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Abstract

Existing benchmarks for computational materials discovery primarily evaluate
static predictive tasks or isolated computational sub-tasks. Such approaches in-
adequately capture the inherently iterative, exploratory, and often serendipitous
nature of scientific discovery. We argue that the research community should shift
evaluation practices towards including dynamic benchmarks that more realistically
represent materials discovery campaigns. As a concrete example, we propose an
open-ended benchmark environment designed to simulate closed-loop discovery,
requiring autonomous agents or algorithms to iteratively propose, evaluate, and
refine candidates under a constrained evaluation budget. Specifically, it targets the
efficient discovery of new thermodynamically stable compounds within chemical
systems. Multiple fidelity levels are accommodated, from machine-learned inter-
atomic potentials to density functional theory and experimental validation. This
approach emphasizes realistic elements of scientific discovery, such as iterative re-
finement, adaptive decision-making, handling uncertainty and traversing unknown
chemical landscapes.

1 Introduction

Scientific discovery rarely progresses in a linear fashion. Researchers propose hypotheses, run
experiments or simulations, and refine their ideas based on the outcomes [34]. Failures can be as
informative as successes, and strategies often shift as new evidence or constraints emerge. Materials
discovery is no exception: promising candidates are proposed, evaluated, and iteratively refined, often
through cycles of exploration, dead ends, and serendipitous insights.

In contrast, most computational benchmarks for materials discovery assume a static, one-way process
(Figure 1a). The majority are designed to measure the accuracy of predictive models such as machine
learning interatomic potentials (MLIPs) [36, 11, 6, 9, 8] and related surrogates, on fixed datasets.
Standard tasks include regression of formation energies, forces, band gaps, or agreement with density
functional theory (DFT) calculations [10, 37, 39, 18]. These have driven real progress in ML model
accuracy and efficiency and are important to further progress, but they evaluate models in isolation
from the broader scientific process, where the central challenge is efficiently navigating an immense
search space under uncertainty. Even recent advancements such as Matbench Discovery [37], though
representing an important step forward, remain fundamentally screening benchmarks. They assess
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Figure 1: a) Existing discovery pipelines and benchmarks follow a static filtering process, moving
sequentially from generative models to increasingly expensive evaluation methods, without end-to-
end feedback. b) Our proposed benchmark MADE simulates a closed-loop discovery environment
where agents iteratively propose candidates, receive oracle feedback, and update their strategy. The
framework is modular, supporting different agents, oracles, and environments.

how well models rank candidates for filtering rather than how effectively agents learn and adapt in a
closed design loop.

Recent advances in agentic systems, which include reinforcement learning in scientific domains,
large language model (LLM) agents, and hybrid AI-scientist frameworks [24, 13, 30], highlight
the potential for more adaptive, closed-loop discovery strategies. These systems can in principle
integrate hypothesis generation, tool use, experimental design, and iterative refinement [4, 16, 15].
Yet the field lacks standardized benchmarks to evaluate how well they perform in realistic discovery
settings. While there has been progress to create environments for evaluating LLM agents in domains
like software engineering and general AI tasks [27, 17, 22], current evaluations of LLM agents for
physical sciences typically test static analysis or question answering [44, 26, 2] rather than capabilities
as iterative experiment designers and decision-makers.

To address this gap, we propose MADE: MAterials Discovery Environment, a benchmark environ-
ment for autonomous discovery of thermodynamically stable materials. In MADE, an agent must
propose candidate compounds, receive oracle feedback (e.g., formation energy), and adapt its strategy
over multiple rounds. Success is measured by how efficiently the agent uncovers new stable phases
relative to the convex hull of known compounds in a chemical system. The benchmark is general
and modular, supporting different fidelity levels of ground truth—from machine-learned potentials to
DFT to experimental datasets—making it extensible as new data and methods become available.

2 Related Work

Materials Discovery Benchmarks Benchmarking has a long history in computational materials
science, from the creation of large-scale datasets such as the Materials Project and OQMD [18, 10].
These primarily focus on predictive tasks such as formation energy and band-gap regression. Recent
efforts like Matbench Discovery [37] have shifted slightly toward discovery-oriented tasks, yet
remain limited to predictive tasks on fixed datasets [43]. Generative models such as MatterGen [45],
GNoME [25], and Chemeleon [32] efficiently generate structures, but their evaluation is typically a
single batch filtration process, where many promising candidates are generated and then filtered for
DFT or experimental evaluation. MADE seeks to bridge this gap by benchmarking agentic pipelines
that simulate the discovery workflow end-to-end.

Agent Benchmarks Recent scientific benchmarks for agentic methods—such as DREAMS [44] and
ChemBench [26]—primarily evaluate static tasks or predefined tool use, lacking the ability to measure
iterative adaptation. While agentic discovery methods (e.g., AI-driven scientists [24, 30]) have been
proposed, their evaluations remain use-case-specific without standardized environments. Conversely,
iterative benchmarking frameworks from classical reinforcement learning gym environments [41],
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to LLM environments [27, 17] demonstrate the value of dynamic interaction and feedback-driven
evaluation.

Active learning and Bayesian Optimization Active learning, Bayesian optimization (BO), and
related experimental design methods provide a principled framework for iterative decision-making
under uncertainty, with the goal of improving search and optimization efficiency [40, 12, 35]. These
methods combine surrogate models with acquisition functions that balance exploration and exploita-
tion, and have been widely applied in materials science [23, 19, 38, 42, 29] to optimize properties in
low-dimensional design spaces such as mapping phase diagrams. Unlike classical black-box optimiza-
tion, which targets a single global optimum, materials discovery is inherently multi-modal, seeking
a diverse set of local minima corresponding to stable or metastable compounds for experimental
verification. MADE enables integration and evaluation of BO strategies within broader discovery
pipelines.

3 MADE: A Dynamic Benchmark for Materials Discovery

We frame materials discovery as an interactive process between an agent and an environment, with
the objective of identifying new crystal structures that are thermodynamically stable [5]. While here
we focus on stability, the framework naturally extends to multi-objective settings. Rather than a
conventional black-box optimization task targeting a single global optimum, we formulate discovery
as an exploratory search over a structured chemical landscape, aiming to uncover a diverse set of
local minima corresponding to distinct stable or metastable compounds under a limited oracle budget.
The search space is discrete, sparse, and chemically constrained, requiring strategies that integrate
prior knowledge and adapt dynamically to feedback. Figure 1b provides a graphical overview, and
Algorithm 1 provides an algorithmic description of a rollout of an episode in the benchmark.

3.1 Problem Definition

Algorithm 1: MADE episode rollout
Input: Chemical search space S, initial

materials H0, policy π, oracle O(·),
budget B, threshold ϵ

Initialize known materials H ← H0

Evaluate energies Es = O(s), s ∈ H
Construct convex hull CH(H)
for t = 1, . . . , B do

st ← π({(s, Es) : s ∈ H})
Et ← O(st)
H ← H ∪ {st}
Update CH(H) and stable set Sstable

end
return Sstable

Let S denote the chemical search space, where
each candidate s ∈ S is defined by its chemical
composition and crystal structure. We assume
access to an oracle O : S → R which returns
the predicted formation energy per atom Es for
a given structure s. Let B ∈ N denote the oracle
query budget, and define H0 ⊂ S as the initial set
of known reference materials.

An agent is defined by its discovery policy π that
depends on the history of observed (structure, en-
ergy) pairs, π : {(si, Ei)}t−1

i=1 → S. At each
iteration t ≤ B, the agent selects the next can-
didate structure st ∼ π, the oracle evaluates its
energy, Et = O(st), and the candidate is added
to the set of known materials. After updating
Ht = Ht−1 ∪ {st}, the convex hull CH(Ht)
is recomputed. For each candidate s ∈ Ht, we calculate its energy above the convex hull as:
∆hull(s,Ht) ∈ R. A material is considered thermodynamically stable if its energy lies on or below
the convex hull, Sstable,t = {s ∈ Ht | ∆hull(s,Ht) ≤ ϵ}, where ϵ is a small stability threshold [5].

The sequence of proposed materials is defined as: Qπ = {s1, s2, . . . , sB} ⊂ S. The objective is to
design a policy π that maximizes the total number of new stable materials discovered after B queries:
maxπ |Qπ ∩ Sstable,B |.

Evaluation Discovery policies are evaluated on both efficiency and diversity. The primary met-
ric is the number of novel stable compounds discovered within a query budget B, defined by
the convex hull criterion. To prevent data leakage, we propose constructing hold-out systems by
searching the MLIP landscape for stable structures absent from MP. This is effective but increasingly
difficult in high-dimensional spaces. Novelty is further enforced with structural matching (pymatgen
StructureMatcher [31]), which avoids reward hacking via trivial perturbations of known phases.
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For held-out chemical systems, we can additionally report precision and recall relative to the known
stable set.

3.2 Example Implementations

Our framework is designed to be flexible enough to allow for varying levels of assumptions and
complexity. To define an instantiation of the benchmark environment, one needs to define the chemical
space S to explore, its initialization with known compounds (H0) and an oracle O. Then one can
evaluate different agent policies on the task. We provide pseudocode for each class in Appendix A,
which mirrors a gym [41] environment for ease of implementation and extension.

Chemical System The chemical space for exploration S is defined by the constituent elements that
make up the material. This allows for adjustable difficulty by varying system complexity (e.g. easy:
binary metal oxides, medium: ternary intermetallic compounds, hard: quaternary and beyond). Initial
known structures (H0) can be retrieved from datasets (e.g. from Materials Project [14]). The user can
decide whether to retain all known structures as H0, simulating a real discovery campaign, or just a
subset (e.g. end-member stable structures) for testing simpler algorithms.

Oracles For fast evaluation of policies, we can employ MLIP energy oracles. We note that MLIPs
are relatively cheap to evaluate, and hence is why they are often used explicitly as a batch filtering
step in modern discovery pipelines. This gives a good testbed for evaluating methods quickly, with
the hope that methods developed here translate to when evaluation is expensive and thus decision
making under uncertainty is crucial. Extensions to higher-fidelity evaluations (e.g., DFT, experimental
validation) are readily accommodated in our framework to simulate a real discovery campaign.

Agents An agent’s policy can be viewed as a combination of a structure generator (proposing
candidates) and an acquisition function (selecting which to evaluate). In practice, these may be
intertwined, particularly in the context of LLM agents orchestrating tools, but this separation is useful
to enumerate possibilities and mirrors existing "generate-then-filter" discovery workflows (Figure 1a).
Structure generators range from random sampling and classical search methods such as AIRSS [33]
to modern generative models (e.g. MatterGen [45], GNoMe [25], Chemeleon [32]) or LLM-driven
proposals [16]. Acquisition strategies include random selection, LLM-guided heuristics, diversity-
or uncertainty-based search [3, 29], prototype substitution [31, 43]. With higher-fidelity oracles (e.g.,
DFT, experiments), lower-fidelity models (e.g., MLIPs) can also guide acquisition, as well as filters
for chemical validity and synthesizability, mirroring real pipelines. This list is intended as illustrative
rather than exhaustive; our goal is not to fix an implementation but to enable systematic comparison
of diverse agent designs within a unified closed-loop benchmark.

4 Results

4.1 Experimental Setup

As a demonstration, we implement two generator baselines: Random and MatterGen [45]. Random
structures were generated by first sampling a composition (up to a total of 12 atoms) randomly
assigned to constituent elements, and placing atoms uniformly at random in the unit cell, with
lattice parameters a, b, c sampled from the uniform distribution U(3, 15) Å, and angles α, β, γ from
U(60, 120) degrees. MatterGen structures were sampled using the pretrained model conditioned on
chemical system using a diffusion guidance parameter of 2.0.

We pair these generators with two simple acquisition functions: Random and Diversity. Random ac-
quisition involves selecting structures uniformly at random from the generations. Diversity acquisition
involves selecting structures furthest in composition space from those already observed.

We test these policies on two systems: a binary metal oxide (Na–O) and a ternary intermetallic
(Co–Nb–Sn), using an ORB MLIP oracle [36] and a query budget of 20 structures. Further details on
implementation are provided in Appendix B.1. Our code is available here.
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4.2 Baseline Results

Table 1 shows the number of novel stable compounds found for each strategy, chemical system, and
H0. Further results and acquisition plots are presented in Appendix B.2.

Table 1: Average number of stable compounds discovered over 20 queries, with standard error over 5
episodes in parentheses. Results are reported for each chemical system under different initialization
settings: using only elemental end-members (H0: El.) or including all known stable Materials Project
structures (H0: MP).

Structure
Generator

Acquisition
Function

Na-O
(H0: El.)

Na-O
(H0: MP)

Co-Nb-Sn
(H0: El.)

Co-Nb-Sn
(H0: MP)

Random Random 3.0 (0.5) 0.0 (0.0) 1.2 (0.8) 0.0 (0.0)
Random Diversity 4.0 (0.9) 0.0 (0.0) 1.6 (0.6) 0.0 (0.0)
MatterGen Random 4.0 (0.6) 0.8 (0.5) 3.2 (0.4) 0.2 (0.2)
MatterGen Diversity 4.4 (0.7) 0.8 (0.4) 5.8 (0.4) 0.2 (0.2)

Generative models accelerate discovery We find that pretrained generative model policies sample
a greater number of new stable structures than random generation for the same budget, particularly
in higher-dimensional search spaces such as the ternary system. Since MatterGen was trained on
Materials Project data, generating stable structures with respect to elemental end-members is expected.
Discovering new stable structures beyond the Materials Project convex hull remains challenging.
Naïve random search proves ineffective, but MatterGen occasionally identifies new minima in the
MLIP energy landscape, illustrating the potential of generative priors for accelerating discovery.

Active acquisition strategies accelerate discovery We find that simple active acquisition strategies,
such as the diversity-based criterion, already improve discovery efficiency across datasets and
generative models. This highlights the potential of more sophisticated adaptive experiment design
approaches such as those leveraging prior knowledge, uncertainty and information gain to further
enhance sample efficiency and guide exploration.

5 Discussion

Limitations and Ongoing Work We note that these are preliminary results aimed to show a
minimal example of the benchmark proposal in action. We are actively extending these experiments
to more chemical systems and policies, including LLM-based agents. We are also looking to
include better metrics for evaluating uniqueness and novelty beyond StructureMatcher which
better account for structural diversity [28], as well as leveraging ideas from Bayesian optimization to
measure the magnitude of improvement of a discovery pipeline over a baseline policy [38, 21, 1].

Extensions This benchmark is intentionally dynamic and extensible, designed to evolve over
time to allow assumptions to be progressively relaxed. We envisage several natural next steps.
First, integrating higher-fidelity oracles such as DFT, free-energy calculations, and experimental
validations will allow more realistic evaluation of agents, enabling lower-fidelity models (e.g., MLIPs)
to guide decision-making. Second, extending the benchmark to multi-objective optimization tasks,
considering additional target properties alongside stability, will better reflect realistic discovery
campaigns. Third, implementing batch-mode evaluation, allowing simultaneous queries, would
align the benchmark more closely with experimental workflows. Fourth, we foresee it being possible
to train agents using reinforcement learning using this environment.

Outlook MADE enables the study of key challenges in computational materials discovery. Search-
ing discrete, structurally complex spaces is difficult, as methods like Bayesian optimization struggle
with combinatorial growth and structural validity. LLM systems may be able to better handle the
exploration exploitation trade off. Reliable uncertainty estimation is also essential, as, by definition,
new discoveries will be out of training distributions. By shifting focus from static prediction tasks to
full discovery workflows, we hope MADE encourages the community to adopt dynamic benchmarks
that better measure and accelerate autonomous materials discovery.
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[30] A. Novikov, N. Vũ, M. Eisenberger, E. Dupont, P.-S. Huang, A. Z. Wagner, S. Shirobokov,
B. Kozlovskii, F. J. Ruiz, A. Mehrabian, et al. Alphaevolve: A coding agent for scientific and
algorithmic discovery. arXiv preprint arXiv:2506.13131, 2025.

[31] S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier,
K. A. Persson, and G. Ceder. Python materials genomics (pymatgen): A robust, open-source
python library for materials analysis. Computational Materials Science, 68:314–319, 2013.

[32] H. Park, A. Onwuli, and A. Walsh. Exploration of crystal chemical space using text-guided
generative artificial intelligence. Nature Communications, 16(1):4379, 2025.

[33] C. J. Pickard and R. Needs. Ab initio random structure searching. Journal of Physics: Condensed
Matter, 23(5):053201, 2011.

[34] K. Popper. The logic of scientific discovery. Routledge, 2005.

[35] T. Rainforth, A. Foster, D. R. Ivanova, and F. Bickford Smith. Modern bayesian experimental
design. Statistical Science, 39(1):100–114, 2024.

[36] B. Rhodes, S. Vandenhaute, V. Šimkus, J. Gin, J. Godwin, T. Duignan, and M. Neumann.
Orb-v3: atomistic simulation at scale. arXiv preprint arXiv:2504.06231, 2025.

[37] J. Riebesell, R. E. Goodall, P. Benner, Y. Chiang, B. Deng, G. Ceder, M. Asta, A. A. Lee, A. Jain,
and K. A. Persson. A framework to evaluate machine learning crystal stability predictions.
Nature Machine Intelligence, 7(6):836–847, 2025.

7



[38] B. Rohr, H. S. Stein, D. Guevarra, Y. Wang, J. A. Haber, M. Aykol, S. K. Suram, and J. M. Gre-
goire. Benchmarking the acceleration of materials discovery by sequential learning. Chemical
science, 11(10):2696–2706, 2020.

[39] A. N. Rubungo, K. Li, J. Hattrick-Simpers, and A. B. Dieng. Llm4mat-bench: benchmarking
large language models for materials property prediction. Machine Learning: Science and
Technology, 6(2):020501, 2025.

[40] B. Settles. From theories to queries: Active learning in practice. In Active learning and
experimental design workshop in conjunction with AISTATS 2010, pages 1–18. JMLR Workshop
and Conference Proceedings, 2011.

[41] M. Towers, A. Kwiatkowski, J. Terry, J. U. Balis, G. De Cola, T. Deleu, M. Goulão,
A. Kallinteris, M. Krimmel, A. KG, et al. Gymnasium: A standard interface for reinforcement
learning environments. arXiv preprint arXiv:2407.17032, 2024.

[42] A. Wang, H. Liang, A. McDannald, I. Takeuchi, and A. G. Kusne. Benchmarking active
learning strategies for materials optimization and discovery. Oxford Open Materials Science,
2(1):itac006, 2022.

[43] H.-C. Wang, S. Botti, and M. A. Marques. Predicting stable crystalline compounds using
chemical similarity. npj Computational Materials, 7(1):12, 2021.

[44] Z. Wang, H. Huang, H. Zhao, C. Xu, S. Zhu, J. Janssen, and V. Viswanathan. Dreams:
Density functional theory based research engine for agentic materials simulation. arXiv preprint
arXiv:2507.14267, 2025.

[45] C. Zeni, R. Pinsler, D. Zügner, A. Fowler, M. Horton, X. Fu, Z. Wang, A. Shysheya, J. Crabbé,
S. Ueda, et al. A generative model for inorganic materials design. Nature, 639(8055):624–632,
2025.

8



A Implementation Details

A.1 MADE Pseudocode

Listing 1 contains pseudocode for the base classes of the MADE benchmark. The Oracle, Environment
and Agent base classes are flexible to allow for different methods to be implemented. We make use of
pymatgen [31] classes to use phase diagrams as the environment state and convex hull computations.

Listing 1: Pseudocode for key classes in MADE
class Oracle:

def __init__(self , model):
self.model = model # e.g., MLIP , DFT , experimental oracle

def predict_energy(self , structure):
energy = self.model.predict(structure)
return energy

class Environment:
def __init__(self , oracle , initial_known_structures ,

chemical_system):
self.oracle = oracle
self.chemical_system = chemical_system
self.known_structures = initial_known_structures
self.energies = {s: self.oracle.predict_energy(s)

for s in initial_known_structures}
self.update_convex_hull ()

def step(self , structure):
energy = self.oracle.predict_energy(structure)
self.known_structures.append(structure)
self.energies[structure] = energy
self.update_convex_hull ()
return energy

def update_convex_hull(self):
self.convex_hull = ConvexHull(self.known_structures , self.

energies)

def reset(self):
self.known_structures.clear ()
self.energies.clear()
self.update_convex_hull ()

class Agent:
def __init__(self , chemical_system):

self.chemical_system

self.policy = Policy(chemical_system)

def predict_next_structure(self , known_structures , energies):
next_structure = self.policy(known_structures , energies)
return next_structure

oracle = Oracle(model)
env = Environment(oracle , initial_known_structures , chemical_system)
agent = Agent(chemical_system)

for t in range(query_budget):
structure = agent.predict_next_structure(env.known_structures ,

env.energies)
energy = env.step(structure)
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B Further Information on Baseline Experiment

In Section 4 we show results for two chemical system datasets. We present implementation details
for this experiment in Section B.1 and show more detailed results in Section B.2.

B.1 Implementation Details

B.1.1 Environment

Oracle We use orb-v3-conservative-inf-omat from the ORB MLIP family [36] as our for-
mation energy oracle. All structures were relaxed (including unit cell parameters) using the FIRE
optimizer [7] for a maximum of 100 steps or a maximum total projected force on the atoms (fmax) of
0.01 in ase [20] before evaluating the potential energy.

Chemical System and Initial Structures Ground truth structures for elemental end-member
structures and other stable structures were retrieved from mixed GGA and GGA+U functionals using
the Materials Project API [14]. The energies of these structures were recomputed using the Oracle
and saved as the initial environment state. A stability tolerance ϵ = 0.01 eV/atom was used to classify
newly proposed structures as stable with respect to the convex hull. pymatgen StructureMatcher
was used to check whether proposed structures were novel.

B.1.2 Structure Generators

For both generators, we sample 8 candidates before using the acquisition function to choose which
one to evaluate.

Random Structures were generated by first sampling a composition. First, the total number of
atoms in the composition was sampled up to a maximum of 12, then these were randomly distributed
to the constituent elements. Then these atoms were placed uniformly at random in the unit cell in
fractional coordinates. The lattice parameters a, b, c were sampled from the uniform distribution
U(3, 15) Å, and angles α, β, γ from U(60, 120) degrees.

MatterGen We use the default MatterGen command line interface from the GitHub repository to
generate structures2. We use the pretrained chemical_system model to condition on the chemical
system in question, and use a diffusion guidance parameter of 2.0.

B.1.3 Acquisition Functions

Random We choose from the candidates generated uniformly at random.

Diversity For each candidate, we compute the Euclidean distance in (normalized) composition
space to all of the previously observed structures (stable or previously tried). We then choose the
candidate with the maximum minimum distance to a previously seen structure. This biases sampling
in chemical compositions not previously explored.

B.2 Additional Results

Number of Unique Proposed Structures Table 2 shows the number of unique compounds pro-
posed by each policy (using pymatgen StructureMatcher [31]). Naturally, we find that using
MatterGen as a structure generator sometimes leads to the same structures being proposed, as it has
been trained on structures in this family. This can be mitigated by using an acquisition function that
accounts for the structures seen already, such as Diversity.

Ground Truth Phase Diagrams Figure 2 shows the ground truth phase diagrams for the chemical
systems in the experiments from Materials Project [14].

2https://github.com/microsoft/mattergen/releases/tag/v1.0.3
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Table 2: Baseline results showing the average number of unique compounds proposed over 20 queries,
with standard deviation over 5 episodes in parentheses.

Structure
Generator

Acquisition
Function

Na-O
(H0: El.)

Na-O
(H0: MP)

Co-Nb-Sn
(H0: El.)

Co-Nb-Sn
(H0: MP)

Random Random 19.8 (0.4) 19.8 (0.4) 19.8 (0.4) 20.0 (0.0)
Random Diversity 20.0 (0.0 20.0 (0.0) 20.0 (0.0) 20.0 (0.0)
MatterGen Random 18.0 (2.2) 17.8 (1.3) 19.6 (0.5) 19.0 (1.3)
MatterGen Diversity 19.8 (0.4) 19.2 (0.7) 20.0 (0.0) 20.0 (0.0)

(a) Na-O. (b) Co-Nb-Sn.

Figure 2: Ground truth phase diagrams from Materials Project [10].

Example Observed Phase Diagrams Here we show example phase diagrams generated from
the structures sequentially proposed by the baseline policies. We see that the diversity acquisition
strategy samples the space more effectively, often leading to more stable structures found in Figure
3, and even finds a few new stable structures (within tolerance) on the Materials Project convex
hull (Figure 4). Random structure generation does not perform as well, often producing unstable
structures (Figure 5), highlighting the need for intelligent agents.

(a) Random acquisition. (b) Diversity acquisition.

Figure 3: MatterGen acquired phase diagrams starting from elemental end-members in Co-Nb-Sn.
Diversity acquisition samples the space more effectively.
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(a) Na-O. (b) Co-Nb-Sn.

Figure 4: MatterGen with Diversity finds new (within tolerance) stable structures starting from
Materials Project convex hull (Figure 2).

(a) Na-O, starting from Materials Project convex hull. (b) Co-Nb-Sn, starting from elemental end-members.

Figure 5: Random structure generation does not find new stable structures.
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