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Abstract

We study a repeated information design problem faced by an informed sender who
tries to influence the behavior of a self-interested receiver. We consider settings
where the receiver faces a sequential decision making (SDM) problem. At each
round, the sender observes the realizations of random events in the SDM problem.
This begets the challenge of how to incrementally disclose such information to
the receiver to persuade them to follow (desirable) action recommendations. We
study the case in which the sender does not know random events probabilities, and,
thus, they have to gradually learn them while persuading the receiver. We start by
providing a non-trivial polytopal approximation of the set of sender’s persuasive
information structures. This is crucial to design efficient learning algorithms. Next,
we prove a negative result: no learning algorithm can be persuasive. Thus, we
relax persuasiveness requirements by focusing on algorithms that guarantee that
the receiver’s regret in following recommendations grows sub-linearly. In the
full-feedback setting—where the sender observes all random events realizations—,
we provide an algorithm with O(\/T) regret for both the sender and the receiver.
Instead, in the bandit-feedback setting—where the sender only observes the realiza-
tions of random events actually occurring in the SDM problem—, we design an al-
gorithm that, given an @ € [1/2, 1] as input, ensures O(T*) and O(T™ax{1=31})
regrets, for the sender and the receiver respectively. This result is complemented
by a lower bound showing that such a regrets trade-off is essentially tight.

1 Introduction

Bayesian persuasion [Kamenica and Gentzkow, 2011] (a.k.a. information design) is the problem
faced by an informed sender who wants to influence the behavior of a self-interested receiver via the
provision of payoff-relevant information. This captures the problem of “who gets to know what”,
which is fundamental in all economic interactions. Thus, Bayesian persuasion is ubiquitous in real-
world problems, such as, e.g., online advertising [[Bro Miltersen and Sheffet, 2012], voting [[Alonso
and Camaral 2016} |Castiglioni et al., 2020a} |Castiglioni and Gatti, [2021], traffic routing [Bhaskar
et al 2016, (Castiglioni et al., 2021al], security [Rabinovich et al., 2015} Xu et al., |2016], and
marketing [Babichenko and Barman, 2017} /Candogan,[2019].

We study Bayesian persuasion in settings where the receiver plays in a sequential decision making
(SDM) problem. An SDM problem is characterized by a tree structure made by: decision nodes, where
the receiver takes actions, and chance nodes, in which partially observable random events occur. The
sender perfectly observes the realizations of random events, and their goal is to incrementally disclose
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the acquired information to induce the receiver towards desirable outcomes for the sender. This is not
an easy feat when the sender and the receiver have different utilities. In order to do so, the sender
commits to a signaling scheme specifying a probability distribution over action recommendations for
the receiver at each decision node. Specifically, the sender commits to a persuasive signaling scheme,
meaning that the receiver is incentivized to follow recommendations. We consider the case of a
farsighted receiver, meaning that they take into account all the possible future events when deciding
whether to deviate or not from recommendations at each decision node.

With some notable exceptions (such as, e.g., [Zu et al., 2021]), Bayesian persuasion models in the
literature make the stringent assumption that both the sender and the receiver know the prior, which,
in our setting, is defined by the probabilities associated with random events in the SDM problem. We
relax such an assumption by considering an online learning framework in which the sender, without
any knowledge of the prior, repeatedly interacts with the receiver to gradually learn the prior while
still being persuasive.

A concrete example of a setting that fits our model is that of a navigation app sending route recommen-
dations to a driver. The app (sender) gets to know information about traffic congestion sequentially,
since it might change over time, especially for long routes. Moreover, at any point in time, the app
can send recommendations to the driver (receiver), who in turn has to take decisions on which routes
to choose sequentially. The app and the driver might have different utilities. For example, the app
may want to maximize overall traffic congestion, while the driver has to minimize their travel time.
Moreover, the receiver interacts with the app multiple times and, thus, the application must provide
good recommendations to the receiver, otherwise they would switch to another navigation app.

Original contributions. Our goal is to design online learning algorithms that are no-regret for
the sender, while being persuasive for the receiver. We start by providing a non-trivial polytopal
approximation of the set of sender’s persuasive signaling schemes. This will be crucial in designing
efficient (i.e., polynomial-time) learning algorithms, and it also shows how a sender-optimal signaling
scheme can be found in polynomial time in the offline version of our problem, which may be of
independent interest. Next, we prove a negative result: without knowing the prior, no algorithm can
be persuasive at each round with high probability. Thus, we relax persuasiveness requirements by
focusing on learning algorithms that guarantee that the receiver’s regret in following recommendations
grows sub-linearly, while guaranteeing the same for sender’s regret. First, we study the full-feedback
case, where the sender observes the realizations of all the random events that may potentially happen
in the SDM problem. In such a setting, we provide an algorithm with O(\/T) regret for both the
sender and the receiver. Then, we focus on the bandit-feedback setting, where the sender only
observes the realizations of random events on the path in the tree traversed during the SDM problem.
In this case, we design an algorithm that achieves O(T*) sender’s regret and O(T™#{e1=35})
receiver’s regret, for any « € [1/2, 1] given as input. The crucial component of the algorithm is a
non-trivial exploration phase that uniformly explores the tree defining the SDM problem to build
suitable estimators of the prior. This is needed since, with bandit feedback, playing a signaling
scheme may provide insufficient information about its persuasiveness. Finally, we provide a lower
bound showing that the regrets trade off achieved by our algorithm is tight for o € [1/2,2/3].

Related works. Some works addressed Bayesian persuasion in Markov decision processes (MDPs).
Gan et al. [2022] and /Wu et al.|[2022]] show how to efficiently find a sender-optimal policy when the
receiver is myopic (i.e., it only optimizes one-step rewards) in MDPs with infinite and finite horizon,
respectively. Moreover, the former assume that the environment is known, while the latter do not.
These works considerably differ from ours, since we assume a farsighted receiver and also model
partial observability of random events Another work close to ours is [Zu et al., 2021], which studies
a (non-sequential) persuasion problem in which the sender and the receiver do not know the prior and
interact online. [Zu et al.| [2021] provide a persuasive learning algorithm, while, in our model, we
show that the ignorance of the prior precludes the possibility of committing to persuasive signaling
schemes, and, thus, we need to resort to new techniques to circumvent the issue. Another line of
research, that uses similar techniques as the one employed in this work, studies learning in SDM
problems while satisfying unknown constraints [[Bernasconi-de-Luca et al.,[2021, |Bernasconi et al.,
2022]. Finally, Celli et al. [2020a] study Bayesian persuasion with multiple receivers interacting in an
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imperfect-information sequential game. Differently from ours, their model adopts a different notion
of persuasiveness, known as ex ante persuasiveness, and it assumes that the prior is known. Other
works study learning problems in which the sender does not know the receivers’ payoffs (but knows
the prior); see, e.g., [Castiglioni et al.|[2020b, 2021b} 2022].

2 Preliminaries

2.1 Sequential decision making problems

An instance of an SDM problem is defined by a tree structure, utilities, and random events probabilities.
The tree structure has a set of nodes H := Z U Hg U H,., where: Z contains all the ferminal nodes in
which the problem ends (corresponding to the leaves of the tree), H 4 is the set of decision nodes in
which the agent acts, while H.. is the set of chance nodes where random events occur. Given any
non-terminal node h € H \ Z, we let A(h) be the set of arcs outgoing from h. If h € H4, then
A(h) is the set of receiver’s actions available at h, while, if h € H., then A(h) encodes the possible
outcomes of the random event occurring at h. Furthermore, the utility function w : Z — [0, 1] defines
the agent’s payoff u(z) when the problem ends in terminal node z € Z. Finally, each chance node
h € M. is characterized by a probability distribution s, € A 4(5) over the possible outcomes of the

corresponding random event, with p(a) denoting the probability of action a € A(h)

In an SDM problem, the agent has imperfect information, since they do not perfectly observe the
outcomes of random events. Thus, the set of decision nodes H 4 is partitioned into information sets
(infosets for short), where an infoset I C 7, is a subset of decision nodes that are indistinguishable
for the agent. We denote the set of infosets as Z. For every infoset I € Z and pair of nodes i, h’ € I,
it must be the case that A(h) = A(R') =: A(I), otherwise the agent could distinguish between
the two nodes. We assume that the agent has perfect recall, which means that they never forget
information once acquired. Formally, this is equivalent to assume that, for every infoset I € Z, all the
paths from the root of the tree to a node ~ € I identify the same ordered sequence of agent’s actions.

2.2 Bayesian persuasion in sequential decision making problems

We study Bayesian persuasion in SDM (BPSDM) problems. These extend the Bayesian persuasion
framework [Kamenica and Gentzkow, |[2011] to SDM problems by introducing an exogenous agent
that acts as a sender by issuing signals to the decision-making agent (the receiver)E] By following
the Bayesian persuasion terminology, the probability distributions p, for each chance node h are
collectively referred to as the prior. Thus, the sender observes the realizations of random events
occurring in the SDM problem and can partially disclose information to influence the receiver’s
behavior. Moreover, the sender has their own utility function defined over terminal nodes, denoted as
f+ Z —[0,1], and their goal is to commit to a publicly known signaling scheme that maximizes
their utility in expectation with respect to the prior, the signaling scheme, and the receiver’s strategy.

Formally, a signaling scheme for the sender defines a probability distribution ¢, € Ag ) at each
decision node h € H4, where S(h) is a finite set of signals available at h. During the SDM problem,
when the receiver reaches a node h € #H,4 belonging to an infoset I € Z, the sender draws a signal
s ~ ¢ and communicates it to the receiver. Then, based on the history of signals observed from the
beginning of the SDM problem (s included), the receiver computes a posterior belief over the nodes
belonging to the infoset I and plays so as to maximize their expected utility in the SDM sub-problem
that starts from I, taking into account the just acquired information.

As customary in these settings, a simple revelation-principle-style argument allows us to focus
on signaling schemes that are direct and persuasive [Kamenica and Gentzkow, [2011, |Arieli and
Babichenko| 2019]. In particular, a signaling scheme is direct if signals correspond to action
recommendations, namely S(h) = A(h) for all h € H,4. A direct signaling scheme is persuasive if
the receiver is incentivized to follow action recommendations issued by the sender. Moreover, we
assume that, if the receiver does not follow action recommendations at some decision node, then
the sender stops issuing recommendations at nodes later reached during the SDM problem. This

3For a finite set X we denote with A x the set of probability distributions over X
4Appendixshows that BPSDM reduces to classical Bayesian persuasion when there is no sequentiality.



is without loss of generality. We refer to [[Von Stengel and Forges|, 2008, |[Morrill et al.,2021] for a
discussion on a similar problem in the field of correlation in sequential games.

2.3 The sequence-form representation

The sequence form is a commonly-used, compact way of representing (mixed) strategies in SDM
problems [Koller et al., [1996]. In this work, the sequence-form representation will be employed for
receiver’s strategies, and to encode the signaling schemes and priors, as we describe in the following.

Receiver’s strategies. Given any h € H, we let 0,.(h) be the ordered sequence of receiver’s actions
on the path from the root of the tree to node h. By the perfect recall assumption, given any infoset
I € Z,itholds that o,.(h) = o,.(h’) =: 0,-(I) for every pair of nodes h, h’ € I. Thus, we can identify
sequences with infoset-action pairs, with 0 = (I, a) encoding the sequence of actions obtained by
appending action a € A([I) at the end of o,.(I), for any infoset I € Z. Moreover, & denotes the
empty sequence. Hence, the receiver’s sequences are ¥, := {(I,a) | I € Z,a € A(I)} U{2}. In the
sequence-form representation, mixed strategies are defined by specifying the probability of playing
each sequence of actions. Thus, a receiver’s strategy is represented by a vector « € [0, 1] I=r1 where
x[o] encodes the realization probability of sequence o € 3,.. Furthermore, a sequence-form strategy
is well-defined if and only if it satisfies the following linear constraints:

z[o]=1 and x[o,(I)] = X ca@lor(I)a] VIETL

We denote by X the polytope of all receiver’s sequence-form strategies. We will also need to work
with the sets of receiver’s strategies in the SDM sub-problem that starts from an infoset I € 7,
formally defined as X, ; == {x € X, | z[o.(I)] = 1}.

Signaling schemes. We represent signaling schemes in sequence form by leveraging the fact that the
sender can be thought of as a perfect-information agent who plays at the decision nodes of the SDM
problem, since their actions correspond to recommendations for the receiver. Thus, since sender’s
infosets correspond to decision nodes, their sequences X := {(h,a) | h € Hq,a € A(h)} U {2}.
Then, we denote the polytope of (sequence-form) signaling schemes as ® C [0, 1)/*|, where each
signaling scheme is represented as a vector ¢ € [0, 1] ] satisfying:

¢lo]=1 and @los(h)] = ZaGA(h) @los(h)a] Vh € Ha,

where, similarly to o,.(h) for the receiver, o4(h) denotes the sender’s sequence identified by h € H.
We also define IT := & N {0, 1}'28‘ as the set of deterministic signaling schemes, which are those
that recommend a single action with probability one at each decision node.

Priors. We also encode prior probability distributions p; by means of the sequence form. Indeed,
these can be though of as elements of a fixed strategy played by a (fictitious) perfect-information
agent that acts at chance nodes. Thus, for such a chance agent, we define X, X,, and o.(h) as
their counterparts previously introduced for the receiver. Moreover, in the following, we denote by
p* € X, the (sequence-form) prior, recursively defined as follows:

p[@] =1 and p*[o.(h)a] = p*lo.(h)|pn(a) Yh € H.,Va € A(h).

Ordering of sequences. For the sake of presentation, we introduce a partial ordering relation
among sequences. Given two sequences o = (I,a) € £, and ¢’ = (J,b) € X, we write 0 < ¢’
(read as o precedes o), whenever there exists a path in the tree connecting a node in I to a node in J,
and such a path includes action a. We adopt analogous definitions for sequences in X and 3.

3 Learning to persuade

In this work, we relax the strong assumption that both the sender and the receiver know the prior p*
by casting the BPSDM problem into an online learning framework in which the sender repeatedly
interacts with the receiver over a time horizon of length T'. At each round ¢ € [T, the interaction

>We refer the reader to Appendixfor an example of SDM problem and its sets of sequences.



goes as followsﬂ (i) the sender commits to a signaling scheme ¢, € ; (ii) a vector y, € {0, 1}|Zc|
encoding realizations of random events is drawn according to p*; (iii) the sender and the receiver play
an instance of the (one-shot) BPSDM problem (detailed in Section [2.2), in which the sender commits
to ¢,, random events at chance nodes are realized as defined by y,, and the receiver sticks to the
recommendations issued by the sender; and (iv) the sender observes a feedback on the realization of
random events at chance nodes, which can be of two types: full feedback when the sender observes vy,
which specifies the realizations of all the random events at chance nodes that are possibly reachable
during the SDM problem; bandit feedback when the sender observes the terminal node z; € Z
reached at the end of the SDM problem. The latter is equivalent to observing the realizations of
random events at the chance nodes that are actually reached during the SDM problem, namely o.(z;).

By letting ®°(u*) be the set of persuasive signaling schemes, i.e., such that the receiver is incentivized
to following recommendations (a formal definition is provided in Definition 2), the goal of the sender
is to select a sequence of signaling schemes, namely ¢, .. ., ¢, which maximizes their expected
utility, while guaranteeing that each signaling scheme ¢, is persuasive, namely ¢, € ®°(u*).

We measure the performance of a sequence ¢, .. ., ¢ of signaling schemes by comparing it with
an optimal (fixed) persuasive signaling scheme. Formally, given a signaling scheme ¢ € ®, we first
define U (¢, u*), respectively F'(¢p, u*), as the expected utility achieved by the receiver, respectively
the sender, whenever the former follows action recommendations. These can be expressed as linear
functions of ¢, which, for any p € X, are defined as follows:

Ulg,p) =) mloc(@los()ulz), F(d,m) = ploc(2)]dlos(2)lf (2).

zEZ zEZ

Finally, by letting ¢* € argmaxgego (y+) £ (¢, u*) be an optimal (fixed) persuasive signaling
scheme, the sender’ performance over 1" rounds is measured by the (cumulative) sender’s regret:

Ry = Siey (F@" 1) = Fley, 1%)).

The goal is to design learning algorithms (for the sender) which select sequences of persuasive
signaling schemes such that Ry grows asymptotically sub-linearly in 7', namely Ry = o(T).

4 On the characterization of persuasive signaling schemes

4.1 A local decomposition of persuasiveness

In this section, we formally introduce the set of persuasive signaling schemes ®°(u*) as the set
of signaling schemes for which the receiver’s expected utility by following recommendations is
greater than the one provided by an optimal deviation policy (DP) In addition, we show how to
decompose any DP into components defined locally at each infoset, which will be crucial in the
following Section Intuitively, a DP for the receiver is specified by two elements: (i) a set of
deviation points in which the DP prescribes to stop following action recommendations; and (ii) the
continuation strategies to be adopted after deviating from recommendations.

We represent deviation points by vectors w € {0, 1}/**!, which are defined so that w[o] = 1 if and
only if the DP prescribes to deviate upon observing the sequence of action recommendations o € ...
Moreover, by leveraging the w.l.o.g. assumption that the sender stops issuing recommendations after
the receiver deviated from them, we focus on DPs such that each path from the root of the tree to a
terminal node involves only one deviation point. As a result, the set of all valid vectors w € {0, 1}1>|

is formally defined as  := {w € {0, 1} Y s oo @] <1 Vz e Z} .

We represent the continuation strategies of DPs by introducing the set of continuation strategy profiles,
denoted as P = XU:(I,G,)EZT X,.1. A continuation strategy profile p € P, with p = (p,)oes,,

defines a strategy p, € X for every receiver’s sequence o = (I,a) € X,. Intuitively, p, is the
strategy for the SDM sub-problem starting from infoset I that is used by the receiver after deviating
upon observing sequence o € Y,.. As a result, any pair (w, p) € Q x P specifies a valid DP; formally:

SThroughout this work, for n € N, we denote with [n] the set {1,...,n}.
"For ease of exposition, all the definitions and results in this section are provided for the prior p*. It is
straightforward to generalize them to the case of a generic p € X..



Definition 1 (Deviation policy). Given a vector w € ) and a profile p € P, the (w, p)-DP prescribes
to follow sender’s recommendations until action a is recommended at infoset I for some sequence
o = (I, a) such that wlc| = 1; from that point on, it prescribes to play according to strategy p,.

We denote by U“7? (¢, u*) the receiver’s expected utility obtained with a (w, p)-DP, so that we can
state the following formal definition of persuasive signaling schemes.

Definition 2 (Persuasiveness). A signaling scheme ¢ € ® is e-persuasive, namely ¢ € ®S(u*), if

U7P(d,pu*) —U(p,u*) <e. 1
whax (o, ") —U(p,pn*) < e (1

Moreover, a signaling scheme ¢ € ® is persuasive, namely ¢ € °(u*), if it is 0-persuasive.

Intuitively, the above definition states that a signaling scheme is e-persuasive if the receiver’s expected
utility by following recommendations is at most e less than the one obtained by an optimal DP, which
is a DP maximizing receiver’s expected utility.

Our local decomposition of DPs is based on suitably-defined, simple deviation policies, which
we call single-point DPs (SPDPs). These are a special case of DPs that stop following sender’s
action recommendations only when a specific single infoset is reached and a particular action is
recommended therein. SPDPs are formally defined as follows:

Definition 3 (Single-point deviation strategy). Given a receiver’s sequence o = (I,a) € X, and a
receiver’s strategy p, € X, 1 for the SDM sub-problem starting from infoset I, the (o, p,,)-SPDP
prescribes to follow sender’s recommendations until action a is recommended at infoset I, from that
point on, the strategy prescribes to play according to p,,.

We denote by U, _,,,_(¢, pu*) the receiver’s expected utility obtained by following an (o, p,,)-SPDP.
The following theorem provides the key result underlying our decompositionﬂ It shows that the dif-
ference between the utility achieved by a (w, p)-DP and that obtained by following recommendations
can be decomposed into the sum over all the sequences o € X,. of analogous differences defined for
the (o, p,, )-SPDPs, where each difference is weighted by w(o].

Theorem 1. Given a signaling scheme ¢ € ® and a (w, p)-DP, it holds:
U0, 1) = U, 1) = Sz, lo) (Uss, (6, 147) = Ul 17) ).

4.2 A polytopal approximation of the set of persuasive signaling schemes

In the following, we show how to exploit Theorem I to provide an approximate characterization
of the set ®¢(p*) using a polynomially-sized polytope. First, we state a corollary of TheoremE
showing that persuasiveness can be bounded by suitably defined SPDPs. Formally

Corollary 1. Given a signaling scheme ¢ € ®, the following holds:

+
Uw—)p *\ U * < Uo- , *\ U , * .
(w.0)E0xP CRORUICIEDS Lfggl —p, (P 17) —U(d, 1 )}

By exploiting Corollary [I] we introduce the following definition of e-persuasive polytope (LemmalT]
justifies the term polytope), as the set of signaling schemes for which there is no (o, p, )-SPDP that
achieves a receiver’s utility that exceeds by more than €/|3,.| that of following recommendations.

Definition 4 (Persuasive polytope). The e-persuasive polytope is defined as:

M) = {9 € @] max Upop, (6.1") = U(d.1") < /[%,| Vo €3, f.

Moreover, we denote by A(u*) the 0-persuasive polytope.

As we show in the following lemma, A, (p*) is an efficiently-representable polytope.

Lemma 1. The set A.(p*) can be described by means of a polynomial number of linear constraints.

8 All the proofs are provided in the Appendices @ @ and

Given any z € R, we let [z]T := max(z, 0).



The following lemma shows that the e-persuasive polytope is contained in ®(p*), and that the set of
persuasive signaling schemes is contained in the former. Formally:

Lemma 2. It is always the case that ®°(pu*) = A(p*) C A (pu*) C D(pw*).

Lemma also implies that the polytope A(p*) exactly characterizes the set of persuasive signaling
schemes ®°(p*). Thus, by adding the maximization of the sender’s expected utility F'(¢, p*) on top
of the linear constraints describing A(p*), we obtain a polynomially-sized linear program for finding
an optimal sender’s signaling scheme in any instance of the BPSDM problem in which p* is known.

Theorem 2. The BPSDM problem can be solved in polynomial time when the prior p* is known.

S Always being persuasive is impossible: a relaxation is needed

In this section, we prove that it is impossible to design an algorithm that returns a sequence of
persuasive signaling schemes for a generic BPSDM problem.

Theorem 3 (Impossibility of persuasiveness). There exists a constant v € (0,1) such that no
algorithm can guarantee to output a sequence ¢, ..., o of signaling schemes such that, with
probability al least vy, all the signaling schemes ¢, are persuasive.

Notice that this result is in contrast with what happens in non-sequential Bayesian persuasion (see the
work by Zu et al. [2021]), where it is possible to design no-regret algorithms that output sequences of
signaling schemes that are guaranteed to be persuasive with high probability. Theorem[3 motivates
the introduction of a less restrictive requirement on the signaling schemes. In particular, we look for
algorithms that output signaling schemes ¢, . . ., ¢, such that the expected utility loss incurred by
the receiver by following recommendations rather than playing an optimal DP is small. To capture
such a requirement, we introduce the following definition of (cumulative) receiver’s regret:

Vr = ZtG[T] (w;l)lggXPU“’_}p((bh B — Zte[T] Uy, u*).

Therefore our goal becomes that of designing algorithms guaranteeing that the cumulative receiver’s
regret grows sub-linearly in 7', namely Vi = o(T'), while continuing to ensure that Ry = o(T).

In Sections [6|and [7] we design algorithms achieving sub-linear V and R for the learning problem
described in Section The algorithms implement two functions: (i) SELECTSTRATEGY (), which, at
each t € [T, draws a signaling scheme ¢, € ® on the basis of the internal state of the algorithm;
and (ii) UPDATE(o; ), which modifies the internal state on the basis of the observation o; received as
feedback. Each algorithm alternates these two functions as the interaction between the sender and the
receiver unfolds as described in Section [3. Specifically, under full feedback the sender observes y,
and calls UPDATE(y, ), while in the bandit feedback it observes z; and calls UPDATE(z;).

6 Learning with full feedback

In this section, we will discuss the online problem faced

by the sender that wants to optimize online its utility ~Algorithm 1 Full-feedback algorithm
F(¢, p*) while learning the unknown prior p*. We start  —¢ oo e ATEGY():

b)f providing a learnir}g algorithm (Algorithm[T) working b, «— arg  max_ F(¢, i)
with full feedback, i.e., when the sender observes the PEAg, (Be)
realizations of all the possible random events. The main return ¢,

idea of the algorithm is to choose signaling schemes ¢,
that belong to suitable sets Ag, (fi,) which are designed ~ function UPDATF;(yt):
to be “close” to the set ®°(u*) of persuasive signaling ~ -

schemes. At each round ¢ € [T, Algorithm I defines Prupalol TZ::1 ylo]/ o € X
the desired set as follows. First, it maintains an estimate
B, of p*; formally, it defines a radius €; such that the
event £ = {||fi; — *]|o < & Vt € [T]} holds with
probability at least 1 — §. Second, it defines a parameter
B¢ such that, conditionally to the realization of the event &, the following two conditions hold: (i)
the decision space Ag, (f1,) contains the optimal signaling scheme ¢*; (i) Agp, (1*) contains the

1 2T (2.|/6
crpr ¢ o/ 12RCTIE/6)

Br1 < 2| Z]||Er e




signaling scheme ¢,. Intuitively, the first condition is needed to have low sender’s regret, while the
second one yields signaling schemes that are approximately persuasive

The polytopal approximation that we provide in Section[4.2]plays a crucial role in the complexity of
Algorithm|[1] Specifically, it allows it to select the desired ¢, in polynomial time by optimizing over
the set Ag, (11,), which can be done efficiently. The use of the set Ag, (k) over @3 (L) is necessary
due to the fact that the latter is not known to admit an efficient representation. Formally:

Theorem 4. Given any § € (0, 1), with probability at least 1 — §, Algorithmguarantees:

Ry =0 (12V/Tlog (TIS1/9)), Vi = O (IS 21y/Tlog (T%1/3))

Moreover, the algorithm runs in polynomial time.

7 Learning with bandit feedback

In this section, we build on Algorithm E to
deal with bandit feedback, i.e., when at each
round ¢ € [T'] the sender only observes the ter-
minal node z; reached at the end of the SDM
problem. The main difficulties of such a set-

Algorithm 2 Bandit-feedback algorithm

function SELECTSTRATEGY():
if t < N then
o = (h,a) + argmingcs, C¢[o]

> First Phase

ting can be summarized by the following ob-
servations. First, the feedback z; only reveals
partial information about the prior, and such
information also depends on the selected sig-
naling scheme ¢,. Second, even if the sender
plays a signaling scheme ¢ € ® for an ar-
bitrarily large number of rounds, there is no
guarantee that they collect enough information
to tell whether ¢ € ®¢(u*) or not for some
€ > 0. Indeed, the persuasiveness of a signal-
ing scheme depends on all receiver’s utilities

Y5 20’ + os(h)
Choose ¢, € @ : ¢,[0'] =1
else > Second Phase
{—ar max max F(¢,
P & g (in) HECHD) (@: 1)

return ¢,

function UPDATE(2:):
Build path p, € {0,1}/7<! from oc(2¢)
Sample 7wy ~ ¢, s.t. p,[o] =1 =0 € B ()
for o € 3 (m;) do
Ct+1[0} — Ct[O'] +1

in the SDM problem, and some parts of the
tree may not be reached during a sufficiently
large number of rounds by committing to ¢.
Thus, any algorithm for the bandit-feedback
setting must guarantee a suitable level of ex-
ploration over the entire tree, so as to keep
track of the entity of the violation of persua-
siveness constraints.

~ C [o]
U‘t+1[‘7] — Ct:l[g] ZT;JEI p.[o]
log(4T'[%c|/9)

2C¢41l0]

Ce41(6) < {u]Iulo) = Bepr o)l < rsalo] Vo € B0}

el log(AT || /6
Bror = 2AZ|[%e]y BLgELEe)

€rr1lo]

We design a two-phase algorithm, whose pseudo-code is provided in Algorithm [2. The algorithm
takes as input the number N € [T'] of rounds devoted to the first phase guaranteeing the necessary
amount of exploration, as detailed in Section During this phase, the SELECTSTRATEGY ()
procedure implements an efficient deterministic uniform exploration policy, which builds an unbiased
estimator g1y of p*. This allows to restrict the space of feasible signaling schemes used in the
subsequent phase to those that are approximately persuasive, i.e., those in the set Ag, (Hy). In
Section[7.2] we discuss the second phase of the the algorithm, composed by the rounds ¢ > N, during
which the algorithm focuses on the minimization of sender’s regret by exploiting the optimism in
face of uncertainty principle. Finally, in Section we provide a lower bound on the trade-off
between sender’s and receiver’s regrets, matching the upper bounds achieved by Algorithm 2 for a
large portion of the trade-off frontier. This result formally motivates the necessity of the uniform
exploration which is performed in the first phase of the algorithm.

7.1 Minimizing the receiver’s regret

At each round ¢ € [T, the sender observes a terminal node z; € Z that uniquely determines a path
in the tree defining the SDM problem. We encode such a path by means of a vector p, € {0, 1}|EC|

1See Lemma@and in Appendix E]for the formal statements of these properties.



such that p,[o] = 1 if and only if the chance sequence o € %, lies on the path from the root of
the tree to z;, namely o < o.(z;). If the sender commits to a signaling scheme ¢, € ®, then it
is easy to see that, for every o = (h,a) € X, the element p,[o] is distributed as a Bernoulli of
parameter ¢, [05(h)]p*[o]. The crucial observation behind the design of our estimator is that, if the
sender commits to a deterministic signaling schemes 7r; € II at some round ¢ € [T, then for all the
chance sequences o € Y. that are compatible with 7, i.e., that can be observed when 7 is played,
we have that p,[o] is distributed as a Bernoulli of parameter p*[o]. Formally, a sequence o € 3,
is compatible with 7 if there exists a chance node h € H, and an outcome a € A(h) satisfying
o = (h,a) and 7:[o4(h)] = 1. This observation leads to the following result:

Lemma 3. For every deterministic signaling scheme 7 € 11, let
Y (m)={o=(h,a) €. |a€ Ah) Ar[os(h)] = 1}.
Then, during each round t < N of Algorithm[2} it holds E [p,[o]] = p*[o] for every o € X\ (7).

Thus, during the first phase, Algorithm |Z builds the desired estimator iy of u* as follows. At
each round ¢ < N, after observing the feedback z;, the algorithm samples a deterministic signaling
scheme 7, € II according to ¢, (the one actually selected at ¢), so that all the sequences o € X,
such that p,[0] = 1 (or, equivalently, o < o.(z¢)) belong to ¢(ﬂt)m Then, for every o € X (),
the algorithm updates the estimator component fi,[0] according to p,[o]. Since the probability of
visiting a sequence ¢ € ¥, depends on ¢, (and, thus, can be arbitrarily small), the first N rounds
must be carefully used to ensure that each sequence is explored at least N/|X.| times. To explore
a specific sequence o € X, we choose a signaling scheme ¢, such that o € X () for every
deterministic 7, ~ ¢,. The procedure described above is needed for minimizing the receiver’s regret,
since, in the second phase, the algorithm selects signaling schemes ¢, from Ag,, (i ). In particular,
as shown by the following lemma, Algorithm [2] guarantees that the receiver’s regret is upper bounded
by 25 at each round ¢ > N, since it defines €;[o] for each sequence o € X, so that the event
& = {|p*[o] — ,lo]| < eo] V(t,0) € [T] x .} holds with probability at least 1 — §/2.

Lemma 4. Under the event £, Algorithml%‘guarantees that ¢, € Aop, (1*) at each roundt > N.

7.2 Minimizing the sender’s regret

Algorithmalso needs to guarantee small sender’s regret. To do so, we would like that ¢* is a valid
pick for the algorithm, i.e., it belongs to A g, (1i,). However, differently from the full-feedback setting,
stopping exploration after the first N round does not guarantee optimal rates. In order to fix this issue,
in the second phase, the algorithm selects ¢, optimistically by maximizing the sender’s expected
utility F'(¢p, ) over both ¢ € Ag, (i) and p € Ci(8), where C,(9) is a suitably-defined confidence

set centered around [, such that {u* € C;(6)} = £, and, thus, it holds with high probability. This
guarantees that max,,cc, s) F(¢*, u) > F(¢*, u*). Formally:

Lemma 5. [f the event £ holds, then, for every round t > N, it holds that ¢* € Ag, (fi,) and
max,cc,(5) F(¢*, 1) > F(o*, u*).

Thus, F(¢p,, p*) = F(¢p,, ;) > max,ce,s5) F(@™, ) > F(¢*, u*) holds in the limit, implying
that F'(¢,, p*) converges to F'(¢*, u*) after sufficiently many rounds. Formally:
Theorem 5. Givenany § € (0,1) and N € [T, Algorithm[2| guarantees:

TZC TEC Ec
RTO<N+\/Iog( |6 >EC|T> and VTO<N+T|Z|\/10g( |(5 |>N|>’

with probability at least 1 — 0. Moreover, the algorithm runs in polynomial time.

In contrast to the case with full feedback, the optimization problem solved by Algorithm[2]belongs to
the class of bilinear problems, which are NP-hard in general [Hillar and Lim,[2013]. However, in
Theorem 5| we prove that our specific problem can be solved in polynomial time. Furthermore, notice
that Theorem takes as input the number NN of rounds devoted to the first phase. Given an o« > 1/2,
by choosing any N = | T | we get bounds of Ry = O(T%) and Vp = O(T™@x{e1-51),

""The sampling of 7r; € IT according to ¢, can be done efficiently by a straightforward modification of the
recursive procedure in|Farina et al.|[2021alb].



7.3 The lower bound frontier

We conclude by showing that the trade offs between V- and R
achieved by Algorithm [2]are essentially tight. Previously, we
provided an intuition as to why the algorithm needs to uniformly
explore the entire tree of the SDM problem. Here, we provide a
lower bound that corroborates such a statement. In particular, the
following theorem shows that, for any a € [1/2, 1], in order to ‘
guarantee a sender’s regret of the order of O(T%), it is necessary i |
to suffer a receiver’s regret of the order of Q(7~/ 2) :
Theorem 6. For any o € [1/2,1), there exists a constant v €

(0,1) such that no algorithm guarantees both Ry = o(T®) and Figure 1: Trade-off between Ry
Vi = O(Tl—a/Q) with probability greater than . and V7 in the bandit feedback.

Order of T in Vp

L
1

()1‘dgr of T'in Ry

Figure E shows on the horizontal axis the order of the T" term in R, while, on the vertical axis,
it shows the order of the 1" in V. The shaded area over the blue line shows the achievable trade
offs, while the marked red line shows the performances proved in Theorem E Thus, we show
that Algorithm 2 matches the lower bound for a € [1/2,2/3]. However, when a € [2/3,1], the
guarantees proved in Theorem 5] diverge from the ones proved in the lower bound. This is due to the
N = |T*] component in the receiver’s regret that becomes dominant when « > 2/3. We conjecture
that it is possible to reduce this term to v/N, hence matching the lower bound of Theorem |§ The
reason for such a gap between the lower and upper bounds is that, during the first phase, Algorithm 2]
utilizes signaling schemes without taking into account their persuasiveness, thus incurring in large
receiver’s regret during the first steps. We leave as future work addressing the question of whether it is
possible to design exploration strategies by only using approximately-persuasive signaling schemes.
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