Database-Centric NL2SQL

Anonymous ACL submission

Abstract

Existing NL2SQL systems rely heavily on
LLMs, prompting them with database schema
descriptions. However, real-world databases of-
ten contain complex schemas, ambiguous nam-
ing, and schema-incompliant instances, making
accurate SQL generation challenging. Addi-
tionally, recent trends of using long prompts
and generating multiple candidate queries con-
tribute to high computational costs.

To mitigate these issues, we propose two
Database-Centric techniques: View-based Op-
timization, which simplifies schema representa-
tion using database views, and Database-as-a-
Tool, which leverages database functionalities
to refine SQL queries.! Our approach achieves
an execution accuracy of 70.47% on the BIRD
benchmark, comparable to existing NL2SQL
methods, while greatly reducing input tokens
by 17x to 374x.

1 Introduction

Interacting with databases through natural language
marks a significant paradigm shift in how users ac-
cess and manage data. Natural Language to SQL
(NL2SQL), which translates natural language ques-
tions into SQL queries, democratizes non-expert
users to query and manipulate databases using ev-
eryday language. This innovation has significant
potential for business applications by empowering
stakeholders to analyze data and derive actionable
insights. The rise of large language models (LLMs)
has greatly advanced NL2SQL frameworks, im-
proving execution accuracy by leveraging contex-
tual understanding to bridge the gap between natu-
ral language questions and SQL queries (Gao et al.,
2024b; Pourreza et al., 2024; Maamari et al., 2024;
Talaei et al., 2024; Pourreza and Rafiei, 2024; Gao
et al., 2024a; Zhang et al., 2023a).

Existing LLM-empowered NL2SQL frame-
works typically follow a structured pipeline com-

'The source code will be released after publication.

prising three stages: schema linking, SQL gener-
ation, and refinement. Schema linking maps key
terms from a natural language question to relevant
database components, such as tables and columns.
SQL generation then translates the natural language
question into a syntactically and semantically valid
SQL statement. Finally, the refinement stage cor-
rects errors to ensure that the generated SQL state-
ment is executable and aligns with the user’s intent.

Despite significant progress, adapting NL2SQL
frameworks for real-world applications presents
several limitations. (IL1) One key issue is the com-
plexity of database schemas (Floratou et al., 2024;
Li et al., 2024a; Zhang et al., 2024b), which in-
creases the amount of information LLMs must pro-
cess when generating SQL queries. While detailed
table and column descriptions aid comprehension,
large schemas with numerous interrelationships am-
plify computational overhead. This not only height-
ens computational overhead but also makes schema
processing more resource-intensive. Thus, an alter-
native representation is required to present schemas
in a more structured and manageable way. (L2)
Moreover, while recent LLMs excel in reasoning
based on the given prompt and pre-trained knowl-
edge, they overlook real-world database structures
and therefore often generate incorrect SQL queries.
Specifically, LLMs cannot fully comprehend the
structure of an actual database, as its concrete prop-
erties cannot be inferred solely from trivial schema
information (e.g., table and column names, descrip-
tions, and sample values). For instance, they may
struggle to infer one-to-one or one-to-many rela-
tionships between columns based solely on their
names. Consequently, leveraging external tools to
extract more information from the database itself
becomes essential.

To address these limitations, we propose
Database-Centric NL2SQL, which systemati-
cally integrates database functionalities into the
NL2SQL process (Figure 1). This method offers

View - — - - -
I Which active district has the highest average score in Reading? |

DB-as-a-Tool

1
! 1
: 1
1| Which cities have the top 5 lowest enrollment :
o o ool et : number for students in grades 1 through 12? :
Table: satscores Table: schools Table: frpm 1 ¥ 1
cds | AvgScr e CDSCode | Status | NCES CDSCode | Academic | County : R :
(PK) Read (PK) Type | School (PK) Year Code 1 (S):LEC:]’ ilt{DszRgM sczoolscgts)éNdfrpm \
1 schools. ode = Trpm. ode 1
eooo | 148 G}Eﬁg: 0000 |Active | 00048 0000 | 0601770 | 00048 | |:!|ORDER BY “Enrollment (K-12)° LIMIT 5; .
1
1 I |
o003 | 503 Berkeley 0003 |Merged | 00432 0003 0604740 | 00432 1 Tool Invocation li i
Unified 1 |

i 7/
T T 1 CDSCode School City :

N - - 1
@ | View Creation (By User) @ | SQL Generation | : 0003 Berkeley High Berkeley 1
+ + i 1001 Bonita Canyon Irvine :
cds school | AVerage |gictrict| status SELECT s.dname, MAX(ss.AvgScrRead) : 1002 wesid X 1
(PK) name s;‘":. in name Type FROM satscores ss 1 Lakeside Irvine I
eadin - 1 - -
cacne ATamed ;gézESC"‘S’ZLi STON Ss-fistj S;CDSC"de i Predefined SQL Template Execution |,
ameda N S. atuslype = Cctlve 1 L. 1
oo |BayFarm)| 148 | ynified | A"™® | |Group BY s.dname ' | Gy] Costode 1| Additional |
Berkeley Berkeley ORDER BY MAX(ss.AvgScrRead) ! Metadata: !
0983 | high 503 | ynified | M8 | |pesc LzmIT 1; X\) 1001 Each ~City® :
I ! Irvine 1002 has one or more ||
@ | SQL Generation Against View(s) | No column named ‘dname’ in ‘schools’ | *cpsCode™ I
+ table. Table-Column mismatched! 1 T :
1

SQL Refinement | !
SELECT “district name”, MAX(Average Score in : @| Q :
Reading™) AS max_avg_reading_score 1 v |
FROM unified_view : SELECT T2. City" FROM frpm AS T1 JOIN 1
WHERE ~Status Type™ = ‘Active’ \/ || schools AS T2 ON T1.CDSCode = T2.CDSCode :
GROUP BY “district name” 1|GROUP BY T2.City ORDER BY 1
ORDER BY “max_avg_reading_score DESC LIMIT 1; : SUM(T1. Enrollment (K-12)") ASC LIMIT 5; |
1

Figure 1: Overview of Databse-Centric NL2SQL.

two main advantages. First, it alleviates schema
complexity by utilizing database views to provide
a refined schema representation. Second, it re-
fines SQL queries by extracting metadata from the
database, enabling the LLMs to better comprehend
the database’s underlying structure and its data.
Database-Centric NL2SQL aims to overcome the
limitations of relying solely on LLMs and improve
their reliability for real-world applications.

We outline the key challenges in integrating
database functionalities into the NL2SQL frame-
work and present our solutions as follows.

C1: How to resolve schema complexity? The
complexity of large database schemas makes
schema interpretation difficult, as LLMs struggle
to process extensive and interconnected structures.
Column names may include abbreviations or nam-
ing variations, and different tables can contain over-
lapping column names, making it difficult to de-
termine the correct mapping. To mitigate this, de-
tailed descriptions of tables and columns are often
included in prompts to enhance schema compre-
hension. However, this increases prompt length
and computational cost, limiting scalability. Our
proposed solution is to leverage "views", which
restructure the schema into a more interpretable
format. Views clarify ambiguous table and column
names, group tables, and encapsulate frequently
used SQL query patterns (Halevy, 2001). By re-
ducing schema complexity, views allow LL.Ms to

focus on generating accurate SQL queries rather
than navigating complex structures.

C2: How can LLMs receive additional infor-
mation to better understand the database struc-
ture? To overcome the limitations of LLMs uti-
lizing only a limited scope of database informa-
tion, external tools beyond LLMs are required (Li
et al., 2023; Qin et al., 2024). In the NL2SQL task,
we identify the database itself as a suitable tool
for this purpose and introduce Database-as-a-Tool
(DBTool), a tool-augmented NL2SQL approach
that enables LLMs to interact dynamically with
databases. Similar to how database practitioners
manually explore databases by running queries and
analyzing results, DBTool automates database ex-
ploration by querying the database to extract meta-
data, which provides essential contextual informa-
tion for refining erroneous SQL queries.

To validate the effectiveness of our Database-
Centric NL2SQL approaches, we conducted evalu-
ations on the development set of the BIRD bench-
mark (Li et al., 2024b). Our proposed method
achieves an execution accuracy of 70.47%, while
significantly reducing the number of input tokens,
ranging from a 17x to 374x reduction compared to
other methods. This indicates that current NL2SQL
systems largely based on prompt engineering, have
room for improvement in token efficiency by lever-
aging the database.

2 Related Work
2.1 Existing NL2SQL Frameworks

Schema Linking. Schema linking aligns natural
language questions with the relevant tables and
columns in a database schema. Prior research
has introduced techniques to address the accuracy
of schema linking. One prominent approach is
schema pruning, which removes irrelevant tables
and columns to reduce the amount of information
LLMs must process (Lei et al., 2020; Pourreza and
Rafiei, 2024; Xie et al., 2024; Glenn et al., 2023;
Gao et al., 2024b; Caferoglu and Ulusoy, 2024).
Another line of work focuses on enriching schema
representations by incorporating detailed descrip-
tions and sample values, enabling LLMs to better
infer contextual information and produce accurate
SQLs (Talaei et al., 2024; Pourreza et al., 2024; Li
et al., 2024a; Zhu et al., 2024).

SQL Generation and Refinement. The SQL
generation stage often leverages advanced capabil-
ities of LLMs, such as few-shot learning (Brown
et al., 2020; Dong et al., 2023; Gao et al., 2024a;
Nan et al., 2023) and chain-of-thought reasoning
(Wei et al., 2022; Tai et al., 2023). Furthermore,
recent research has increasingly adopted a strat-
egy where the model generates multiple SQL query
candidates and selects the most accurate one (Gao
et al., 2024b; Pourreza et al., 2024; Talaei et al.,
2024; Lee et al., 2024).

Meanwhile, the SQL refinement stage addresses
syntactic and logical errors in the SQL query. This
process involves re-generating SQL queries based
on execution results or validation guidelines (Pour-
reza and Rafiei, 2024; Talaei et al., 2024; Wang
et al., 2023; Cen et al., 2024; Ren et al., 2024).

2.2 Database-Centric NLSQL

View-based NL2SQL. While existing schema-
linking methods focus on pruning and organizing
schema details, they do not fundamentally restruc-
ture the schema. As a result, large schemas must
still be fully considered during query generation. In
contrast, every database system supports views to
encapsulate data or present simplified schema rep-
resentations, abstracting schema complexity from
end-users (Halevy, 2001). However, few studies
have explored leveraging database views to sim-
plify schema complexity in NL2SQL.
Tool-augmented NL2SQL. Tool-augmented
generation is an emerging technique designed to
enhance the accuracy and reliability of LLM re-

sponses by training or prompting LL.Ms to utilize
external tools (Parisi et al., 2022; Hsieh et al., 2023;
Paranjape et al., 2023; Hao et al., 2023; Qiao et al.,
2023). Tool-augmented models can invoke tools
such as search engines, or calculators to perform
operations beyond their internal reasoning capa-
bilities (Schick et al., 2024; Li et al., 2023; Qin
et al., 2024; Mialon et al., 2023; Nakano et al.,
2021). This approach has proven effective in a
range of tasks, including question answering, math-
ematical problem solving, and code generation (Lu
et al., 2024; Zhang et al., 2024a, 2023b; Zhuang
et al., 2023). However, tool-augmented generation
remains unexplored for NL2SQL, presenting an
opportunity to improve the accuracy of NL2SQL.

3 View-based NL2SQL

The following sections introduce Database-
Centric NL2SQL, which comprises View-based
NL2SQL and Tool-augmented NL2SQL. View-
based NL2SQL mitigates schema complexity by
reorganizing schema structures into more inter-
pretable representations, while Tool-augmented
NL2SQL provides LLMs with additional database-
specific metadata, thereby enhancing schema un-
derstanding by incorporating the database as a tool.

View-based NL2SQL reformulates database
schemas into representations optimized for LLM
interpretation. Instead of exposing raw schema
structures of base tables, we introduce three types
of views: Renamed Views, Unified Views, and Cus-
tomized Views. As shown on left side of Figure 1,
users need to create views, and the LLM then gen-
erates SQL query based on these views. Figure 2 il-
lustrates how each of three view types is processed
with a user question. Each view is incorporated into
the prompt along with the user question, but only
the view schema is provided rather than an exten-
sive description. Once the LLM generates an SQL
query against the view-based schema representa-
tion, an internal rewriting algorithm (Appendix B)
transforms it into a SQL query that directly refer-
ences the original base tables. In the following, we
discuss the three types of views we use.

3.1 Renamed Views

Renamed Views enhance schema clarity by re-
solving column name ambiguity. Unlike existing
schema-linking methods that infer column seman-
tics from descriptions, they explicitly redefine col-
umn names, ensuring precise identification and

{Prompt

TPrompt | e
- ®

&) [vserustion |

Prompt
S ®

CV1 CVn

iORVI RV2 RV3 4 : uv

View-based SQL

View to base table

| I |
-“”“i““ ,,,,L,,,,,,

View-based SQL
View to base table

View-based SQL
View to base table

T1 i T2

T1 ¢ T2 T3

13¢ T1¢ T2¢ T3¢

(b) Unified View (UV).

(a) Renamed View (RV).

(c) Customized View (CV).

Figure 2: View-based NL2SQL, illustrating how each of the three view types is used to handle user query.

Table: gasstations Renamed View: gasstations

|GasStationlD| fuel_type ||

|GasStat|’onID| segment | |

Table: customers —> Renamed View: customers

| CustomeriD | segment | | | CustomerlD |customer_typel |

Figure 3: Example of Renamed View.

minimizing misinterpretation. Renamed Views
adopt detailed names, including data type if neces-
sary. Because database views are widely used in
enterprise environments, adopting Renamed Views
are expected to incur minimal overhead. Figure 3
illustrates an example of Renamed Views: the ‘seg-
ment’ column in the ‘customers’ table is renamed
to ‘customer_type’ and in the ‘gasstations’ table,
it is renamed to ‘fuel_type’. This transformation
ensures explicit semantic differentiation, remov-
ing ambiguity and improving interpretability for
LLMs.

3.2 Unified Views

As database schemas expand with more tables and
columns, LLMs struggle to accurately associate
columns with their respective tables due to complex
schemas. A Unified View mitigates this issue by
creating a virtual schema that integrates related ta-
bles into a single virtual representation, eliminating
the need for LLMs to infer implicit joins. To mini-
mize inefficiencies, Unified Views are selectively
applied (discussed in Section 3.4) only when the
generated SQL query fails due to incorrect table-
column associations. Figure 1 presents an example
of Unified View, where column ‘dname’ was in-
correctly mapped to the table ‘schools’. Provided
with Unified Views, the model can generate SQL
query with precise table-column matching without
inferring joins.

superhero

published_by_marvel
_comics (view)

Example Q1: Count Marval Heroes

SELECT COUNT(*) FROM
published_by_marvel_comics;

- -

publisher

Example Q2: % of Famale Marval Heroes

SELECT CAST(COUNT(*) AS REAL)*100 /
(SELECT COUNT(*) FROM ...)

FROM published_by_marvel_comics WHERE
gender = 'Female';

Figure 4: Example of Customized View.

3.3 Customized Views

Customized Views improve query execution by
converting frequently used query patterns into pre-
defined views, allowing direct access to intermedi-
ate results. By reducing redundant filtering and ag-
gregation, these views simplify query formulation
and lower processing overhead. Figure 4 illustrates
how predefined views can streamline queries in su-
perhero database (Li et al., 2024b). When natural
language questions frequently involve Marvel su-
perheroes, a predefined Marvel-Comics view can
be created to store relevant data as an intermediate
representation. This allows queries to directly ref-
erence the view instead of repeatedly filtering for
Marvel-related attributes.

3.4 View Selection

To automate view selection, we employ a view
selection algorithm under the assumption that all
views are manually created in advance. In this
study, each database includes one Renamed View
per table, one Combined View, and approximately
ten predefined Customized Views, ensuring flexi-
bility in query transformation.

First, the user question is analyzed to determine
whether it requires formulas or aggregation func-
tions using an LLM-based prediction step. If not, a
Renamed View is used; otherwise, a Customized

| User Question | —P@

v
@ Check whether an SQL

aggregation function or
formula is needed.

+ N Check if there is Y
Y an execution err
Cromameavion |-
A4

| FinalsaL |

Unified View

Customized View “_l‘ | Final SQL |

Figure 5: Workflow of view selection.

FK Constraints

1 1

1 1

| Initial SQL User Defined Violation 1

i Function 1

: Metadata elationship 1
1

|| Predefined SQL :

i Template @ i Column-Value 1 !

1

1

1

1

1

Figure 6: Overall flow of Database-as-a-Tool.

View is retrieved. The selection process employs
a similarity search mechanism that matches the
user question against stored view definitions using
Chroma database (Chroma-core, 2025), selecting
up to three candidate views. When a Customized
View is selected, its definition is embedded into
the prompt alongside the Renamed View defini-
tion, allowing the LLM to reference the overall
schema structure. After the LLM generates an SQL
query, a post-processing step verifies whether an
execution error occurs. If an error related to col-
umn name ambiguity is detected, it indicates an
incorrect column-to-table mapping. In such cases,
the Unified View definition is incorporated into the
prompt, and the SQL query is regenerated to re-
solve the ambiguity. Detailed prompts are provided
in Appendix B.

4 Tool-augmented NL2SQL

Database-as-a-Tool (DBTool) is the novel tool-
augmented NL2SQL technique that directly ex-
tracts key metadata from the database for query re-
finement. We currently support three types of meta-
data about the underlying database instances: (1)
foreign key (FK) constraints violations, (2) one-to-
many or one-to-one relationships between columns,
and (3) the presence of null values in columns. With
such metadata, LLM can rectify some errors in its
initial SQL query.

SELECT {from_tbl}.{from_col} FROM {from_tbl}
LEFT JOIN {to_tbl} ON {from_tbl}.{

from_col} = {to_tbl}.{to_col}

WHERE {to_tbl}.{to_col} IS NULL

Figure 7: Example of a predefined SQL template (viola-
tion of FK constraints).

def is_fk_violation(from_tbl.fk, to_tbl.pk,
exec_result):
if exec_result: # If the result is not
empty, violation exists
return (f"Foreign key constraint
violation detected: Some values in
"{from_tbl.fk}' do not match any
value in '{from_tbl.pk}"'.")
return None

Figure 8: Example of user-defined function for con-
verting execution result into metadata (violation of FK
constraints).

4.1 Overall Flow

DBTool follows a structured workflow, which is
illustrated in Figure 6. When DBTool is invoked
under specific conditions related to the database
or the initial SQL query, as detailed in Appendix
C, it extracts the column and table names from
the initial query using an SQL query parser (e.g.,
sql-metadata (Brencz, 2024), sqlglot (Mao, 2023)).
The query parser breaks down a query into its
components by performing token analysis and con-
structing an abstract syntax tree (AST).

Then, the extracted table and column names are
filled into predefined SQL templates that are de-
signed to extract specific information about the
database (e.g., Figure 7). Each SQL template is
populated with parameters and then run against the
database. Its result is then converted into meta-
data in a natural language format that can be easily
interpreted by the LLLM, through a corresponding
user-defined function (UDF; e.g., Figure 8).

Finally, the metadata is incorporated into the
prompt to generate a refined SQL, along with the
metadata-specific guidelines. Although all three
types of metadata are extracted from the database
through the same flow, each type has a distinct
predefined SQL template and UDF for converting
results into metadata.

The three main types of metadata extracted by
DBTool are described in the following sections. A
step-by-step explanation of each process in DBTool
is also provided in Appendix C for further clarity.

Q: What is the phone number of the school that has the
highest average score in Math?

Q: Which cities have the top 5 lowest enrollment number
for students in grades 1 through 127

GPT-Generated SQL:

SELECT T2.Phone FROM satscores AS T1 INNER JOIN
schools AS T2 ON T1.cds = T2.CDSCode

WHERE T1.AvgScrMath = (SELECT MAX(AvgScrMath)
FROM satscores) LIMIT 1;

DBTool-refined SQL:

SELECT T2.Phone FROM satscores AS INNER JOIN
T1 schools AS T2 ON T1.cds = T2.CDSCode

WHERE T1.AvgScrMath = (SELECT MAX(AvgScrMath)
FROM satscores AS T1 INNER JOIN schools AS T2
ON T1.cds = T2.CDSCode) LIMIT 1;

Table 1: DBTool query refinement example: using meta-
data (FK constraint violation).

4.2 Violation of Foreign Key Constraints

In well-structured databases, an FK column in a
referencing table is expected to match the corre-
sponding primary key (PK) column in the refer-
enced table, ensuring data consistency. However,
in real-world databases, this consistency is often
compromised, as FK constraints may not always be
strictly enforced due to database configuration or
domain-specific requirements (SQLite, 2024; Plan-
etScale, 2024). Detecting FK constraints violations
is particularly crucial when joining tables or cre-
ating subqueries, as such violations can lead to an
unexpected results such as missing records.

For example, in Table 1, the initial query at-
tempted to find the phone number of the school
with the highest math score by joining the
‘satscores’ (referencing table) and ‘schools’ (ref-
erenced table) tables. However, this query re-
turned no records because the school with the high-
est score in ‘satscores’, identified by ‘CDSCode’
or ‘cds’, did not have a corresponding entry in
the ‘schools’ table due to an FK violation. The
tool detected this violation and returned metadata
indicating an FK violation, using the metadata-
specific SQL template (Figure 7) and UDF (Fig-
ure 8). Based on the metadata, the subquery is re-
constructed to find the phone number of the highest-
scoring school that exists in both tables. This ad-
justment ensures that the refined query produces
valid results despite data inconsistencies.

4.3 Column Relationships

Understanding relationships between columns,
such as one-to-many or one-to-one, is essential
for accurate query formulation, especially when
GROUP BY clause and aggregate functions are

GPT-Generated SQL:

SELECT City FROM schools JOIN satscores
ON frpm.CDSCode = schools.CDSCode

ORDER BY ‘Enrollment (K-12)‘ ASC LIMIT 5;

DBTool-refined SQL:

SELECT City FROM schools JOIN satscores

ON frpm.CDSCode = schools.CDSCode

GROUP BY City

ORDER BY SUM(‘Enrollment (K-12)¢) ASC LIMIT 5;

Table 2: DBTool query refinement example: using meta-
data (one-to-many column relationship).

involved. Table 2 illustrates an example. The ini-
tially generated query did not include GROUP BY
needed to aggregate data by city and sum student
enrollments for each city. The tool identified a
one-to-many relationship between ‘City’ and ‘CD-
SCode’, where multiple ‘CDSCode’ values corre-
spond to a single ‘City’. As a result, the query
was corrected by adding GROUP BY with ‘City’
and using the SUM aggregate function, ensuring it
aligns with the user’s intent. See Figures 22 and 24
for the SQL template and UDF in this example.

4.4 Presence of Null Values

Verifying the presence of null values, which are
especially common in real-world databases, is cru-
cial for generating both user-friendly and accurate
queries. The tool prevents unnecessary null val-
ues from being returned to the user by identifying
columns that contain null values and instructing
the LLM to apply the IS NOT NULL condition in
SQL queries to filter them out. At the same time,
it mitigates potential issues in scenarios where the
COUNT function, ORDER BY clause, or arith-
metic operations are used in SQL queries, as null
values can lead to unexpected results such as incor-
rect counts, unintended sorting behavior, or compu-
tational errors. Figure 23 and 25 illustrate the SQL
template and the UDF for extracting the metadata.

4.5 Handling Other Errors with DBTool

Furthermore, DBTool efficiently corrects column-
value mismatches and execution errors using fewer
tokens than existing methods, which handle these
errors with lengthy prompts, leading to high infer-
ence costs. These functionalities operate differently
from the three metadata extraction processes de-
scribed earlier and are detailed in Appendix C.
Column-value mismatch error occurs when a

Method EX (%)
CHASE-SQL+Gemini (Pourreza et al., 2024) 74.46
XiYan-SQL (Gao et al., 2024b) 73.34
CHESSIR+CG+UT (Talaei et al., 2024) 68.31
Distillery (Maamari et al., 2024) 67.21
XiYan—SQLQwenCoder.gzg (Gao et al., 2024b) 67.01
CHESSir+ss+cc (Talaei et al., 2024) 65.00
E-SQL (Caferoglu and Ulusoy, 2024) 65.58
RSL-SQL+DeepSeek (Cao et al., 2024) 63.56
MCS-SQL+GPT-4 (Lee et al., 2024) 63.36
Baseline 57.30
Baseline w/ desc. 60.63
View (Ours) 65.26
DBTool (Ours) 63.03
View+DBTool (Ours) 70.47

Table 3: Comparison with other NL2SQL systems
(BIRD-SQL’s dev set (Li et al., 2024b)). Our meth-
ods and Baseline configurations used GPT-4o.

WHERE clause in an SQL query references non-
existent values, resulting in no records being re-
turned from the database. DBTool utilizes an SQL
query parser to extract the column referenced in the
WHERE clause and searches for relevant values
that align with the user’s question. Execution Er-
ror occurs when a query fails to execute at runtime.
DBTool analyzes the error message and parses the
SQL query to extract only the relevant tables and
columns necessary for debugging.

5 Performance Evaluation

5.1 Setting

Dataset. Performance evaluation was conducted
using the BIRD benchmark (Li et al., 2024b), a
cross-domain dataset designed for NL2SQL task.
BIRD includes natural language questions, corre-
sponding ground-truth SQL queries (gold SQLs),
and metadata such as table/column descriptions
and knowledge evidence. All experiments were
performed on the development set (dev set).

Metric. The primary evaluation metric, Execu-
tion Accuracy (EX, %), measures the proportion
of generated SQL queries that produce execution
results identical to those of the ground-truth SQL
queries. Additionally, inference cost, measured by
token count, was analyzed for experiments con-
ducted with a closed-source LLM.

LLMs. The proposed methods were evaluated
across three LLMs, including closed-source mod-
els (OpenAl GPT-40, GPT-40-mini (Achiam et al.,
2023)) and open-source models (LLaMA 3.1-70B
(Dubey et al., 2024)). The temperature of all LLMs
was set to 0 to ensure deterministic output.

)
S

[Base.
[Base. w/ desc

3 View
I DBTool

I View+DBTool

®
S
a
=
3

61.5563.89

60.1061.93

>N
S

52,2854.24 35

N
=]

Execution Accuracy (%)

[
S

o

GPT-40 GPT-40-mini LLaMA3.1-70B

Figure 9: Execution accuracy (BIRD-SQL’s dev set).

Baseline. The baseline is based on the OpenAl
demonstration prompt, which was first introduced
in OpenAl’s official Text-to-SQL demo (Gao et al.,
2024a). Another baseline, referred to as baseline
with description (baseline w/ desc), incorporates ta-
ble and column descriptions (Maamari et al., 2024)
provided by the BIRD benchmark (Li et al., 2024b).
The specific prompts for baseline and baseline w/
desc are included in Appendix A.

5.2 Execution Accuracy

As summarized in Table 3, our experiments demon-
strate that View+DBTool achieves an execution ac-
curacy of 70.47%, comparable to state-of-the-art
methods. Figure 9 further illustrates the execution
accuracy across different LLMs, comparing our
methods with the baseline and baseline w/ desc.
Notably, view consistently outperforms the base-
line and shows an improvement over baseline w/
desc across all three LLMs, with the most pro-
nounced gains observed on LLaMA. In addition,
applying DBTool to SQL queries initially gener-
ated incorrectly by baseline or view, improves per-
formance by approximately 5% to 12%. Once
again, the largest benefit appears in experiments
with LLaMA. Collectively, these results highlight
the effectiveness and stability of our NL2SQL ap-
proach when deployed with different LLMs.

5.3 Cost Efficiency

As shown in Figure 10, token consumption in
the baseline w/ desc increases steeply with the
number of columns, whereas View+DBTool main-
tains consistently low usage. This contrast under-
scores how embedding extensive schema descrip-
tions in prompts becomes inefficient, as the as-
sociated inference cost scales disproportionately
with database size, making them impractical for
large-scale applications. Other methods handle
most of their schema reasoning directly within
prompts, leading to higher token counts, whereas
View+DBTool offloads these operations to the
database side, thereby reducing the burden on the

8000
000 1

View + DBTool
—=— Baseline w/ desc

-
/ [}

—"

/'_/ .

Avg. Number of
Input Tokens
RN

S
(=
(=]

(=3
(=1
(=]

f=]

20 40 60 §0 100 120
Number of Columns in DB
Figure 10: Average number of input tokens per query

vs. the number of columnsthe database (GPT-40-mini,
BIRD-SQL’s dev set).

Method Input (K) Output (K) EX (%)
CHESSirscosut 307.51 25.26 68.31
RSL-SQL" 14.28 0.48 67.21
E-SQL* 26.24 0.80 65.58
View + DBTool 0.82 0.15 70.47
Baseline (w/ desc). 3.63 0.05 60.63

Table 4: Average number of tokens per query (BIRD’s
dev set). Results are from “an actual experiment using
147 subsamples provided by the author, "the original
paper, and *GitHub.

prompts themselves.

Table 4 compares the average number of to-
kens required per query across existing NL2SQL
methods. View+DBTool achieves 70.47% execu-
tion accuracy while consuming only 0.82K input
tokens, representing a 4.42x reduction compared
to the baseline. It also reduces input token con-
sumption by a factor of 17x to 374x compared to
other methods whose code is publicly available in
github, while offering similar performance. Al-
though View+DBTool generates slightly more out-
put tokens than the baseline due to CoT prompting,
it still produces 4 to 20 times fewer output tokens
than other methods. This substantial reduction in
token consumption highlights the token efficiency
of our approach, without sacrificing accuracy and
reducing reliance on lengthy prompts. Since token
usage directly drives costs in closed LLMs and adds
computational overhead in open-source models,
View+DBTool offers a scalable, cost-effective solu-
tion for SQL generation in real-world databases.

5.4 Error Analysis

This section evaluates the effectiveness of each
method by analyzing error reduction in the "Cal-
ifornia Schools" database from the BIRD Bench-
mark.

Figure 11 demonstrates how view effectively mit-
igates schema-related errors, addressing the ma-
jority of identified issues. Specifically, Renamed

10

3 [Baseline | [Baseline
- 6 [View Il DBTool
g 6 5
o
O 47

2 2
2 -
0 0

Wrong Table-Column FK
Column Mismatch Constraints

Null Value Column Column-value
Relationship Mismatch

Figure 11: Distribution of errors (GPT-40).

Views reduce wrong-column errors by standardiz-
ing ambiguous column names, thereby enhancing
clarity. Unified Views resolve table-column mis-
match errors by pre-joining table-column associa-
tions. On the other hand, Customized Views target
query efficiency by serving as intermediate repre-
sentations for frequently used query patterns and
thus lie beyond the scope of this section.

Beyond schema-related errors, additional issues
arise from a lack of understanding of database struc-
tures and the data. The remaining four error types
in Figure 11 are handled by DBTool, which, when
applied to incorrect SQL queries from the baseline,
effectively resolved errors related to column rela-
tionships, foreign key constraints, and null values
(see Section 4). A detailed analysis of whether
other methods successfully handled these errors
is in Appendix C. Although DBTool successfully
eliminated execution errors, other types of errors
persisted when the baseline SQL selected different
columns or tables than the gold SQL—an issue that
falls outside the current tool’s refinement scope and
is deferred to future work.

For both view and DBTool, many unresolved
errors were deemed unsolvable due to the following
factors: (1) ambiguity in natural language questions
(Floratou et al., 2024), which allows multiple SQL
queries as valid answers beyond the gold SQL; (2)
errors in the benchmark, including incorrect gold
SQL (Wretblad et al., 2024).

6 Conclusion

Database-Centric NL2SQL addresses key limita-
tions of existing NL2SQL frameworks by integrat-
ing advanced database functionalities. Through
View-based Optimization and Database-as-a-Tool,
it simplifies schema handling, enhances query re-
finement, and reduces inference costs. Experi-
mental results confirm its effectiveness, making
Database-Centric NL2SQL a scalable and practical
solution for real-world applications.

Limitations

Current evaluations are often limited to spe-
cific databases, potentially overlooking challenges
present in broader or more dynamic use cases. Fu-
ture research should explore more generalized and
realistic benchmarks to ensure wider applicability
of the approach.

View. A key limitation of the current approach
is that generating Renamed Views requires man-
ual modifications by users, which can be time-
consuming and dependent on human intuition. Fu-
ture research will explore automated techniques
to generate Renamed Views without user interven-
tion, reducing the burden on users and ensuring
consistency. Similarly, Customized Views must
be predefined, limiting their adaptability to diverse
queries. To address this, future work will focus
on developing automated mechanisms that analyze
user queries, cache frequently used patterns, and
dynamically construct Customized Views, thereby
improving flexibility and efficiency. Furthermore,
the effectiveness of views is inherently tied to how
they are defined. Poorly designed views may hin-
der query performance, highlighting the need for
systematic strategies to optimize view definitions.
In addition, improving view selection techniques
is crucial, as selecting the most appropriate view
for a given query directly impacts SQL generation
accuracy. Addressing these challenges remains an
important avenue for future research.

Database-as-a-Tool. In the benchmark, the
number of tables and columns is relatively small, re-
sulting in short query execution times for Database-
as-a-Tool. In real-world scenarios with large
database schemas, optimizing the tool’s algorithm
is necessary to improve execution speed. Further-
more, the current Tool-augmented NL2SQL frame-
work employs rule-based logic to invoke tools un-
der specific database or query conditions. A key
research direction is to enable the LLM to au-
tonomously invoke necessary tools, transitioning
toward a more generalized tool-augmentation ap-
proach.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Maciej Brencz. 2024. sql_metadata. Accessed: 2025-
02-08.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Hasan Alp Caferoglu and Ozgiir Ulusoy. 2024. E-sql:
Direct schema linking via question enrichment in
text-to-sql. arXiv preprint arXiv:2409.16751.

Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin
Zhang, and Wei Chen. 2024. Rsl-sql: Robust schema
linking in text-to-sql generation. arXiv preprint
arXiv:2411.00073.

Jipeng Cen, Jiaxin Liu, Zhixu Li, and Jingjing Wang.
2024. Sqlfixagent: Towards semantic-accurate sql
generation via multi-agent collaboration. arXiv
preprint arXiv:2406.13408.

Chroma-core. 2025. Chroma-core.

Xuemei Dong, C. Zhang, Yuhang Ge, Yuren Mao, Yun-
jun Gao, Lu Chen, Jinshu Lin, and Dongfang Lou.
2023. C3: Zero-shot text-to-sql with chatgpt. ArXiv,
abs/2307.07306.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Avrilia Floratou, Fotis Psallidas, Fuheng Zhao, Shaleen
Deep, Gunther Hagleither, Wangda Tan, Joyce Ca-
hoon, Rana Alotaibi, Jordan Henkel, Abhik Singla,
Alex Van Grootel, Brandon Chow, Kai Deng, Kather-
ine Lin, Marcos Campos, K. Venkatesh Emani, Vivek
Pandit, Victor Shnayder, Wenjing Wang, and Carlo
Curino. 2024. Nl2sql is a solved problem... not! In
Conference on Innovative Data Systems Research.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024a.
Text-to-sql empowered by large language models:
A benchmark evaluation. Proc. VLDB Endow.,
17(5):1132-1145.

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin
Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao Hong,
Zhiling Luo, et al. 2024b. Xiyan-sql: A multi-
generator ensemble framework for text-to-sql. arXiv
preprint arXiv:2411.08599.

Parker Glenn, Parag Pravin Dakle, and Preethi Ragha-
van. 2023. Correcting semantic parses with nat-
ural language through dynamic schema encoding.
Preprint, arXiv:2305.19974.

Alon Y Halevy. 2001. Answering queries using views:
A survey. The VLDB Journal, 10:270-294.

https://pypi.org/project/sql_metadata/
https://github.com/chroma-core/chroma
https://api.semanticscholar.org/CorpusID:259924856
https://api.semanticscholar.org/CorpusID:266729311
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://arxiv.org/abs/2305.19974
https://arxiv.org/abs/2305.19974
https://arxiv.org/abs/2305.19974

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu.
2023. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. Ad-
vances in neural information processing systems,

36:45870-45894.

CY Hsieh, SA Chen, CL Li, Y Fujii, A Ratner, CY Lee,
R Krishna, and T Pfister. 2023. Tool documenta-
tion enables zero-shot tool-usage with large language
models.

Dongjun Lee, Choongwon Park, Jachyuk Kim, and
Heesoo Park. 2024. Mcs-sql: Leveraging multiple
prompts and multiple-choice selection for text-to-sql
generation. arXiv preprint arXiv:2405.07467.

Wengiang Lei, Weixin Wang, Zhixin Ma, Tian Gan,
Wei Lu, Min-Yen Kan, and Tat-Seng Chua. 2020.
Re-examining the role of schema linking in text-to-
SQL. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6943—-6954, Online. Association for
Computational Linguistics.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024a. Codes: Towards
building open-source language models for text-to-sql.
Proc. ACM Manag. Data, 2(3).

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024b. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. Api-bank: A comprehensive
benchmark for tool-augmented llms. arXiv preprint
arXiv:2304.08244.

Xinyuan Lu, Liangming Pan, Yubo Ma, Preslav Nakov,
and Min-Yen Kan. 2024. Tart: An open-source tool-
augmented framework for explainable table-based
reasoning. arXiv preprint arXiv:2409.11724.

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz,
and Amine Mhedhbi. 2024. The death of schema
linking? text-to-sql in the age of well-reasoned lan-
guage models. arXiv preprint arXiv:2408.07702.

Toby Mao. 2023. sqlglot. Accessed: 2025-02-08.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, et al. 2023. Augmented language
models: a survey. arXiv preprint arXiv:2302.07842.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

10

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu
Ri, Jaesung Tae, Ellen Zhang, Arman Cohan, and
Dragomir Radev. 2023. Enhancing few-shot text-
to-sql capabilities of large language models: A
study on prompt design strategies. arXiv preprint
arXiv:2305.12586.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,
Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. 2023. Art: Automatic multi-
step reasoning and tool-use for large language mod-
els. arXiv preprint arXiv:2303.09014.

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm:
Tool augmented language models. arXiv preprint
arXiv:2205.12255.

PlanetScale. 2024. Operating without foreign key con-
straints. Accessed: February 13, 2025.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and
Sercan O Arik. 2024. Chase-sql: Multi-path reason-
ing and preference optimized candidate selection in
text-to-sql. arXiv preprint arXiv:2410.01943.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction. Advances in Neural Infor-
mation Processing Systems, 36.

Shuofei Qiao, Honghao Gui, Chengfei Lv, Qianghuai
Jia, Huajun Chen, and Ningyu Zhang. 2023. Making
language models better tool learners with execution
feedback. arXiv preprint arXiv:2305.13068.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe Zhou,
Yufei Huang, Chaojun Xiao, et al. 2024. Tool learn-
ing with foundation models. ACM Computing Sur-
veys, 57(4):1-40.

Tonghui Ren, Yuankai Fan, Zhenying He, Ren Huang,
Jiaqi Dai, Can Huang, Yinan Jing, Kai Zhang, Yifan
Yang, and X Sean Wang. 2024. Purple: Making
a large language model a better sql writer. arXiv
preprint arXiv:2403.20014.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2024.
Toolformer: language models can teach themselves
to use tools. In Proceedings of the 37th International
Conference on Neural Information Processing Sys-
tems, NIPS ’23.

SQLite. 2024. Sqlite foreign key support. Accessed:
2025-02-08.

Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang Deng,
and Huan Sun. 2023. Exploring chain-of-thought
style prompting for text-to-sql. arXiv preprint
arXiv:2305.14215.

https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.1145/3654930
https://doi.org/10.1145/3654930
https://doi.org/10.1145/3654930
https://sqlglot.com/sqlglot.html
https://planetscale.com/docs/learn/operating-without-foreign-key-constraints
https://planetscale.com/docs/learn/operating-without-foreign-key-constraints
https://planetscale.com/docs/learn/operating-without-foreign-key-constraints
https://www.sqlite.org/foreignkeys.html#fk_deferred

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.
Chess: Contextual harnessing for efficient sql synthe-
sis. arXiv preprint arXiv:2405.16755.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, Qian-Wen Zhang, Zhao Yan, and Zhoujun Li.
2023. Mac-sql: A multi-agent collaborative frame-
work for text-to-sql. Preprint, arXiv:2312.11242.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Niklas Wretblad, Fredrik Gordh Riseby, Rahul Biswas,
Amin Ahmadi, and Oskar Holmstrom. 2024. Un-
derstanding the effects of noise in text-to-sql: An
examination of the bird-bench benchmark. arXiv
preprint arXiv:2402.12243.

Yuanzhen Xie, Xinzhou Jin, Tao Xie, MingXiong Lin,
Liang Chen, Chenyun Yu, Lei Cheng, ChengXi-
ang Zhuo, Bo Hu, and Zang Li. 2024. Decompo-
sition for enhancing attention: Improving llm-based
text-to-sql through workflow paradigm. Preprint,
arXiv:2402.10671.

Beichen Zhang, Kun Zhou, Xilin Wei, Xin Zhao, Jing
Sha, Shijin Wang, and Ji-Rong Wen. 2024a. Eval-
uating and improving tool-augmented computation-
intensive math reasoning. Advances in Neural Infor-
mation Processing Systems, 36.

Chao Zhang, Yuren Mao, Yijiang Fan, Yu Mi, Yunjun
Gao, Lu Chen, Dongfang Lou, and Jinshu Lin. 2024b.
Finsql: Model-agnostic llms-based text-to-sql frame-
work for financial analysis. SIGMOD/PODS 24,
page 93-105, New York, NY, USA. Association for
Computing Machinery.

Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen
Xu, and Kai Yu. 2023a. ACT-SQL: In-context learn-
ing for text-to-SQL with automatically-generated
chain-of-thought. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
3501-3532, Singapore. Association for Computa-
tional Linguistics.

Kechi Zhang, Huangzhao Zhang, Ge Li, Jia Li, Zhuo
Li, and Zhi Jin. 2023b. Toolcoder: Teach code gener-
ation models to use api search tools. arXiv preprint
arXiv:2305.04032.

Xiaohu Zhu, Qian Li, Lizhen Cui, and Yongkang Liu.
2024. Large language model enhanced text-to-sql
generation: A survey. Preprint, arXiv:2410.06011.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,
and Chao Zhang. 2023. Toolga: A dataset for llm
question answering with external tools. Advances in
Neural Information Processing Systems, 36:50117—
50143.

11

A Baseline

The following examples illustrate the prompts used
in our experiment for the baseline and the base-
line with description (baseline w/ desc). The base-
line prompt represents the schema in the format
Table(Columnl, Column2, ...). In contrast, the
baseline w/ desc. prompt explicitly denotes the
relationship between tables and columns using the
Table.Column format and provides detailed de-
scriptions for each column, including its meaning,
possible values (with examples), and data type.

Complete sqlite SQL query only and with no explanation.

Remember the following caution and do not make same mistakes:
#r

TIPS FOR TEXT-TO-SQL |
0

#

[Schema]

frpm(CDSCode, Academic Year, County Code, District Code, ..)

satscores(cds, rtype, sname, dname, cname, enrolll2,..)

schools(CDSCode, NCESDist, NCESSchool, StatusType, County, ..)

#

[Foreign Keys]

frpm.CDSCode = schools.CDSCode

satscores.cds = schools.CDSCode#

#

#i## Question: What is the Percent (%) Eligible Free (K-12) in the
school administered by an administrator whose first name is Alusine.
List the district code of the school.

Knowledge Evidence: Percent (%) Eligible Free (K-12) = “Free
Meal Count (K-12)° / “Enrollment (K-12)° * 100%

#HHE SQL: "

###SQL ™

Figure 12: Example of baseline prompt.

Complete sqlite SQL query only and with no explanation.

Remember the following caution and do not make same mistakes:
#
|

.

#

[Schema]
frpm.CDSCode: #The CDSCode column in the free and reduced-price
meals table represents the unique identifier for each school in
California.

frpm.Academic Year: #The Academic Year column in the free and
reduced-price meals table indicates the academic year for which the
data is reported. This column is of integer type.

frpm.County Code: #The County Code column in the free and
reduced-price meals table of the california_schools database
represents the county code of the school district.

frpm.District Code: #The District Code column in the free and
reduced-price meals table of the california_schools database
represents the unique identifier for each school district in
California.

frpm.School Code: #This column represents the unique identifier
for each school in the dataset. The identifier is an integer value.
frpm.County Name: #This column represents the county name of the
school district. The county name is a text field. Example values
include Tuolumne, Nevada, and Alpine.

frpm.District Name: #This column represents the name of the
school district that provides free and reduced-price meals. The
values in this column are text. Example values include Oak View
Union Elementary, Elverta Joint Elementary, and Lucerne Valley
Unified.

frpm.School Name: #This column is a text column in the table
‘free and reduced-price meals' in the database 'california_schools'.
It contains the name of the school. Example values include ‘Neal Dow
Elementary', 'Valley Oaks Charter', and 'Pio Pico Elementary’.

TIPS FOR TEXT-TO-SQL |

#

Question: What is the Percent (%) Eligible Free (K-12) in the
school administered by an administrator whose first name is Alusine.
List the district code of the school.

Knowledge Evidence: Percent (%) Eligible Free (K-12) = “Free
Meal Count (K-12)° / “Enrollment (K-12)° * 100%

#HESQL: "

SQL ™

Figure 13: Example of baseline with desc prompt.

https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2402.10671
https://arxiv.org/abs/2402.10671
https://arxiv.org/abs/2402.10671
https://arxiv.org/abs/2402.10671
https://arxiv.org/abs/2402.10671
https://doi.org/10.1145/3626246.3653375
https://doi.org/10.1145/3626246.3653375
https://doi.org/10.1145/3626246.3653375
https://doi.org/10.18653/v1/2023.findings-emnlp.227
https://doi.org/10.18653/v1/2023.findings-emnlp.227
https://doi.org/10.18653/v1/2023.findings-emnlp.227
https://doi.org/10.18653/v1/2023.findings-emnlp.227
https://doi.org/10.18653/v1/2023.findings-emnlp.227
https://arxiv.org/abs/2410.06011
https://arxiv.org/abs/2410.06011
https://arxiv.org/abs/2410.06011

B View
B.1 Pseudo-Code for View to Base Table.

Algorithm 1 Pseudo-Code for View to Base Table.

1: Input: SQL query SQL

2: Output: Transformed SQL query SQL’

3: function CONVERT_RENAMED_TO_BASE(SQL, r_t_b)
4: for all (r_col,0_col) € r_t_o do

5: SQL < Replace(SQL, r_col, o_col)

6: end for

7: return SQL

8: end function

9: function CONVERT_VIEW_TO_BASE(SQL, v_t_b)
10: for all (view, map) € v_t_bdo
11: if view € SQL then
12: base_table <— map["base_table"]
13: for all (v_col, b_col) €

map[” column_mapping”] do

14: SQL < Replace(SQL, v_col, b_col)
15: end for
16: SQL <+ Replace(SQL, view, base_table)
17: end if
18: end for

19: return SQL

20: end function

21: if renamed_view then

22: SQL’ «+ convert_renamed_to_base(SQL, r_t_b)
23: end if

24: if customized_view or combined_view then

25: SQL’ + convert_view_to_base(SQL’, v_t_b)
26: end if

27: return SQL’

The view-to-base table algorithm consists of two
functions: ‘convert_renamed_to_base’ and ‘con-
vert_view_to_base’, which transform SQL queries
by replacing renamed columns and views with their
corresponding base table representations. The ‘con-
vert_renamed_to_base’ function iterates through
a mapping of renamed columns to their origi-
nal names and updates the SQL query accord-
ingly. Likewise, the ‘convert_view_to_base’ func-
tion identifies views referenced in the SQL query,
retrieves their associated base tables and column
mappings, and replaces them to ensure correct exe-
cution.

B.2 Example of Renamed View

Table 5 provides an example of query generation
using renamed views in the California Schools
database. The query aims to retrieve the district
code for schools in Fresno that do not offer a
magnet program. In the Gold SQL, the query
correctly joins the ‘frpm’ and ‘schools’ tables us-
ing ‘CDSCode’ to obtain the ‘District Code’. The
Baseline SQL, however, directly selects ‘District’
from ‘schools’ without performing the necessary
join, leading to an incorrect query. The View-

Q: What is the district code for the School that does not
offer a magnet program in the city of Fresco?
Rename ‘District’ -> ‘District Name’

Gold SQL.:

SELECT T1. ‘District Code’ FROM frpm AS T1
INNER JOIN schools AS T2 ON T1.CDSCode =
T2.CDSCode

WHERE City = ‘Fresno’ AND T2.Magnet = 0;

Baseline SQL.:
SELECT ‘District’ FROM schools
WHERE ‘City’ = ‘Fresno’ AND T2. ‘Magnet’ = 0;

View-Generated SQL:
SELECT ‘frpm’.‘District Code’ FROM frpm

JOIN ‘schools’ ON frpm.CDSCode =
schools.CDSCode WHERE ‘schools’. ‘Magnet’
= @ AND ‘schools’.‘City’ = ‘Fresno’;

Table 5: Renamed View.

Generated SQL addresses this issue by referencing
“frpm’. ‘District Code’ and applying the correct join
condition between ‘frpm’ and ‘schools’. This en-
sures proper schema alignment and accurate query
generation.

B.3 Unified View

Complete sqlite SQL query only and with no explanation.
Remember the following caution and do not make same mistakes:

#
#| TIPS FOR TEXT-TO-SQL |
.

#

[Columns]

CDSCode

Academic Year

County Code

District Code

cds

region_type

school_name

district_name

county_name

o

#

#

Question: What is the Percent (%) Eligible Free (K-12) in the
school administered by an administrator whose first name is Alusine.
List the district code of the school.

Knowledge Evidence: Percent (%) Eligible Free (K-12) = "Free
Meal Count (K-12)° / “Enrollment (K-12)° * 100%

#HHE SQL: "

###SQL ™

Figure 14: Example prompt of Unified View.

Figure 14 presents an example of a prompt uti-
lizing the Unified View. Since the Unified View
provides a fully joined representation of all tables,
only column names are included in the prompt in-
stead of the conventional table(column1, column2,
...) format. Notably, these column names are iden-
tical to those in the Renamed View.

As shown in Table 6, the Baseline SQL selects
‘Enrollment (K-12)’, which does not exist in the
‘schools’ table, leading to an execution error. In
contrast, queries generated using the Unified View
are algorithmically decomposed into their original

Q: When did the first-through-twelfth-grade school with
the largest enrollment open?

Gold SQL:
SELECT T2.0OpenDate FROM frpm AS T1
ORDER BY T1.Enrollment (K-12) DESC LIMIT;

Baseline SQL:
SELECT OpenDate FROM schools
ORDER BY ‘Enrollment (K-12)’ ASC DESC 1;

View-Generated SQL:

SELECT schools.OpenDate FROM schools

JOIN frpm ON frpm.CDSCode = schools.CDSCode
WHERE frpm.Enrollment (K-12) (SELECT
MAX(frpm.Enrollment (K-12)) FROM frpm JOIN
schools ON frpm.CDSCode = schools.CDSCode) AND
schools.OpenDate IS NOT NULL;

Table 6: Example of Unified View.

Base tables (Appendix B.1), ensuring the correct
mapping to ‘frpm.Enrollment (K-12)’.

B.4 Customized View

Complete sqlite SQL query only and with no explanation.
Remember the following caution and do not make same mistakes:

o
#| TIPS FOR TEXT-TO-SQL |
.
#
#

[Schema]

Examination (‘Patient ID’, ‘Examination Date’, ‘anto-Cardiolopin antibody (aCL IgG)’, ..)

Patient (‘Patient ID’, ‘Patient Sex’, ‘Patient Birthday’, ‘Patient Table Record Desc’, ..)

Laboratory (‘Patient ID’, “’Laboratory test date (YYMMDD)’, AST glutamin oxaloacetic (GOT), ..)
#

[VIEW DDL]

CREATE VIEW patients_per_month AS

SELECT CAST(COUNT(T1.ID) AS REAL) / 12 FROM Patient AS T1

INNER JOIN Laboratory AS T2 ON T1.ID = T2.ID

#...

#

Question: For the year that concluded on December 31, 1998, how many male patients on average
were tested in the lab each month?

Knowledge Evidence: External Knowledge (If Benchmark Provides)

SQL™

Figure 15: Example prompt of Customized View.

Figure 15 illustrates how a Customized View
is incorporated into a prompt, providing a struc-
tured representation of the database schema and
predefined views. Table 7 demonstrates the impact
of utilizing this prompt, showing how defining a
view simplifies SQL generation while maintaining
correct execution. By leveraging the Customized
View ‘PatientsPerMonth’, the resulting SQL query
becomes more concise, eliminating redundant com-
putations and improving interpretability.

B.5 View Selection

Figure 16 illustrates the prompt used in view se-
lection to determine whether an aggregation func-
tion or formula is necessary for processing the user
question. The prompt guides the LLM to articulate
its reasoning using CoT. If the ‘Require Aggrega-
tion or Formula’ returns ‘Yes’, a Customized View
is embedded in the prompt; otherwise, a Renamed

13

Q: For the year that concluded on December 31, 1998,
how many male patients on average were tested in the lab
each month?

Baseline SQL (Incorrect):
SELECT CAST(COUNT(DISTINCT Laboratory.ID) AS

REAL) / 12 AS AvgMalePatientsPerMonth FROM
Laboratory JOIN Patient ON Laboratory.ID
= Pation.ID WHERE Patient.Sec = ’'M’ AND
Laboratory.Date BETWEEN ’1998-01-01’ AND
’1998-12-31";

View Definition:

CREATE VIEW PatientsPerMonth AS SELECT.

CAST(COUNT(T1.ID) AS REAL) / 12 FROM Patient

AS T1 INNER JOIN Laboratory AS T2 ON T1.ID =
T2.ID

View-Generated SQL ():

SELECT * FROM PatientsPerMonth WHERE

STRFTIME(’%Y’, T2.Date) = 1998’ AND T1.SEX =
YM’;

Table 7: Example of Customized View.

###t Determine whether the given user question requires an aggregation function or a
formula. Return the # result in JSON format.

#

Example Output:

#{

#
"CoT Reasoning": "Step-by-step reasoning explaining the decision”
#)
#

Question: User Question

Knowledge Evidence: External Knowledge (If Benchmark Provides)
Return only the json object without any explanation:

ISON object:

Figure 16: Prompt template of view selection.

View is applied.

C Database-as-a-Tool (DBTool)

C.1 Effect of DBTool on Error Resolution

By analyzing the SQL queries generated by GPT-
40-mini on the California Schools database from
BIRD, we identified and categorized 11 errors
stemming from a lack of understanding of the
database structure and its data. According to Ta-
ble 8, DBTool proved to be particularly more ef-
fective than other existing methods in addressing
most of these errors, with the exception of column-
value mismatch errors. Additionally, as shown in
Table 4 in Section 5, DBTool not only effectively
addresses these errors but also demonstrates high
token efficiency in solving them.

C.2 Pseudo-Code for DBTool

The simplified algorithm for DBTool is presented
in Algorithm 2. DBTool is invoked when specific
conditions are met—either in the target database
or in the initial SQL query requiring refinement.

Error fk violation column-value nall | col-rel Q: What is the type of education offered in the school who

type - mismatch u scored the highest average in Math?

Q_id \10 42 51 \18 73 75 76 86\22 43\ 30 Gold SQL:

DBToollO O 010 O X X Ol0 O o SELECT T2.EdOpsName FROM satscores_AS T1
INNER JOIN schools AS T2 ON T1.cds = T2.CDSCode

CHESS 1O O X |X O 0 0 XX X| X ORDER BY T1.AvgScrMath DESC LIMIT 1

RSL-SL|X O X |O X X O X|X X X

ESQL [X O X |0 O O O X|X X| X Baseline SQL:

Table 8: Comparison of error resolution across different
methods using GPT-40-mini. Each column corresponds
to a specific question ID (Q_id) and error type: FK
constraints violation (fk_violation), column-value mis-
match, null, and column relationship (col-rel) errors.
"O" indicates that the error was rectified, while "X" in-
dicates failure.

Algorithm 2 Pseudo-Code for DBTool

Input: previous SQL SQ L, Database D
Output: refined SQL SQL’
result < Execute SQL on D
conditions < {
"exec_err": result is error message
"column-value mismatch": result is empty,
"fk_violation": D has FK constraints violation,
"col_rel": Column in D has 1:1 or 1:N relationships,
"null": result contains NULL values or SQ L has arith-
metic operations or COUNT
10: }
. for all (issue, condition) in conditions do
if condition is True then
SQL’ + DBTool(SQL, issue)
end if
: end for
: return refined SQL SQL’

RE AR A

Furthermore, the information retrieved by DBTool
from the database varies depending on these con-
ditions. Based on the specific scenario, different
predefined SQL templates, user-defined functions
for metadata conversion, and guidelines embedded
in the LLM prompt for generating refined SQL are
employed.

C.3 Example of DBTool-refined Case.

In the remainder of Appendix C, we explore each
component of DBTool through an actual example
of successful refinement. The example demon-
strates how metadata indicating FK violations in
the database is leveraged to correct errors in an
initial SQL query. Other types of metadata are ex-
tracted from the database and incorporated into the
LLM’s prompt through a similar process.

In Table 9, the question asks for the type of edu-
cation offered (‘EdOpsName’) at the school (‘cds’,
‘CDSCode’) with the highest average math score
(‘AvgScrMath’). The SQL generated by the Base-
line approach first attempts to find the school with

14

SELECT s.EdOpsName FROM satscores sc

JOIN schools s ON sc.cds = s.CDSCode

WHERE sc.AvgScrMath (SELECT MAX(AvgScrMath)
FROM satscores);

DBTool-refined SQL:

SELECT s.EdOpsName FROM satscores sc

JOIN schools s ON sc.cds = s.CDSCode

WHERE sc.AvgScrMath (SELECT MAX(AvgScrMath)
FROM satscores WHERE cds IN (SELECT CDSCode
FROM schools));

Table 9: Example of query refinement using DB-as-a-
Tool. The tool corrects the view-generated SQL query
by detecting FK constraint violations.

the highest ‘AvgScrMath’ in the ‘satscores’ table
and then retrieves information about that school by
joining it with the ‘schools’ table. However, the
execution returns an empty set. DBTool identifies
that this issue arises due to FK constraint violations
between the ‘satscores’ and ‘schools’ tables.

C.4 SQL Query Parser

SELECT s.EdOpsName FROM satscores sc

JOIN schools s ON sc.cds = s.CDScds

WHERE sc.AvgScrMath = (SELECT MAX(AvgScrMath)
FROM satscores);

SQL parser

Referenced Table:

CDSCode
(PK/FK)

schools

EdOpsName

Referencing Table: satscores

cds

(PK/EK) AvgScrMath

Figure 17: Parsing initial query with SQL parser.

First, column and table names from the previous
query are extracted using an SQL parser 17. In
the current version of DBTool, the Python libraries
‘sqlglot’ (Mao, 2023) and ‘sql-metadata’ (Brencz,
2024) are both used as parsers. For the example
above, ‘schools’ and ‘satscores’, along with their
columns in the query, are extracted by the parser.

C.5 Predefined SQL Template

After parsing the query, the extracted table and
column names are inserted into predefined SQL

Referenced Table: schools
CD(SPC;)de EdOpsName
Referencing Table: satscores
(P;?:K) AvgScrMath
|
Predefined SQL Template

SELECT {from_tbl}.{from_col} FROM {from_tbl}
LEFT JOIN {to_tbl} ON {from_tbl}.{
from_col} = {to_tbl}.{to_col}

WHERE {to_tbl}.{to_col} IS NULL

v

SELECT satscores.cds FROM satscores
LEFT JOIN schools ON satscores.cds =
schools.CDSCode

WHERE schools.CDSCode IS NULL

Figure 18: Parameterizing predefined SQL template
with parsed tables and columns.

templates (Figure 18). In this example, the SQL
template for detecting FK constraints is parameter-
ized with the table ‘schools’ and its PK ‘CDSCode’,
as well as the table ‘satscores’ along with its respec-
tive FK columns ‘cds’.

C.6 User-defined Function (UDF) for
Converting Execution Results into
Metadata

SELECT satscores.cds FROM satscores
LEFT JOIN schools ON satscores.cds =
schools.CDSCode

WHERE schools.CDSCode IS NULL

[

DB Execution

Execution

Result

User-Defined Function

is_fk_violation(satscores.cds,
schools.CDSCode, exec_result)

v

METADATA: “Foreign key constraints
violation detected: Some values in
‘satscores.cds’ do not match any
value in ‘schools.CDSCode’”

Figure 19: UDF to convert SQL result to metadata.

When parameterized SQL templates from the
previous step are executed, their results are pro-
cessed through the corresponding user-defined
function (UDF) that converts them into natural lan-
guage for better LLM interpretation (Figure 19).
In this example, the UDF is_fk_violation (Fig-
ure 8) takes the execution results, along with the
table and column names, as input. If the query
returns one or more rows, the function generates
a message indicating the presence of an FK con-
straints violation.

15

C.7 Chain-of-Thought Reasoning

#HH# SCHEMA
{REDUCED DATABASE SCHEMA}

#if# METADATA
{METADATA}

##H# OUTPUT

Question: {QUESTION}

Knowledge Evidence: {HINT}

Predicted SQL: {PREVIOUS SQL}

Execution Result: {EXECUTION RESULT}

##H# GUIDELINE
{METADATA SPECIFIC GUIDELINES}

##H# FORMATTING
Your output should be of the following JSON format with no explanation:
{

"chain_of_thought_reasoning": <str: Your thought process on how you
arrived at the full SQL query.>,

"refined_sql_query": <str: the full SQL query>
}

Figure 20: Prompt template for DBTool

The predicted SQL attempts to find the type of education offered by the
school with the highest average Math score by joining the ‘satscores’
and ‘schools’ tables. However, due to the [CONSTRAINT ERROR],
some ‘cds’ values in the ‘satscores’ table may not have corresponding
entries in the ‘schools’ table. This means that a direct join might exclude
the highest scoring entry if it lacks a corresponding school entry. To
address this, we should first find the maximum average Math score
from the ‘satscores’ table, then join the ‘satscores’ and ‘schools’ tables
using this maximum score, ensuring that we only consider entries that
have a corresponding school. The subquery should be used to find the
maximum score, and then the main query should join the tables based
on this score, ensuring that the FK constraint error is considered.

Figure 21: Example of a CoT reasoning (GPT-40).

When the metadata is returned from the UDF, it
is included in the prompt for generating a refined
SQL query (Figure 20). The prompt utilizes the
CoT technique (Wei et al., 2022), widely used in
NL2SQL task for SQL generation (Talaei et al.,
2024), (Caferoglu and Ulusoy, 2024), and (Lee
et al., 2024).

According to the actual CoT reasoning (Fig-
ure 21), GPT-4o effectively incorporates the pro-
vided metadata and refines the subquery to ensure
that the highest ‘AvgScrMath’ is selected only from
schools present in both the ‘satscores’ and ‘schools’
tables. Finally, initial SQL is refined as the correct
answer, producing an execution result that matches
the output of the Gold SQL.

C.8 Predefined SQL Templates for Other
Types of Metadata

Figure 22 and Figure 23 are the predefined SQL
templates used by DBTool to check column rela-
tionships and detect the presence of null values in
the database, respectively.

SELECT COUNT (%)
FROM (
SELECT “{colA}", COUNT(DISTINCT ~{colB}) AS
colB_count FROM {table}
WHERE ~{colA}" IS NOT NULL AND “{colB}" IS
NOT NULL
GROUP BY ~{colA}" HAVING colB_count > 1
)5

Figure 22: SQL to check the column relationships.

SELECT COUNT(*) FROM {tbl}
WHERE “{col}" IS NULL;

Figure 23: SQL to check the presence of null values.

C.9 User-defined Function (UDF) for Other
Types of Metadata

def is_null(tbl, colA, colB, exec_result):
exec_result[@], exec_result[1] colB_cnt,
colA_cnt
if colB_cnt > @ and colA_cnt > 0:

colA : colB =N : M (not useful)
return None

elif colB_cnt > 0:
colA : colB=1: N

return(f"There are multiple {colB} for
each {colA}")
elif colA_cnt > 0:
colA : colB=M: 1
return(f"There are multiple {colB} for
each {colA}")
else:
colA : colB =1 :1
return(f”"Each {colB} has one
corresponding {colB}")

Figure 24: UDF to check the column relationships.

Figure 24 and Figure 25 are the simplified codes
of user-defined function that converts an execution
result into metadata for the column relationships
and the presence of null values, respectively.

C.10 Handling Other Common NL2SQL
Errors with DBTool

As discussed in Section 4, DBTool resolves com-
mon NL2SQL errors, including column-value mis-
matches and execution errors, using a different ap-
proach from SQL query refinement based on meta-
data extraction (FK constraint violations, column
relationships, and null values).

To handle column-value mismatches, DBTool
extracts column-value pairs from the WHERE
clause and verifies their existence in the database.
It then identifies problematic column-value pairs

16

def is_null(tbl, col_lst, exec_result):
null_col = []
for col in col_lst:
if exec_result > 0@: # If the result is

more than @, null value exists in
the column
null_col.append(col)

return (f"Following columns in table {tbl}

have null values:\n {null_col}")

Figure 25: UDF to check the null value presence.

and retrieves all unique values from the database
for the corresponding column. Next, DBTool per-
forms a syntactic match between the problematic
value and the retrieved unique values, selecting the
top five most similar values. These similar values,
along with the column name, are provided to the
LLM to indicate which values are valid in the col-
umn, enabling the LLM to correctly match values
in the WHERE clause.

For execution errors, DBTool executes the ini-
tial SQL query and extracts problematic column
or table names from the error message. If they
are missing, the raw message and predefined guide-
lines for different error types are passed to the LLM.
If a column or table does not exist in the schema,
DBTool provides the complete schema to help the
LLM determine the correct name. Since this pro-
cess focuses solely on name correction, additional
descriptions are unnecessary. If a column exists
but is linked to the wrong table, DBTool retrieves
its actual table and guides the LLM to correct the
mismatch. Notably, even after execution errors
are resolved and queries run successfully in the
database, other types of errors may still remain.
Therefore, DBTool further refines these errors in
its algorithm.

In both processes, DBTool utilizes an SQL query
parser and database schema or value lookups, en-
abling efficient error refinement with minimal to-
ken usage.

D Performance Comparison by Database

Table 10 summarizes the execution accuracy of
different configurations by databases in the BIRD
benchmark, categorized by the LLM used. While
the performance of View+DBTool varies across
databases, it improves over Baseline w/ desc. by at
least 4% and up to 35% for GPT-40, except for the
Toxicology DB.

. Baseline . View +
Database Baseline w/ desc. View DBTool DBTool
California Schools 41.57 48.31 48.31 51.69 61.79
Student Club 72.78 67.09 79.75 75.95 84.81
Superhero 79.07 85.27 84.50 83.72 89.15
Debit Card Specializing 50.00 51.56 60.94 54.69 64.06
European Football 66.67 68.99 72.09 71.32 76.74
Formula 1 39.66 48.85 54.60 48.85 58.05
Codebase Community 66.67 66.67 73.12 69.35 74.19
Thrombosis Prediction 52.76 47.24 56.44 55.21 63.80
Financial 51.89 51.89 60.38 55.56 66.04
Toxicology 48.28 68.28 63.45 59.31 65.52
Card Games 53.93 57.07 58.64 61.26 67.54
All 57.30 60.63 65.25 63.03 70.47

(a) Model: GPT-40

. Baseline . View +
Database Baseline w/ desc. View DBTool DBTool
California Schools 33.71 32.58 38.20 46.04 52.81
Student Club 68.99 70.89 70.25 72.78 72.78
Superhero 76.74 81.40 81.40 84.50 86.05
Debit Card Specializing 40.62 48.44 50.00 50.00 56.25
European Football 57.36 58.91 62.79 67.44 68.99
Formula 1 41.95 42.53 42.53 49.43 45.40
Codebase Community 58.06 58.60 61.29 61.83 65.59
Thrombosis Prediction 47.24 44.17 47.85 63.19 63.19
Financial 43.40 44.34 49.06 50.00 53.77
Toxicology 45.52 64.83 55.17 52.41 61.38
Card Games 49.21 43.46 47.64 54.97 53.40
All 52.28 54.24 55.54 60.10 61.93

(b) Model: GPT-40-mini

. Baseline . View +
Database Baseline w/ desc. View DBTool DBTool
California Schools 32.58 3.37 35.96 47.19 51.69
Student Club 65.19 70.89 71.52 74.05 80.38
Superhero 75.97 4.65 73.64 86.82 90.70
Debit Card Specializing 48.44 54.69 39.06 57.81 57.81
European Football 65.89 15.50 64.34 69.77 70.54
Formula 1 40.80 46.55 39.66 54.02 50.00
Codebase Community 62.90 54.84 62.90 72.04 72.58
Thrombosis Prediction 50.92 47.85 50.92 60.12 60.12
Financial 38.68 5.66 39.62 50.94 54.72
Toxicology 21.38 25.52 28.28 40.00 48.97
Card Games 47.64 47.12 46.07 56.69 59.16
All 50.85 37.16 51.37 61.55 63.89

Table 10: Execution Accuracy (%) by database in the BIRD benchmark.

17

(c) Model: Llama 3.1-70B

	Introduction
	Related Work
	Existing NL2SQL Frameworks
	Database-Centric NLSQL

	View-based NL2SQL
	Renamed Views
	Unified Views
	Customized Views
	View Selection

	Tool-augmented NL2SQL
	Overall Flow
	Violation of Foreign Key Constraints
	Column Relationships
	Presence of Null Values
	Handling Other Errors with DBTool

	Performance Evaluation
	Setting
	Execution Accuracy
	Cost Efficiency
	Error Analysis

	Conclusion
	Baseline
	View
	Pseudo-Code for View to Base Table.
	Example of Renamed View
	Unified View
	Customized View
	View Selection

	Database-as-a-Tool (DBTool)
	Effect of DBTool on Error Resolution
	Pseudo-Code for DBTool
	Example of DBTool-refined Case.
	SQL Query Parser
	Predefined SQL Template
	User-defined Function (UDF) for Converting Execution Results into Metadata
	Chain-of-Thought Reasoning
	Predefined SQL Templates for Other Types of Metadata
	User-defined Function (UDF) for Other Types of Metadata
	Handling Other Common NL2SQL Errors with DBTool

	Performance Comparison by Database

