reduces the performance 046

of other tasks (Wang et al., 2019). 047

An alternative to reduce the negative effects 048

of multi-task learning is to use hypernetworks 049

(Ha et al., 2017) to generate separate weights for 050

each task (Karimi Mahabadi et al., 2021b; Ivison 051

and Peters, 2022). However, combining different 052

parameter-efficient methods in a multi-task setting 053

using hypernetworks is an unexplored research 054

area. To address this limitation, we propose Hy- 055

perLoader, a simple method that employs a neural 056

network to generate the weights for a combination 057

of two parameter-efficient fine-tuning techniques: 058

adapters (Houlsby et al., 2019) and LoRA (Hu et al., 059

2021) based on the task, the transformer layer of 060

the model and the position of the method within 061

this layer. We use the encoder-decoder T5 model 062

(Raffel et al., 2020) for all experiments to take 063

advantage of modelling the tasks as sequence-to- 064

sequence tasks. We test our model in seven datasets 065

from two Sequence Labelling tasks. The first task 066

is Named Entity Recognition, a valuable tool in 067

various real-world scenarios in the era of large lan- 068

guage models such as healthcare and medical re- 069

search (Raza et al., 2022; Hu et al., 2024), Finance 070

and Business Intelligence (Zhou et al., 2023), and 071

analyzing legal texts (Trias et al., 2021). The sec- 072

ond task is slot-filling, a crucial step to enable dia- 073

logue systems to accurately understand and fulfil 074

user requests by extracting and organizing essential 075

information from user inputs (Cheng et al., 2023a,b; 076

Firdaus et al., 2023). 077

Our model achieves the best average perfor- 078

mance using the complete training and validation 079

data for each task, as well as in a low-resource 080

configuration with only 10% and 20% of the train- 081
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ing and validation data available. We empirically082

demonstrate that the improvement is not only due083

to adding more trainable parameters but also by084

combining different parameter-efficient methods085

in a multi-task setting using hypernetworks, which086

adequately supports Sequence Labelling tasks in087

high- and low-resource scenarios.088

Our main contributions are the following:089

• We propose a multi-task learning approach090

that combines different parameter-efficient091

fine-tuning methods based on hypernetworks092

conditioned on the task, the layer in the trans-093

former model, and the position of the method094

within this layer.095

• We provide empirical results on different Se-096

quence Labelling datasets demonstrating the097

effectiveness of our model compared to single-098

task and multi-task approaches using the en-099

tire datasets and in low-resource scenarios.100

2 Related Work101

Parameter-efficient fine-tuning techniques are an102

alternative to full fine-tuning by updating a small103

number of parameters per task, yielding similar per-104

formance to full fine-tuning. One of the most pop-105

ular approaches in this area is the adapter (Houlsby106

et al., 2019), a small trainable bottleneck layer107

added in each transformer block of a model. It108

consists of down and up projections and has shown109

similar performance to full-fine-tuning. Other pop-110

ular parameter-efficient fine-tuning approaches are111

Prefix-tuning (Li and Liang, 2021) and LoRA (Hu112

et al., 2021). Prefix-tuning prepends a fixed-length,113

learnable sequence of prefix tokens to the input114

embeddings while the original model parameters115

remain unchanged. This approach optimizes a con-116

tinuous prompt, effectively guiding the model’s117

behaviour for specific tasks with minimal compu-118

tational overhead. LoRA adds trainable low-rank119

matrices and combines their outputs with the origi-120

nal matrices in the self-attention layer of the trans-121

former; the main difference with the previous ap-122

proaches is that it does not employ any activation123

function.124

A less-studied area is how to achieve better per-125

formance than full-fine tuning using as few param-126

eters as possible. The UniPELT framework (Mao127

et al., 2022) addresses this limitation. This frame-128

work incorporates several parameter-efficient fine-129

tuning methods as sub-modules and learns how to130

activate them dynamically depending on the input131

or task setup using a gating mechanism, which 132

assigns more weight to the sub-modules that in- 133

crease the performance of a given task. They con- 134

sidered three different methods: Adapters, LoRA, 135

and prefix-tuning, and they used the BERT base 136

model for all their experiments. 137

Although promising, this approach still needs 138

a specialized model for each task. The use of hy- 139

pernetworks to generate the weights of parameter- 140

efficient methods in a multi-task learning approach 141

is a promising research area. By using this type 142

of network, the model can capture the common 143

structure underlying all target tasks and encapsu- 144

late the specific task knowledge by generating dif- 145

ferent weights based on the task, reducing the neg- 146

ative effects of this setting such as underfitting and 147

overfitting in high-resource and low-resource tasks, 148

respectively or task interference. 149

The HyperFormer++ model (Karimi Mahabadi 150

et al., 2021b) is the main foundation of our model. 151

It uses task-conditioned hypernetworks to generate 152

the weights of adapter layers and layer normaliza- 153

tions in a multi-task setting. The hypernetwork is 154

trained to create adapter parameters specific to each 155

task and layer, based on the embeddings of task and 156

layer IDs. This hypernetwork is trained simultane- 157

ously for all tasks, allowing it to share knowledge 158

across different tasks. At the same time, it reduces 159

negative interference by producing distinct adapter 160

layers for each task. The T5 model is used as the 161

backbone model for all the experiments. 162

Another hypernetwork-based multi-task ap- 163

proach is Hyperdecoders (Ivison and Peters, 2022). 164

This framework generates input-conditioned 165

adapter layers for the decoder in an encoder- 166

decoder model. This approach offers more flex- 167

ibility by generating unique parameters for every 168

input instead of using a learnt task embedding and 169

allows making use of the similarities between sam- 170

ples across datasets. 171

Our HyperLoader model combines the benefits 172

of both worlds. It uses different parameter-efficient 173

fine-tuning techniques and task-conditional hyper- 174

networks to generate its weights conditioned on the 175

task, the transformer layer of the model, and the 176

position of the parameter-efficient method within 177

this layer. Our results show a performance im- 178

provement in all tasks and, on average, using the 179

full training and validation data and simulating a 180

low-resource setting. 181
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Figure 1: Diagram of the HyperLoader model. The
Adapter hypernetworks hl

AD
and hl

AU
produce the

weights Dl
τ and U l

τ for task-specific adapter modules.
The LoRA hypernetworks hl

LoRAA
and hl

LoRAB
gener-

ate the A and B matrices for task-specific LoRA mod-
ules. Finally, the hypernetwork hl

LN creates the condi-
tional layer normalization parameters βτ and γτ .

3 Methodology182

Multi-task hypernetwork-based approaches using183

parameter-efficient methods are a low-cost alterna-184

tive for different NLP tasks that achieve compara-185

ble results to full-fine-tuning. Nevertheless, explor-186

ing approaches to obtain better results than updat-187

ing all weights during fine-tuning is an unexplored188

research area. We introduce the HyperLoader189

model to address this gap. Our approach incor-190

porates hypernetwork-based LoRA and Adapter191

layers into a multi-task transformer model, based192

on the HyperFormer++ model (Karimi Mahabadi193

et al., 2021b).194

Our method enables the hypernetwork to gen-195

erate the weights of the adapter layers and LoRA196

matrices based on the task, the transformer model’s197

layer, and the position of the adapter and LoRA198

matrix within this layer. Figure 1 shows the dia-199

gram of our proposed approach. We generate an200

input embedding Iτ based on the task τ , the layer201

li and the position of the Adapter and the LoRA202

matrices pj . The embedding Iτ is the input to a203

set of hypernetworks (hlLN , hlAU
, hlAD

, hlLoRAB
,204

hlLoRAA
) to generate the weights for the adapter205

layers, the LoRA matrices and the layer normaliza-206

tion. Therefore, we only update the hypernetwork207

parameters, the input embedding projector h
′

and208

the layer normalizations in fθ(·) during training,209

while the rest of parameters θ remain fixed.210

In this section, we describe our approach. First,211

we provide preliminary information by defining 212

multi-task learning, which is the foundation of our 213

work. Second, we describe the main components 214

of our proposed HyperLoader model. Finally, we 215

describe the format for converting Sequence La- 216

belling into a sequence-to-sequence task. 217

3.1 Preliminaries: Multi-task Learning 218

Our proposed model generates the weights of 219

adapter layers and LoRA matrices based on the 220

task, the transformer layer of the model, and the 221

position of the adapter and the LoRA matrix in 222

this layer in a multi-task setting. Given a set of 223

tasks {DτTτ=1}
where T is the total number of tasks, 224

Dτ = {(xiτ , yiτ )}
Nτ
i=1 is the training data of the 225

τ -th task with Nτ instances and fθ(·) is a pre- 226

trained model parameterized by θ, the multi-task 227

fine-tuning minimizes the loss shown in equation 1 228

on the training set, where l is the cross-entropy loss 229

and wτ is the sampling weight for the τ -th task. 230

L(θ, {Dτ}Tτ=1) =

T∑
τ=1

∑
(xi

τ ,yi
τ )∈Dτ

wτ l(fθ(x
i
τ ), y

i
τ ) (1) 231

3.2 HyperLoader: Task Conditional Adapter 232

Layers 233

Adapters (Houlsby et al., 2019) are small sub- 234

modules inserted within layers of a pre-trained 235

transformer-based model before the skip connec- 236

tions. In the HyperLoader model, the conditional 237

adapter Al for layer l consists of a down-projection 238

Dl
τ ∈ Rh×d into a lower dimension dbottleneck, a 239

GeLU non-linearity, and an up-projection U l
τ ∈ 240

Rd×h that projects back into the original hidden 241

layer dimension. The output of the adapter is de- 242

fined in equation 2, where x is the input hidden 243

state, LN l
τ is the task conditional layer normaliza- 244

tion and the adapter weights (Dl
τ ,U l

τ ) are gener- 245

ated by a hypernetwork. We use a reduction factor 246

r = 32 for the down-projection in all the experi- 247

ments. 248

Al
τ (x) = LN l

τ

(
U l
τ (GeLU(Dl

τ (x)))
)
+ x (2) 249

3.3 HyperLoader: Task Conditional Layer 250

Normalization 251

The task conditional layer normalization, defined 252

in equation 3, involves element-wise multiplication 253

denoted by ⊙. Here, µτ and στ represent the mean 254

and standard deviation of the training data for the 255

τ -th task, while γlτ and βl
τ are weights generated 256

by a hypernetwork. 257
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LN l
τ (x

i
τ ) = γl

τ ⊙ xi
τ − µτ

στ
+ βl

τ (3)258

3.4 HyperLoader: Task Conditional LoRA259

Matrices260

Low-Rank Adaptation (LoRA) (Hu et al., 2021)261

is a parameter-efficient fine-tuning technique that262

injects trainable rank decomposition matrices into263

each layer of the Transformer architecture. For a264

pre-trained weight matrix W0 ∈ Rd×k, this method265

constrains its update by representing it with a low-266

rank decomposition W0+∆W = W0+BA, where267

B ∈ Rd×r and A ∈ Rr×k. The forward pass268

using LoRA is denoted in equation 4. Where x is269

the input hidden state, W0 is frozen and does not270

receive gradient updates and matrices A and B are271

generated by a hypernetwork. Based on previous272

work (Hu et al., 2021; Mao et al., 2022), we only273

add Low-Rank matrices to the query and value274

matrices in the attention layers of the transformer.275

We use a low-dimensional rank r = 8.276

h = W0x+∆Wx = W0x+BAx (4)277

3.5 HyperLoader: Task Conditional278

Hypernetworks279

A hypernetwork (Ha et al., 2017) is a neural net-280

work that generates the parameters for another neu-281

ral network. It captures shared information across282

tasks, while the generated task-specific adapters283

and layer normalization allow the model to adapt284

to each task individually, reducing negative inter-285

ference in a multi-task setting. The input for these286

networks is a task embedding zτ and its concatena-287

tion with a layer id embedding I = {li}Li=1 and an288

adapter position embedding P = {pj}6j=1. In the289

encoder-decoder model, we consider six positions290

for the parameter-efficient modules: the adapter291

layers and the LoRA matrices. We consider two292

options for the position of the adapter layers in each293

transformer block: after the self-attention layer or294

after the feed-forward layer. For LoRA matrices,295

we consider four positions: the A and B matrices296

in the self-attention layer and the A and B matrices297

in the cross-attention layer in the decoder of the298

model.299

Using this configuration, the hypernetwork is300

able to generate different weights based on the task,301

position of the adapter, LoRA matrices and layer302

of the transformer network. The final input embed-303

ding Iτ for the hypernetwork is computed using304

a projector network h
′
I as shown in equation 5,305

where zτ , li and pj are learnable parameters via 306

back-propagation. We set the dimension of the 307

task feature embedding zτ to dzτ = 512. For the 308

layer and position embeddings, we use a dimension 309

dl,p = 64. Finally, for the final input embedding, 310

we set a dimension of dIτ = 64. 311

We use five hypernetworks for the HyperLoader 312

model. For the Adapters, we consider two hypernet- 313

works: one for the down projection and one for the 314

up projection. Since we are using a reduction factor 315

r = 32 and the hidden dimension of the model is 316

d = 768, the down sample size is ⌊768/32⌋ = 24, 317

the dimensions of the output matrices of the down 318

and up projections are 768× 24 and 24× 768, re- 319

spectively. We use two hypernetworks to generate 320

the weights of the LoRA Matrices. One for the 321

low-rank matrix A and one for the low-rank matrix 322

B. We use a low-dimensional rank r = 8 for the 323

Query and Value matrices in the self-attention and 324

the cross-attention; therefore, the output matrices A 325

and B dimensions are 768× 8 and 8× 768, respec- 326

tively. Finally, we use one hypernetwork for the 327

task-conditioned layer normalization that generates 328

vector weights of 768 dimensions. 329

Iτ = h
′
I(zτ , li, pj) (5) 330

3.6 SentT’ Format 331

Converting Sequence Labelling into a sequence- 332

to-sequence task is essential to using an encoder- 333

decoder model. We use the SentT’ (Farina et al., 334

2023) format for the input and output sequences 335

to achieve this goal. This format is obtained by 336

turning a labelled sequence S into a sequence of to- 337

kens x1 . . . xL of size L using white-space splitting 338

and then interleaving these tokens with the spacial 339

sentinel tokens used to pre-train T5 to obtain the 340

input string Sin = s0x1s1 . . . xLsL. We use the 341

simplified Beginning, Inside and Outside (sBIO) 342

format to represent the output strings, where given 343

a set T of labels to annotate a text span, t ∈ T is 344

used to represent any token that starts a labelled 345

span, a single tag I for each token that continues a 346

labelled span and O to tag tokens that do not belong 347

to labelled spans. Analogous to the input sequence, 348

we interleave the tokenized output string with the 349

sentinel tokens to obtain the output sequence using 350

the SentT’ format Sout = s0t1s1 . . . tLsL. Table 1 351

illustrates how to convert the text "play the song 352

little robin redbreast" from the SNIPS dataset into 353

the SentT’ format. 354

4



Encoded input using the SentT’ format

<extra_id_0> play <extra_id_1> the <extra_id_2> song <extra_id_3> little <extra_id_4> robin <extra_id_5> redbreast <extra_id_6>

Encoded output using the SentT’ format

<extra_id_0> O <extra_id_1> O <extra_id_2> MUSIC_ITEM <extra_id_3> TRACK <extra_id_4> I <extra_id_5> I <extra_id_6>

Table 1: Example of an input/output instance transformed into the SentT’ format. The text is tokenized with
white-space splitting and then interleaved with sentinel tokens used for T5 pre-training to obtain the input string.
The output uses the sBIO format: a label t ∈ T is used to represent any token that starts a labelled span, a single tag
I for tokens that continue a labelled span and O to tag tokens outside labelled spans.

4 Experiments355

This section describes our experiments for Se-356

quence Labelling using the HyperLoader model.357

4.1 Corpora358

We use seven publicly available corpora for Se-359

quence Labelling tasks (slot-filling and Named En-360

tity Recognition) to cover different domains and361

distributions and gather robust empirical evidence.362

For slot-filling, we use four different dialogue-363

oriented datasets. First, the ATIS dataset (Hemphill364

et al., 1990) consists of manual transcripts of audio365

recordings about people asking for flight informa-366

tion on automated airline travel inquiry systems.367

Second, the SNIPS dataset (Coucke et al., 2018)368

comprises users’ intent queries distributed in seven369

domains: search creative work, get weather con-370

ditions, restaurant reservations, play music, add371

elements to a playlist, and search screening events.372

The third and fourth datasets are the English por-373

tions of two multilingual task-oriented dialogue374

datasets: The mTOP dataset (Li et al., 2021) con-375

sists of eleven domains: alarm, calling, event, mes-376

saging, music, news, people, recipes, remainders,377

timer and weather conditions. Finally, the mTOD378

dataset (Schuster et al., 2019) contains nine la-379

bels across three domains: alarm, reminders and380

weather conditions.381

For Named Entity Recognition, we use the MIT382

Corpora (Movie, MovieTrivia and Restaurant)1.383

In the case of Movie and MovieTrivia datasets,384

both are composed of 12 labels, and the latter con-385

tains more complex queries. Finally, the Restaurant386

dataset contains 8 labels such as restaurant names,387

ratings, dishes and opening times. We show the388

complete list of labels for each dataset in Appendix389

A. Based on the label’s name, we obtained the390

label overlap across the datasets. Movie and Movi-391

eTrivia have the highest number of overlaps with392

four labels: genre, year, plot, director, and actor.393

These datasets also share the labels "genre" and394

1Downloaded from https://groups.csail.mit.edu/
sls/

"year" with the SNIPS dataset. The mTOD, mTOP 395

and restaurant datasets share the label "location". 396

Movie and Restaurant datasets share the label "rat- 397

ing". Finally, Restaurant and SNIPS datasets share 398

two labels: "restaurant_name" and "cuisine". Nine 399

different labels are shared across the datasets, rep- 400

resenting 3.78% of the total of labels. 401

We used the original partitions for the mTOP 402

and mTOD datasets, in the case of the ATIS and 403

SNIPS datasets, we used the data partitions used 404

originally by (Goo et al., 2018)2, finally, we manu- 405

ally create a validation subset by sampling ten per 406

cent of each original training partition for each MIT 407

Corpus following previous methodologies (Raman 408

et al., 2022; Farina et al., 2023). Table 2 shows the 409

statistics for the corpora we used in this work. It is 410

important to mention that although there are some 411

duplicates in the datasets, we do not remove these 412

instances. 413

Corpora Train Val Test Labels

ATIS 4,478 500 893 83
SNIPS 13,084 700 700 39
MovieTrivia 7,034 782 1,953 12
Movie 8,797 978 2,443 12
Restaurant 6,894 766 1,521 8
mTOP 15,667 2,235 4,386 75
mTOD 30,521 4,181 8,621 9

Table 2: Statistics per partition of the used datasets.

4.2 Experimental Details and Evaluation 414

We conduct experiments to compare our model 415

with other parameter-efficient fine-tuning methods. 416

Our first goal is to assess the advantages of com- 417

bining different parameter-efficient techniques in a 418

multi-task setting versus a single-task setting. The 419

second goal is to evaluate our model against other 420

hypernetwork-based approaches in a multi-task en- 421

vironment. 422

We compare our approaches with the UniPELT 423

framework (Mao et al., 2022), HyperFormer model 424

(Karimi Mahabadi et al., 2021b) and Hyperde- 425

2Downloaded from https://github.com/MiuLab/
SlotGated-SLU/tree/master/data
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coder model (Ivison and Peters, 2022) described426

in section 2. We also compare our approach using427

Adapters and LoRA with T5 as the backbone model428

in a single-task setting. We found that the prefix-429

tuning and the gating mechanism proposed in the430

UniPELT framework decrease the performance us-431

ing T5. Therefore, we only use Adapters and432

LoRA without a gating mechanism for our baseline433

comparison for the combination of UniPELT and434

T5. For all the implementations, we use the Hug-435

gingFace’s Transformers (Wolf et al., 2020) and436

AdapterHub (Poth et al., 2023) libraries.437

We use the batch sizes, learning rates and epochs438

reported in the original paper of each baseline to439

run the experiments in our work. For our proposed440

HyperLoader model, we used the same codebase3441

(under the Apache License, Version 2.0) and al-442

most the same experimental details described by443

(Karimi Mahabadi et al., 2021b), that is, we em-444

ploy the T5 base model, a batch size of 32, a con-445

stant learning rate of 3 × 10−4, 218 steps in all446

experiments, save a checkpoint every 1,000 steps,447

and sample tasks with conventional temperature-448

based with temperature T = 10 proportional to449

p
1/T
τ , where pτ = Nτ∑T

i=1 Nτ
and Nτ is the number450

of training samples for the τ -th task. The only451

difference in our work is that we choose the best452

model based on the loss value instead of the average453

evaluation metric performance. We performed the454

experiments on 4 Nvidia A100 SXM 40G GPUs.455

We use the micro-averaged F1-score as the eval-456

uation metric for all experiments following the457

CoNLL convention (Tjong Kim Sang and De Meul-458

der, 2003), where an entity is considered correct459

only if the entity is predicted exactly as it appears460

in the gold data. We use the SeqEval framework461

(Nakayama, 2018) to compute the scores in all the462

experiments.463

5 Results464

This section presents the results of the experiments465

we performed in this work described in section 4.2.466

5.1 Full Dataset Performance467

Table 3a shows the performance of our proposed468

approach and the baselines using the 100% of train-469

ing and evaluation data. The UniPELT frame-470

work, Adapters and LoRA follow a single-task471

fine-tuning approach, therefore, the trainable pa-472

rameters correspond to each dataset considered.473

3https://github.com/rabeehk/hyperformer

For UniPELT, we report the results using BERT as 474

in the original paper and T5 to compare the per- 475

formance depending on the model’s architecture. 476

Initial experiments show that the use of the Prefix- 477

tuning method and the gating mechanism decreases 478

the performance of the encoder-decoder model; for 479

this reason, we do not use these elements when 480

applying UniPELT to T5. 481

Based on the results in Table 3a, it is possi- 482

ble to observe that our proposed HyperLoader 483

model outperforms the baselines in three of the 484

seven datasets and obtains the highest average 485

with 0.8811, followed by the HyperFormer model 486

(0.8795), UniPELT with T5 (0.8740), T5 with 487

Adapters (0.8735), T5 with LoRA (0.8717), the 488

Hyperdecoder model (0.8709) and UniPELT with 489

BERT (0.8537). In terms of single-task and multi- 490

task settings, it is possible to observe that the com- 491

bination of UNiPELT with T5 outperforms the 492

other models in two datasets (Movie with 0.8839, 493

and ATIS with 0.9611); this result demonstrates 494

that the use of hypernetworks improves the sharing 495

information capacity of the models while reduc- 496

ing the negative transfer between tasks. Finally, 497

when comparing the multi-task approaches based 498

on hypernetworks, HyperLoader obtained a bet- 499

ter average result than the HyperFormer model, 500

which is the primary foundation of our work. In 501

addition, since Hyperdecoder has more trainable 502

parameters, the results indicate that the superior 503

performance of our model is not only due to having 504

more trainable parameters than the HyperFormer 505

approach but also due to the combination of dif- 506

ferent parameter-efficient methods in a multi-task 507

setting. 508

5.2 Low-resource Setting Results 509

We evaluate the performance of our proposed 510

model and the baselines in a low-resource setting 511

to measure its robustness with a data scarcity con- 512

straint, a common scenario in NLP (Hedderich 513

et al., 2021). For this purpose, we down-sampled 514

the training and validation partitions of all datasets 515

to 10% and 20% of their original size and evalu- 516

ated them in the full test subset. Table 3b shows 517

the results of these experiments. 518

The first part of Table 3b contains the perfor- 519

mance of the HyperLoader model and the baselines 520

when only 10% of the training and validation data 521

is used. It is evident that the combination of the 522

UniPELT framework and the BERT model experi- 523

ences the most significant performance decrease, 524
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Adapters LoRA UniPELT UniPELT HyperFormer HyperLoader Hyperdecoder
Dataset T5[222M/3.5M] ♣ T5[222M/0.84M] ♣ BERT[110M/1.8M] ♣ T5[220M/4.5M] ♣ T5[228M/5M] T5[229M/6M] T5[239M/16M]

MovieTriva 0.7184 0.7183 0.6873 0.7210 0.7295 0.7140 0.7072
Movie 0.8793 0.8709 0.8500 0.8839 0.8788 0.8745 0.8700
Restaurant 0.8069 0.8186 0.7689 0.8039 0.8136 0.7965 0.7891
ATIS 0.9581 0.9549 0.9446 0.9611 0.9595 0.9599 0.9519
SNIPS 0.9573 0.9506 0.9238 0.9478 0.9462 0.9592 0.9377
mTOP 0.8299 0.8254 0.8432 0.8374 0.8638 0.8983 0.8752
mTOD 0.9647 0.9633 0.9580 0.9627 0.9648 0.9652 0.9649

Average 0.8735 0.8717 0.8537 0.8768 0.8795 0.8811 0.8709

(a) Full dataset performance
Adapters LoRA UniPELT UniPELT HyperFormer HyperLoader Hyperdecoder

Dataset T5[222M/3.5M] ♣ T5[222M/0.84M] ♣ BERT[110M/1.8M] ♣ T5[220M/4.5M] ♣ T5[228M/5M] T5[229M/6M] T5[239M/16M]

10% of Training and validation data

MovieTriva 0.6633 0.6695 0.5152 0.6717 0.6589 0.6695 0.6597
Movie 0.8281 0.8134 0.7809 0.8244 0.8311 0.8368 0.8202
Restaurant 0.7292 0.7171 0.5907 0.7049 0.7389 0.7499 0.7216
ATIS 0.9129 0.8329 0.5901 0.8919 0.9162 0.9172 0.9193
SNIPS 0.8647 0.8460 0.7398 0.8991 0.8943 0.8970 0.8727
mTOP 0.7559 0.6886 0.6048 0.7467 0.7976 0.8114 0.7760
mTOD 0.9459 0.9453 0.9351 0.9436 0.9467 0.9500 0.9436

Average 0.8143 0.7875 0.6795 0.8117 0.8262 0.8331 0.8162

20% of Training and validation data

MovieTriva 0.6896 0.6934 0.6105 0.7036 0.6729 0.6863 0.6767
Movie 0.8492 0.8276 0.8047 0.8444 0.8407 0.8546 0.8377
Restaurant 0.7699 0.7522 0.7114 0.7562 0.7517 0.7601 0.7401
ATIS 0.9295 0.9222 0.8048 0.9281 0.9382 0.9401 0.9311
SNIPS 0.9250 0.9096 0.8474 0.9235 0.9252 0.9238 0.9044
mTOP 0.7798 0.7597 0.7052 0.7863 0.8399 0.8474 0.8140
mTOD 0.9424 0.9543 0.9433 0.9522 0.9543 0.9541 0.9529

Average 0.8408 0.8313 0.7753 0.8420 0.8461 0.8523 0.8367

(b) Low-resource setting results
Table 3: Performance of the HyperLoader model and baselines is shown for 100% (a), 10%, and 20% (b) of the
training and evaluation data. Each method includes the model used and the total/trainable parameters in brackets. ♣
denotes a single-task fine-tuning approach, so trainable parameters are specific to each dataset. Bold fonts highlight
the best result for each dataset and on average. Micro-averaged F1-score is reported.

from an average of 0.8537 to 0.6795. In contrast,525

the T5-based approaches show a smaller perfor-526

mance decrease in both single-task and multi-task527

settings. These results suggest that an encoder-528

decoder model is more capable of handling low-529

resource settings in both single-task and multi-530

task configurations. For the multi-task approaches,531

our HyperLoader model outperforms the Hyper-532

Former and Hyperdecoder approaches in six out533

of seven datasets and on the average performance534

with a score of 0.8331, followed by HyperFormer535

(0.8262) and Hyperdecoder (0.8161).536

The second part of Table 3b shows the results537

when 20% of the training and evaluation data is538

used. Using this amount of data our HyperLoader539

model outperforms the baselines in three of seven540

datasets and on the average performance. It is also541

noticeable that the combination of UniPELT and542

T5 using a single-task fine-tuning approach outper-543

forms the other models only in the MovieTrivia544

dataset, with a micro-averaged F1-score of 0.7036545

followed by HyperLoader with 0.6863, Hyperde-546

coder with 0.6767, HyperFormer with 0.6729 and547

finally UniPELT using BERT with 0.6105. These548

results suggest that combining various parameter-549

efficient methods in a multi-task setting and gen-550

erating their weights based on the task, trans-551

former layer, and the position where the parameter- 552

efficient method is applied (Adapter layer or LoRA 553

matrix) is effective for Sequence Labelling tasks, 554

leading to good performance with a parameter- 555

efficient approach. Figure 2 shows the relation- 556

ship between average performance and the percent- 557

age of trainable parameters per model. The sym- 558

bol ♣ denotes a single fine-tuning approach. Our 559

approach consistently outperforms other methods 560

across 10%, 20%, and 100% of the training and val- 561

idation data. This evidence shows that combining 562

various parameter-efficient fine-tuning techniques 563

in a multi-task setting is effective for low-resource 564

scenarios. The performance boost is not just due to 565

adding more parameters, as seen with the hyperde- 566

coder model and the combination of UniPELT with 567

BERT, which have a higher percentage of train- 568

able parameters. Therefore, the combination of 569

parameter-efficient methods and weight generation 570

is a potent alternative for Sequence Labelling tasks. 571

5.3 Ablation Experiments 572

We conducted ablation experiments to assess the 573

effect of varying the number of trainable parame- 574

ters in our model. Table 4 presents the results in 575

descending order of performance. The first row (in 576

blue) corresponds to the final version of our model, 577
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Figure 2: Average performance-percentage of trainable
parameters plot using different portions of the datasets.
♣ indicates a single-task fine-tuning approach.

as described in section 3. The fifth row (in grey)578

corresponds to the HyperFormer model, which is579

the main foundation of our work.580

The initial experiments (denoted by +) involved581

increasing the number of trainable parameters for582

generating LoRA’s weight matrices. In the case of583

using four hypernetworks, the first one generates584

the Low-rank A matrix for Query (Q) and Value585

(V) in the self-attention module, and the second586

generates the Low-rank B matrix for Q and V in587

the self-attention module. Analogously, the third588

and fourth hypernetworks generate the A and B ma-589

trices in the cross-attention module of the decoder.590

In the case of 8 hypernetworks, each generates591

the weight of only one component: one for the A592

and one for the B matrices in the Query; another593

two hypernetworks for the A and B matrices in594

the Value of the self-attention. The remaining four595

hypernetworks are analogous to the former but in596

the cross-attention component of the decoder. Fi-597

nally, the last experiment involves increasing the598

reduction factor (r = 16) of the LoRA matrices in599

the final version of the HyperLoader model. These600

results indicate that our model achieves a strong601

balance between performance and the percentage602

of trainable parameters (2.9543%), with only a603

0.6694% increase compared to the HyperFormer604

model (2.3849%). It also shows that using only605

2 hypernetworks for the LoRA matrices enables606

the model to generate better weights based on the607

task, the parameter-efficient method and its posi-608

tion within the Transformer layer of the model.609

The second experiment involved removing (de-610

noted by −) the Adapters from the model and ad-611

justing only the task-conditioned LoRA matrices612

Variant Total/trainable params Avg score
HyperLoader 229M/6M 0.8811
+ 4 LoRA HNs 228M/8M 0.0808
+ 8 LoRA HNs 234M/11M 0.800
+ 2 LoRA HNs, r=16 229M/6M 0.8804
HyperFormer 228M/5M 0.8795
- Adapters 225M/1.8M 0.8794

Table 4: Average performance of the ablation experi-
ments. We denote hypernetworks as HNs.

during training. This version showed the lowest av- 613

erage performance, though the difference from the 614

HyperFormer model was minimal (0.0001). This 615

suggests that while a single parameter-efficient 616

technique can effectively address different tasks, 617

combining such methods provides better results in 618

a multi-task setting and shows that further research 619

into this area is necessary. 620

6 Conclusions 621

We proposed a method that combines parameter- 622

efficient methods in a multi-task setting. Using 623

a hypernetwork, we generate the weights of the 624

adapter layers and LoRA matrices conditioned on 625

the task, the transformer layer of the model, and 626

the position of these modules within this layer. Our 627

method outperforms previous work in single-task 628

and multi-task fine-tuning that combines differ- 629

ent parameter-efficient methods and hypernetwork- 630

based approaches using the full training and vali- 631

dation splits of each dataset and in a low-resource 632

configuration using only 10% and 20% of those 633

partitions to train the model. We provide empiri- 634

cal evidence that the improvement in performance 635

is not only because of augmenting the trainable 636

parameters since the hyperdecoder model has the 637

largest number of trainable weights. Therefore, the 638

combination of parameter-efficient methods and 639

weight generation is a strong alternative to solving 640

Sequence Labelling tasks in a multi-task setting. 641

7 Limitations and Future work 642

Our model excels in multi-task settings with a 643

parameter-efficient fine-tuning approach that miti- 644

gates negative transfer, underfitting, and overfitting. 645

However, it still requires access to all datasets dur- 646

ing training and needs complete retraining when 647

a new task is added. Curriculum learning (Ben- 648

gio et al., 2009; Wang et al., 2021; Soviany et al., 649

2022; Piergiovanni et al., 2023) could address this 650

limitation by enhancing learning efficiency, poten- 651

tially leading to faster convergence and improved 652

performance. 653
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Table 5 shows each Sequence Labelling dataset’s902
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HyperLoader model. Based on the labels’ names,904
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ATIS labels
fromloc.airport_name arrive_time.start_time flight_number cost_relative
connect flight_days restriction_code depart_date.date_relative
return_date.month_name mod arrive_date.month_name city_name
depart_date.day_number compartment depart_time.start_time airline_name
meal depart_date.month_name time_relative return_date.today_relative
depart_time.period_mod flight_mod airport_name stoploc.airport_code
depart_date.year fare_basis_code today_relative airport_code
fromloc.state_name toloc.city_name economy booking_class
arrive_date.today_relative arrive_date.date_relative toloc.airport_code fromloc.airport_code
day_number stoploc.city_name state_code month_name
arrive_date.day_name arrive_time.period_of_day state_name aircraft_code
period_of_day return_time.period_mod day_name stoploc.state_code
toloc.state_code depart_time.time_relative toloc.airport_name return_date.date_relative
fromloc.city_name return_date.day_number depart_time.time depart_date.day_name
arrive_time.time meal_code or class_type
return_date.day_name time toloc.state_name arrive_date.day_number
days_code arrive_time.period_mod arrive_time.time_relative flight_stop
depart_time.period_of_day transport_type round_trip meal_description
fare_amount toloc.country_name arrive_time.end_time depart_time.end_time
flight fromloc.state_code depart_date.today_relative flight_time
airline_code return_time.period_of_day stoploc.airport_name

mTOP labels
school contact_related recipes_diet news_source
todo recipes_unit_nutrition person_reminded attendee
recipes_source date_time news_topic music_album_title
life_event contact_method recipes_time_preparation type_contact
news_reference similarity name_app recipes_qualifier_nutrition
recipes_cooking_method timer_name contact_removed employer
recipes_excluded_ingredient method_recipes type_relation group
news_type content_exact ordinal news_category
recipes_unit_measurement user_attendee_event music_playlist_title sender
music_provider_name recipes_dish location amount
music_rewind_time music_type alarm_name weather_temperature_unit
music_album_modifier category_event education_degree recipes_meal
period music_artist_name music_radio_id method_timer
recipes_cuisine phone_number music_genre weather_attribute
music_track_title recipes_included_ingredient attribute_event method_retrieval_reminder
major contact_added recipes_rating contact
gender age recipient job
recipes_type recipes_type_nutrition attendee_event recipes_attribute
music_playlist_modifier title_event type_content

SNIPS labels
object_location_type poi state genre
object_name album playlist movie_type
movie_name artist restaurant_name restaurant_type
spatial_relation timerange object_part_of_series_type current_location
served_dish city object_select music_item
country cuisine geographic_poi sort
condition_temperature object_type party_size_description service
track entity_name party_size_number rating_value
playlist_owner condition_description rating_unit location_name
year facility best_rating

Movie labels
genre rating year plot
ratings_average director song title
trailer review actor character

MovieTrivia labels
award relationship quote genre
character_name director plot year
soundtrack origin actor opinion

mTOD labels
demonstrative_reference datetime weather negation
alarm news timer reminder
location

Restaurant labels
restaurant_name cuisine rating price
dish hours amenity location

Table 5: List of labels for each used Sequence labelling dataset to evaluate our proposed approach.
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