
Database-Centric NL2SQL

Anonymous ACL submission

Abstract
Existing NL2SQL systems rely heavily on001
LLMs, prompting them with database schema002
descriptions. However, real-world databases of-003
ten contain complex schemas, ambiguous nam-004
ing, and schema-incompliant instances, making005
accurate SQL generation challenging. Addi-006
tionally, recent trends of using long prompts007
and generating multiple candidate queries con-008
tribute to high computational costs.009

To mitigate these issues, we propose two010
Database-Centric techniques: View-based Op-011
timization, which simplifies schema representa-012
tion using database views, and Database-as-a-013
Tool, which leverages database functionalities014
to refine SQL queries.1 Our approach achieves015
an execution accuracy of 70.47% on the BIRD016
benchmark, comparable to existing NL2SQL017
methods, while greatly reducing input tokens018
by 17× to 374×.019

1 Introduction020

Interacting with databases through natural language021

marks a significant paradigm shift in how users ac-022

cess and manage data. Natural Language to SQL023

(NL2SQL), which translates natural language ques-024

tions into SQL queries, democratizes non-expert025

users to query and manipulate databases using ev-026

eryday language. This innovation has significant027

potential for business applications by empowering028

stakeholders to analyze data and derive actionable029

insights. The rise of large language models (LLMs)030

has greatly advanced NL2SQL frameworks, im-031

proving execution accuracy by leveraging contex-032

tual understanding to bridge the gap between natu-033

ral language questions and SQL queries (Gao et al.,034

2024b; Pourreza et al., 2024; Maamari et al., 2024;035

Talaei et al., 2024; Pourreza and Rafiei, 2024; Gao036

et al., 2024a; Zhang et al., 2023a).037

Existing LLM-empowered NL2SQL frame-038

works typically follow a structured pipeline com-039

1The source code will be released after publication.

prising three stages: schema linking, SQL gener- 040

ation, and refinement. Schema linking maps key 041

terms from a natural language question to relevant 042

database components, such as tables and columns. 043

SQL generation then translates the natural language 044

question into a syntactically and semantically valid 045

SQL statement. Finally, the refinement stage cor- 046

rects errors to ensure that the generated SQL state- 047

ment is executable and aligns with the user’s intent. 048

Despite significant progress, adapting NL2SQL 049

frameworks for real-world applications presents 050

several limitations. (L1) One key issue is the com- 051

plexity of database schemas (Floratou et al., 2024; 052

Li et al., 2024a; Zhang et al., 2024b), which in- 053

creases the amount of information LLMs must pro- 054

cess when generating SQL queries. While detailed 055

table and column descriptions aid comprehension, 056

large schemas with numerous interrelationships am- 057

plify computational overhead. This not only height- 058

ens computational overhead but also makes schema 059

processing more resource-intensive. Thus, an alter- 060

native representation is required to present schemas 061

in a more structured and manageable way. (L2) 062

Moreover, while recent LLMs excel in reasoning 063

based on the given prompt and pre-trained knowl- 064

edge, they overlook real-world database structures 065

and therefore often generate incorrect SQL queries. 066

Specifically, LLMs cannot fully comprehend the 067

structure of an actual database, as its concrete prop- 068

erties cannot be inferred solely from trivial schema 069

information (e.g., table and column names, descrip- 070

tions, and sample values). For instance, they may 071

struggle to infer one-to-one or one-to-many rela- 072

tionships between columns based solely on their 073

names. Consequently, leveraging external tools to 074

extract more information from the database itself 075

becomes essential. 076

To address these limitations, we propose 077

Database-Centric NL2SQL, which systemati- 078

cally integrates database functionalities into the 079

NL2SQL process (Figure 1). This method offers 080

1

Figure 1: Overview of Databse-Centric NL2SQL.

two main advantages. First, it alleviates schema081

complexity by utilizing database views to provide082

a refined schema representation. Second, it re-083

fines SQL queries by extracting metadata from the084

database, enabling the LLMs to better comprehend085

the database’s underlying structure and its data.086

Database-Centric NL2SQL aims to overcome the087

limitations of relying solely on LLMs and improve088

their reliability for real-world applications.089

We outline the key challenges in integrating090

database functionalities into the NL2SQL frame-091

work and present our solutions as follows.092

C1: How to resolve schema complexity? The093

complexity of large database schemas makes094

schema interpretation difficult, as LLMs struggle095

to process extensive and interconnected structures.096

Column names may include abbreviations or nam-097

ing variations, and different tables can contain over-098

lapping column names, making it difficult to de-099

termine the correct mapping. To mitigate this, de-100

tailed descriptions of tables and columns are often101

included in prompts to enhance schema compre-102

hension. However, this increases prompt length103

and computational cost, limiting scalability. Our104

proposed solution is to leverage "views", which105

restructure the schema into a more interpretable106

format. Views clarify ambiguous table and column107

names, group tables, and encapsulate frequently108

used SQL query patterns (Halevy, 2001). By re-109

ducing schema complexity, views allow LLMs to110

focus on generating accurate SQL queries rather 111

than navigating complex structures. 112

C2: How can LLMs receive additional infor- 113

mation to better understand the database struc- 114

ture? To overcome the limitations of LLMs uti- 115

lizing only a limited scope of database informa- 116

tion, external tools beyond LLMs are required (Li 117

et al., 2023; Qin et al., 2024). In the NL2SQL task, 118

we identify the database itself as a suitable tool 119

for this purpose and introduce Database-as-a-Tool 120

(DBTool), a tool-augmented NL2SQL approach 121

that enables LLMs to interact dynamically with 122

databases. Similar to how database practitioners 123

manually explore databases by running queries and 124

analyzing results, DBTool automates database ex- 125

ploration by querying the database to extract meta- 126

data, which provides essential contextual informa- 127

tion for refining erroneous SQL queries. 128

To validate the effectiveness of our Database- 129

Centric NL2SQL approaches, we conducted evalu- 130

ations on the development set of the BIRD bench- 131

mark (Li et al., 2024b). Our proposed method 132

achieves an execution accuracy of 70.47%, while 133

significantly reducing the number of input tokens, 134

ranging from a 17x to 374x reduction compared to 135

other methods. This indicates that current NL2SQL 136

systems largely based on prompt engineering, have 137

room for improvement in token efficiency by lever- 138

aging the database. 139

2

2 Related Work140

2.1 Existing NL2SQL Frameworks141

Schema Linking. Schema linking aligns natural142

language questions with the relevant tables and143

columns in a database schema. Prior research144

has introduced techniques to address the accuracy145

of schema linking. One prominent approach is146

schema pruning, which removes irrelevant tables147

and columns to reduce the amount of information148

LLMs must process (Lei et al., 2020; Pourreza and149

Rafiei, 2024; Xie et al., 2024; Glenn et al., 2023;150

Gao et al., 2024b; Caferoğlu and Ulusoy, 2024).151

Another line of work focuses on enriching schema152

representations by incorporating detailed descrip-153

tions and sample values, enabling LLMs to better154

infer contextual information and produce accurate155

SQLs (Talaei et al., 2024; Pourreza et al., 2024; Li156

et al., 2024a; Zhu et al., 2024).157

SQL Generation and Refinement. The SQL158

generation stage often leverages advanced capabil-159

ities of LLMs, such as few-shot learning (Brown160

et al., 2020; Dong et al., 2023; Gao et al., 2024a;161

Nan et al., 2023) and chain-of-thought reasoning162

(Wei et al., 2022; Tai et al., 2023). Furthermore,163

recent research has increasingly adopted a strat-164

egy where the model generates multiple SQL query165

candidates and selects the most accurate one (Gao166

et al., 2024b; Pourreza et al., 2024; Talaei et al.,167

2024; Lee et al., 2024).168

Meanwhile, the SQL refinement stage addresses169

syntactic and logical errors in the SQL query. This170

process involves re-generating SQL queries based171

on execution results or validation guidelines (Pour-172

reza and Rafiei, 2024; Talaei et al., 2024; Wang173

et al., 2023; Cen et al., 2024; Ren et al., 2024).174

2.2 Database-Centric NLSQL175

View-based NL2SQL. While existing schema-176

linking methods focus on pruning and organizing177

schema details, they do not fundamentally restruc-178

ture the schema. As a result, large schemas must179

still be fully considered during query generation. In180

contrast, every database system supports views to181

encapsulate data or present simplified schema rep-182

resentations, abstracting schema complexity from183

end-users (Halevy, 2001). However, few studies184

have explored leveraging database views to sim-185

plify schema complexity in NL2SQL.186

Tool-augmented NL2SQL. Tool-augmented187

generation is an emerging technique designed to188

enhance the accuracy and reliability of LLM re-189

sponses by training or prompting LLMs to utilize 190

external tools (Parisi et al., 2022; Hsieh et al., 2023; 191

Paranjape et al., 2023; Hao et al., 2023; Qiao et al., 192

2023). Tool-augmented models can invoke tools 193

such as search engines, or calculators to perform 194

operations beyond their internal reasoning capa- 195

bilities (Schick et al., 2024; Li et al., 2023; Qin 196

et al., 2024; Mialon et al., 2023; Nakano et al., 197

2021). This approach has proven effective in a 198

range of tasks, including question answering, math- 199

ematical problem solving, and code generation (Lu 200

et al., 2024; Zhang et al., 2024a, 2023b; Zhuang 201

et al., 2023). However, tool-augmented generation 202

remains unexplored for NL2SQL, presenting an 203

opportunity to improve the accuracy of NL2SQL. 204

3 View-based NL2SQL 205

The following sections introduce Database- 206

Centric NL2SQL, which comprises View-based 207

NL2SQL and Tool-augmented NL2SQL. View- 208

based NL2SQL mitigates schema complexity by 209

reorganizing schema structures into more inter- 210

pretable representations, while Tool-augmented 211

NL2SQL provides LLMs with additional database- 212

specific metadata, thereby enhancing schema un- 213

derstanding by incorporating the database as a tool. 214

View-based NL2SQL reformulates database 215

schemas into representations optimized for LLM 216

interpretation. Instead of exposing raw schema 217

structures of base tables, we introduce three types 218

of views: Renamed Views, Unified Views, and Cus- 219

tomized Views. As shown on left side of Figure 1, 220

users need to create views, and the LLM then gen- 221

erates SQL query based on these views. Figure 2 il- 222

lustrates how each of three view types is processed 223

with a user question. Each view is incorporated into 224

the prompt along with the user question, but only 225

the view schema is provided rather than an exten- 226

sive description. Once the LLM generates an SQL 227

query against the view-based schema representa- 228

tion, an internal rewriting algorithm (Appendix B) 229

transforms it into a SQL query that directly refer- 230

ences the original base tables. In the following, we 231

discuss the three types of views we use. 232

3.1 Renamed Views 233

Renamed Views enhance schema clarity by re- 234

solving column name ambiguity. Unlike existing 235

schema-linking methods that infer column seman- 236

tics from descriptions, they explicitly redefine col- 237

umn names, ensuring precise identification and 238

3

(a) Renamed View (RV). (b) Unified View (UV). (c) Customized View (CV).

Figure 2: View-based NL2SQL, illustrating how each of the three view types is used to handle user query.

Figure 3: Example of Renamed View.

minimizing misinterpretation. Renamed Views239

adopt detailed names, including data type if neces-240

sary. Because database views are widely used in241

enterprise environments, adopting Renamed Views242

are expected to incur minimal overhead. Figure 3243

illustrates an example of Renamed Views: the ‘seg-244

ment’ column in the ‘customers’ table is renamed245

to ‘customer_type’ and in the ‘gasstations’ table,246

it is renamed to ‘fuel_type’. This transformation247

ensures explicit semantic differentiation, remov-248

ing ambiguity and improving interpretability for249

LLMs.250

3.2 Unified Views251

As database schemas expand with more tables and252

columns, LLMs struggle to accurately associate253

columns with their respective tables due to complex254

schemas. A Unified View mitigates this issue by255

creating a virtual schema that integrates related ta-256

bles into a single virtual representation, eliminating257

the need for LLMs to infer implicit joins. To mini-258

mize inefficiencies, Unified Views are selectively259

applied (discussed in Section 3.4) only when the260

generated SQL query fails due to incorrect table-261

column associations. Figure 1 presents an example262

of Unified View, where column ‘dname’ was in-263

correctly mapped to the table ‘schools’. Provided264

with Unified Views, the model can generate SQL265

query with precise table-column matching without266

inferring joins.267

Figure 4: Example of Customized View.

3.3 Customized Views 268

Customized Views improve query execution by 269

converting frequently used query patterns into pre- 270

defined views, allowing direct access to intermedi- 271

ate results. By reducing redundant filtering and ag- 272

gregation, these views simplify query formulation 273

and lower processing overhead. Figure 4 illustrates 274

how predefined views can streamline queries in su- 275

perhero database (Li et al., 2024b). When natural 276

language questions frequently involve Marvel su- 277

perheroes, a predefined Marvel-Comics view can 278

be created to store relevant data as an intermediate 279

representation. This allows queries to directly ref- 280

erence the view instead of repeatedly filtering for 281

Marvel-related attributes. 282

3.4 View Selection 283

To automate view selection, we employ a view 284

selection algorithm under the assumption that all 285

views are manually created in advance. In this 286

study, each database includes one Renamed View 287

per table, one Combined View, and approximately 288

ten predefined Customized Views, ensuring flexi- 289

bility in query transformation. 290

First, the user question is analyzed to determine 291

whether it requires formulas or aggregation func- 292

tions using an LLM-based prediction step. If not, a 293

Renamed View is used; otherwise, a Customized 294

4

Figure 5: Workflow of view selection.

Figure 6: Overall flow of Database-as-a-Tool.

View is retrieved. The selection process employs295

a similarity search mechanism that matches the296

user question against stored view definitions using297

Chroma database (Chroma-core, 2025), selecting298

up to three candidate views. When a Customized299

View is selected, its definition is embedded into300

the prompt alongside the Renamed View defini-301

tion, allowing the LLM to reference the overall302

schema structure. After the LLM generates an SQL303

query, a post-processing step verifies whether an304

execution error occurs. If an error related to col-305

umn name ambiguity is detected, it indicates an306

incorrect column-to-table mapping. In such cases,307

the Unified View definition is incorporated into the308

prompt, and the SQL query is regenerated to re-309

solve the ambiguity. Detailed prompts are provided310

in Appendix B.311

4 Tool-augmented NL2SQL312

Database-as-a-Tool (DBTool) is the novel tool-313

augmented NL2SQL technique that directly ex-314

tracts key metadata from the database for query re-315

finement. We currently support three types of meta-316

data about the underlying database instances: (1)317

foreign key (FK) constraints violations, (2) one-to-318

many or one-to-one relationships between columns,319

and (3) the presence of null values in columns. With320

such metadata, LLM can rectify some errors in its321

initial SQL query.322

SELECT {from_tbl}.{from_col} FROM {from_tbl}
LEFT JOIN {to_tbl} ON {from_tbl}.{
from_col} = {to_tbl}.{to_col}
WHERE {to_tbl}.{to_col} IS NULL

Figure 7: Example of a predefined SQL template (viola-
tion of FK constraints).

def is_fk_violation(from_tbl.fk, to_tbl.pk,
exec_result):
if exec_result: # If the result is not

empty, violation exists
return (f"Foreign key constraint

violation detected: Some values in
'{from_tbl.fk}' do not match any
value in '{from_tbl.pk}'.")

return None

Figure 8: Example of user-defined function for con-
verting execution result into metadata (violation of FK
constraints).

4.1 Overall Flow 323

DBTool follows a structured workflow, which is 324

illustrated in Figure 6. When DBTool is invoked 325

under specific conditions related to the database 326

or the initial SQL query, as detailed in Appendix 327

C, it extracts the column and table names from 328

the initial query using an SQL query parser (e.g., 329

sql-metadata (Brencz, 2024), sqlglot (Mao, 2023)). 330

The query parser breaks down a query into its 331

components by performing token analysis and con- 332

structing an abstract syntax tree (AST). 333

Then, the extracted table and column names are 334

filled into predefined SQL templates that are de- 335

signed to extract specific information about the 336

database (e.g., Figure 7). Each SQL template is 337

populated with parameters and then run against the 338

database. Its result is then converted into meta- 339

data in a natural language format that can be easily 340

interpreted by the LLM, through a corresponding 341

user-defined function (UDF; e.g., Figure 8). 342

Finally, the metadata is incorporated into the 343

prompt to generate a refined SQL, along with the 344

metadata-specific guidelines. Although all three 345

types of metadata are extracted from the database 346

through the same flow, each type has a distinct 347

predefined SQL template and UDF for converting 348

results into metadata. 349

The three main types of metadata extracted by 350

DBTool are described in the following sections. A 351

step-by-step explanation of each process in DBTool 352

is also provided in Appendix C for further clarity. 353

5

Q: What is the phone number of the school that has the
highest average score in Math?

GPT-Generated SQL:
SELECT T2.Phone FROM satscores AS T1 INNER JOIN
schools AS T2 ON T1.cds = T2.CDSCode
WHERE T1.AvgScrMath = (SELECT MAX(AvgScrMath)
FROM satscores) LIMIT 1;

DBTool-refined SQL:
SELECT T2.Phone FROM satscores AS INNER JOIN
T1 schools AS T2 ON T1.cds = T2.CDSCode
WHERE T1.AvgScrMath = (SELECT MAX(AvgScrMath)
FROM satscores AS T1 INNER JOIN schools AS T2
ON T1.cds = T2.CDSCode) LIMIT 1;

Table 1: DBTool query refinement example: using meta-
data (FK constraint violation).

4.2 Violation of Foreign Key Constraints354

In well-structured databases, an FK column in a355

referencing table is expected to match the corre-356

sponding primary key (PK) column in the refer-357

enced table, ensuring data consistency. However,358

in real-world databases, this consistency is often359

compromised, as FK constraints may not always be360

strictly enforced due to database configuration or361

domain-specific requirements (SQLite, 2024; Plan-362

etScale, 2024). Detecting FK constraints violations363

is particularly crucial when joining tables or cre-364

ating subqueries, as such violations can lead to an365

unexpected results such as missing records.366

For example, in Table 1, the initial query at-367

tempted to find the phone number of the school368

with the highest math score by joining the369

‘satscores’ (referencing table) and ‘schools’ (ref-370

erenced table) tables. However, this query re-371

turned no records because the school with the high-372

est score in ‘satscores’, identified by ‘CDSCode’373

or ‘cds’, did not have a corresponding entry in374

the ‘schools’ table due to an FK violation. The375

tool detected this violation and returned metadata376

indicating an FK violation, using the metadata-377

specific SQL template (Figure 7) and UDF (Fig-378

ure 8). Based on the metadata, the subquery is re-379

constructed to find the phone number of the highest-380

scoring school that exists in both tables. This ad-381

justment ensures that the refined query produces382

valid results despite data inconsistencies.383

4.3 Column Relationships384

Understanding relationships between columns,385

such as one-to-many or one-to-one, is essential386

for accurate query formulation, especially when387

GROUP BY clause and aggregate functions are388

Q: Which cities have the top 5 lowest enrollment number
for students in grades 1 through 12?

GPT-Generated SQL:
SELECT City FROM schools JOIN satscores
ON frpm.CDSCode = schools.CDSCode
ORDER BY ‘Enrollment (K-12)‘ ASC LIMIT 5;

DBTool-refined SQL:
SELECT City FROM schools JOIN satscores
ON frpm.CDSCode = schools.CDSCode
GROUP BY City
ORDER BY SUM(‘Enrollment (K-12)‘) ASC LIMIT 5;

Table 2: DBTool query refinement example: using meta-
data (one-to-many column relationship).

involved. Table 2 illustrates an example. The ini- 389

tially generated query did not include GROUP BY 390

needed to aggregate data by city and sum student 391

enrollments for each city. The tool identified a 392

one-to-many relationship between ‘City’ and ‘CD- 393

SCode’, where multiple ‘CDSCode’ values corre- 394

spond to a single ‘City’. As a result, the query 395

was corrected by adding GROUP BY with ‘City’ 396

and using the SUM aggregate function, ensuring it 397

aligns with the user’s intent. See Figures 22 and 24 398

for the SQL template and UDF in this example. 399

4.4 Presence of Null Values 400

Verifying the presence of null values, which are 401

especially common in real-world databases, is cru- 402

cial for generating both user-friendly and accurate 403

queries. The tool prevents unnecessary null val- 404

ues from being returned to the user by identifying 405

columns that contain null values and instructing 406

the LLM to apply the IS NOT NULL condition in 407

SQL queries to filter them out. At the same time, 408

it mitigates potential issues in scenarios where the 409

COUNT function, ORDER BY clause, or arith- 410

metic operations are used in SQL queries, as null 411

values can lead to unexpected results such as incor- 412

rect counts, unintended sorting behavior, or compu- 413

tational errors. Figure 23 and 25 illustrate the SQL 414

template and the UDF for extracting the metadata. 415

4.5 Handling Other Errors with DBTool 416

Furthermore, DBTool efficiently corrects column- 417

value mismatches and execution errors using fewer 418

tokens than existing methods, which handle these 419

errors with lengthy prompts, leading to high infer- 420

ence costs. These functionalities operate differently 421

from the three metadata extraction processes de- 422

scribed earlier and are detailed in Appendix C. 423

Column-value mismatch error occurs when a 424

6

Method EX (%)

CHASE-SQL+Gemini (Pourreza et al., 2024) 74.46
XiYan-SQL (Gao et al., 2024b) 73.34
CHESSIR+CG+UT (Talaei et al., 2024) 68.31
Distillery (Maamari et al., 2024) 67.21
XiYan-SQLQwenCoder-32B (Gao et al., 2024b) 67.01
CHESSIR+SS+CG (Talaei et al., 2024) 65.00
E-SQL (Caferoğlu and Ulusoy, 2024) 65.58
RSL-SQL+DeepSeek (Cao et al., 2024) 63.56
MCS-SQL+GPT-4 (Lee et al., 2024) 63.36

Baseline 57.30
Baseline w/ desc. 60.63
View (Ours) 65.26
DBTool (Ours) 63.03
View+DBTool (Ours) 70.47

Table 3: Comparison with other NL2SQL systems
(BIRD-SQL’s dev set (Li et al., 2024b)). Our meth-
ods and Baseline configurations used GPT-4o.

WHERE clause in an SQL query references non-425

existent values, resulting in no records being re-426

turned from the database. DBTool utilizes an SQL427

query parser to extract the column referenced in the428

WHERE clause and searches for relevant values429

that align with the user’s question. Execution Er-430

ror occurs when a query fails to execute at runtime.431

DBTool analyzes the error message and parses the432

SQL query to extract only the relevant tables and433

columns necessary for debugging.434

5 Performance Evaluation435

5.1 Setting436

Dataset. Performance evaluation was conducted437

using the BIRD benchmark (Li et al., 2024b), a438

cross-domain dataset designed for NL2SQL task.439

BIRD includes natural language questions, corre-440

sponding ground-truth SQL queries (gold SQLs),441

and metadata such as table/column descriptions442

and knowledge evidence. All experiments were443

performed on the development set (dev set).444

Metric. The primary evaluation metric, Execu-445

tion Accuracy (EX, %), measures the proportion446

of generated SQL queries that produce execution447

results identical to those of the ground-truth SQL448

queries. Additionally, inference cost, measured by449

token count, was analyzed for experiments con-450

ducted with a closed-source LLM.451

LLMs. The proposed methods were evaluated452

across three LLMs, including closed-source mod-453

els (OpenAI GPT-4o, GPT-4o-mini (Achiam et al.,454

2023)) and open-source models (LLaMA 3.1-70B455

(Dubey et al., 2024)). The temperature of all LLMs456

was set to 0 to ensure deterministic output.457

Figure 9: Execution accuracy (BIRD-SQL’s dev set).

Baseline. The baseline is based on the OpenAI 458

demonstration prompt, which was first introduced 459

in OpenAI’s official Text-to-SQL demo (Gao et al., 460

2024a). Another baseline, referred to as baseline 461

with description (baseline w/ desc), incorporates ta- 462

ble and column descriptions (Maamari et al., 2024) 463

provided by the BIRD benchmark (Li et al., 2024b). 464

The specific prompts for baseline and baseline w/ 465

desc are included in Appendix A. 466

5.2 Execution Accuracy 467

As summarized in Table 3, our experiments demon- 468

strate that View+DBTool achieves an execution ac- 469

curacy of 70.47%, comparable to state-of-the-art 470

methods. Figure 9 further illustrates the execution 471

accuracy across different LLMs, comparing our 472

methods with the baseline and baseline w/ desc. 473

Notably, view consistently outperforms the base- 474

line and shows an improvement over baseline w/ 475

desc across all three LLMs, with the most pro- 476

nounced gains observed on LLaMA. In addition, 477

applying DBTool to SQL queries initially gener- 478

ated incorrectly by baseline or view, improves per- 479

formance by approximately 5% to 12%. Once 480

again, the largest benefit appears in experiments 481

with LLaMA. Collectively, these results highlight 482

the effectiveness and stability of our NL2SQL ap- 483

proach when deployed with different LLMs. 484

5.3 Cost Efficiency 485

As shown in Figure 10, token consumption in 486

the baseline w/ desc increases steeply with the 487

number of columns, whereas View+DBTool main- 488

tains consistently low usage. This contrast under- 489

scores how embedding extensive schema descrip- 490

tions in prompts becomes inefficient, as the as- 491

sociated inference cost scales disproportionately 492

with database size, making them impractical for 493

large-scale applications. Other methods handle 494

most of their schema reasoning directly within 495

prompts, leading to higher token counts, whereas 496

View+DBTool offloads these operations to the 497

database side, thereby reducing the burden on the 498

7

Figure 10: Average number of input tokens per query
vs. the number of columnsthe database (GPT-4o-mini,
BIRD-SQL’s dev set).

Method Input (K) Output (K) EX (%)

CHESSIR+CG+UT
* 307.51 25.26 68.31

RSL-SQL† 14.28 0.48 67.21
E-SQL‡ 26.24 0.80 65.58

View + DBTool 0.82 0.15 70.47
Baseline (w/ desc). 3.63 0.05 60.63

Table 4: Average number of tokens per query (BIRD’s
dev set). Results are from *an actual experiment using
147 subsamples provided by the author, †the original
paper, and ‡GitHub.

prompts themselves.499

Table 4 compares the average number of to-500

kens required per query across existing NL2SQL501

methods. View+DBTool achieves 70.47% execu-502

tion accuracy while consuming only 0.82K input503

tokens, representing a 4.42× reduction compared504

to the baseline. It also reduces input token con-505

sumption by a factor of 17× to 374× compared to506

other methods whose code is publicly available in507

github, while offering similar performance. Al-508

though View+DBTool generates slightly more out-509

put tokens than the baseline due to CoT prompting,510

it still produces 4 to 20 times fewer output tokens511

than other methods. This substantial reduction in512

token consumption highlights the token efficiency513

of our approach, without sacrificing accuracy and514

reducing reliance on lengthy prompts. Since token515

usage directly drives costs in closed LLMs and adds516

computational overhead in open-source models,517

View+DBTool offers a scalable, cost-effective solu-518

tion for SQL generation in real-world databases.519

5.4 Error Analysis520

This section evaluates the effectiveness of each521

method by analyzing error reduction in the "Cal-522

ifornia Schools" database from the BIRD Bench-523

mark.524

Figure 11 demonstrates how view effectively mit-525

igates schema-related errors, addressing the ma-526

jority of identified issues. Specifically, Renamed527

Figure 11: Distribution of errors (GPT-4o).

Views reduce wrong-column errors by standardiz- 528

ing ambiguous column names, thereby enhancing 529

clarity. Unified Views resolve table-column mis- 530

match errors by pre-joining table-column associa- 531

tions. On the other hand, Customized Views target 532

query efficiency by serving as intermediate repre- 533

sentations for frequently used query patterns and 534

thus lie beyond the scope of this section. 535

Beyond schema-related errors, additional issues 536

arise from a lack of understanding of database struc- 537

tures and the data. The remaining four error types 538

in Figure 11 are handled by DBTool, which, when 539

applied to incorrect SQL queries from the baseline, 540

effectively resolved errors related to column rela- 541

tionships, foreign key constraints, and null values 542

(see Section 4). A detailed analysis of whether 543

other methods successfully handled these errors 544

is in Appendix C. Although DBTool successfully 545

eliminated execution errors, other types of errors 546

persisted when the baseline SQL selected different 547

columns or tables than the gold SQL—an issue that 548

falls outside the current tool’s refinement scope and 549

is deferred to future work. 550

For both view and DBTool, many unresolved 551

errors were deemed unsolvable due to the following 552

factors: (1) ambiguity in natural language questions 553

(Floratou et al., 2024), which allows multiple SQL 554

queries as valid answers beyond the gold SQL; (2) 555

errors in the benchmark, including incorrect gold 556

SQL (Wretblad et al., 2024). 557

6 Conclusion 558

Database-Centric NL2SQL addresses key limita- 559

tions of existing NL2SQL frameworks by integrat- 560

ing advanced database functionalities. Through 561

View-based Optimization and Database-as-a-Tool, 562

it simplifies schema handling, enhances query re- 563

finement, and reduces inference costs. Experi- 564

mental results confirm its effectiveness, making 565

Database-Centric NL2SQL a scalable and practical 566

solution for real-world applications. 567

8

Limitations568

Current evaluations are often limited to spe-569

cific databases, potentially overlooking challenges570

present in broader or more dynamic use cases. Fu-571

ture research should explore more generalized and572

realistic benchmarks to ensure wider applicability573

of the approach.574

View. A key limitation of the current approach575

is that generating Renamed Views requires man-576

ual modifications by users, which can be time-577

consuming and dependent on human intuition. Fu-578

ture research will explore automated techniques579

to generate Renamed Views without user interven-580

tion, reducing the burden on users and ensuring581

consistency. Similarly, Customized Views must582

be predefined, limiting their adaptability to diverse583

queries. To address this, future work will focus584

on developing automated mechanisms that analyze585

user queries, cache frequently used patterns, and586

dynamically construct Customized Views, thereby587

improving flexibility and efficiency. Furthermore,588

the effectiveness of views is inherently tied to how589

they are defined. Poorly designed views may hin-590

der query performance, highlighting the need for591

systematic strategies to optimize view definitions.592

In addition, improving view selection techniques593

is crucial, as selecting the most appropriate view594

for a given query directly impacts SQL generation595

accuracy. Addressing these challenges remains an596

important avenue for future research.597

Database-as-a-Tool. In the benchmark, the598

number of tables and columns is relatively small, re-599

sulting in short query execution times for Database-600

as-a-Tool. In real-world scenarios with large601

database schemas, optimizing the tool’s algorithm602

is necessary to improve execution speed. Further-603

more, the current Tool-augmented NL2SQL frame-604

work employs rule-based logic to invoke tools un-605

der specific database or query conditions. A key606

research direction is to enable the LLM to au-607

tonomously invoke necessary tools, transitioning608

toward a more generalized tool-augmentation ap-609

proach.610

References611

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama612
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,613
Diogo Almeida, Janko Altenschmidt, Sam Altman,614
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.615
arXiv preprint arXiv:2303.08774.616

Maciej Brencz. 2024. sql_metadata. Accessed: 2025- 617
02-08. 618

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 619
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 620
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 621
Askell, et al. 2020. Language models are few-shot 622
learners. Advances in neural information processing 623
systems, 33:1877–1901. 624

Hasan Alp Caferoğlu and Özgür Ulusoy. 2024. E-sql: 625
Direct schema linking via question enrichment in 626
text-to-sql. arXiv preprint arXiv:2409.16751. 627

Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin 628
Zhang, and Wei Chen. 2024. Rsl-sql: Robust schema 629
linking in text-to-sql generation. arXiv preprint 630
arXiv:2411.00073. 631

Jipeng Cen, Jiaxin Liu, Zhixu Li, and Jingjing Wang. 632
2024. Sqlfixagent: Towards semantic-accurate sql 633
generation via multi-agent collaboration. arXiv 634
preprint arXiv:2406.13408. 635

Chroma-core. 2025. Chroma-core. 636

Xuemei Dong, C. Zhang, Yuhang Ge, Yuren Mao, Yun- 637
jun Gao, Lu Chen, Jinshu Lin, and Dongfang Lou. 638
2023. C3: Zero-shot text-to-sql with chatgpt. ArXiv, 639
abs/2307.07306. 640

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 641
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 642
Akhil Mathur, Alan Schelten, Amy Yang, Angela 643
Fan, et al. 2024. The llama 3 herd of models. arXiv 644
preprint arXiv:2407.21783. 645

Avrilia Floratou, Fotis Psallidas, Fuheng Zhao, Shaleen 646
Deep, Gunther Hagleither, Wangda Tan, Joyce Ca- 647
hoon, Rana Alotaibi, Jordan Henkel, Abhik Singla, 648
Alex Van Grootel, Brandon Chow, Kai Deng, Kather- 649
ine Lin, Marcos Campos, K. Venkatesh Emani, Vivek 650
Pandit, Victor Shnayder, Wenjing Wang, and Carlo 651
Curino. 2024. Nl2sql is a solved problem... not! In 652
Conference on Innovative Data Systems Research. 653

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, 654
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024a. 655
Text-to-sql empowered by large language models: 656
A benchmark evaluation. Proc. VLDB Endow., 657
17(5):1132–1145. 658

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin 659
Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao Hong, 660
Zhiling Luo, et al. 2024b. Xiyan-sql: A multi- 661
generator ensemble framework for text-to-sql. arXiv 662
preprint arXiv:2411.08599. 663

Parker Glenn, Parag Pravin Dakle, and Preethi Ragha- 664
van. 2023. Correcting semantic parses with nat- 665
ural language through dynamic schema encoding. 666
Preprint, arXiv:2305.19974. 667

Alon Y Halevy. 2001. Answering queries using views: 668
A survey. The VLDB Journal, 10:270–294. 669

9

https://pypi.org/project/sql_metadata/
https://github.com/chroma-core/chroma
https://api.semanticscholar.org/CorpusID:259924856
https://api.semanticscholar.org/CorpusID:266729311
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://arxiv.org/abs/2305.19974
https://arxiv.org/abs/2305.19974
https://arxiv.org/abs/2305.19974

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu.670
2023. Toolkengpt: Augmenting frozen language671
models with massive tools via tool embeddings. Ad-672
vances in neural information processing systems,673
36:45870–45894.674

CY Hsieh, SA Chen, CL Li, Y Fujii, A Ratner, CY Lee,675
R Krishna, and T Pfister. 2023. Tool documenta-676
tion enables zero-shot tool-usage with large language677
models.678

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and679
Heesoo Park. 2024. Mcs-sql: Leveraging multiple680
prompts and multiple-choice selection for text-to-sql681
generation. arXiv preprint arXiv:2405.07467.682

Wenqiang Lei, Weixin Wang, Zhixin Ma, Tian Gan,683
Wei Lu, Min-Yen Kan, and Tat-Seng Chua. 2020.684
Re-examining the role of schema linking in text-to-685
SQL. In Proceedings of the 2020 Conference on686
Empirical Methods in Natural Language Processing687
(EMNLP), pages 6943–6954, Online. Association for688
Computational Linguistics.689

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-690
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,691
Cuiping Li, and Hong Chen. 2024a. Codes: Towards692
building open-source language models for text-to-sql.693
Proc. ACM Manag. Data, 2(3).694

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua695
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying696
Geng, Nan Huo, et al. 2024b. Can llm already serve697
as a database interface? a big bench for large-scale698
database grounded text-to-sqls. Advances in Neural699
Information Processing Systems, 36.700

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,701
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,702
and Yongbin Li. 2023. Api-bank: A comprehensive703
benchmark for tool-augmented llms. arXiv preprint704
arXiv:2304.08244.705

Xinyuan Lu, Liangming Pan, Yubo Ma, Preslav Nakov,706
and Min-Yen Kan. 2024. Tart: An open-source tool-707
augmented framework for explainable table-based708
reasoning. arXiv preprint arXiv:2409.11724.709

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz,710
and Amine Mhedhbi. 2024. The death of schema711
linking? text-to-sql in the age of well-reasoned lan-712
guage models. arXiv preprint arXiv:2408.07702.713

Toby Mao. 2023. sqlglot. Accessed: 2025-02-08.714

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo-715
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,716
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu,717
Asli Celikyilmaz, et al. 2023. Augmented language718
models: a survey. arXiv preprint arXiv:2302.07842.719

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,720
Long Ouyang, Christina Kim, Christopher Hesse,721
Shantanu Jain, Vineet Kosaraju, William Saunders,722
et al. 2021. Webgpt: Browser-assisted question-723
answering with human feedback. arXiv preprint724
arXiv:2112.09332.725

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu 726
Ri, Jaesung Tae, Ellen Zhang, Arman Cohan, and 727
Dragomir Radev. 2023. Enhancing few-shot text- 728
to-sql capabilities of large language models: A 729
study on prompt design strategies. arXiv preprint 730
arXiv:2305.12586. 731

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, 732
Hannaneh Hajishirzi, Luke Zettlemoyer, and 733
Marco Tulio Ribeiro. 2023. Art: Automatic multi- 734
step reasoning and tool-use for large language mod- 735
els. arXiv preprint arXiv:2303.09014. 736

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm: 737
Tool augmented language models. arXiv preprint 738
arXiv:2205.12255. 739

PlanetScale. 2024. Operating without foreign key con- 740
straints. Accessed: February 13, 2025. 741

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, 742
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok 743
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and 744
Sercan O Arik. 2024. Chase-sql: Multi-path reason- 745
ing and preference optimized candidate selection in 746
text-to-sql. arXiv preprint arXiv:2410.01943. 747

Mohammadreza Pourreza and Davood Rafiei. 2024. 748
Din-sql: Decomposed in-context learning of text- 749
to-sql with self-correction. Advances in Neural Infor- 750
mation Processing Systems, 36. 751

Shuofei Qiao, Honghao Gui, Chengfei Lv, Qianghuai 752
Jia, Huajun Chen, and Ningyu Zhang. 2023. Making 753
language models better tool learners with execution 754
feedback. arXiv preprint arXiv:2305.13068. 755

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, 756
Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe Zhou, 757
Yufei Huang, Chaojun Xiao, et al. 2024. Tool learn- 758
ing with foundation models. ACM Computing Sur- 759
veys, 57(4):1–40. 760

Tonghui Ren, Yuankai Fan, Zhenying He, Ren Huang, 761
Jiaqi Dai, Can Huang, Yinan Jing, Kai Zhang, Yifan 762
Yang, and X Sean Wang. 2024. Purple: Making 763
a large language model a better sql writer. arXiv 764
preprint arXiv:2403.20014. 765

Timo Schick, Jane Dwivedi-Yu, Roberto Dessí, Roberta 766
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle- 767
moyer, Nicola Cancedda, and Thomas Scialom. 2024. 768
Toolformer: language models can teach themselves 769
to use tools. In Proceedings of the 37th International 770
Conference on Neural Information Processing Sys- 771
tems, NIPS ’23. 772

SQLite. 2024. Sqlite foreign key support. Accessed: 773
2025-02-08. 774

Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang Deng, 775
and Huan Sun. 2023. Exploring chain-of-thought 776
style prompting for text-to-sql. arXiv preprint 777
arXiv:2305.14215. 778

10

https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.1145/3654930
https://doi.org/10.1145/3654930
https://doi.org/10.1145/3654930
https://sqlglot.com/sqlglot.html
https://planetscale.com/docs/learn/operating-without-foreign-key-constraints
https://planetscale.com/docs/learn/operating-without-foreign-key-constraints
https://planetscale.com/docs/learn/operating-without-foreign-key-constraints
https://www.sqlite.org/foreignkeys.html#fk_deferred

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen779
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.780
Chess: Contextual harnessing for efficient sql synthe-781
sis. arXiv preprint arXiv:2405.16755.782

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-783
aqi Bai, Qian-Wen Zhang, Zhao Yan, and Zhoujun Li.784
2023. Mac-sql: A multi-agent collaborative frame-785
work for text-to-sql. Preprint, arXiv:2312.11242.786

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten787
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,788
et al. 2022. Chain-of-thought prompting elicits rea-789
soning in large language models. Advances in neural790
information processing systems, 35:24824–24837.791

Niklas Wretblad, Fredrik Gordh Riseby, Rahul Biswas,792
Amin Ahmadi, and Oskar Holmström. 2024. Un-793
derstanding the effects of noise in text-to-sql: An794
examination of the bird-bench benchmark. arXiv795
preprint arXiv:2402.12243.796

Yuanzhen Xie, Xinzhou Jin, Tao Xie, MingXiong Lin,797
Liang Chen, Chenyun Yu, Lei Cheng, ChengXi-798
ang Zhuo, Bo Hu, and Zang Li. 2024. Decompo-799
sition for enhancing attention: Improving llm-based800
text-to-sql through workflow paradigm. Preprint,801
arXiv:2402.10671.802

Beichen Zhang, Kun Zhou, Xilin Wei, Xin Zhao, Jing803
Sha, Shijin Wang, and Ji-Rong Wen. 2024a. Eval-804
uating and improving tool-augmented computation-805
intensive math reasoning. Advances in Neural Infor-806
mation Processing Systems, 36.807

Chao Zhang, Yuren Mao, Yijiang Fan, Yu Mi, Yunjun808
Gao, Lu Chen, Dongfang Lou, and Jinshu Lin. 2024b.809
Finsql: Model-agnostic llms-based text-to-sql frame-810
work for financial analysis. SIGMOD/PODS ’24,811
page 93–105, New York, NY, USA. Association for812
Computing Machinery.813

Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen814
Xu, and Kai Yu. 2023a. ACT-SQL: In-context learn-815
ing for text-to-SQL with automatically-generated816
chain-of-thought. In Findings of the Association817
for Computational Linguistics: EMNLP 2023, pages818
3501–3532, Singapore. Association for Computa-819
tional Linguistics.820

Kechi Zhang, Huangzhao Zhang, Ge Li, Jia Li, Zhuo821
Li, and Zhi Jin. 2023b. Toolcoder: Teach code gener-822
ation models to use api search tools. arXiv preprint823
arXiv:2305.04032.824

Xiaohu Zhu, Qian Li, Lizhen Cui, and Yongkang Liu.825
2024. Large language model enhanced text-to-sql826
generation: A survey. Preprint, arXiv:2410.06011.827

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,828
and Chao Zhang. 2023. Toolqa: A dataset for llm829
question answering with external tools. Advances in830
Neural Information Processing Systems, 36:50117–831
50143.832

A Baseline 833

The following examples illustrate the prompts used 834

in our experiment for the baseline and the base- 835

line with description (baseline w/ desc). The base- 836

line prompt represents the schema in the format 837

Table(Column1, Column2, ...). In contrast, the 838

baseline w/ desc. prompt explicitly denotes the 839

relationship between tables and columns using the 840

Table.Column format and provides detailed de- 841

scriptions for each column, including its meaning, 842

possible values (with examples), and data type. 843

Figure 12: Example of baseline prompt.

Figure 13: Example of baseline with desc prompt.

11

https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2402.10671
https://arxiv.org/abs/2402.10671
https://arxiv.org/abs/2402.10671
https://arxiv.org/abs/2402.10671
https://arxiv.org/abs/2402.10671
https://doi.org/10.1145/3626246.3653375
https://doi.org/10.1145/3626246.3653375
https://doi.org/10.1145/3626246.3653375
https://doi.org/10.18653/v1/2023.findings-emnlp.227
https://doi.org/10.18653/v1/2023.findings-emnlp.227
https://doi.org/10.18653/v1/2023.findings-emnlp.227
https://doi.org/10.18653/v1/2023.findings-emnlp.227
https://doi.org/10.18653/v1/2023.findings-emnlp.227
https://arxiv.org/abs/2410.06011
https://arxiv.org/abs/2410.06011
https://arxiv.org/abs/2410.06011

B View844

B.1 Pseudo-Code for View to Base Table.845

Algorithm 1 Pseudo-Code for View to Base Table.
1: Input: SQL query SQL
2: Output: Transformed SQL query SQL′

3: function CONVERT_RENAMED_TO_BASE(SQL, r_t_b)
4: for all (r_col, o_col) ∈ r_t_o do
5: SQL← Replace(SQL, r_col, o_col)
6: end for
7: return SQL
8: end function
9: function CONVERT_VIEW_TO_BASE(SQL, v_t_b)

10: for all (view,map) ∈ v_t_b do
11: if view ∈ SQL then
12: base_table← map["base_table"]
13: for all (v_col, b_col) ∈

map[”column_mapping”] do
14: SQL← Replace(SQL, v_col, b_col)
15: end for
16: SQL← Replace(SQL, view, base_table)
17: end if
18: end for
19: return SQL
20: end function
21: if renamed_view then
22: SQL′ ← convert_renamed_to_base(SQL, r_t_b)
23: end if
24: if customized_view or combined_view then
25: SQL′ ← convert_view_to_base(SQL′, v_t_b)
26: end if
27: return SQL′

The view-to-base table algorithm consists of two846

functions: ‘convert_renamed_to_base’ and ‘con-847

vert_view_to_base’, which transform SQL queries848

by replacing renamed columns and views with their849

corresponding base table representations. The ‘con-850

vert_renamed_to_base’ function iterates through851

a mapping of renamed columns to their origi-852

nal names and updates the SQL query accord-853

ingly. Likewise, the ‘convert_view_to_base’ func-854

tion identifies views referenced in the SQL query,855

retrieves their associated base tables and column856

mappings, and replaces them to ensure correct exe-857

cution.858

B.2 Example of Renamed View859

Table 5 provides an example of query generation860

using renamed views in the California Schools861

database. The query aims to retrieve the district862

code for schools in Fresno that do not offer a863

magnet program. In the Gold SQL, the query864

correctly joins the ‘frpm’ and ‘schools’ tables us-865

ing ‘CDSCode’ to obtain the ‘District Code’. The866

Baseline SQL, however, directly selects ‘District’867

from ‘schools’ without performing the necessary868

join, leading to an incorrect query. The View-869

Q: What is the district code for the School that does not
offer a magnet program in the city of Fresco?
Rename ‘District’ -> ‘District Name’

Gold SQL:
SELECT T1.‘District Code’ FROM frpm AS T1
INNER JOIN schools AS T2 ON T1.CDSCode =
T2.CDSCode
WHERE City = ‘Fresno’ AND T2.Magnet = 0;

Baseline SQL:
SELECT ‘District’ FROM schools
WHERE ‘City’ = ‘Fresno’ AND T2.‘Magnet’ = 0;

View-Generated SQL:
SELECT ‘frpm’.‘District Code’ FROM frpm
JOIN ‘schools’ ON frpm.CDSCode =
schools.CDSCode WHERE ‘schools’.‘Magnet’
= 0 AND ‘schools’.‘City’ = ‘Fresno’;

Table 5: Renamed View.

Generated SQL addresses this issue by referencing 870

‘frpm’.‘District Code’ and applying the correct join 871

condition between ‘frpm’ and ‘schools’. This en- 872

sures proper schema alignment and accurate query 873

generation. 874

B.3 Unified View 875

Figure 14: Example prompt of Unified View.

Figure 14 presents an example of a prompt uti- 876

lizing the Unified View. Since the Unified View 877

provides a fully joined representation of all tables, 878

only column names are included in the prompt in- 879

stead of the conventional table(column1, column2, 880

...) format. Notably, these column names are iden- 881

tical to those in the Renamed View. 882

As shown in Table 6, the Baseline SQL selects 883

‘Enrollment (K-12)’, which does not exist in the 884

‘schools’ table, leading to an execution error. In 885

contrast, queries generated using the Unified View 886

are algorithmically decomposed into their original 887

12

Q: When did the first-through-twelfth-grade school with
the largest enrollment open?

Gold SQL:
SELECT T2.OpenDate FROM frpm AS T1
ORDER BY T1.Enrollment (K-12) DESC LIMIT;

Baseline SQL:
SELECT OpenDate FROM schools
ORDER BY ‘Enrollment (K-12)’ ASC DESC 1;

View-Generated SQL:
SELECT schools.OpenDate FROM schools
JOIN frpm ON frpm.CDSCode = schools.CDSCode
WHERE frpm.Enrollment (K-12) = (SELECT
MAX(frpm.Enrollment (K-12)) FROM frpm JOIN
schools ON frpm.CDSCode = schools.CDSCode) AND
schools.OpenDate IS NOT NULL;

Table 6: Example of Unified View.

Base tables (Appendix B.1), ensuring the correct888

mapping to ‘frpm.Enrollment (K-12)’.889

B.4 Customized View890

Figure 15: Example prompt of Customized View.

Figure 15 illustrates how a Customized View891

is incorporated into a prompt, providing a struc-892

tured representation of the database schema and893

predefined views. Table 7 demonstrates the impact894

of utilizing this prompt, showing how defining a895

view simplifies SQL generation while maintaining896

correct execution. By leveraging the Customized897

View ‘PatientsPerMonth’, the resulting SQL query898

becomes more concise, eliminating redundant com-899

putations and improving interpretability.900

B.5 View Selection901

Figure 16 illustrates the prompt used in view se-902

lection to determine whether an aggregation func-903

tion or formula is necessary for processing the user904

question. The prompt guides the LLM to articulate905

its reasoning using CoT. If the ‘Require Aggrega-906

tion or Formula’ returns ‘Yes’, a Customized View907

is embedded in the prompt; otherwise, a Renamed908

Q: For the year that concluded on December 31, 1998,
how many male patients on average were tested in the lab
each month?

Baseline SQL (Incorrect):
SELECT CAST(COUNT(DISTINCT Laboratory.ID) AS
REAL) / 12 AS AvgMalePatientsPerMonth FROM
Laboratory JOIN Patient ON Laboratory.ID
= Pation.ID WHERE Patient.Sec = ’M’ AND
Laboratory.Date BETWEEN ’1998-01-01’ AND
’1998-12-31’;

View Definition:
CREATE VIEW PatientsPerMonth AS SELECT.
CAST(COUNT(T1.ID) AS REAL) / 12 FROM Patient
AS T1 INNER JOIN Laboratory AS T2 ON T1.ID =
T2.ID

View-Generated SQL (Correct):
SELECT * FROM PatientsPerMonth WHERE
STRFTIME(’%Y’, T2.Date) = ’1998’ AND T1.SEX =
’M’;

Table 7: Example of Customized View.

Figure 16: Prompt template of view selection.

View is applied. 909

C Database-as-a-Tool (DBTool) 910

C.1 Effect of DBTool on Error Resolution 911

By analyzing the SQL queries generated by GPT- 912

4o-mini on the California Schools database from 913

BIRD, we identified and categorized 11 errors 914

stemming from a lack of understanding of the 915

database structure and its data. According to Ta- 916

ble 8, DBTool proved to be particularly more ef- 917

fective than other existing methods in addressing 918

most of these errors, with the exception of column- 919

value mismatch errors. Additionally, as shown in 920

Table 4 in Section 5, DBTool not only effectively 921

addresses these errors but also demonstrates high 922

token efficiency in solving them. 923

C.2 Pseudo-Code for DBTool 924

The simplified algorithm for DBTool is presented 925

in Algorithm 2. DBTool is invoked when specific 926

conditions are met—either in the target database 927

or in the initial SQL query requiring refinement. 928

13

Error
type fk_violation column-value

mismatch null col-rel

Q_id 10 42 51 18 73 75 76 86 22 43 30

DBTool O O O O O X X O O O O
CHESS O O X X O O O X X X X
RSL-SL X O X O X X O X X X X
E-SQL X O X O O O O X X X X

Table 8: Comparison of error resolution across different
methods using GPT-4o-mini. Each column corresponds
to a specific question ID (Q_id) and error type: FK
constraints violation (fk_violation), column-value mis-
match, null, and column relationship (col-rel) errors.
"O" indicates that the error was rectified, while "X" in-
dicates failure.

Algorithm 2 Pseudo-Code for DBTool
1: Input: previous SQL SQL, Database D
2: Output: refined SQL SQL′

3: result← Execute SQL on D
4: conditions← {
5: "exec_err": result is error message
6: "column-value mismatch": result is empty,
7: "fk_violation": D has FK constraints violation,
8: "col_rel": Column in D has 1:1 or 1:N relationships,
9: "null": result contains NULL values or SQL has arith-

metic operations or COUNT
10: }
11: for all (issue, condition) in conditions do
12: if condition is True then
13: SQL′ ← DBTool(SQL, issue)
14: end if
15: end for
16: return refined SQL SQL′

Furthermore, the information retrieved by DBTool929

from the database varies depending on these con-930

ditions. Based on the specific scenario, different931

predefined SQL templates, user-defined functions932

for metadata conversion, and guidelines embedded933

in the LLM prompt for generating refined SQL are934

employed.935

C.3 Example of DBTool-refined Case.936

In the remainder of Appendix C, we explore each937

component of DBTool through an actual example938

of successful refinement. The example demon-939

strates how metadata indicating FK violations in940

the database is leveraged to correct errors in an941

initial SQL query. Other types of metadata are ex-942

tracted from the database and incorporated into the943

LLM’s prompt through a similar process.944

In Table 9, the question asks for the type of edu-945

cation offered (‘EdOpsName’) at the school (‘cds’,946

‘CDSCode’) with the highest average math score947

(‘AvgScrMath’). The SQL generated by the Base-948

line approach first attempts to find the school with949

Q: What is the type of education offered in the school who
scored the highest average in Math?

Gold SQL:
SELECT T2.EdOpsName FROM satscores AS T1
INNER JOIN schools AS T2 ON T1.cds = T2.CDSCode
ORDER BY T1.AvgScrMath DESC LIMIT 1

Baseline SQL:
SELECT s.EdOpsName FROM satscores sc
JOIN schools s ON sc.cds = s.CDSCode
WHERE sc.AvgScrMath = (SELECT MAX(AvgScrMath)
FROM satscores);

DBTool-refined SQL:
SELECT s.EdOpsName FROM satscores sc
JOIN schools s ON sc.cds = s.CDSCode
WHERE sc.AvgScrMath = (SELECT MAX(AvgScrMath)
FROM satscores WHERE cds IN (SELECT CDSCode
FROM schools));

Table 9: Example of query refinement using DB-as-a-
Tool. The tool corrects the view-generated SQL query
by detecting FK constraint violations.

the highest ‘AvgScrMath’ in the ‘satscores’ table 950

and then retrieves information about that school by 951

joining it with the ‘schools’ table. However, the 952

execution returns an empty set. DBTool identifies 953

that this issue arises due to FK constraint violations 954

between the ‘satscores’ and ‘schools’ tables. 955

C.4 SQL Query Parser 956

Figure 17: Parsing initial query with SQL parser.

First, column and table names from the previous 957

query are extracted using an SQL parser 17. In 958

the current version of DBTool, the Python libraries 959

‘sqlglot’ (Mao, 2023) and ‘sql-metadata’ (Brencz, 960

2024) are both used as parsers. For the example 961

above, ‘schools’ and ‘satscores’, along with their 962

columns in the query, are extracted by the parser. 963

C.5 Predefined SQL Template 964

After parsing the query, the extracted table and 965

column names are inserted into predefined SQL 966

14

Figure 18: Parameterizing predefined SQL template
with parsed tables and columns.

templates (Figure 18). In this example, the SQL967

template for detecting FK constraints is parameter-968

ized with the table ‘schools’ and its PK ‘CDSCode’,969

as well as the table ‘satscores’ along with its respec-970

tive FK columns ‘cds’.971

C.6 User-defined Function (UDF) for972

Converting Execution Results into973

Metadata974

Figure 19: UDF to convert SQL result to metadata.

When parameterized SQL templates from the975

previous step are executed, their results are pro-976

cessed through the corresponding user-defined977

function (UDF) that converts them into natural lan-978

guage for better LLM interpretation (Figure 19).979

In this example, the UDF is_fk_violation (Fig-980

ure 8) takes the execution results, along with the981

table and column names, as input. If the query982

returns one or more rows, the function generates983

a message indicating the presence of an FK con-984

straints violation.985

C.7 Chain-of-Thought Reasoning 986

Figure 20: Prompt template for DBTool

The predicted SQL attempts to find the type of education offered by the
school with the highest average Math score by joining the ‘satscores’
and ‘schools’ tables. However, due to the [CONSTRAINT ERROR],
some ‘cds’ values in the ‘satscores’ table may not have corresponding
entries in the ‘schools’ table. This means that a direct join might exclude
the highest scoring entry if it lacks a corresponding school entry. To
address this, we should first find the maximum average Math score
from the ‘satscores’ table, then join the ‘satscores’ and ‘schools’ tables
using this maximum score, ensuring that we only consider entries that
have a corresponding school. The subquery should be used to find the
maximum score, and then the main query should join the tables based
on this score, ensuring that the FK constraint error is considered.

Figure 21: Example of a CoT reasoning (GPT-4o).

When the metadata is returned from the UDF, it 987

is included in the prompt for generating a refined 988

SQL query (Figure 20). The prompt utilizes the 989

CoT technique (Wei et al., 2022), widely used in 990

NL2SQL task for SQL generation (Talaei et al., 991

2024), (Caferoğlu and Ulusoy, 2024), and (Lee 992

et al., 2024). 993

According to the actual CoT reasoning (Fig- 994

ure 21), GPT-4o effectively incorporates the pro- 995

vided metadata and refines the subquery to ensure 996

that the highest ‘AvgScrMath’ is selected only from 997

schools present in both the ‘satscores’ and ‘schools’ 998

tables. Finally, initial SQL is refined as the correct 999

answer, producing an execution result that matches 1000

the output of the Gold SQL. 1001

C.8 Predefined SQL Templates for Other 1002

Types of Metadata 1003

Figure 22 and Figure 23 are the predefined SQL 1004

templates used by DBTool to check column rela- 1005

tionships and detect the presence of null values in 1006

the database, respectively. 1007

15

SELECT COUNT(*)
FROM (

SELECT `{colA}`, COUNT(DISTINCT `{colB}`) AS
colB_count FROM {table}

WHERE `{colA}` IS NOT NULL AND `{colB}` IS
NOT NULL

GROUP BY `{colA}` HAVING colB_count > 1
);

Figure 22: SQL to check the column relationships.

SELECT COUNT(*) FROM {tbl}
WHERE `{col}` IS NULL;

Figure 23: SQL to check the presence of null values.

C.9 User-defined Function (UDF) for Other1008

Types of Metadata1009

def is_null(tbl, colA, colB, exec_result):
exec_result[0], exec_result[1] = colB_cnt,

colA_cnt
if colB_cnt > 0 and colA_cnt > 0:

colA : colB = N : M (not useful)
return None

elif colB_cnt > 0:
colA : colB = 1 : N
return(f"There are multiple {colB} for

each {colA}")
elif colA_cnt > 0:

colA : colB = M : 1
return(f"There are multiple {colB} for

each {colA}")
else:

colA : colB = 1 : 1
return(f"Each {colB} has one

corresponding {colB}")

Figure 24: UDF to check the column relationships.

Figure 24 and Figure 25 are the simplified codes1010

of user-defined function that converts an execution1011

result into metadata for the column relationships1012

and the presence of null values, respectively.1013

C.10 Handling Other Common NL2SQL1014

Errors with DBTool1015

As discussed in Section 4, DBTool resolves com-1016

mon NL2SQL errors, including column-value mis-1017

matches and execution errors, using a different ap-1018

proach from SQL query refinement based on meta-1019

data extraction (FK constraint violations, column1020

relationships, and null values).1021

To handle column-value mismatches, DBTool1022

extracts column-value pairs from the WHERE1023

clause and verifies their existence in the database.1024

It then identifies problematic column-value pairs1025

def is_null(tbl, col_lst, exec_result):
null_col = []
for col in col_lst:

if exec_result > 0: # If the result is
more than 0, null value exists in
the column
null_col.append(col)

return (f"Following columns in table {tbl}
have null values:\n {null_col}")

Figure 25: UDF to check the null value presence.

and retrieves all unique values from the database 1026

for the corresponding column. Next, DBTool per- 1027

forms a syntactic match between the problematic 1028

value and the retrieved unique values, selecting the 1029

top five most similar values. These similar values, 1030

along with the column name, are provided to the 1031

LLM to indicate which values are valid in the col- 1032

umn, enabling the LLM to correctly match values 1033

in the WHERE clause. 1034

For execution errors, DBTool executes the ini- 1035

tial SQL query and extracts problematic column 1036

or table names from the error message. If they 1037

are missing, the raw message and predefined guide- 1038

lines for different error types are passed to the LLM. 1039

If a column or table does not exist in the schema, 1040

DBTool provides the complete schema to help the 1041

LLM determine the correct name. Since this pro- 1042

cess focuses solely on name correction, additional 1043

descriptions are unnecessary. If a column exists 1044

but is linked to the wrong table, DBTool retrieves 1045

its actual table and guides the LLM to correct the 1046

mismatch. Notably, even after execution errors 1047

are resolved and queries run successfully in the 1048

database, other types of errors may still remain. 1049

Therefore, DBTool further refines these errors in 1050

its algorithm. 1051

In both processes, DBTool utilizes an SQL query 1052

parser and database schema or value lookups, en- 1053

abling efficient error refinement with minimal to- 1054

ken usage. 1055

D Performance Comparison by Database 1056

Table 10 summarizes the execution accuracy of 1057

different configurations by databases in the BIRD 1058

benchmark, categorized by the LLM used. While 1059

the performance of View+DBTool varies across 1060

databases, it improves over Baseline w/ desc. by at 1061

least 4% and up to 35% for GPT-4o, except for the 1062

Toxicology DB. 1063

16

Database Baseline Baseline
w/ desc. View DBTool View +

DBTool

California Schools 41.57 48.31 48.31 51.69 61.79
Student Club 72.78 67.09 79.75 75.95 84.81
Superhero 79.07 85.27 84.50 83.72 89.15
Debit Card Specializing 50.00 51.56 60.94 54.69 64.06
European Football 66.67 68.99 72.09 71.32 76.74
Formula 1 39.66 48.85 54.60 48.85 58.05
Codebase Community 66.67 66.67 73.12 69.35 74.19
Thrombosis Prediction 52.76 47.24 56.44 55.21 63.80
Financial 51.89 51.89 60.38 55.56 66.04
Toxicology 48.28 68.28 63.45 59.31 65.52
Card Games 53.93 57.07 58.64 61.26 67.54

All 57.30 60.63 65.25 63.03 70.47

(a) Model: GPT-4o

Database Baseline Baseline
w/ desc. View DBTool View +

DBTool

California Schools 33.71 32.58 38.20 46.04 52.81
Student Club 68.99 70.89 70.25 72.78 72.78
Superhero 76.74 81.40 81.40 84.50 86.05
Debit Card Specializing 40.62 48.44 50.00 50.00 56.25
European Football 57.36 58.91 62.79 67.44 68.99
Formula 1 41.95 42.53 42.53 49.43 45.40
Codebase Community 58.06 58.60 61.29 61.83 65.59
Thrombosis Prediction 47.24 44.17 47.85 63.19 63.19
Financial 43.40 44.34 49.06 50.00 53.77
Toxicology 45.52 64.83 55.17 52.41 61.38
Card Games 49.21 43.46 47.64 54.97 53.40

All 52.28 54.24 55.54 60.10 61.93

(b) Model: GPT-4o-mini

Database Baseline Baseline
w/ desc. View DBTool View +

DBTool

California Schools 32.58 3.37 35.96 47.19 51.69
Student Club 65.19 70.89 71.52 74.05 80.38
Superhero 75.97 4.65 73.64 86.82 90.70
Debit Card Specializing 48.44 54.69 39.06 57.81 57.81
European Football 65.89 15.50 64.34 69.77 70.54
Formula 1 40.80 46.55 39.66 54.02 50.00
Codebase Community 62.90 54.84 62.90 72.04 72.58
Thrombosis Prediction 50.92 47.85 50.92 60.12 60.12
Financial 38.68 5.66 39.62 50.94 54.72
Toxicology 21.38 25.52 28.28 40.00 48.97
Card Games 47.64 47.12 46.07 56.69 59.16

All 50.85 37.16 51.37 61.55 63.89

(c) Model: Llama 3.1-70B

Table 10: Execution Accuracy (%) by database in the BIRD benchmark.

17

	Introduction
	Related Work
	Existing NL2SQL Frameworks
	Database-Centric NLSQL

	View-based NL2SQL
	Renamed Views
	Unified Views
	Customized Views
	View Selection

	Tool-augmented NL2SQL
	Overall Flow
	Violation of Foreign Key Constraints
	Column Relationships
	Presence of Null Values
	Handling Other Errors with DBTool

	Performance Evaluation
	Setting
	Execution Accuracy
	Cost Efficiency
	Error Analysis

	Conclusion
	Baseline
	View
	Pseudo-Code for View to Base Table.
	Example of Renamed View
	Unified View
	Customized View
	View Selection

	Database-as-a-Tool (DBTool)
	Effect of DBTool on Error Resolution
	Pseudo-Code for DBTool
	Example of DBTool-refined Case.
	SQL Query Parser
	Predefined SQL Template
	User-defined Function (UDF) for Converting Execution Results into Metadata
	Chain-of-Thought Reasoning
	Predefined SQL Templates for Other Types of Metadata
	User-defined Function (UDF) for Other Types of Metadata
	Handling Other Common NL2SQL Errors with DBTool

	Performance Comparison by Database

