
Under review as a conference paper at ICLR 2024

CONSERVATIVE REINFORCEMENT LEARNING BY
Q-FUNCTION DISAGREEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper we propose a novel continuous-space RL algorithm that subtracts
the Q-target network standard deviation from a Q-target network which leads to
forcing a tighter upper-bound on Q-values estimation. We show in experiments
that this novel Q-target formula has a performance advantage when applied to
algorithms in this space such as TD3, TD7, MaxMin, REDQ, etc., where the
domains examined are control tasks from MuJoCo simulation. We provide the
code in https://github.com/anonymouszxcv16/SQT.

1 INTRODUCTION

Reinforcement learning (Sutton & Barto, 2018a; Bertsekas, 2005; Mannor et al.) has gained a lot of
traction in solving control problems where the model is missing and the action space is continuous.
In recent years, several algorithms were proposed to solve these problems, such as TD3 (Fujimoto
et al., 2018), TD7 (Fujimoto et al., 2023), CQL (Kumar et al., 2020), REDQ (Chen et al., 2021),
MaxMin Q-learning (Lan et al., 2020), REM (Agarwal et al., 2020), and more.

A technique used in these algorithms is using the so-called ”Double Q-learning” (Hasselt, 2010)
which stabilizes the algorithm. In addition, it is proved in this technique that both its Q-functions
converge to a single fixed point. In that case, the mean of both networks Q-functions standard
deviations must be 0 when the algorithm converges. In this work, we use this insight to propose an
algorithm that depends on this phenomenon in order to incorporate a conservative estimation of the
Q-value.

From a different point of view, TD3 states clearly that the Double Q-learning Q-target update-rule
introduces some bias into the Q-functions’ estimations. The TD3 algorithm tackles this problem by
taking the minimum between the two Q-functions as a wide-consensus estimation.

Our main contributions in this paper are as follows:

1. We provide a novel regularization scheme for updating the Q-target formula, based on the
two networks maintained by the Double Q-learning technique.

2. We show in experiments how this technique leads to faster convergence when added to
recent SOTA algorithms.

The paper is structured as follows. We begin with describing the setup in Section 2. We review
related work in Section 3. Then, we state our main algorithm in Section 4 and in Section 5 we
conduct experiments to demonstrate the advantage of our approach. We conclude in Section 6 with
discussion, conclusions, and future work.

2 SETUP

We model the problem using a Markov Decision Process (MDP; Puterman (1994)), where S and
A are the state space and action space, respectively. We let P (s′|s, a) denote the probability of
transitioning from state s ∈ S to state s′ ∈ S when applying action a ∈ A. We consider a
probabilistic policy πϕ(a|s), parameterized by ϕ ∈ Φ which expresses the probability of the agent
to choose an action a given that it is in state s. The reward function is denoted by r(s, a). The

1

https://github.com/anonymouszxcv16/SQT

Under review as a conference paper at ICLR 2024

goal of the agent is to find a policy that maximizes the Q-function that the agent receives during its
interaction with the environment Puterman (1994).

Qϕ(s, a) ≜ E

[∞∑
t=0

r(st, at)|s0 = s, a0 = a

]
. (1)

3 RELATED WORK

In this section we review related work upon which we base our approach.

Actor Critic Methods. Actor Critic methods Konda & Tsitsiklis (1999); Sutton & Barto (2018b);
Castro & Meir (2010) have two components. One component is an actor that learns a policy π :
S −→ A, mapping state to action. The second component is a critic that learns a state-action pair
estimation Q(·, ·) : S ×A −→ R.

Double Q-learning. In stochastic environments Q-learning Watkins & Dayan (1992) may perform
poorly, mainly in terms of stability due to its bootstrap nature. This poor performance is caused
by over-estimations of action values resulting from a positive bias that is introduced because Q-
learning uses the maximum action value as an approximation for the maximum expected action
value. Hasselt (2010) proposed Double Q-learning. This method stores two Q-functions denoted by
QA(·, ·) and QB(·, ·). Each of these Q-functions is updated with a value from the other Q-function
for the next state. Let us denote the action a∗ to be the maximal valued action in state s′ according
to QA. Next, instead of using the value QA(s′, a∗) = maxaQ

A(s′, a) to update QA, as Q-learning
does, Double Q-learning uses the value QB(s′, a∗). Since QB was updated on the same problem
with different experience samples – it is unbiased w.r.t. action a∗. Interchanging the roles of the two
networks yields the following updates:

QA(s, a)←− QA(s, a) + α(s, a)(r + γQB(s′, a∗)−QA(s, a)), a∗ = argmax
a

QA(s′, a)

QB(s, a)←− QB(s, a) + α(s, a)(r + γQA(s′, b∗)−QB(s, a)), b∗ = argmax
a

QB(s′, a).
(2)

Deep Deterministic Policy Gradient algorithms. Deterministic Policy Gradient (DPG; Silver
et al., 2014) algorithm uses an expected gradient of the action-value function Q : S × A −→ R.
This gradient can be estimated much more efficiently than the usual stochastic policy gradient Sut-
ton & Barto (2018b). DPG introduces an off-policy actor-critic algorithm that learns a deterministic
target policy π from an exploratory behavior policy denoted by µ. Deep Deterministic Policy Gra-
dient (DDPG; Lillicrap et al. (2015)) incorporates a deep learning approach into DPG. Since it is
not possible to straightforwardly apply Q-learning Watkins & Dayan (1992) to continuous action
spaces, finding the greedy policy requires optimization at every time step. This is too slow to be
practical with large function approximators. Instead, DDPG uses an actor-critic architecture based
on DPG where the gradient is estimated based on the following formula

∇θµJ ≈ Est∼ρβ [∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s|θ
µ)|s=st]. (3)

Twin Delayed DDPG (TD3). The TD3 algorithm (Fujimoto et al., 2018) is an algorithm that is
based on DDPG with several additional tricks. First, it has a clipped action (or target policy smooth-
ing), i.e., the action applied is

a(s) = clip (µ(s) + clip (ϵ,−c, c) , alow, ahigh) , ϵ ∼ N (0, σ). (4)

Essentially, this is a regularizer for the action taken, mitigating the risk of taking action that is too
sharp. Second, it has a mechanism to reduce overestimation of the Q-value. This is done with
considering the more conservative estimate of the Q-value:

y1 = r + γ min
i=1,2

Qθ′i
(s′, πϕ1(s

′)). (5)

We note that the optimization on the Q-function is done similarly to DDPG.

TD7 Algorithm. The TD7 algorithm (Fujimoto et al., 2023) is a TD3 algorithm with 4 additions.

2

Under review as a conference paper at ICLR 2024

1. State Action Learned Embeddings (SALE) Fujimoto et al. (2023) learns (similarly to
Ota et al., 2020) an embedding for the state-action and state (zsa, zs) that tries to capture
the transition representations, i.e.,

zsa := g(zs, a), zs := f(s),

where g(·, ·) and f(·) are the encoders satisfying the minimization of the following loss

L(f, g) = (g (f(s), a)− f(s′)) ,

where s′ denotes the next state. Practically, TD7 concatenates the embedding with the
state-action for the Q-function evaluation:

Q(s, a)→ Q(zsa, zs, s, a).

In addition, TD7 concatenates the embedding with the state for the policy evaluation, i.e.,

π(s)→ π(zs, s). (6)

Therefore, the TD7 target formula becomes

y = r + γ min
i=1,2

Qθ′i
(s′, a′, zs

′a′

ρ′′ , zs
′

ψ′′), a′ ← πϕ′(s′, zs
′

ψ′′) + ϵ, ϵ ∼ N (0, 1), (7)

and the actor update-rule is

∇ϕJ ≈
1

|B|
∑

(s,a)∈B

1

2

∑
i=1,2

[Qθi(s, a, z
sa
ρ′ , z

s
ψ′)], a = πϕ(s, z

s
ψ′). (8)

2. Prioritized Experience Replay Buffer (PER). Unlike vanilla replay buffer where all sam-
ples are uniformly sampled, TD7 uses the sampling method presented by Schaul et al.
(2015) and Fujimoto et al. (2020) (Loss-Adjusted Prioritized replay buffer) which samples
batch according to the TD error. Formally,

p(i) =
max(|δ(i)|α, 1)∑
j∈D max(|δ(j)|α, 1)

, δ(i) := Q(s, a)− (r + γQ(s′, a′)).

3. Clip: clips Q-target by the minimal and maximal Q-values:

Qt+1(s, a) ≈ r + γclip(Qt(s
′, a′), min

(s,a)∈D
Qt(s, a), max

(s,a)∈D
Qt(s, a))

4. Checkpoints. Checkpoints are a technique to use the best-performing policy for evaluation.
Deep RL algorithms are notoriously unstable Fujimoto et al. (2023). In supervised learning
checkpoints are a common approach for selecting high-performing models and maintaining
a consistent performance across evaluations Devlin et al. (2019). A checkpoint is a snapshot
of the parameters of a model captured at a specific time during training. In RL using the
checkpoint of a policy that obtained a high reward during training instead of the current
policy improves the stability of the performance at test time.

Randomized Ensembled Double Q-Learning Algorithm (REDQ; Chen et al., 2021) is an algo-
rithm which maintains N networks (typically more than 2), samples a subset of M Q-functions,
and then takes the minimal Q-function from this subset reducing weighted log policy as its Q-target
formula. Specifically,

y = r + γ(min
i∈M

Qϕtarg,i(s
′, ã′)− α log πθ(ã

′|s′)), ã′ ∼ πθ(·|s′), M∼ {1, ..., N}.

We note that in a sense, this algorithm is a generalization of target from 2 networks to N networks.

MaxMin Q-learning Lan et al. (2020) proposed to take the minimal Q-function between the N
functions as its Q-target formula

y = r + γ · min
i∈{1,...,N}

Qϕtarg,i
(s′, ã′), ã′ ∼ πθ(·|s′). (9)

We note that the main difference between MaxMin Q-learning and REDQ is that one randomizes
between the N networks, and one takes the most conservative out of these N networks. We note that
by structure, these two methods are quite computationally heavy since we maintain N replicates of
the network.

3

Under review as a conference paper at ICLR 2024

4 THE STD Q-TARGET METHOD

In this section we present the Std Q-target regularization (SQT). This variation can be applied to
any algorithm that maintains more than one target network.

We begin with defining the std of a batch. Let us consider a batch B. We denote with std(s′, a′) to
be the empirical standard deviation of the state-action (s′, a′) Q-value. Practically, in our case, since
there are only two networks, this std is based on two samples Qθ′i

(s′, a′) for i = 1, 2. Formally, we
denote this std with

std(s′, a′) = stdi=1,2[Qθ′i
(s′, a′)].

We define the std of the batch, which is the mean of these stds, to be

std[B] = 1

|B|
∑

(s′,a′)∼B

stdi=1,2[Qθ′i
(s′, a′)]. (10)

Based on these definitions, we introduce the Std Q-target formula

y = r + γ min
i=1,2

Qθ′i
(s′, a′)− α · std[B], (11)

where α is a meta-parameter for the regularization term. The action is chosen according to

a′ ← πϕ′(s′) + ϵ, ϵ ∼ N (0, 1). (12)

The intuition behind equation 10 is as follows. If the Q-value estimation of the two networks is simi-
lar, the std will be relatively small. Therefore, we argue that Q-value estimation is relatively correct.
If both networks disagree on the estimation, we would like to provide a conservative estimation for
the Q-value, proportional to the ”disagreement”, i.e., the std.

Remark 4.1. We note that in this case we do the std estimation based on two networks, but general-
ization to N networks is straight forward. The trade-off is between more precise std estimation and
computation and space requirements.

Remark 4.2. Double Q-learning Hasselt (2010) proved that the two Q-functions of eq. 2 converge
to a single optimal policy fixed point. We argue that the two Q-functions’ standard deviation must
be 0 when the iterations converge, i.e.,

lim
t→∞

Es′∼B[stdi=1,2[Qθ′i
(s′, a′)]] = 0, a′ = πϕ′(s′). (13)

Proving formally this is beyond the scope of this work but the intuition above may assist in this case:
if the algorithm converges, then the std must be 0. Furthermore, to obtain a tighter upper bound of the
real Q-target we can reduce the Q-functions standard deviation from the minimal Q-value, pushing
the algorithm to the true value estimation.

Remark 4.3. It is apparent that taking the minimal Q-function (which reflects a wide consensus
value) and reducing the Q-functions standard deviation (which reflects reducing the unknown esti-
mation area for safe values) provides a conservative estimation.

Remark 4.4. It is easy to see that this novel Q-target formula can be successfully integrated into
TD3, REDQ, MaxMin Q-learning, and REM Fujimoto et al. (2018); Chen et al. (2021); Lan et al.
(2020); Agarwal et al. (2020).

A generic RL algorithm of how to incorporate the SQT regularizer is presented in Algorithm 4.

4

Under review as a conference paper at ICLR 2024

Algorithm 1 Std Q-Target (SQT)
1: for each iteration t do
2: Observe state s
3: Select action a.
4: Take a step a in state s and receive state next s′ reward r and terminal signal d
5: Store tuple D ←− D ∪ {(s, a, r, s′, d)}
6: Sample batch B ∼ D
7: Compute batch std

std[B] = 1

|B|
∑

(s′,a′)∼B

stdi=1,2[Qθ′i
(s′, a′)]. (14)

8: Compute Q-target y by

y = r + γ min
i=1,2

Qθ′i
(s′, a′)− std[B]. (15)

9: Update critic parameters.
10: Update actor parameters.
11: end for

5 EXPERIMENTS

We test our Std Q-target regularization on SOTA continuous-space RL algorithms: TD3 (Fujimoto
et al., 2018), TD7 (Fujimoto et al., 2023), MaxMin (Lan et al., 2020), and REDQ (Chen et al., 2021).
The environments we test against are MuJoCo (Todorov et al., 2012) and D4RL Fu et al. (2020)
where we chose these environments since they are among the most popular simulated environments
with continuous action space for the online settings (MuJoCo) and for the offline settings (D4RL;
Levine et al., 2020).

For the online experiments, we tested against 7 types of environments: (1) ”Humanoid” (Tassa et al.,
2012) where the goal for a human like skeleton to walk as fast as it can; (2) ”Walker2D” where a
pair of legs need to walk forward; (3) ”Ant” environment where the goal is to reach a certain speed
with ant like skeleton; (4) ”HalfCheetah” environment, where the task is also to reach a certain
speed with a 2 leg cheetah shape; (5) ”Hopper” where a single leg needs to advance by jumping; (6)
”HumanoidStandup” where a skeleton like the ”Humanoid” need to stand from lying on the ground
starting pose; and (7) ”Swimmer” where a 3 parts snake-like needs to advance on the ground. For the
offline experiments we tested against the D4RL environments (”medium” dataset) which are subset
of the online experiments, i.e., it contains only the Walker2d, Ant, HalfCheetah, and the Hopper
environments.

The offline environments are offline samples gathered from a sub-optimal controller. Practically, we
added to the actor loss the Behavior Cloning loss (BC; Fujimoto & Gu, 2021; Hussein et al., 2017).
We note that TD3 and TD7 are already come with a BC loss while we added for MaxMin and REDQ
the same loss, i.e.,

lossBC =
∑

(s,a′)∈B

[a− a′]2, a = πϕ(s).

We note that we measure the success of an algorithm by the number of iterations needed for conver-
gence. Since our contribution is a lightweight regularization added to the target network, we com-
pared each algorithm with and without the std term of Eq. equation 11. We ran all algorithms and
environments with 1e6 iterations, and averaged over 5 seeds for each of the algorithm-environment
settings. We note that due to some initial stability issues, we started the experiments in several cases
with α = 0 where at some point we increases it to a value between 0 to 1. We enlist in the Appendix
the optimal values for that.

The results are presented in Tables 1-4. On average, the performance over both online and offline
environments increased in 0.9%. It is apparent that in some cases we have significant improvement
like in the TD7 and TD3 cases, while for MaxMin and REDQ there is a slight degradation.

5

Under review as a conference paper at ICLR 2024

Averaging over all the online settings, we observe an increase of 3.14% in performance while for
the offline settings we observe a decrease of 2.43% in performance. We show the dynamics of the
comparisons in Figures (1)-(7).

We argue that in TD7 our estimations for the Q-functions are more accurate. Therefore, if there is
a disagreement between the networks the regularization is most informative. In TD3, which can be
considered as a limited TD7, the estimation is noisier. Therefore, the regularization is less effective.
Observing the results for MaxMin and REDQ, we notice that for ensemble approaches, the impact
of the std regularization is limited.

Environment TD3 TD3+SQT Improv.
Humanoid (MuJoCo) 4,715.3 ± 514.1 6,423.7 ± 137.9 +36%
Walker2d (MuJoCo) 5,421.5 ± 93.6 5,446.0 ± 141.8 +0.6%
Ant (MuJoCo) 6,353.9 ± 64.4 5,703.4 ± 158.6 -11%
HalfCheetah (MuJoCo) 12,086.7 ± 188.3 12,639.8 ± 85.5 +4%
Hopper (MuJoCo) 3,376.5 ± 74.7 2,885.4 ± 255.6 -15%
HumanoidStandup (MuJoCo) 161,214.0 ± 6,925.7 162,898.2 ± 965.0 +1%
Swimmer (MuJoCo) 134.1 ± 2.3 126.0 ± 3.5 -6%
Walker2d (D4RL) 53.6 ± 9.8 56.6 ± 5.2 +5%
Ant (D4RL) 119.7 ± 3.3 120.3 ± 1.8 +0.5%
HalfCheetah (D4RL) 55.4 ± 1.2 57.7 ± 0.1 +4%
Hopper (D4RL) 75.1 ± 2.6 70.3 ± 1.1 -6.4%

+1.15%

Table 1: Comparison between TD3 and TD3+SQT.

Environment TD7 TD7+SQT Improv.
Humanoid (MuJoCo) 6,653.3 ± 110.3 7,016.0 ± 328.9 +5%
Walker2d (MuJoCo) 6,057.8 ± 164.3 6,974.5 ± 116.2 +15%
Ant (MuJoCo) 7,369.3 ± 122.5 8,625.3 ± 356.0 +17%
HalfCheetah (MuJoCo) 17,523.0 ± 33.2 17,390.8 ± 131.9 -1%
Hopper (MuJoCo) 2,525.1 ± 295.6 3,693.1 ± 85.6 +46%
HumanoidStandup (MuJoCo) 160,203.0 ± 1,357.2 172,536.0 ± 3,579.2 +7%
Swimmer (MuJoCo) 127.7 ± 2.7 127.9 ± 3.5 +0.1%
Walker2d (D4RL) 88.0 ± 1.7 67.8 ± 4.8 -23%
Ant (D4RL) 145.4 ± 0.2 145.6 ± 0.3 +0.1%
Halfcheetah (D4RL) 58.3 ± 0.1 58.6 ± 0.1 +0.5%
Hopper (D4RL) 75.1 ± 2.0 71.2 ± 3.2 -5.2%

+5.59%

Table 2: Comparison between TD7 and TD7+SQT.

Environment MaxMin MaxMin+SQT Improv.
Humanoid (MuJoCo) 3,622.8 ± 620.2 3,680.6 ± 631.1 +1.6%
Walker2d (MuJoCo) 4,150.1 ± 101.4 3,781.8 ± 278.7 -8.9%
Ant (MuJoCo) 5,680.1 ± 388.2 5,364.7 ± 412.0 -5.6%
HalfCheetah (MuJoCo) 12,776.4 ± 180.9 11,030.1 ± 707.7 -13.7%
Hopper (MuJoCo) 3,608.0 ± 4.2 3,608.2 ± 5.1 +0.0%
HumanoidStandup (MuJoCo) 150,029.4 ± 3,700.4 152,634.3 ± 3,318.2 +1.7%
Swimmer (MuJoCo) 96.6 ± 7.4 94.5 ± 8.2 -2.2%
Walker2d (D4RL) 89.1 ± 0.2 90.8 ± 0.2 +1.9%
Ant (D4RL) 127.0 ± 2.4 130.6 ± 1.5 +2.8%
Halfcheetah (D4RL) 57.1 ± 0.1 58.1 ± 0.3 +1.7%
Hopper (D4RL) 87.7 ± 1.2 92.5 ± 1.1 +5.4%

-1.39%

Table 3: Comparison between MaxMin and MaxMin+SQT.

Environment REDQ REDQ+SQT Improv.
Humanoid (MuJoCo) 2,962.2 ± 760.6 2,196.1 ± 640.5 -25.8
Walker2d (MuJoCo) 5,246.4 ± 138.1 5,545.6 ± 147.3 +5.7%
HalfCheetah (MuJoCo) 11,890.6 ± 209.5 12,230.0 ± 133.9 +2.9%
Hopper (MuJoCo) 1,639.5 ± 150.2 2,353.6 ± 141.4 +43%
HumanoidStandup (MuJoCo) 152,084.1 ± 1,709.8 151,845.8 ± 3,605.7 -0.1%
Swimmer (MuJoCo) 107.8 ± 9.4 91.3 ± 10.1 -15.7
Walker2d (D4RL) 65.5 ± 2.4 54.4 ± 4.4 -17%
Ant (D4RL) 119.7 ± 5.6 110.3 ± 4.7 -7.8
Halfcheetah (D4RL) 56.3 ± 0.1 57.2 ± 0.1 +1.6%
Hopper (D4RL) 76.8 ± 2.2 74.5 ± 2.1 -3%

-1.62%

Table 4: Comparison between REDQ and REDQ+SQT.

6

Under review as a conference paper at ICLR 2024

Figure 1: Results for Humanoid environment

Figure 2: Results for Walker2D environment

Figure 3: Results for Ant environment

Figure 4: Results for Humanoid Standup environment

7

Under review as a conference paper at ICLR 2024

Figure 5: Results for HalfCheetah environment

Figure 6: Results for Hopper environment

Figure 7: Results for Swimmer environment

8

Under review as a conference paper at ICLR 2024

6 DISCUSSION AND CONCLUSION

Std Q-target algorithm improves over SOTA continuous-space RL algorithms TD3, and TD7 on
MuJoCo and D4RL Todorov et al. (2012); Fu et al. (2020) tasks on average. Our std Q-target formula
has a clear advantage over TD3 or TD7 Q-target formula allowing the std Q-target algorithm to reach
higher records on most of the tested tasks by reducing the unknown estimation area between the two
Q-functions for safe values, pushing the algorithm to the real Q-values.

We note that our approach can be applied to any ensemble algorithm beyond the ones presented in
this work, like REM (Agarwal et al., 2020), Bootstrap DQN (Osband et al., 2016), etc., as well as to
discrete action algorithms. Also, in our algorithm there is a hyper-parameter α as well as a switching
time where we add the regularization term. In future work, we propose to automate and schedule
optimally these parameters.

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on of-
fline reinforcement learning. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 104–114. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/agarwal20c.html.

D. Bertsekas. Dynamic programming and optimal control. Athena scientific Belmont, MA, 2005.

Dotan Di Castro and Ron Meir. A convergent online single time scale actor critic algorithm. The
Journal of Machine Learning Research, 11:367–410, 2010.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double q-learning:
Learning fast without a model. arXiv preprint arXiv:2101.05982, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. An equivalence between loss functions and non-
uniform sampling in experience replay. Advances in neural information processing systems, 33:
14219–14230, 2020.

Scott Fujimoto, Wei-Di Chang, Edward J Smith, Shixiang Shane Gu, Doina Precup, and David
Meger. For sale: State-action representation learning for deep reinforcement learning. arXiv
preprint arXiv:2306.02451, 2023.

Hado Hasselt. Double q-learning. Advances in neural information processing systems, 23, 2010.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

9

https://proceedings.mlr.press/v119/agarwal20c.html
https://proceedings.mlr.press/v119/agarwal20c.html
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423

Under review as a conference paper at ICLR 2024

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. Maxmin q-learning: Controlling
the estimation bias of q-learning. arXiv preprint arXiv:2002.06487, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Shie Mannor, Yishay Mansour, and Aviv Tamar. Reinforcement learning: Foundations.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016.

Kei Ota, Tomoaki Oiki, Devesh Jha, Toshisada Mariyama, and Daniel Nikovski. Can increasing in-
put dimensionality improve deep reinforcement learning? In International conference on machine
learning, pp. 7424–7433. PMLR, 2020.

Martin L Puterman. Markov Decision Processes. Wiley and Sons, 1994.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387–395. Pmlr, 2014.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018a.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018b.

Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex behaviors
through online trajectory optimization. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 4906–4913. IEEE, 2012.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

APPENDIX

ALGORITHM IN PRACTICE

At the start learning steps of the algorithm, the Q-values are random, and thus, the Q-values Std can
be large in comparison to the Q-network values and be considered as a random noise.

We tackle this problem by adding tswitch hyper-parameter, reflecting initial total timesteps without
applying the SQT formula, letting the Q-network stabilize at non-random values.

Practically, we compute the Q-target y by the formula 11 if t ≥ tswitch, and otherwise, by the original
algorithm Q-target formula.

We use the following values in our experiments for tswitch hyper-parameter:

10

Under review as a conference paper at ICLR 2024

Algorithms Environments tswitch
TD3, MaxMin, REDQ Ant, Hopper 500,000.
TD3, MaxMin, REDQ Humanoid 200,000.
TD3, TD7, MaxMin, REDQ Humanoid Standup, Swimmer 200,000.

Table 5: Our experiments tswitch hyper-parameter values.

In the rest of the experiments, we set tswitch hyper-parameter as 100,000.

We use the following values in our experiments for α hyper-parameter:

Algorithms Environments α
TD3, TD7, MaxMin, REDQ Hopper 0.01
TD3, MaxMin, REDQ Ant 0.1

Table 6: Our experiments α hyper-parameter values.

In the rest of the experiments, we set α hyper-parameter as 1.

11

	Introduction
	Setup
	Related work
	The Std Q-target Method
	Experiments
	Discussion and Conclusion

